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Abstract. In this paper we study solutions of nonlinear systems

A△v(x) + 〈Sx,∇v(x)〉 + f(v(x)) = 0, x ∈ Rd, d > 2.

The linear operator is of Ornstein-Uhlenbeck type with an unbounded drift
term defined by a skew-symmetric matrix S ∈ Rd,d. Equations of this form
determine the shape and angular speed of rotating waves in time-dependent
reaction diffusion systems. We prove under certain conditions that every clas-
sical solution which falls below a certain threshold at infinity, must decay
exponentially in space. For the proof we utilize the heat kernel matrix of a
generalized Ornstein-Uhlenbeck operator, determine its maximal domain and
analyze constant and variable coefficient perturbations.
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1. Introduction and main result

1.1. Assumptions and main result. Consider a steady state problem of the
form

A△v(x) + 〈Sx,∇v(x)〉 + f(v(x)) = 0, x ∈ Rd, d > 2,(1.1)

with diffusion matrix A ∈ KN,N and a function f : KN → KN forK ∈ {R,C}, where
A△v(x) + 〈Sx,∇v(x)〉 is usually called the complex Ornstein-Uhlenbeck operator.
The drift term is defined by a matrix 0 6= S ∈ Rd,d as

〈Sx,∇v(x)〉 :=
d∑

i=1

d∑

j=1

SijxjDiv(x),(1.2)

where Di =
∂
∂xi

. Our interest is in skew-symmetric matrices S = −ST , in which

case (1.2) is a rotational term containing angular derivatives

〈Sx,∇v(x)〉 =
d−1∑

i=1

d∑

j=i+1

Sij (xjDi − xiDj) v(x).(1.3)

We look for different types of solutions, which satisfy at least v ∈ Lp(Rd,KN ) for
some 1 6 p 6 ∞ and N ∈ N.
Under appropriate conditions our main result states that a solution v⋆ of (1.1) and
its first order derivatives decay exponentially in space as the radius |x| goes to
infinity.
Investigating steady state problems of this type is motivated by the stability theory
of rotating patterns in several spatial dimensions, [17]. There one considers reaction
diffusion equations

ut(x, t) =A△u(x, t) + f(u(x, t)), t > 0, x ∈ Rd, d > 2,

u(x, 0) =u0(x) , t = 0, x ∈ Rd,
(1.4)
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where A ∈ KN,N is a diffusion matrix, f : KN → KN a nonlinearity and u a solution
that maps Rd × [0,∞[ into KN .
Assume a rotating wave solution u⋆ : R

d × [0,∞[→ KN of (1.4)

u⋆(x, t) = v⋆(e
tSx)

with profile (or pattern) v⋆ : Rd → KN and 0 6= S ∈ Rd,d skew-symmetric. In
case d = 2, 3, S can be considered as the angular velocity tensor associated to the

angular velocity vector ω ∈ R
d(d−1)

2 containing Sij , i = 1, . . . , d−1, j = i+1, . . . , d.
A transformation into a rotating frame shows that u(x, t) solves (1.4) if and only if
v(x, t) = u(etSx, t) solves

vt(x, t) =A△v(x, t) + 〈Sx,∇v(x, t)〉 + f(v(x, t)), t > 0, x ∈ Rd, d > 2,

v(x, 0) =u0(x) , t = 0, x ∈ Rd,
(1.5)

where the drift term is given by (1.3).
Note that v⋆ is a stationary solution of (1.5), meaning that v⋆ solves the nonlinear
problem (1.1). In Section 2.2 we illustrate such rotating patterns by a series of
examples.
In order to investigate exponential decay of the profile v⋆, we list a series of as-
sumptions that will be important in the sequel. Throughout, let K ∈ {R,C}:
Assumption 1.1. Let A ∈ KN,N be such that

A is diagonalizable (over C) (system condition),(A1)

σ(A) ⊂ C+ := {λ ∈ C | Reλ > 0} (ellipticity condition),(A2)

σ(A) ⊂ Σp :=
{

λ ∈ C | |Imλ| |p− 2| 6 2
√

p− 1Reλ
}

(A3)

=

{

λ ∈ C | |argλ| 6 arctan

(
2
√
p− 1

|p− 2|

)}

, 1 < p <∞,

(Lp-dissipativity condition).

Assumption (A2) guarantees that the diffusion part A△ is an elliptic operator and
requires that all eigenvalues of A are contained in the right half-plane. Condition
(A3) is more restrictive and postulates that all eigenvalues of A are even contained
in a p-dependent sector in the right half-plane, see Figure 1.1. The opening angle
|ϕ| is close to 0 for small and large p, i.e. p close to 1 or ∞, and it is π

2 for
p = 2. Assuming (A2), the condition (A3) is automatically satisfied for p = 2. If
all eigenvalues of A are real and positive then assumption (A3) is satisfied for every
1 < p < ∞. Condition (A1) ensures that all results for scalar equations can be
extended to system cases.

Assumption 1.2. Let S ∈ Rd,d be such that

S is skew-symmetric, i.e. S = −ST , S ∈ so(d,R) (rotational condition).(A4)

Assumption (A4) guarantees that the drift term (1.2) contains only angular deriva-
tives, see (1.3). Our main result will be formulated for the real-valued case.

Assumption 1.3. Let f : RN → RN be such that

f ∈ C2(RN ,RN ) (smoothness condition).(A5)

Later on we apply our results also to complex-valued nonlinearities of the form

f : CN → CN , f(u) = g
(
|u|2
)
u,

where g : R → CN,N is a sufficiently smooth function. Such nonlinearities arise
for example in Ginzburg-Landau equations, Schrödinger equations, λ − ω systems
and many other equations from physical sciences, see Section 2.2. Note, that in
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|ϕ| = arctan
(

2
√

p−1

|p−2|

)

Σp

(b)

Figure 1.1. Sector for ellipticity assumption (A2) (left) and for
dissipativity assumption (A3) (right)

this case, the function f is not holomorphic in C, but its real-valued version in R2

satisfies (A5). For differentiable functions f : RN → RN , Df denotes the Jacobian
matrix in the real sense, see the following conditions (A7) and (A8).

Assumption 1.4. Let v∞ ∈ RN be such that

f(v∞) = 0 (constant asymptotic state),(A6)

A,Df(v∞) ∈ RN,N are simultaneously diagonalizable (over C)(A7)

(system condition),

σ (Df(v∞)) ⊂ C− := {λ ∈ C | Reλ < 0} (spectral condition).(A8)

Definition 1.5. A function v⋆ : R
d → KN is called a classical solution of (1.1) if

v⋆ ∈ C2(Rd,KN ) ∩ Cb(Rd,KN)(1.6)

and v⋆ solves (1.1) pointwise.

For a matrix C ∈ KN,N we denote by σ(C) the spectrum of C, by ρ(C) :=
maxλ∈σ(C) |λ| the spectral radius of C and by s(C) := maxλ∈σ(C) Reλ the spectral
abscissa (or spectral bound) of C. Using this notation, we define the constants

(1.7)
amin :=

(
ρ
(
A−1

))−1
, a0 := −s(−A),

amax :=ρ(A), b0 := −s(Df(v∞)).

Our main tool for investigating exponential decay in space are exponentially weighted
function spaces, which we introduce in Section 3 in detail. An essential ingredient
for these function spaces is the choice of the weight function, which follows [60, Def.
3.1]:

Definition 1.6. (1) A function θ ∈ C(Rd,R) is called a weight function of expo-
nential growth rate η > 0 provided that

θ(x) > 0 ∀x ∈ Rd,(W1)

∃Cθ > 0 : θ(x+ y) 6 Cθθ(x)e
η|y| ∀x, y ∈ Rd.(W2)

(2) A weight function θ ∈ C(Rd,R) of exponential growth rate η > 0 is called radial
provided that

∃φ : [0,∞[→ R : θ(x) = φ (|x|) ∀x ∈ Rd.(W3)
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(3) A radial weight function θ ∈ C(Rd,R) of exponential growth rate η > 0 is called
non-decreasing (or monotonically increasing) provided that

θ(x) 6 θ(y) ∀x, y ∈ Rd with |x| 6 |y|.(W4)

Note, that radial weight functions satisfy θ(x) = θ(y) for every x, y ∈ Rd with
|x| = |y|. Standard examples are

θ1(x) = exp (−µ|x|) and θ2(x) = cosh (µ|x|) ,
as well as their smooth analogs

θ3(x) = exp

(

−µ
√

|x|2 + 1

)

and θ4(x) = cosh

(

µ

√

|x|2 + 1

)

,

for µ ∈ R and x ∈ Rd. Obviously, all these functions are radial weight functions of
exponential growth rate η = |µ| with Cθ = 1 and they are non-decreasing if µ 6 0.
Note, that for µ = 0 the examples include the weight function θ(x) = 1.
For weight functions of exponential growth we define the exponentially weighted
Lebesgue and Sobolev spaces

Lpθ(R
d,KN) :={u ∈ L1

loc(R
d,KN) | ‖θu‖Lp <∞},

W k,p
θ (Rd,KN) :={u ∈ Lpθ(R

d,KN) | Dβu ∈ Lpθ(R
d,KN ) ∀ |β| 6 k},

for every 1 6 p 6 ∞ and k ∈ N0. Our main result is the following:

Theorem 1.7 (Exponential decay of v⋆). Let the assumptions (A1)–(A8) be sat-
isfied for 1 < p < ∞ and K = R. Then for every 0 < ϑ < 1 and for every radially
nondecreasing weight function θ ∈ C(Rd,R) of exponential growth rate η > 0 with

0 6 η2 6 ϑ
2

3

a0b0
a2maxp

2

with amax, a0, b0 from (1.7), there exists a constantK1 = K1(A, f, v∞, d, p, θ, ϑ) > 0
with the following property:
Every classical solution v⋆ of

A△v(x) + 〈Sx,∇v(x)〉 + f(v(x)) = 0, x ∈ Rd,(1.8)

such that v⋆ − v∞ ∈ Lp(Rd,RN ) and

sup
|x|>R0

|v⋆(x) − v∞| 6 K1 for some R0 > 0(1.9)

satisfies

v⋆ − v∞ ∈ W 1,p
θ (Rd,RN ).

Remark. Roughly speaking, Theorem 1.7 states that every classical solution v⋆
which satisfies v⋆ − v∞ ∈ Lp(Rd,RN ) and which is sufficiently close to the steady
state v∞ at infinity, see (1.9), must already decay exponentially in space. The
exponential decay is expressed by the fact, that v⋆−v∞ belongs to an exponentially
weighted Sobolev space. Moreover, the theorem gives an explicit bound for the
exponential growth rate, that depends only on p, the spectral radius of A and the
spectral abscissas of −A and Df(v∞). Note, that by (A2) assumption (A3) is
automatically satisfied for p = 2. The same holds for assumptions (A1) and (A7)
if N = 1.

Remark. Later on we apply Theorem 1.7 to complex systems with nonlinearities
of the form

f : CN → CN , f(u) = g
(
|u|2
)
u,
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where g : R → CN,N is a sufficiently smooth function. For this purpose, we trans-
form the N -dimensional complex-valued system into a 2N -dimensional real-valued
system.

Remark. Theorem 1.7 replaces the theory of exponential dichotomies which is
commonly used to show exponential decay of patterns in R1 and can also be con-
sidered as a type of generalization on Rd. In the theory of exponential dichotomies,
one considers ODEs of the form

u′(t) = f(u(t)), t > 0,(1.10)

where f ∈ C1(RN ,RN ) and u maps [0,∞[ into RN . Assuming that u∞ ∈ RN is a
hyperbolic fixed point, i.e. f(u∞) = 0 and σ(Df(u∞))∩iR = ∅, one finds a constant
K = K(f, u∞) > 0 such that every solution u of (1.10) with u(t) ∈ BK(u∞) for
every t > t0 satisfies u(t) → u∞ exponentially fast as t → ∞, cf. [53, Theorem
III.7 (2)] for a time-discrete version.
To explicate the analogy, let us consider the Ornstein-Uhlenbeck operator instead
of the time derivative in (1.10) and x instead of t. The smoothness assumption
for f now corresponds to assumption (A5). If we consider v∞ instead of u∞, we
see that f(u∞) = 0 is expressed by assumption (A6). But the spectral condition
σ(Df(v∞)) ⊂ C− from (A8) is more restrictive than the hyperbolicity condition
σ(Df(u∞)) ⊂ C− ∪ C+.

Remark. Currently, we extend the theory to spaces of bounded continuous func-
tions like Crub(R

d,KN), which we introduce in Section 2.3. We believe the condition
v⋆ − v∞ ∈ Lp(Rd,RN ), contained in Theorem 1.7, can be omitted.

1.2. Outline of proof. In the following we explain the main steps of our approach
that lead to the proof of Theorem 1.7.
Far-Field-Linearization: Consider the nonlinear problem

A△v⋆(x) + 〈Sx,∇v⋆(x)〉 + f(v⋆(x)) = 0, x ∈ Rd, d > 2.

Let v∞ ∈ RN be the constant asymptotic state satisfying (A6). Assume that
f ∈ C1(RN ,RN ), compare (A5), then Taylor’s theorem yields

f(v⋆(x)) = f(v∞)
︸ ︷︷ ︸

=0

+

∫ 1

0

Df(v∞ + t(v⋆(x) − v∞))dt

︸ ︷︷ ︸

=:a(x)

(v⋆(x)− v∞), x ∈ Rd,

where a ∈ L∞(Rd,RN,N) since v⋆ ∈ L∞(Rd,RN ) and v⋆ is a classical solution.
Since v∞ ∈ RN is constant, it holds

A△v∞ + 〈Sx,∇v∞〉 = 0, x ∈ Rd, d > 2.

Hence, the difference w(x) := v⋆(x) − v∞ satisfies the linearized equation

A△w(x) + 〈Sx,∇w(x)〉 + a(x)w(x) = 0, x ∈ Rd, d > 2.

In order to study the behavior of solutions as |x| → ∞ we decompose the variable
coefficient.
Decomposition of a: Let a(x) = Df(v∞) +Q(x) with Q defined by

Q(x) =

∫ 1

0

Df (v∞ + tw(x)) −Df (v∞) dt, x ∈ Rd.

This yields Q ∈ L∞(Rd,RN,N) and we obtain

A△w(x) + 〈Sx,∇w(x)〉 + (Df(v∞) +Q(x))w(x) = 0, x ∈ Rd, d > 2.
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Decomposition of Q: Now, letQ(x) = Qε(x)+Qc(x), whereQε, Qc ∈ L∞(Rd,RN,N),
Qε is small w.r.t. ‖·‖L∞ and Qc is compactly supported on Rd, see Figure 1.2, then
we arrive at

A△w(x) + 〈Sx,∇w(x)〉 + (Df(v∞) +Qε(x) +Qc(x))w(x) = 0, x ∈ Rd.(1.11)

If we omit the term Qε +Qc we obtain the far-field-linearization.

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

|Q(x)|

|Qε(x)|

|Qc(x)|

K1

R0

|x| = R

Figure 1.2. Decomposition of Q with data R0 and K1 from The-
orem 1.7

Perturbations of Ornstein-Uhlenbeck operator: In order to show exponential
decay for the solution v⋆ of the nonlinear steady state problem (1.1), it is sufficient
to analyze the solutions of the linear system (1.11). Abbreviating B := −Df(v∞),
we will study the following linear differential operators:

[LQv] (x) = A△v(x) + 〈Sx,∇v(x)〉 −Bv(x) +Qε(x)v(x) +Qc(x)v(x),

[LQε
v] (x) = A△v(x) + 〈Sx,∇v(x)〉 −Bv(x) +Qε(x)v(x),

[L∞v] (x) = A△v(x) + 〈Sx,∇v(x)〉 −Bv(x),

[L0v] (x) = A△v(x) + 〈Sx,∇v(x)〉 .
The operator L0, called the Ornstein-Uhlenbeck operator, is the sum of the diffusion
term

[
Ldiff
0 v

]
(x) := A△v(x) and the drift term

[
Ldrift
0 v

]
(x) := 〈Sx,∇v(x)〉. The

drift term has unbounded (in fact linearly increasing) coefficients. Afterwards, we
will allow complex coefficients for the operators L0, L∞, LQε

and LQ. Therefore,
we rewrite the assumptions (A7) and (A8) as follows:

Assumption 1.8. Let B ∈ KN,N be such that

A,B ∈ KN,N are simultaneously diagonalizable (over C), i.e.(A7B)

∃Y ∈ CN,N invertible : Y −1AY = ΛA and Y −1BY = ΛB

where ΛA = diag
(
λA1 , . . . , λ

A
N

)
,ΛB = diag

(
λB1 , . . . , λ

B
N

)
∈ CN,N

(system condition),

σ(B) ⊂ {λ ∈ C | Reλ > 0} (spectral condition).(A8B)

In this context b0 is defined by b0 := −s(−B), cf. (1.7). Note that in case of B = 0
assumption (A7B) coincides with (A1). We now give a short overview how this
paper is organized.
In Section 2 we recall the derivation of the real scalar Ornstein-Uhlenbeck operator
from an underlying stochastic ordinary differential equation (SODE). After that
we motivate the complex Ornstein-Uhlenbeck operator in scalar and system cases.
In the second part of Section 2 we give a series of examples from physical and
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biological sciences, where the Ornstein-Uhlenbeck operator appears in the theory
of rotating patterns.
In Section 3 we introduce in detail the exponentially weighted Lebesgue and Sobolev
spaces as well as some general notation that will be used throughout this paper.
In Section 4 we extend, under the assumptions (A1), (A2), (A4) and (A7B), the
approach from [15], [4] and [20] to determine a heat kernel of the complex-valued
operator L∞ for the case, where A and B are complex simultaneously diagonalizable
matrices. This leads to the following heat kernel matrix

H(x, ξ, t) = (4πtA)−
d
2 exp

(

−Bt− (4tA)−1
∣
∣etSx− ξ

∣
∣
2
)

of L∞, which we will denote later by H∞. The choice B = 0 provides us with a heat
kernel, denoted by H0, for the complex Ornstein-Uhlenbeck operator L0. Further,
we show that H satisfies a Chapman-Kolmogorov formula, that is useful for the
semigroup theory. In the remaining section we prove some integral properties for
the modified kernel K(ψ, t) = H(x, etSx− ψ, t), which will be needed in the sequel
for the exponential decay.
Assuming (A1), (A2) and (A4) we will study in Section 5 the Ornstein-Uhlenbeck
semigroup (T0(t))t>0 defined by the heat kernel of L0 as

[T0(t)v] (x) :=

∫

Rd

H0(x, ξ, t)v0(ξ)dξ, t > 0, x ∈ Rd.

Here we show that the semigroup (T0(t))t>0 (also known as the transition semi-

group) is strongly continuous in Lp(Rd,CN) for every 1 6 p < ∞. Hence, we can
define the infinitesimal generatorAp of (T0(t))t>0. Using abstract semigroup theory,

[28], we are able to derive solvability and uniqueness results for the resolvent equa-
tion and resolvent estimates. Moreover, we show that the Schwartz space S is dense
in the domain of Ap with respect to the graph norm of Ap for every 1 6 p < ∞.
This shows that Ap and L0 coincide on S. To prove afterwards that Ap is indeed
the maximal realization (extension) of L0 in Lp(Rd,CN ) for 1 < p < ∞, we must
restrict p to 1 < p < ∞ and require in addition the Lp-dissipativity assumption
(A3) for L0, cf. [22]. Then, we derive some resolvent estimates for L0 in

Dp(L0) :=
{

v ∈W 2,p
loc (R

d,CN ) ∩ Lp(Rd,CN ) | L0v ∈ Lp(Rd,CN )
}

for 1 < p < ∞, [43]. This enables us to conclude that the maximal domain
Dp
max of Ap is equal to Dp(L0) and that Ap and L0 coincide on Dp(L0) for every

1 < p < ∞. Using exponentially weighted Sobolev spaces with radial weight
functions of exponentially growth, we then obtain exponential decay of the solutions
for the resolvent equation and its derivatives up to order 1, even if (A3) is not
satisfied. In order to show that the maximal domain of the Ornstein-Uhlenbeck
operator L0 = Ldiff

0 + Ldrift
0 coincides with the intersection of the domains of its

diffusion and drift term, i.e.

D
(
Ldiff
0 + Ldrift

0

)
= D

(
Ldiff
0

)
∩ D

(
Ldrift
0

)
,

we analyze the homogeneous and inhomogeneous Cauchy problem for L0, [43], and
show for 1 < p <∞ that the domain Dp(L0) coincides with

Dp :=
{
v ∈W 2,p(Rd,CN ) | 〈S·,∇v〉 ∈ Lp(Rd,CN )

}
.

In Section 6 we perturb the Ornstein-Uhlenbeck operator L0 by adding the term
Bv(x) with constant coefficients, that leads us to the operator L∞. To find a
realization of L∞, we assume (A1), (A2), (A4) and perturb the generator Ap by
adding the operator Epv := Bv. Then the bounded perturbation Bp := Ap + Ep,
equipped with the same domain as Ap, generates a C0-semigroup (T∞(t))t>0 on
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Lp(Rd,CN ) for 1 6 p < ∞. If we require in addition assumption (A3), then the
infinitesimal generator Bp is indeed the maximal realization of L∞ in Lp(Rd,CN)
for 1 < p < ∞ and the domain equals Dp(L0). Note, that in general we do not
have an explicit formula for the semigroup (T∞(t))t>0 any more. But if A and B

satisfy in addition to (A1), (A2), (A4) the assumption (A7B), we are able to derive
an explicit representation for the new semigroup (T∞(t))t>0, given by

[T∞(t)v] (x) :=

∫

Rd

H∞(x, ξ, t)v0(ξ)dξ, t > 0, x ∈ Rd.

Here, the function H∞ coincide with the heat kernel for L∞ computed in Section
4. Again, under the assumptions (A1), (A2), (A4) and (A7B) we are able to derive
solvability und uniqueness results for the resolvent equation and resolvent estimates.
In particular, assuming (A8B), we can derive an explicit representation of Green’s
function for Bp, as the time-integral over the heat kernel,

G(x, ξ) = −
∫ ∞

0

H∞(x, ξ, s)ds.

If in addition (A3) is satisfied, this turns out to be also a Green’s function for L∞.
Again, we can prove exponential decay of solutions of the resolvent equation for Bp
and its derivatives up to order 1, provided (A1), (A2), (A4) and (A7B) are satisfied.
Perturbing the operator L∞ by adding the term Q(x)v(x) with variable coefficients
Q ∈ L∞(Rd,CN,N), leads us in Section 7 to the operator LQ. In order to find
a realization of LQ, we assume (A1), (A2), (A4), (A7B) and perturb this time
the generator Bp by adding the bounded operator Fpv := Qv. Then the operator
Cp := Bp + Fp, equipped with the domain of Bp, generates again a C0-semigroup
(TQ(t))t>0 on Lp(Rd,CN ) for 1 6 p <∞. Again, if we require in addition assump-

tion (A3), then the infinitesimal generator Cp is the maximal realization of LQ in
Lp(Rd,CN ) for 1 < p < ∞ and the domain equals Dp(L0). We know again that
the semigroup (TQ(t))t>0 is uniquely determined but without further assumptions

on Q we cannot derive an explicit representation in this case. However, under the
assumptions (A1), (A2), (A4), (A7B) and arbitraryQ ∈ L∞(Rd,CN,N), we are able
to derive solvability und uniqueness results for the resolvent equation and resolvent
estimates. Finally, assuming in addition (A3) and

sup
|x|>R

|Q(x)| → 0 as R → ∞,

and following [17], we compute the essential spectrum of the operator LQ in
Lp(Rd,CN ) for every 1 < p < ∞. This shows that neither LQ nor Cp is sec-
torial in Lp(Rd,CN ) and (TQ(t))t>0 does not generate an analytic semigroup in

Lp(Rd,CN ) for every 1 < p <∞. This result can also be applied in case Q = 0 and
B = Q = 0, which provides us the same statements for L0 and (T0(t))t>0 as well as

L∞ and (T∞(t))t>0. In the rest of this section we apply this theory to perturbations

Q = Qε, where Qε is assumed to be small with respect to ‖·‖L∞ , and to relatively
compact perturbations Q = Qε +Qc, where Qc is compactly supported.
In Section 8 we analyze the steady state problem (1.1) and prove the main result
from Theorem 1.7, stating that v⋆ − v∞ and its derivatives up to order 1 decay
exponentially in space at a certain rate, whenever v⋆ is a classical solution of (1.1).
In the proof we use the above mentioned main steps of our approach. Afterwards
we extend Theorem 1.7 to complex systems. Generalizing [17] from d = 2 to d > 2,
we investigate the linearization of the nonlinear problem (1.1) of the Ornstein-
Uhlenbeck operator on Rd. We determine the eigenvalues on the imaginary axis
and show that the associated eigenfunctions and their first order derivatives decay
exponentially in space.
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2. Derivation and applications of the Ornstein-Uhlenbeck operator

2.1. The Ornstein-Uhlenbeck operator arising from stochastic ODEs. In
this section we recall the origin of the Ornstein-Uhlenbeck operator from stochastic
differential equations. For this purpose we consider a stochastic ordinary differential
equation and derive the Kolmogorov operator. The Ornstein-Uhlenbeck operator,
which is an elliptic operator with unbounded linearly growing coefficients, is a
special type of a Kolmogorov operator. Different types of Kolmogorov operators
were treated in [34], [21], [3]. Applications of Kolmogorov operators in physics and
finance can be found in [50]. For a motivation of the Ornstein-Uhlenbeck operator
from SODE’s we refer to [38, Chapter 9].

2.1.1. From ODE to first-order PDE. Let d ∈ N and let µ ∈ C∞(Rd,Rd) be a
function, which is at most linearly growing, i.e.

∃C > 0 : |µ(x)| 6 C (1 + |x|) ∀x ∈ Rd.

Then there exists a family

Φ(·;x) : [0,∞[→ Rd, x ∈ Rd,

of unique smooth functions, satisfying

∂

∂t
Φ(t;x) = µ (Φ(t;x)) , t ∈ [0,∞[, x ∈ Rd,

Φ(0;x) = x.
(ODE)

Φ(·;x) is known as the solution flow of (ODE). These functions are smooth with
respect to x for every fixed t ∈ [0,∞[, i.e.

Φ(t; ·) : Rd → Rd, x 7−→ Φ(t;x) is smooth ∀ t ∈ [0,∞[.

The family T (t) : Cb(R
d,R) → Cb(R

d,R), t ∈ [0,∞[, of linear operators defined by

[T (t)u0] (x) := u0 (Φ(t;x)) , x ∈ Rd, t ∈ [0,∞[, u0 ∈ Cb(R
d,R),

is called the transition semigroup of the (ODE). (T (t))t>0 satisfies the properties

T (0) = I and T (t1)T (t2) = T (t1 + t2) ∀ t1, t2 ∈ [0,∞[

and

T (t)Ckb (R
d,R) ⊆ Ckb (R

d,R) ∀ t ∈ [0,∞[ ∀ k ∈ N0 ∪ {∞} .

Let us fix u0 ∈ C1
b (R

d,R) and consider u : Rd × [0,∞[→ R given by

u(x, t) := [T (t)u0] (x) = u0 (Φ(t;x)) , t ∈ [0,∞[, x ∈ Rd,

then u is the classical solution of the first-order linear PDE

∂

∂t
u(x, t) =

d∑

i=1

µi(x)
∂

∂xi
u(x, t) =: 〈µ(x),∇u(x, t)〉 , x ∈ Rd, t ∈ [0,∞[,

u(x, 0) = u0(x).

(PDE1st)

As we will see in Section 2.1.2, (PDE1st) is a special case of a Kolmogorov equation.
In particular, the solution preserves the smoothness of the initial data, i.e. for every
k ∈ N ∪ {∞}

u(·, 0) = u0(·) ∈ Ckb (R
d,R) ⇒ u(·, t) ∈ Ckb (R

d,R) ∀ t ∈ [0,∞[
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Example 2.1 (Drift term of the Ornstein-Uhlenbeck operator). Let d ∈ N and
µ : Rd → Rd with µ(x) = Sx for some 0 6= S ∈ Rd,d, then Φ(·;x) : [0,∞[→ Rd with
Φ(t;x) = etSx, x ∈ Rd, t ∈ [0,∞[, is the unique smooth function satisfying

∂

∂t
Φ(t;x) = SΦ(t;x), t ∈ [0,∞[, x ∈ Rd,

Φ(0;x) = x.

The corresponding transition semigroup is given by T (t) : Cb(R
d,R) → Cb(R

d,R),
t ∈ [0,∞[, with

[T (t)u0] (x) := u0
(
etSx

)
, x ∈ Rd, t ∈ [0,∞[, u0 ∈ Cb(R

d,R).

If we fix u0 ∈ C1
b (R

d,R), then u : Rd × [0,∞[→ R given by

u(x, t) := [T (t)u0] (x) = u0
(
etSx

)
, t ∈ [0,∞[, x ∈ Rd,

is a classical solution of the first-order linear PDE

∂

∂t
u(x, t) =

d∑

i=1

(Sx)i
∂

∂xi
u(x, t) =: 〈Sx,∇u(x, t)〉 , x ∈ Rd, t ∈ [0,∞[,

u(x, 0) = u0(x).

2.1.2. From SODE to second-order PDE. Let d,m ∈ N and consider two functions
µ ∈ C∞(Rd,Rd) and σ ∈ C∞(Rd,Rd,m), which are at most linearly growing, i.e.

∃C > 0 : |µ(x)| 6 C (1 + |x|) ∀x ∈ Rd,

∃C > 0 : |σj(x)| 6 C (1 + |x|) ∀x ∈ Rd ∀ j = 1, . . . ,m.

Furthermore, let (Ω,F ,P) denote a probability space with a standard Brownian
motion

W : [0,∞[×Ω → Rm

Then there exists a family

Φ(·;x) : [0,∞[×Ω → Rd, x ∈ Rd,

of solution processes of

dΦ(t;x) = µ (Φ(t;x)) dt+ σ (Φ(t;x)) dW (t), t ∈ [0,∞[, x ∈ Rd,

Φ(0;x) = x,
(SODE)

It is well known, that the solution processes are unique up to indistinguishability.
More precisely, one has Φ(t;x) = Φ(t, ω;x), but we suppress the argument ω in the
following. Note, that the (SODE) can describe the random motion of a particle in a
fluid, [58]. The family T (t) : Cb(R

d,R) → Cb(R
d,R), t ∈ [0,∞[, of linear operators

defined by

[T (t)u0] (x) := IE [u0 (Φ(t;x))] , x ∈ Rd, t ∈ [0,∞[, u0 ∈ Cb(R
d,R),

is called the transition semigroup of the (SODE). (T (t))t>0 satisfies the properties

T (0) = I and T (t1)T (t2) = T (t1 + t2) ∀ t1, t2 ∈ [0,∞[

and

T (t)Cb(R
d,R) ⊆ C∞

b (Rd,R) ∀ t ∈ [0,∞[.

Such smoothing properties were established by Hörmander in 1967 under the Hörmander
condition, [33]. This condition is for example satisfied, if

span {σ1(x), . . . , σm(x)} = Rd ∀x ∈ Rd.
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Let us fix u0 ∈ C1
b (R

d,R) and consider u : Rd × [0,∞[→ R given by

u(x, t) := [T (t)u0] (x) = IE [u0 (Φ(t;x))] , t ∈ [0,∞[, x ∈ Rd.

If u(·, t) is smooth for all t ∈]0,∞[, then u is the classical solution of the second-
order linear PDE

∂

∂t
u(x, t) =

d∑

i=1

µi(x)
∂

∂xi
u(x, t) +

1

2

d∑

i=1

d∑

j=1

(
σT (x)σ(x)

)

ij

∂2

∂xi∂xj
u(x, t),

=: 〈µ(x),∇u(x, t)〉 + 1

2
Tr
(
σT (x)σ(x)D2u(x, t)

)

u(x, 0) = u0(x),

(PDE2nd)

for x ∈ Rd and t ∈]0,∞[. (PDE2nd) is called the Kolmogorov equation. The
second-order differential operator

[LKolu] (x, t) :=
1

2
Tr
(
σT (x)σ(x)D2u(x, t)

)
+ 〈µ(x),∇u(x, t)〉 , x ∈ Rd, t ∈]0,∞[

is called the Kolmogorov operator with diffusion term 1
2Tr

(
σT (x)σ(x)D2u(x, t)

)

and drift term 〈µ(x),∇u(x, t)〉 , x ∈ Rd, t ∈]0,∞[. Note that the Kolmogorov
operator LKol can be considered as the infinitesimal generator of the transition
semigroup of the (SODE).

Example 2.2 (Ornstein-Uhlenbeck operator). Let m = d ∈ N, µ : Rd → Rd with
µ(x) = Sx for some 0 6= S ∈ Rd,d and σ : Rd → Rd,d such that σT (x)σ(x) = Q for
every x ∈ Rd for some constant matrix Q ∈ Rd,d. If we assume that Q is symmetric
and positive definite, then there exists a unique symmetric and positive definite
square root

√
Q of Q, i.e. σ(x) =

√
Q for every x ∈ Rd. Furthermore, let (Ω,F ,P)

be a probability space with a standard Brownian motion W : [0,∞[×Ω → Rd.
Then the family Φ(·;x) : [0,∞[×Ω → Rd given by

Φ(t;x) = etSx+

∫ t

0

e(t−τ)SdW (τ), t ∈ [0,∞[, x ∈ Rd,

are the ’up to indistinguishability’ unique solution processes of

dΦ(t;x) = SΦ(t;x)dt +
√

QdW (t), t ∈ [0,∞[, x ∈ Rd,

Φ(0;x) = x.

The solution process Φ(·, x) is called the Ornstein-Uhlenbeck process on Rd and the
corresponing SODE is also known as the Langevin equation. A prototype of this
equation, ut = u+ xux + uxx, was considered by Ornstein and Uhlenbeck in 1930,
[58]. The corresponding transition semigroup, or sometimes called the Ornstein-
Uhlenbeck semigroup, is given by T (t) : Cb(R

d,R) → Cb(R
d,R), t ∈ [0,∞[, with

[T (t)u0] (x) :=IE [u0 (Φ(t;x))]

=

{

(4π)
− d

2 (detQt)
− 1

2
∫

Rd e
− 1

4 〈Q−1
t ψ,ψ〉v0(etSx− ψ)dψ , t > 0,

u0(x) , t = 0,

=

{∫

Rd H(x, ξ, t)v0(ξ)dξ , t > 0,

u0(x) , t = 0,

for x ∈ Rd, t ∈ [0,∞[ and u0 ∈ Cb(R
d,R) where

H(x, ξ, t) = (4π)
− d

2 (detQt)
− 1

2 e−
1
4 〈Q−1

t (etSx−ξ),(etSx−ξ)〉,
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for x, ξ ∈ Rd, t ∈]0,∞[ and

Qt =

∫ t

0

eτSQ
(
eτS
)T
dτ,

for t ∈]0,∞[. The explicit representation of (T (t))t>0 is due to Kolmogorov, [34].

The function H : Rd × Rd×]0,∞[→ R denotes the heat kernel of the Ornstein-
Uhlenbeck operator and is called the Kolmogorov kernel, or sometimes the Ornstein-
Uhlenbeck kernel. Since Q ∈ Rd,d is symmetric and positive definite, it holds the
following relation between the heat kernel and the d-dimensional Gaussian measure
Nd, see [38, Chapter 9.1] and [14, Satz 30.4],

Nd

(
etSx, 2Qt

)
(dξ) = H(x, ξ, t)dξ, x ∈ Rd, t > 0,

i.e. H(x, ·, t) is the density function of the normal distribution Nd

(
etSx, 2Qt

)
with

respect to the Lebesgue measure. 2Qt denotes the covariance matrix and etSx the
mean value vector. Let us fix u0 ∈ C1

b (R
d,R) and let us define u : Rd × [0,∞[→ R

by

u(x, t) := [T (t)u0] (x) = IE [u0 (Φ(t;x))] , t ∈ [0,∞[, x ∈ Rd,

then, if u(·, t) is smooth for all t ∈]0,∞[, u is the classical solution of the Kolmogorov
equation

∂

∂t
u(x, t) =

d∑

i=1

(Sx)i
∂

∂xi
u(x, t) +

1

2

d∑

i=1

d∑

j=1

Qij
∂2

∂xi∂xj
u(x, t)

= 〈Sx,∇u(x, t)〉+ 1

2
Tr
(
QD2u(x, t)

)
, x ∈ Rd, t ∈]0,∞[,

u(x, 0) = u0(x).

The second-order differential operator

[LOUu] (x, t) :=
1

2
Tr
(
QD2u(x, t)

)
+ 〈Sx,∇u(x, t)〉

is called the Ornstein-Uhlenbeck operator with diffusion term 1
2Tr

(
QD2u(x, t)

)

and drift term 〈Sx,∇u(x, t)〉. This operator can be considered as the infinitesimal
generator of the Ornstein-Uhlenbeck semigroup (T (t))t>0. In addition, if Q is only
assumed to be symmetric and positive semidefinit, LOU is called the degenerate
Ornstein-Uhlenbeck operator. Several interpretations in physics and finance of this
operator or its evolutionary counterpart - the Kolmogorov-Fokker-Planck operator
LOU − ∂t - are explained in the survey by Pascucci [50]. Finally, we observe that if
Q = 2Id then we have 1

2Tr
(
QD2u(x, t)

)
= △u(x, t), where△ denotes the Laplacian

on Rd.

2.2. Rotating waves in reaction diffusion systems. In Section 1.1 we have al-
ready motivated the nonlinear steady state problem (1.1) for the complex Ornstein-
Uhlenbeck operator by the existence of rotating wave solutions. Such rotating waves
arise in many applications from physical, chemical and biological sciences. In the
following, we list a set of examples, where such rotating wave solutions exist. All
the computations where done with the help of the package [1].

Example 2.3 (Ginzburg-Landau equation). Consider the cubic-quintic complex
Ginzburg-Landau equation (QCGL), [37],

ut = α△u+ u
(

µ+ β |u|2 + γ |u|4
)

(2.1)
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with u : Rd × [0,∞[→ C, d ∈ {2, 3} and α, β, γ, µ ∈ C. The real-valued version of
this equation reads as

(
u1
u2

)

t

=

(
α1 −α2

α2 α1

)

△
(
u1
u2

)

+ f

(
u1
u2

)

with

f

(
u1
u2

)

=

(

(u1µ1 − u2µ2) + (u1β1 − u2β2)
(
u21 + u22

)
+ (u1γ1 − u2γ2)

(
u21 + u22

)2

(u1µ2 + u2µ1) + (u1β2 + u2β1)
(
u21 + u22

)
+ (u1γ2 + u2γ1)

(
u21 + u22

)2

)

,

u = u1 + iu2, α = α1 + iα2, β = β1 + iβ2, γ = γ1 + iγ2 and ui, αi, βi, γi ∈ R

for i = 1, 2. This equation describes different aspects of signal propagation in
heart tissue, superconductivity, superfluidity, nonlinear optical systems, see [47],
photonics, plasmas, physics of lasers, Bose-Einstein condensation, liquid crystals,
fluid dynamics, chemical waves, quantum field theory, granular media and is used
in the study of hydrodynamic instabilities, see [45]. It shows a variety of coherent
structures like stable and unstable pulses, fronts, sources and sinks in 1D, see [59],
[55], [6] and [57], vortex solitons, see [23], spinning solitons, see [24], rotating spiral
waves, propagating clusters, see [52], and exploding dissipative solitons, see [54] in
2D as well as scroll waves and spinning solitons in 3D, see [46].
Let us discuss the assumptions (A1)–(A8): Assumption (A1) is satisfied for every
α ∈ C, assumption (A2) if Reα = a1 > 0 and (A3) for some 1 < p <∞ if

|argα| 6 arctan

(
2
√
p− 1

|p− 2|

)

.

The condition (A4) is satisfied with

S =

(
0 S12

−S12 0

)

and S =





0 S12 S13

−S12 0 S23

−S13 −S23 0



(2.2)

for d = 2 and d = 3, respectively. In the examples below we determine S12, S13 and
S23 from a simulation. First we simulate the original system for some time then we
switch to the freezing method, see [16], [19], [18], and [56], which then yields values
for the velocities. The specific values of these variables we discuss in the examples
below. Note that in case d = 2 we have a clockwise rotation, if S12 > 0, and a
counter clockwise rotation, if S12 < 0. Assumption (A5) is obviously satisfied.
Using, for instance, v∞ = (0, 0)T then assumption (A6) is satisfied. Then, we have

Df(v∞) =

(
µ1 −µ2

µ2 µ1

)

and assumption (A7) is also satisfied. Assumption (A8) is only satisfied if Reµ < 0.
The bound for the rate of the exponential decay from Theorem 1.7 equals

0 6 η2 6 ϑ
2

3

Reα (−Reµ)

|α|2p2 .

for some 0 < ϑ < 1. Let us now consider some specific examples:
(1): For the parameters

α =
1

2
+

1

2
i, β =

5

2
+ i, γ = −1− 1

10
i, µ = −1

2
(2.3)

this equation exhibits so called spinning soliton solutions for space dimensions d = 2
and d = 3, see Figure 2.1.
Figure 2.1(a)–2.1(c) shows the spinning soliton in R2 as the solution of (2.1) on a
circle of radius R = 20 centered in the origin at time t = 150. For the computation
we used continuous piecewise linear finite elements with stepsize △x = 0.25, the
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(a) Reu(x, y) (b) Imu(x, y) (c) |u(x, y)|

(d) Reu(x, y, z) (e) Imu(x, y, z) (f) |u(x, y, z)|

Figure 2.1. Spinning soliton of QCGL for d = 2 (above) and
d = 3 (bottom)

BDF method of order 2 with stepsize △t = 0.1, homogeneous Neumann boundary
conditions and initial data

u2D0 (x, y) =
1

5
(x+ iy) exp

(

−x
2 + y2

49

)

.

Figure 2.1(d)–2.1(f) shows the spinning soliton in R3 as the solution of (2.1) on
a cube with edge length L = 20 centered in the origin at time t = 100. For
the computation we used continuous piecewise linear finite elements with stepsize
△x = 0.8, the BDF method of order 2 with stepsize △t = 0.1, homogeneous
Neumann boundary conditions and initial data

u3D0 (x, y, z) = u2D0 (x, y)

for |z| < 9 and otherwise 0.
The parameter values (2.3) satisfy our assumptions (A1)–(A8) for every p ∈]4 −
2
√
2, 4+2

√
2[, i.e. p = 2, 3, 4, 5, 6. At time t = 400 we have the rotational velocities

S12 = 1.027 in case d = 2 and (S12, S13, S23) = (0.6862,−0.01024, 0.005671) at time
t = 900 in case d = 3. The solitons are localized in the sense of Theorem 1.7 with
the bound

0 6 η2 6 ϑ
1

3p2
<

1

3p2
for p ∈]4− 2

√
2, 4 + 2

√
2[.

(2): For the parameters

α =
1

2
+

1

2
i, β =

13

5
+ i, γ = −1− 1

10
i, µ = −1

2
(2.4)

this equation exhibits so called rotating spiral soliton solutions, see Figure 2.2.
Figure 2.2(a)–2.2(c) shows the spiral soliton in R2 as the solution of (2.1) on a

circle of radius R = 20 centered in the origin at time t = 150. For the computation
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(a) Reu(x, y) (b) Imu(x, y) (c) |u(x, y)|

Figure 2.2. Rotating spiral soliton of QCGL for d = 2

we used continuous piecewise linear finite elements with stepsize △x = 0.25, the
BDF method of order 2 with stepsize △t = 0.1, homogeneous Neumann boundary
conditions and initial data u2D0 from above.
The only different in the choice of parameters in (2.4) to the previous example,
compare (2.3), is the real part of β, which is now a little bit larger. The parameter

values satisfy our assumptions (A1)–(A8) also for p ∈]4 − 2
√
2, 4 + 2

√
2[. At time

t = 300 we have the rotational velocity S12 = 1.323. The solitons are also localized
in the sense of Theorem 1.7 with the same bound as before. We observe that
enlarging β from 5

2 to 13
5 generates a pattern with a larger support and a higher

rotational velocity.
(3): For the parameters

α = 1, β = −(1 + i), γ = 0, µ = 1(2.5)

this equation exhibits so called twisted and untwisted scroll wave solutions, see
Figure 2.4.
Figure 2.4(a)–2.4(c) shows the untwisted scroll wave in R3 as the solution of (2.1)
and (2.6), respectively, on a cube with edge length L = 40 centered in the origin
at time t = 150. For the computation we used continuous piecewise linear finite
elements with stepsize △x = 1.6, the BDF method of order 2 with stepsize △t =
0.5, homogeneous Neumann boundary conditions on the side surfaces, periodic
boundary conditions on the faces for z = ∓10 and initial data

u3D0 (x, y, z) =
1

7
((x− 20) + i(y − 20)) exp

(

− (x− 20)2 + (y − 20)2

49
+ i

z − 20

2π

)

.

The parameter values (2.5) satisfy only the assumptions (A1)–(A7) for every 1 <
p <∞ but not condition (A8), since the real part of µ is not negative. In this case
the pattern is not localized in the sense of Theorem 1.7. The rotational velocities
at time t = 300 are (S12, S13, S23) = (−0.1756,−0.00001, 0.002146).

Example 2.4 (λ-ω system). Consider the λ-ω system, [36], [48],

ut = α△u+ u
(
λ
(
|u|2
)
+ iω

(
|u|2
))

(2.6)

with u : Rd × [0,∞[→ C, d ∈ {2, 3}, α ∈ C, λ : [0,∞[→ R and ω : [0,∞[→ R. The
real-valued version of this equation reads as

(
u1
u2

)

t

=

(
α1 −α2

α2 α1

)

△
(
u1
u2

)

+ f

(
u1
u2

)

with

f

(
u1
u2

)

=

(
u1λ

(
u21 + u22

)
− u2ω

(
u21 + u22

)

u1ω
(
u21 + u22

)
+ u2λ

(
u21 + u22

)

)

,
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u = u1 + iu2, α = α1 + iα2 and ui, αi ∈ R for i = 1, 2. This equation describes
chemical reaction processes, see [36] and [35], physiological processes in the study
of cardiac arrhythmias, time evolution of biological systems, see [48], and is often
used to analyze the mechanism of pattern formation as well as to study the oneset
of turbulent behavior. An example of an emerging technological application based
on pattern forming systems is given by memory devices using magnetic domain
patterns. This model exhibits rotating spirals as well as scroll wave and scroll ring
solutions, see [27] and [29].
Let us again discuss the assumptions (A1)–(A8): Assumption (A1) is satisfied for
every α ∈ C, assumption (A2) if Reα = a1 > 0 and (A3) for some 1 < p <∞ if

|argα| 6 arctan

(
2
√
p− 1

|p− 2|

)

.

The condition (A4) is satisfied with S from (2.2). Assumption (A5) is satisfied if
λ, ω ∈ C2([0,∞[,R). Since the assumptions (A6)–(A8) depends on the choice of λ
and ω, we explain this conditions in the following example.
(1): For the parameters

α = 1, λ
(
|u|2
)
= 1− |u|2, ω

(
|u|2
)
= −|u|2(2.7)

this equation exhibits so called rigidly rotating spiral wave solutions, see Figure
2.3, as well as twisted and untwisted scroll wave solutions, see Figure 2.4 for an
untwisted scroll wave.
Figure 2.3(a)–2.3(c) shows the spiral wave in R2 as the solution of (2.6) on a

(a) Reu(x, y) (b) Imu(x, y) (c) |u(x, y)|

Figure 2.3. Rigidly rotating spiral wave of λ-ω system for d = 2

(a) Reu(x, y, z) (b) Imu(x, y, z) (c) |u(x, y, z)|

Figure 2.4. Untwisted scroll wave of CGL and of the λ-ω system
for d = 3
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circle of radius R = 50 centered in the origin at time t = 150. For the computation
we used continuous piecewise linear finite elements with stepsize △x = 0.5, the
BDF method of order 2 with stepsize △t = 0.1, homogeneous Neumann boundary
conditions and initial data

u0(x, y) =
1

20
(x, y)

T
.

For Figure 2.4(a)–2.4(c) see Example 2.3(3). The parameter values (2.7) satisfy
only the assumptions (A1)–(A7) for every 1 < p < ∞ and with v∞ = (0, 0)T but
not condition (A8), sinceDf(0, 0) has the eigenvalue 1 with algebraic multiplicity 2.
In this case the pattern is not localized in the sense of Theorem 1.7. The rotational
velocities of the rotating spiral is S12 = −0.9091 at time t = 300. Since the λ-ω
system (2.6) equipped with the parameter-values (2.7) is indeed a special case of the
cubic-quintic complex Ginzburg-Landau equation (2.1), namely one has to choose
β = −(1 + i), γ = 0 and µ = 1, compare (2.5), we refer for a discussion about the
assumptions also to Example 2.3(3).

Example 2.5 (Barkley model). Consider the Barkley model, [12], [13], [11]
(
u1
u2

)

t

=

(
1 0
0 D

)

△
(
u1
u2

)

+

(
1
ε
u1 (1− u1)

(
u1 − u2+b

a

)

g(u1)− u2

)

(2.8)

with u = (u1, u2)
T , u : Rd × [0,∞[→ R2, d ∈ {2, 3}, 0 6 D << 1, 0 < ε << 1,

0 < a, b ∈ R, g : R → R. This equation describes excitable media, oscillatory media,
see[12], catalytic surface reactions, see [10], the interaction of a fast activator u and
a slow inhibitor v (in this case g(u) describes a delayed production of the inhibitor)
and is often used as a qualitative model in pattern forming systems (e.g. Belousov-
Zhabotinsky reaction). This model exhibits rotating spiral wave and scroll wave
solutions, see [13], [16] and [56].
Let us discuss the assumptions (A1)–(A8): Assumption (A1) is satisfied for every
D ∈ R, assumption (A2) if D > 0 and (A3) for every 1 < p < ∞ if D > 0. The
condition (A4) is satisfied with S ∈ R2,2 from (2.2). The specific values for S12 we
discuss in the example below. Assumption (A5) is satisfied if g ∈ C2(R,R). The
zeros of the nonlinearity are (0, g(0)), (1, g(1)) and one more. Using, for instance,
v∞ = (0, g(0))T then assumption (A6) is satisfied, (A7) is satisfied only for D = 1

and (A8) only if g(0)+b
a2

< 0, i.e. g(0) < −b, since the eigenvalues of Df(v∞)

are g(0)+b
a2

and −1. Analogously, using v∞ = (1, g(1))T then assumption (A6)

is satisfied, (A7) is satisfied only for D = 1 and (A8) only if g(1)+b−a
a2

< 0, i.e.

g(1) < a − b, since the eigenvalues of Df(v∞) are g(1)+b−a
a2

and −1. Let us now
consider some specific examples:
(1): For the parameters

D = 0, ε =
1

50
, a =

3

4
, b =

1

100
, g(u1) = u1(2.9)

this equation exhibits so called rigidly rotating spiral wave solutions, see Figure 2.5.
Figure 2.5(a)–2.5(c) shows the rotating spiral wave in R2 as the solution of (2.8) on
a circle of radius R = 40 centered in the origin at time t = 50. For the computation
we used continuous piecewise linear finite elements with stepsize △x = 0.7, the
BDF method of order 2 with stepsize △t = 0.2, homogeneous Neumann boundary
conditions and initial data

u
(1)
0 (x, y) =

{

1 , x > 0

0 , x 6 0
, u

(2)
0 (x, y) =

{
a
2 , y > 0

0 , y 6 0
.
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(a) u1(x, y) (b) u2(x, y) (c) |u(x, y)|

Figure 2.5. Rigidly rotating spiral wave of Barkley model for d = 2

The parameter values (2.9) satisfy the assumptions (A1), (A5) since g is twice

continuously differentiable, (A6) for v∞ = (0, 0)T , (1, 1)T and
(

b
a−1 ,

b
a−1

)T

. At

time t = 150 we found the rotational velocity S12 = 2.108 for the matrix S from
(A4). All other assumptions are not satisfied. D = 0 violates assumption (A2),
(A3) and (A7). For v∞ = (0, 0)T condition (A8) needs b

a2
< 0, which is not

satisfied, and for v∞ = (1, 1)T assumption (A8) needs 1+b−a
a2

< 0, which is not true

in this case. Assumption (A8) is also not satsfied for v∞ =
(

b
a−1 ,

b
a−1

)T

with the

parameters above.

2.3. A review of the real-valued Ornstein-Uhlenbeck operator. Before we
start to investigate nonlinear Ornstein-Uhlenbeck problems in complex systems, let
us present some well-known results about the scalar Ornstein-Uhlenbeck operator

[LOUu] (x) :=
1

2
Tr
(
QD2u(x)

)
+ 〈Sx,∇u(x)〉

considered in real-valued function spaces, where Q ∈ Rd,d with Q = QT , Q > 0
and 0 6= S ∈ Rd,d. Note, that the properties of the matrix S play a fundamental
role in the study of this operator.
The space Lp(Rd,R). The Ornstein-Uhlenbeck semigroup (T (t))t>0 on Lp(Rd,R)
related to the Lebesgue measure is indeed a semigroup for every 1 6 p 6 ∞. A
general problem is to show that (T (t))t>0 is strongly continuous. On Lp(Rd,R) one
can verify that (T (t))t>0 is a C

0-semigroup for every 1 6 p <∞. A further problem
that occurs, caused by the unbounded coefficients in the drift term, is to give an
explicit representation for the domain of the infinitesimal generator Ap, which can
be considered as the maximal realization of LOU in Lp(Rd,R) for 1 < p < ∞. In
this context it was proved that the maximal domain is given by

Dp(LOU) = {v ∈W 2,p(Rd,R) | 〈Sx,∇v(x)〉 ∈ Lp(Rd,R)}
for every 1 < p < ∞, which can be shown directly, [43], or with the aid of the
Dore-Venni theorem, [51]. In case of p = 1 no such representation is available,
but it was proved that D1(LOU) is the closure of C∞

c (Rd,R) with respect to the

graph norm ‖·‖LOU
:= ‖·‖L1 + ‖LOU·‖L1 , i.e. D1(LOU) = C∞

c

‖·‖LOU . Moreover,

it was established that the semigroup (T (t))t>0 is not analytic on Lp(Rd,R) for
every 1 6 p < ∞, if S 6= 0, which can be verified by analyzing the Lp-spectrum of
LOU, [42]. It was shown that the spectrum of the infinitesimal generator Ap of the
Ornstein-Uhlenbeck semigroup (T (t))t>0 considered on Lp(Rd,R) is given by

σ(Ap) =

{

z ∈ C | Re z 6 −Tr(S)

p

}
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for every 1 < p < ∞, if σ(S) ⊂ C+, σ(S) ⊂ C− or S symmetric and Q and S
commute, [42]. Thus, since (T (t))t>0 is not analytic for every 1 < p < ∞, the
parabolic equation vt = LOUv does not satisfy the standard parabolic regularity
properties on Lp(Rd,R).
The space Lp(Rd,R, µ). Under the additional assumption that σ(S) ⊂ C−, which
is very interesting from the point of view of diffusion processes, the Ornstein-
Uhlenbeck semigroup (T (t))t>0 considered on Lp(Rd,R, µ) with uniquely deter-
mined invariant probability measure

µ(x) = (4π)
− d

2 (detQ∞)
− 1

2 e−
1
4 〈Q−1

∞ x,x〉

is a semigroup of positive contractions on Lp(Rd,R, µ) for every 1 6 p 6 ∞ and a
C0-semigroup for every 1 6 p <∞. The maximal domain is given by

Dp
µ(LOU) =W

2,p(Rd,R, µ)

={v ∈ Lp(Rd,R, µ) | Div,DjDiv ∈ Lp(Rd,R, µ), i, j = 1, . . . , d}
for every 1 < p <∞, [44], [40]. In case of p = 1 no such representation is available.
A major difference to the usual Lp-cases is that (T (t))t>0 is compact and analytic
on Lp(Rd,R, µ) for every 1 < p <∞, [31]. In [41], it was shown for 1 < p <∞ that
the spectrum of the infinitesimal generatorAp of the Ornstein-Uhlenbeck semigroup
(T (t))t>0 considered on Lp(Rd,R, µ) is a discrete set, independent of p and given
by

σ(Ap) =

{

λ =

r∑

i=1

niλi | ni ∈ N0, i = 1, . . . , r

}

,

where λ1, . . . , λr denote the distinct eigenvalues of S. This is in strong contrast
to the Lp-case. The eigenvalues are semisimple if and only if S is diagonalizable
over C. Moreover, the eigenfunctions of Ap are polynomials of degree at most
Reλ
s(S) . In case p = 1 the situation changes drastically and the spectrum is given by

σ(A1) = C− ∪ iR.
The space Cb(R

d,R). The Ornstein-Uhlenbeck semigroup (T (t))t>0 is a semigroup
on Cb(R

d,R). To guarantee the strong continuity of (T (t))t>0 one usually consid-
ers the semigroup on the closed subspace Cub(R

d,R) if the operator has constant
or smooth bounded coefficients. But in case of the Ornstein-Uhlenbeck operator
this space is not the right choice because the term 〈Sx,∇v(x)〉 has smooth but
unbounded coefficients. One can show that T (t)v0 tends to v0 in Cb(R

d,R) as t
tends to 0+, if and only if v0 ∈ Cub(R

d,R) and v0(e
tS ·) tends to v0 uniformly in Rd

as t tends to 0+. Hence, (T (t))t>0 is a C0-semigroup on the much smaller subspace

Crub(R
d,R) :=

{
f ∈ Cub(R

d,R) | f(etS ·) → f(·) as t→ 0+ uniformly in Rd
}
,

[25], [26, see I.6]. The domain is completely characterized by

D(LOU) = {v ∈ Crub(R
d,R) ∩W 2,p

loc (R
d,R) ∀ p > 1 | LOUv ∈ Crub(R

d,R)},
[25]. Therein, it was also observed that (T (t))t>0 in not analytic on Crub(R

d,R)
and hence not analytic on Cb(R

d,R) and Cub(R
d,R).

In table 1, we summarize these facts. For a detailed treatment of the Ornstein-
Uhlenbeck operator we refer the reader e.g. to [38, Chapter 9].

3. Exponentially weighted function spaces

In this section we introduce the exponentially weighted Sobolev spaces, which we
will use for all estimates in the sequal. For the weight functions of exponential
growth rate and the exponentially weighted Sobolev spaces we follow [60, sec. 3].
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Table 1. Properties of the Ornstein-Uhlenbeck operator

T (t) semigroup C0-semigroup analytic semigroup

Lp(Rd,R) 1 6 p 6 ∞ 1 6 p <∞ no
Lp(Rd,R, µ) 1 6 p 6 ∞ 1 6 p <∞ 1 < p <∞, if σ(S) ⊂ C−

Cb(R
d,R) yes no no

Cub(R
d,R) yes no no

Crub(R
d,R) yes yes no

The Euclidean Group SE(d). Let d ∈ N with d > 2 and let

SE(d) = Rd ⋉ SO(d)

denote the special Euclidean group consisting of all pairs

γ = (τ, R) ∈ SE(d), τ ∈ Rd, R ∈ SO(d)

with the group operation

γ2 ◦ γ1 = (τ2, R2) ◦ (τ1, R1) = (τ2 +R2τ1, R2R1),

the unit element (0, Id) and inverse element (τ, R)−1 = (−R−1τ, R−1). Here

SO(d) = {R ∈ Rd,d | RT = R−1 and det(R) = 1}

denotes the special orthogonal group. SE(d) is a Lie group of dimension d(d+1)
2 . Its

dimension is the sum of dim(Rd) = d and dim(SO(d)) = d(d−1)
2 . The associated

Lie algebra

se(d) = Rd × so(d)

is the product of Rd and the space

so(d) = {S ∈ Rd,d | ST = −S}
of skew-symmetric matrices, which generate the rotations. Note, that the exponen-
tial mapping exp : so(d) → SO(d) is onto and has the following properties

(
eS
)−1

=
(
eS
)T

= eS
T

= e−S , det(eS) = 1, SetS = etSS ∀ t > 0,

eS+S
T

= Id and
∣
∣eSx

∣
∣ = |x| ∀x ∈ Rd

(3.1)

where |·| = ‖·‖2 denotes the Euclidean norm.
Sobolev Spaces. Let K ∈ {R,C}, N ∈ N, p ∈ R with 1 6 p 6 ∞. We define the
exponentially weighted Lp–spaces and their associated norms by

Lpθ(R
d,KN) := {u ∈ L1

loc(R
d,KN ) | ‖u‖Lp

θ
<∞},

‖u‖Lp
θ
:=

(∫

Rd

θp(x) |u(x)|p dx
) 1

p

, 1 6 p <∞,

‖u‖L∞
θ

:= ess sup
x∈Rd

θ(x) |u(x)| , p = ∞.

By definition (Lpθ(R
d,KN ), ‖·‖Lp

θ
) is a Banach space.

Let k ∈ N0 and 1 6 p 6 ∞ then we define the exponentially weighted Sobolev
spaces of order k with exponent p and their associated norms by

W k,p
θ (Rd,KN ) := {u ∈ Lpθ(R

d,KN ) | Dβu ∈ Lpθ(R
d,KN) ∀ |β| 6 k},

‖u‖
W

k,p
θ

:=

(
∑

|β|6k

∥
∥Dβu

∥
∥
p

L
p
θ

) 1
p

, 1 6 p <∞,
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‖u‖
W

k,∞
θ

:= max
|β|6k

∥
∥Dβu

∥
∥
L∞

θ

, p = ∞.

Let k1, k2 ∈ N0, 1 6 p 6 ∞, T > 0 and ΩT = Rd×]0, T [ then we define the
exponentially weighted anisotropic Sobolev spaces of order (k1, k2) with exponent
p and their associated norms by, see [60, sec. 3]

W
(k1,k2),p
θ (ΩT ,K

N) := {u ∈ L1
loc(ΩT ,K

N ) | Dβ
xu ∈ Lpθ(ΩT ,K

N ) ∀ |β| 6 k1

Dγ
t u ∈ Lpθ(ΩT ,K

N) ∀ |γ| 6 k2},

‖u‖
W

(k1,k2),p

θ
(ΩT ,KN )

:=

(

‖u‖p
L

p
θ
(ΩT ,KN ) +

k1∑

|β|=1

∥
∥Dβ

xu
∥
∥
p

L
p
θ
(ΩT ,KN )

+

k2∑

|γ|=1

‖Dγ
t u‖pLp

θ
(ΩT ,KN )

) 1
p

, 1 6 p 6 ∞.

Let Ω = Rd or Ω = ΩT and 1 6 p 6 ∞ then we define the (anisotropic) local
Lp–spaces by

Lploc(Ω,K
N ) := {u ∈ L1

loc(Ω,K
N ) | ‖u‖Lp(A,KN ) <∞ ∀A ⊂ Ω compact}.

The (anisotropic) local Sobolev spaces W k,p
loc (R

d,KN ) and W
(k1,k2),p
loc (ΩT ,K

N ) can
be defined in the same way.
Spaces of continuous functions. Let K ∈ {R,C}, N ∈ N and k ∈ N0.

Cb(R
d,KN ) := {u ∈ C(Rd,KN) | ‖u‖Cb(Rd,KN ) <∞},

‖u‖Cb(Rd,KN ) := ‖u‖∞ := sup
x∈Rd

|u(x)| ,

Ckb (R
d,KN) := {u ∈ Cb(R

d,KN ) | Dβu ∈ Cb(R
d,KN) ∀ |β| 6 k},

‖u‖Ck
b
(Rd,KN ) := ‖u‖k,∞ := max

|β|6k

∥
∥Dβu

∥
∥
Cb(Rd,KN )

,

Cub(R
d,KN) := {u ∈ Cb(R

d,KN ) | u is uniformly continuous on Rd},
Ckub(R

d,KN) := {u ∈ Cub(R
d,KN ) | Dβu ∈ Cub(R

d,KN ) ∀ |β| 6 k},
Crub(R

d,KN ) := {u ∈ Cub(R
d,KN) | lim

t→0

∥
∥u(etS ·)− u(·)

∥
∥
Cb(Rd,KN )

= 0},

Ckrub(R
d,KN ) := {u ∈ Crub(R

d,KN) | Dβu ∈ Crub(R
d,KN) ∀ |β| 6 k},

Cb,θ(R
d,KN ) := {u ∈ Cb(R

d,KN) | ‖u‖Cb,θ(Rd,KN ) <∞},
‖u‖Cb,θ(Rd,KN ) := ‖u‖∞,θ := ‖θu‖Cb(Rd,KN ) ,

Ckb,θ(R
d,KN ) := {u ∈ Ckb (R

d,KN ) | θDβu ∈ Cb(R
d,KN ) ∀ |β| 6 k},

‖u‖Ck
b,θ

(Rd,KN ) := ‖u‖k,∞,θ := max
|β|6k

∥
∥θDβu

∥
∥
Cb(Rd,KN )

.

Schwartz space. Let K ∈ {R,C} and N ∈ N. A function φ : Rd → KN is
said to be rapidly decreasing if it is infinitely many times differentiable, i.e. φ ∈
C∞(Rd,KN ) and

lim
|x|→∞

xαDβφ(x) = 0 ∈ KN ∀α, β ∈ Nd0.(3.2)

The space

S(Rd,KN ) :=
{
φ ∈ C∞(Rd,KN) | φ is rapidly decreasing

}

is called the Schwartz space, [28, VI.5.1 Definition]. When endowed with the family
of seminorms

|φ|α,β := sup
x∈Rd

∣
∣xαDβφ(x)

∣
∣
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the space S(Rd,KN) becomes a Frechet space containing C∞
c (Rd,KN) as a dense

subspace.

4. The heat kernel for operators of Ornstein-Uhlenbeck type in

complex systems

In this section we derive a heat kernel for the complex-valued Ornstein-Uhlenbeck
operator

[L∞v] (x) := A△v(x) + 〈Sx,∇v(x)〉 −Bv(x), x ∈ Rd, d > 2.(4.1)

4.1. Complex-valued Ornstein-Uhlenbeck kernel. The aim of this subsection
is to extend the appoach from [15], [4], [20, Chapter 13] to compute the heat kernel
of the complex-valued operator L∞ in the scalar case, in case of diagonal matrices
and in case of simultaneously diagonalizable matrices. This will enable us in the
next section to define the correspondig semigroup by an explicit respresentation.
Therefore, we recall the definition of a heat kernel of L∞, [20, Section 1.2]:

Definition 4.1. A heat kernel (or a fundamental solution) of L∞ given by (4.1)
is a function

H : Rd × Rd × R∗
+ → CN,N , (x, ξ, t) 7→ H(x, ξ, t)

with R∗
+ :=]0,∞[ such that

H ∈ C2,2,1(Rd × Rd × R∗
+,C

N,N),(H1)

∂

∂t
H(x, ξ, t) = L∞H(x, ξ, t) ∀ ξ ∈ Rd, t > 0,(H2)

lim
t↓0

H(x, ξ, t) = δx(ξ)IN ∀ ξ ∈ Rd.(H3)

where the convergence in (H3) is meant in the sense of distributions and δξ(x) =
δ(x− ξ) denotes the Dirac delta function.

The following theorem provides an explicit representation for the heat kernel of
L∞ in the scalar case, i. e. with N = 1. In addition, the proof contains a formal
derivation of this heat kernel, which could be of interest for the computation of heat
kernels for more general complex-valued heat operators. For the scalar real-valued
but more general case a formal derivation of this kernel can be found in [15], [4]
and [20, Section 13.2].

Theorem 4.2 (Scalar case). Let the assumptions (A2) and (A4) be satisfied for
K = C and N = 1, then the function H : Rd × Rd × R∗

+ → C defined by

H(x, ξ, t) = (4παt)
− d

2 exp
(

−δt− (4αt)
−1 ∣∣etSx− ξ

∣
∣
2
)

(4.2)

is a heat kernel of L∞ given by

[L∞v] (x) := α△v(x) + 〈Sx,∇v(x)〉 − δv(x).(4.3)

Remark. In the scalar case N = 1 we write α and δ instead of A and B, respec-
tively.

Proof. Before we verify that the heat kernel from (4.2) satisfies the properties (H1)–
(H3) we discuss a formal derivation of this kernel. To compute the heat kernel (4.2)
of (4.3) we generalize the approach from [15], [4] to the complex case and use the
complexified ansatz

H(x, ξ, t) = ϕ(t) · exp
(

−1

2

〈

M(t)

(
x
ξ

)

,

(
x
ξ

)〉

C2d

)

(4.4)
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where

ϕ : R∗
+ → C, t 7→ ϕ(t),

M : R∗
+ → C2d,2d, t 7→M(t)

have to be determined and 〈·, ·〉
C2d denotes the Euclidean inner product on C2d, i.e.

〈x, y〉
C2d = xT y. Note at this point that it is sufficient to determine the symmetric

part of the complex-valued matrix M which we denote by N , i.e.

N : R∗
+ → C2d×2d, t 7→ N(t) :=

1

2

(
M(t) +MT (t)

)
=

(
A(t) B(t)
C(t) D(t)

)

,

A,B,C,D : R∗
+ → Cd×d, t 7→ A(t), B(t), C(t), D(t).

Since x, ξ ∈ Rd we have

H(x, ξ, t) = ϕ(t) · exp
(

−1

2

〈

M(t)

(
x
ξ

)

,

(
x
ξ

)〉

C2d

)

= ϕ(t) · exp
(

−1

2

〈
1

2

(
M(t) +MT (t)

)
(
x
ξ

)

,

(
x
ξ

)〉

C2d

)

= ϕ(t) · exp
(

−1

2

〈

N(t)

(
x
ξ

)

,

(
x
ξ

)〉

C2d

)

.

Note that N is a symmetric but in general not a Hermitian matrix. In particular
A and D are symmetric and BT = C. Since the heat kernel must satisfy (H2) we
obtain from the general Leibniz rule, the chain rule and the symmetry of N

Ht(x, ξ, t) = H(x, ξ, t)

[
ϕt(t)

ϕ(t)
− 1

2

〈

Nt(t)

(
x
ξ

)

,

(
x
ξ

)〉

C2d

]

,

∂

∂xi
H(x, ξ, t) = H(x, ξ, t)

∂

∂xi

[

−1

2

〈

N(t)

(
x
ξ

)

,

(
x
ξ

)〉

C2d

]

= H(x, ξ, t)

[

−1

2

(〈

N
T
(t)

(
x
ξ

)

, ei

〉

C2d

+

〈

N(t)

(
x
ξ

)

, ei

〉

C2d

)]

= −H(x, ξ, t)

〈

N(t)

(
x
ξ

)

, ei

〉

C2d

,

∂2

∂x2i
H(x, ξ, t) =H(x, ξ, t)

[〈

N(t)

(
x
ξ

)

, ei

〉2

C2d

− 〈N(t)ei, ei〉C2d

]

α△H(x, ξ, t) = αH(x, ξ, t)

[
d∑

i=1

〈

N(t)

(
x
ξ

)

, ei

〉2

C2d

−
d∑

i=1

〈N(t)ei, ei〉C2d

]

= αH(x, ξ, t)

[
d∑

i=1

〈

N(t)

(
x
ξ

)

, ei

〉

C2d

〈

ei, N(t)

(
x
ξ

)〉

C2d

− Tr
(

A
T
(t)
)
]

= αH(x, ξ, t)

[(
x
ξ

)T

N
T
(t)

(
d∑

i=1

eie
T
i

)

N(t)

(
x
ξ

)

− Tr
(
A(t)

)

]

= αH(x, ξ, t)

[〈

N(t)

(
x
ξ

)

,

(
Id 0
0 0

)

N(t)

(
x
ξ

)〉

C2d

− Tr
(
A(t)

)
]

= H(x, ξ, t)

[〈

αN(t)P̃N(t)

(
x
ξ

)

,

(
x
ξ

)〉

C2d

− αTr
(
A(t)

)
]

,
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〈Sx,∇H(x, ξ, t)〉 =
(

∂

∂x1
H(x, ξ, t), . . . ,

∂

∂xd
H(x, ξ, t)

)

Sx

= −H(x, ξ, t)

(〈

N(t)

(
x
ξ

)

, e1

〉

C2d

, . . . ,

〈

N(t)

(
x
ξ

)

, ed

〉

C2d

)

Sx

= −H(x, ξ, t)

〈

N(t)

(
x
ξ

)

,

(
S 0
0 0

)(
x
ξ

)〉

C2d

= −H(x, ξ, t)

〈

S̃TN(t)

(
x
ξ

)

,

(
x
ξ

)〉

C2d

= −H(x, ξ, t)
1

2

[〈

S̃TN(t)

(
x
ξ

)

,

(
x
ξ

)〉

C2d

+

〈(
x
ξ

)

, N
T
(t)S̃

(
x
ξ

)〉

C2d

]

= −H(x, ξ, t)

〈
1

2

(

S̃TN(t) +N(t)S̃
)(

x
ξ

)

,

(
x
ξ

)〉

C2d

where i = 1, . . . , d. Introducing the extended matrices

P̃ =

(
Id 0
0 0

)

, S̃ =

(
S 0
0 0

)

∈ R2d,2d

we end up with

0 =H(x, ξ, t)

[
ϕt(t)

ϕ(t)
+ α tr

(
A(t)

)
+ δ

+

〈(

−1

2
Nt(t) − αN(t)P̃N(t) +

1

2
S̃TN(t) +

1

2
N(t)S̃

)(
x
ξ

)

,

(
x
ξ

)〉

C2d

]

.

Thus the kernel satisfies (H2) if the following differential equations hold

ϕt(t) = −
(
α tr

(
A(t)

)
+ δ
)
ϕ(t) , t > 0,(4.5)

Nt(t) = −2αN(t)P̃N(t) + S̃TN(t) +N(t)S̃ , t > 0.(4.6)

Since (4.5) depends on the solution of (4.6), we will first solve the matrix-Riccati
equation (4.6), see [5, sec. 3.1]. It is obvious that the solutions of (4.5) and (4.6)
are not unique but one can select appropriate initial values, see [15] and [4].
Let us first eliminate linear terms in (4.6) by the following transformation

N̂(t) = exp
(

−tS̃T
)

N(t) exp
(

−tS̃
)

=

(
exp

(
−tST

)
0

0 Id

)(
A(t) B(t)
C(t) D(t)

)(
exp (−tS) 0

0 Id

)

=

(
exp(−tST )A(t) exp(−tS) exp(−tST )B(t)

C(t) exp(−tS) D(t)

)

=:

(
Â(t) B̂(t)

Ĉ(t) D̂(t)

)

.

(4.7)

Differentiating N̂ with respect to t and using (A4), N = NT and (4.6) we obtain

N̂t(t) =− S̃T exp
(

−tS̃T
)

N(t) exp
(

−tS̃
)

+ exp
(

−tS̃T
)

Nt(t) exp
(

−tS̃
)

− exp
(

−tS̃T
)

N(t)S̃ exp
(

−tS̃
)

=− 2αN̂(t) exp
(

tS̃
)

P̃ exp
(

tS̃T
)

N̂(t)
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and hence

N̂t(t) = −2αN̂(t) exp
(

tS̃
)

P̃ exp
(

tS̃T
)

N̂(t) , t > 0.(4.8)

Writing this equation blockwise

N̂t(t) = −2αN̂(t) exp
(

tS̃
)

P̃ exp
(

tS̃T
)

N̂(t)

= −2α

(
Â(t) exp

(
t
(
S + ST

))
Â(t) Â(t) exp

(
t
(
S + ST

))
B̂(t)

Ĉ(t) exp
(
t
(
S + ST

))
Â(t) Ĉ(t) exp

(
t
(
S + ST

))
B̂(t)

)

=

(
−2αÂ2(t) −2αÂ(t)B̂(t)

−2αĈ(t)Â(t) −2αĈ(t)B̂(t)

)

=:

(
Ât(t) B̂t(t)

Ĉt(t) D̂t(t)

)

we arrive at the matrix ODE systems

Ât(t) = −2αÂ2(t) , t > 0,(4.9)

B̂t(t) = −2αÂ(t)B̂(t) , t > 0,(4.10)

Ĉt(t) = −2αĈ(t)Â(t) , t > 0,(4.11)

D̂t(t) = −2αĈ(t)B̂(t) , t > 0.(4.12)

Note that Â = ÂT , D̂ = D̂T and B̂T = Ĉ due to the corresponding properties
of A,B,C and D. Therefore, solving (4.10) gives us automatically a solution of
(4.11). Now we will successively solve the equations (4.9)–(4.12):

(4.9): Using the transformation Ã(t) =
(

Â(t)
)−1

we obtain

Ãt(t) =
d

dt

(

Â(t)
)−1

= −
(

Â(t)
)−1

Ât(t)
(

Â(t)
)−1

= 2α
(

Â(t)
)−1 (

Â(t)
)2 (

Â(t)
)−1

= 2αId.

Componentwise integration of both sides from 0 to t w.r.t. t yields

Ã(t)−A0 = Ã(t)− Ã(0) =

∫ t

0

Ãs(s)ds =

∫ t

0

2αIdds = 2αtId.

Using the transformation once more yields the solution of (4.9)

Â(t) = (2αtId +A0)
−1
, t > 0.

Note that the initial data A0 ∈ Cd,d must fullfill the relation A0 = AT0 due to the

symmetry of Â(t) for t > 0.

(4.10): Obviously, the general solution of (4.10) is of the form B̂ = ÂB0 for some
constant matrix B0 ∈ Cd,d and hence

B̂(t) = (2αtId +A0)
−1B0, t > 0.

(4.11): Thanks to the condition that B̂T = Ĉ we easily obtain the general solution

of (4.11) by transposing B̂ and using the symmetry of A0

Ĉ(t) = BT0 (2αtId +A0)
−1
, t > 0.

(4.12): Finally, the general solution of equation (4.12) has the form BT0 ÂB0 +D0

for some constant matrix D0 ∈ Cd,d with D0 = DT
0 due to the symmetry of D̂.

This can be easily seen by rewriting the system as follows

D̂t(t) = −2αĈ(t)B̂(t) = −2αBT0 Â
2(t)B0.

Hence, we obtain

D̂(t) = BT0 (2αtId +A0)
−1
B0 +D0, t > 0.
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Now we choose A0 = 0, B0 = −Id and D0 = 0. A resoning why the constants must
have exactly these values can be found in [15] and [4]. Putting the solutions into
(4.7) and this into (4.8) we have

N̂t(t) =
1

2αt

(
Id −Id
−Id Id

)

Transforming N̂ to N (see (4.7)) we obtain by (A4)

N(t) = exp
(

tS̃T
)

N̂(t) exp
(

tS̃
)

=

(
exp(tST )Â(t) exp(tS) exp(tST )B̂(t)

Ĉ(t) exp(tS) D̂(t)

)

(4.13)

=
1

2αt

(
Id − exp(tST )

− exp(tS) Id

)

.

Thus, tr
(
A(t)

)
= d

2αt and (4.5) can be written as

ϕt(t) = −
(
α tr

(
A(t)

)
+ δ
)
ϕ(t) = −

(
d

2t
+ δ

)

ϕ(t)

Hence, the general solution of (4.5) is given by

ϕ(t) = C exp

(

−
∫ (

d

2t
+ δ

)

dt

)

= C exp

(

−d
2
ln(t)− δt

)

= Ct−
d
2 e−δt(4.14)

where C ∈ C. Below we choose C ∈ C such that the normalization condition

lim
t↓0

∫

Rd

H(x, ξ, t)dξ = 1 ∀x ∈ Rd(4.15)

holds. First note that from
〈

1

2αt

(
Id − exp(tST )

− exp(tS) Id

)(
x
ξ

)

,

(
x
ξ

)〉

C2d

=
1

2αt

∣
∣etSx− ξ

∣
∣
2

we obtain

H(x, ξ, t) =Ct−
d
2 e−δt−

1
4αt |etSx−ξ|2 .

Now, integrating over Rd w.r.t. ξ, we obtain from the transformation theorem and
assumption (A2)

∫

Rd

H(x, ξ, t)dξ =Ct−
d
2 e−δt

∫

Rd

e−
1

4αt |etSx−ξ|2dξ

=Ct−
d
2 e−δt

∫

Rd

e−
1

4αt
|x−ψ|2dψ

=Ct−
d
2 e−δt

d∏

j=1

∫ ∞

−∞

e−
1

4αt
x2
jdxj

=Ct−
d
2 e−δt (4παt)

d
2

=C (4πα)
d
2 e−δt

t→0→ C (4πα)
d
2

!
= 1.

Hence, we choose C = (4πα)−
d
2 such that (4.15) is satisfied. Here α− d

2 denotes
the principal root (main branch) of α−d. Finally we obtain the heat kernel (4.2)
from (4.13) and (4.14). The properties (H1) and (H2) follow directly from the
construction of the heat kernel. It remains to verify property (H3). Therefore, we
need the integrate formula

∫ ∞

0

rn−1e−zr
2

dr =
z−

n
2

2Γ
(
n
2

) ,(4.16)
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which holds for n ∈ R with n > 0 and z ∈ C with Re z > 0, [2]. Using the
transformation theorem (with transformations for d-dimensional polar coordinates

and Φ(ξ) = 2−1t−
1
2

(
etSx− ξ

)
) and formula (4.16) (with n = d and z = α−1) we

obtain, similarly to the proof of [20, Prop. 3.4.1], for every φ ∈ C∞
c (Rd,C)

lim
t↓0

H(x, ξ, t)(φ)

= lim
t↓0

∫

Rd

H(x, ξ, t)φ(ξ)dξ

= lim
t↓0

∫

Rd

(4παt)
−d

2 exp
(

−δt− (4αt)
−1 ∣∣etSx− ξ

∣
∣
2
)

φ(ξ)dξ

= lim
t↓0

(4παt)
− d

2 (4t)
d
2

∫

Rd

exp
(

−δt− α−1 |ψ|2
)

φ(etSx− 2t
1
2ψ)dψ

=(πα)
− d

2

∫

Rd

exp
(

−α−1 |ψ|2
)

dψφ(x)

= (πα)
− d

2
2π

d
2

Γ
(
d
2

)

∫ ∞

0

rd−1e−α
−1r2drφ(x)

= (πα)−
d
2

2π
d
2

Γ
(
d
2

)
α

d
2

2Γ
(
d
2

)φ(x)

=φ(x) =

∫

Rd

δ0(x− ξ)φ(ξ)dξ =

∫

Rd

δx(ξ)φ(ξ)dξ = δx(ξ)(φ).

Note that Re z = Re
(
α−1

)
= Reα

|α|2
= Reα

|α|2
> 0 is true by assumption (A2). �

The next statement is a direct consequence of Theorem 4.2.

Theorem 4.3 (Case of diagonal matrices). Let ΛA,ΛB ∈ CN,N be two diagonal
matrices and let the assumptions (A2) and (A4) be satisfied for K = C, then the
function H : Rd × Rd × R∗

+ → CN,N defined by

H(x, ξ, t) = (4πtΛA)
− d

2 exp
(

−ΛBt− (4tΛA)
−1
∣
∣etSx− ξ

∣
∣
2
)

(4.17)

is a heat kernel of L∞ given by

[L∞v] (x) := ΛA△v(x) + 〈Sx,∇v(x)〉 − ΛBv(x).(4.18)

Remark. In case of diagonal matrices we write ΛA and ΛB instead of A and B,
respectively.

Proof. Using the notation v = (v1, . . . , vN ), ΛA = diag
(
λA1 , . . . , λ

A
N

)
and ΛB =

diag
(
λB1 , . . . , λ

B
N

)
the operator L∞ from (4.18) is already decoupled

[L∞v]k (x) = λAk△vk(x) + 〈Sx,∇vk(x)〉 − λBk vk(x), k = 1, . . . , N.

Since (A2) and (A4) hold we infer from Theorem 4.2 that

Hk(x, ξ, t) := (4πtλAk )
− d

2 exp
(

−λBk t− (4tλAk )
−1
∣
∣etSx− ξ

∣
∣
2
)

is a heat kernel for the k-th component of L∞. Indeed, an easy computation shows
that H(x, ξ, t) := diag (H1(x, ξ, t), . . . , HN(x, ξ, t)) is a heat kernel of L∞ from
(4.18) that coincides with H from (4.17). The properties (H1)–(H3) for the heat
kernel H of L∞ follow direcly from those of Hk for k = 1, . . . , N . �

Theorem 4.4 (Case of simultaneously diagonalizable matrices). Let the assump-
tions (A1), (A2), (A4) and (A7B) be satisfied for K = C, then the function
H : Rd × Rd × R∗

+ → CN,N defined by

H(x, ξ, t) = (4πtA)−
d
2 exp

(

−Bt− (4tA)−1
∣
∣etSx− ξ

∣
∣
2
)

(4.19)
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is a heat kernel of L∞ given by

[L∞v] (x) := A△v(x) + 〈Sx,∇v(x)〉 − Bv(x).(4.20)

Proof. Let us define the diagonalized operator L̃∞ := Y −1L∞Y with Y from
(A7B). Multiplying (4.20) from left by Y −1 and using the transformations A =
Y ΛAY

−1 and B = Y ΛBY
−1, the substitution u(x) := Y −1v(x), the property

Y −1 〈Sx,∇v(x)〉 =
〈
Sx,∇Y −1v(x)

〉
we obtain

[

L̃∞u
]

(x) =
[
Y −1L∞Y u

]
(x) = Y −1 [L∞v] (x)

= Y −1 (A△v(x) + 〈Sx,∇v(x)〉 −Bv(x))

= ΛAY
−1△v(x) + Y −1 〈Sx,∇v(x)〉 − ΛBY

−1v(x)

= ΛA△u(x) + 〈Sx,∇u(x)〉 − ΛBu(x)

In this way we have decoupled the operator L∞ from (4.20). Since ΛA,ΛB ∈ CN,N

are diagonal matrices, σ(ΛA) = σ(A) ⊂ {λ ∈ C | Reλ > 0} by (A1) and (A2) hold,
we deduce from Theorem 4.3 that

H̃(x, ξ, t) = (4πtΛA)
− d

2 exp
(

−ΛBt− (4tΛA)
−1
∣
∣etSx− ξ

∣
∣
2
)

is a heat kernel of L̃∞. Again, an easy computation shows that H(x, ξ, t) :=

Y H̃(x, ξ, t)Y −1 is a heat kernel of L∞ from (4.20) that coincides with H from
(4.19):

H(x, ξ, t) =Y H̃(x, ξ, t)Y −1

=Y (4πtΛA)
− d

2 Y −1Y exp
(

−ΛBt− (4tΛA)
−1
∣
∣etSx− ξ

∣
∣
2
)

Y −1

=(4πt)−
d
2 Y Λ

− d
2

A Y −1 exp
(

−Y
(

ΛBt− (4tΛA)
−1
∣
∣etSx− ξ

∣
∣
2
)

Y −1
)

=(4πt)−
d
2 Y Λ

− d
2

A Y −1 exp
(

−Y ΛBY
−1t− (4t)−1Y Λ−1

A Y −1
∣
∣etSx− ξ

∣
∣
2
)

=(4πtA)−
d
2 exp

(

−Bt− (4tA)−1
∣
∣etSx− ξ

∣
∣
2
)

.

The properties (H1)–(H3) for the heat kernel H of L∞ follow again directly from

those of H̃. �

Remark. Note that the condition (A7B) in Theorem 4.4 is crucial. For arbitrary
matrices A,B ∈ CN,N satisfying only (A1) and (A2) the heat kernel of (4.20) is in
general not given by (4.19), as we will see in Theorem 6.1 and Theorem 6.2. To
generalize Theorem 4.4 to this more general case, one could try to use the Hadamard
Lemma or the Baker-Campbell-Hausdorff formula.

Remark. For the computation of heat kernels of more general heat operators,
Beals used in [15, (2)] - instead of (4.4) - the more general ansatz

H(x, ξ, t) = ϕ(t) exp (−Qt(x, ξ)) , t > 0, x, ξ ∈ Rd

where Qt is a quadratic form of 2d variables. This formula is motivated by the
Trotter product formula and the Feynman-Kac formula. Such a general ansatz was
also used in [20, (13.2.14)] for the construction of heat kernels for degenerate elliptic
operators.

Remark. Consider the more generalN -dimensional complex-valued Ornstein-Uhlenbeck
Operator on Rd

[LOUv] (x) =ATr
(
QD2v(x)

)
+ 〈Sx,∇v(x)〉 −Bv(x)
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=A

d∑

i=1

d∑

j=1

QijDiDjv(x) +

d∑

i=1

d∑

j=1

SijxjDiv(x) −Bv(x)

with A,B ∈ CN,N satisfying (A1), (A2) and (A7B), Q ∈ Rd,d, Q > 0, Q = QT and
0 6= S ∈ Rd,d. We believe that

H(x, ξ, t) = (4πA)
− d

2 (detQt)
− 1

2 exp
(

−Bt− (4A)
−1 〈

Q−1
t (etSx− ψ), (etSx− ψ)

〉)

with

Qt =

∫ t

0

exp (τS)Q exp
(
τST

)
dτ

is a heat kernel of LOU even if (A4) is not satisfied, but this has not yet been
proved.

4.2. Some properties of the Ornstein-Uhlenbeck kernel. The heat kernel
satisfies the following Chapman-Kolmogorov formula, which plays a central role
for the generation of semigroups, [38, Proposition C.3.2]. This formula can be
understood as the semigroup property (5.6) on the basis of heat kernels.

Lemma 4.5 (Chapman-Kolmogorov formula). Let the assumptions (A1), (A2),
(A4) and (A7B) be satisfied for K = C. Then

∫

Rd

H(x, ξ̃, t1)H(ξ̃, ξ, t2)dξ̃ = H(x, ξ, t1 + t2) ∀x, ξ ∈ Rd, ∀ t1, t2 > 0.

Remark. For the proof we need the following integral
∫ ∞

−∞

exp
(

−c1 (a− ψ)
2 − c2 (ψ − b)

2
)

dψ

=

(
π

c1 + c2

) 1
2

exp

(

− c1c2
c1 + c2

(a− b)2
)(4.21)

for a, b, c1, c2 ∈ C with Re c1 > 0, Re c2 > 0.

Proof. First let us prove the assertion for the diagonalized kernel

H̃(x, ξ, t) = (4πtΛA)
− d

2 exp
(

−ΛBt− (4tΛA)
−1
∣
∣etSx− ξ

∣
∣
2
)

.

Because of (A4) we have
∣
∣etSx

∣
∣ = |x| and hence

∫

Rd

H̃(x, ξ̃, t1)H̃(ξ̃, ξ, t2)dξ̃

=(4πt1ΛA)
− d

2 (4πt2ΛA)
− d

2 exp (−ΛB(t1 + t2))

·
∫

Rd

exp

(

− (4t1ΛA)
−1
∣
∣
∣et1Sx− ξ̃

∣
∣
∣

2

− (4t2ΛA)
−1
∣
∣
∣ξ̃ − e−t2Sξ

∣
∣
∣

2
)

dξ̃

(4.22)

From (A2) we deduce that ReλAj > 0 and hence Re
(
λAj
)−1

= Re
λA
j

|λA
j |2

> 0 for

every j = 1, . . . , N . Using formula (4.21) componentwise with c1 =
(
4t1λ

A
j

)−1
,

c2 =
(
4t2λ

A
j

)−1
, ψ = ξ̃i, a =

(
et1Sx

)

i
, b =

(
e−t2Sξ

)

i
, i = 1, . . . , d we obtain

∫ ∞

−∞

exp

(

− (4t1ΛA)
−1
((
et1Sx

)

i
− ξ̃i

)2

− (4t2ΛA)
−1
(

ξ̃i −
(
e−t2Sξ

)

i

)2
)

dξ̃i

=(4πt1ΛA)
1
2 (4πt2ΛA)

1
2 (4π (t1 + t2) ΛA)

− 1
2

· exp
(

− (4 (t1 + t2) ΛA)
−1 ((

et1Sx
)

i
−
(
e−t2Sξ

)

i

)2
)
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Using this integral and again
∣
∣etSx

∣
∣ = |x| we are able to compute the latter integral

in (4.22)
∫

Rd

exp

(

− (4t1ΛA)
−1
∣
∣
∣et1Sx− ξ̃

∣
∣
∣

2

− (4t2ΛA)
−1
∣
∣
∣ξ̃ − e−t2Sξ

∣
∣
∣

2
)

dξ̃

=

∫ ∞

−∞

· · ·
∫ ∞

−∞

exp

( d∑

i=1

[

− (4t1ΛA)
−1
(

(et1Sx)i − ξ̃i

)2

− (4t2ΛA)
−1
(

ξ̃i − (e−t2Sξ)i

)2
])

dξ̃1 · · · dξ̃d

=

∫ ∞

−∞

· · ·
∫ ∞

−∞

d∏

i=1

exp

(

− (4t1ΛA)
−1
(

(et1Sx)i − ξ̃i

)2

− (4t2ΛA)
−1
(

ξ̃i − (e−t2Sξ)i

)2
)

dξ̃1 · · · dξ̃d

=

d∏

i=1

∫ ∞

−∞

exp

(

− (4t1ΛA)
−1
(

(et1Sx)i − ξ̃i

)2

− (4t2ΛA)
−1
(

ξ̃i − (e−t2Sξ)i

)2
)

dξ̃i

=(4πt1ΛA)
d
2 (4πt2ΛA)

d
2 (4π (t1 + t2) ΛA)

− d
2

· exp
(

− (4 (t1 + t2) ΛA)
−1

d∑

i=1

((
et1Sx

)

i
−
(
e−t2Sξ

)

i

)2

)

=(4πt1ΛA)
d
2 (4πt2ΛA)

d
2 (4π (t1 + t2) ΛA)

− d
2

· exp
(

− (4 (t1 + t2) ΛA)
−1
∣
∣
∣e(t1+t2)Sx− ξ

∣
∣
∣

2
)

Using this in (4.22) we obtain
∫

Rd

H̃(x, ξ̃, t1)H̃(ξ̃, ξ, t2)dξ̃

=(4π (t1 + t2) ΛA)
−d

2 exp (−ΛB(t1 + t2)) exp

(

− (4 (t1 + t2) ΛA)
−1
∣
∣
∣e(t1+t2)Sx− ξ

∣
∣
∣

2
)

=H̃(x, ξ, t1 + t2) ∀x, ξ ∈ Rd, ∀ t1, t2 > 0.

Let us now consider the general case: Since H(x, ξ, t) = Y H̃(x, ξ, t)Y −1 with Y
from (A7B) we obtain

∫

Rd

H(x, ξ̃, t1)H(ξ̃, ξ, t2)dξ̃

=Y

∫

Rd

H̃(x, ξ̃, t1)H̃(ξ̃, ξ, t2)dξ̃Y
−1

=Y H̃(x, ξ, t1 + t2)Y
−1 = H(x, ξ, t1 + t2) ∀x, ξ ∈ Rd, ∀ t1, t2 > 0.

�

The first two partial derivatives of H with respect to x are given by

DiH(x, ξ, t) =− (2tA)−1
〈
etSx− ξ, etSei

〉
H(x, ξ, t),

DjDiH(x, ξ, t) =
(

− (2tA)
−1
δij + (2tA)

−2 〈
etSx− ξ, etSei

〉 〈
etSx− ξ, etSej

〉)

·H(x, ξ, t).

for i, j = 1, . . . , d where we used (A7B) once more. Let us define the kernels

K̃(ψ, t) := (4πtΛA)
− d

2 exp
(

−ΛBt− (4tΛA)
−1 |ψ|2

)

,(4.23)
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K(ψ, t) :=H(x, etSx− ψ, t) = Y K̃(ψ, t)Y −1(4.24)

= (4πtA)−
d
2 exp

(

−Bt− (4tA)−1 |ψ|2
)

,

K̃i(ψ, t) :=− (2tΛA)
−1 〈

ψ, etSei
〉
K̃(ψ, t),(4.25)

Ki(ψ, t) := [DiH(x, ξ, t)]ξ=etSx−ψ = Y K̃i(ψ, t)Y −1(4.26)

=− (2tA)
−1 〈

ψ, etSei
〉
K(ψ, t),

K̃ji(ψ, t) :=
(

(2tΛA)
−2 〈

ψ, etSei
〉 〈
ψ, etSej

〉
− (2tΛA)

−1
δij

)

K̃(ψ, t),(4.27)

Kji(ψ, t) := [DjDiH(x, ξ, t)]
ξ=etSx−ψ = Y K̃ji(ψ, t)Y −1(4.28)

=
(

(2tA)−2 〈ψ, etSei
〉 〈
ψ, etSej

〉
− (2tA)−1 δij

)

K(ψ, t).

In order to prove boundedness and exponentially decay of the associated semi-
group, that we will perform in the next section, we need some upper bounds of the
exponentially weighted integrals over the auxiliary kernels K, Ki and Kji.

Lemma 4.6. Let the assumptions (A1), (A2), (A4) and (A7B) be satisfied for
K = C, p, η ∈ R and let K,Ki,Kji be given by (4.24),(4.26),(4.28) for every
i, j = 1, . . . , d, then

(1)

∫

Rd

eηp|ψ| |K(ψ, t)|2 dψ 6 C1(t) , t > 0,

(2)

∫

Rd

eηp|ψ|
∣
∣Ki(ψ, t)

∣
∣
2
dψ 6 C2(t) , t > 0,

(3)

∫

Rd

eηp|ψ|
∣
∣Kji(ψ, t)

∣
∣
2
dψ 6 C3(t) , t > 0,

where |·|2 denotes the spectral norm and the constants are given by

C1(t) =M
d
2 e−b0t

[

1F1

(
d

2
;
1

2
;κt

)

+ 2
Γ
(
d+1
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 1

2
;
3

2
;κt

)]

,

C2(t) =M
d+1
2 e−b0t (tamin)

− 1
2

[
Γ
(
d+1
2

)

Γ
(
d
2

) 1F1

(
d+ 1

2
;
1

2
;κt

)

+ 2
Γ
(
d+2
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 2

2
;
3

2
;κt

)]

,

C3(t) =M
d+2
2 e−b0t (tamin)

−1

[
Γ
(
d+2
2

)

Γ
(
d
2

) 1F1

(
d+ 2

2
;
1

2
;κt

)

+ 2
Γ
(
d+3
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 3

2
;
3

2
;κt

)

+
δij
2
M−1

1F1

(
d

2
;
1

2
;κt

)

+ δijM
−1Γ

(
d+1
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 1

2
;
3

2
;κt

)]

,

with M :=
a2max

amina0
> 1 and κ :=

a2maxη
2p2

a0
> 0. Note that C1+|β|(t) ∼ t

d−1
2 e−(b0−κ)t

as t→ ∞ and C1+|β|(t) ∼ t−
|β|
2 as t→ 0 for every |β| = 0, 1, 2.
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Remark. The function 1F1(a; b; z) denotes the Kummer confluent hypergeometric
function M(a, b, z) and satisfies the formula

∫ ∞

0

sne−s
2+Bsds =

1

2
Γ

(
n+ 1

2

)

1F1

(
n+ 1

2
;
1

2
;
B2

4

)

+
B

2
Γ
(n

2
+ 1
)

1F1

(
n

2
+ 1;

3

2
;
B2

4

)(4.29)

for B ∈ R with B > 0 and n ∈ C with Ren > −1, see [2], that we need to prove
Lemma 4.6. Moreover, in Lemma 4.8 we will need the connection formula

1F1 (a; b;x) = ex1F1 (b− a; b;−x)(4.30)

for a, b, x ∈ C with b 6= 0,−1,−2, . . . (see [49] 13.2.39) and the integal
∫ ∞

0

tα−1e−ct1F1 (a; b;−t)dt = c−αΓ (α) 2F1

(

a, α; b;−1

c

)

(4.31)

for a, b, c, α ∈ C with b 6= 0,−1,−2, . . ., Reα > 0 and Re c > 0 (see [49] 16.5.3)
where 2F1 (a1, a2; b1; z) denotes the generalized hypergeometric function. To verify
the asymptotic behavior of the function 1F1 (a, b, z) at infinity we need the limiting
form

1F1 (a, b, z) ∼
Γ(b)

Γ(a)
za−bez, as z → ∞, |arg z| < π

2
(4.32)

for z ∈ C and a, b ∈ C\{0,−1,−2, . . .} (see [49] 13.2.4 and 13.2.23). Observe
that 1F1 (a; b; 0) = 1 and 2F1 (a1, a2; b1; 0) = 1 which induce a simplification of the
constants in Lemma 4.6 in case of η = 0.

Proof. First note that by (A7B), (4.24),(4.26),(4.28) it hold
∣
∣Kβ(ψ, t)

∣
∣
2
=
∣
∣
∣Y K̃β(ψ, t)Y −1

∣
∣
∣
2
=
∣
∣
∣K̃β(ψ, t)

∣
∣
∣
2
= max
k=1,...,N

∣
∣
∣K̃

β
kk(ψ, t)

∣
∣
∣(4.33)

for every multi-index β ∈ Nd0 with |β| 6 2. Note that K̃β(ψ, t) ∈ CN,N is diagonal.
(1): Using (4.23) a simple computation shows that it holds for every ψ ∈ Rd and
t > 0

max
k=1,...,N

∣
∣
∣K̃kk(ψ, t)

∣
∣
∣ 6 (4πtamin)

− d
2 e

−b0t−
a0

4ta2
max

|ψ|2

.(4.34)

From (4.33) with |β| = 0, (4.34), the transformation theorem (with transformations

for d-dimensional polar coordinates and Φ(r) =
(

a0
4ta2max

) 1
2

r) and formula (4.29)

(since (A2) hold) we obtain
∫

Rd

eηp|ψ| |K(ψ, t)|2 dψ

6

∫

Rd

eηp|ψ| (4πtamin)
− d

2 e
−b0t−

a0
4ta2

max
|ψ|2

dψ

=(4πtamin)
− d

2 e−b0t
2π

d
2

Γ
(
d
2

)

∫ ∞

0

rd−1e
−

a0
4ta2

max
r2+ηpr

dr

=

(
a2max

amina0

) d
2

e−b0t
2

Γ
(
d
2

)

∫ ∞

0

sd−1e
−s2+

(

4a2
maxη2p2t

a0

) 1
2
s
ds = C1(t).

(2): Using (4.25) for every i = 1, . . . , d, ψ ∈ Rd and t > 0 it holds

max
k=1,...,N

∣
∣
∣K̃i

kk(ψ, t)
∣
∣
∣ 6 (2tamin)

−1 ∣∣
〈
ψ, etSei

〉∣
∣ max
k=1,...,N

∣
∣
∣K̃kk(ψ, t)

∣
∣
∣ .(4.35)
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From (4.33) with |β| = 1, (4.35) with (4.34), Cauchy-Schwarz inequality with as-
sumption (A4) (

∣
∣
〈
ψ, etSei

〉∣
∣ 6 |ψ||etSei| = |ψ|), the transformation theorem (with

transformations from (1)) and formula (4.29) (since (A2) hold) we obtain
∫

Rd

eηp|ψ|
∣
∣Ki(ψ, t)

∣
∣
2
dψ

6

∫

Rd

eηp|ψ| (2tamin)
−1 ∣∣
〈
ψ, etSei

〉∣
∣ max
k=1,...,N

∣
∣
∣K̃kk(ψ, t)

∣
∣
∣ dψ

6

∫

Rd

eηp|ψ|(2tamin)
−1 |ψ| (4πtamin)

− d
2 e

−b0t−
a0

4ta2
max

|ψ|2

dψ

=(2tamin)
−1(4πtamin)

− d
2 e−b0t

2π
d
2

Γ
(
d
2

)

∫ ∞

0

rde
−

a0
4ta2

max
r2+ηpr

dr

=

(
a2max

amina0

) d+1
2

e−b0t
2

Γ
(
d
2

) (tamin)
− 1

2

∫ ∞

0

sde
−s2+

(

4a2
maxη2p2t

a0

) 1
2
s
ds = C2(t).

(3): Using (4.27), the triangle inequality and Cauchy-Schwarz inequality with as-
sumption (A4) (see (2)) yield for every i, j = 1, . . . , d, ψ ∈ Rd and t > 0

max
k=1,...,N

∣
∣
∣K̃

ji
kk(ψ, t)

∣
∣
∣ 6

(

(2tamin)
−2 |ψ|2 + (2tamin)

−1
δij

)

max
k=1,...,N

∣
∣
∣K̃kk(ψ, t)

∣
∣
∣ .

(4.36)

From (4.33) with |β| = 2, (4.36) with (4.34), the transformation theorem (with
transformations from (1)) and formula (4.29) (since (A2) hold) we obtain
∫

Rd

eηp|ψ|
∣
∣Kji(ψ, t)

∣
∣
2
dψ

6

∫

Rd

eηp|ψ|
(

(2tamin)
−2 |ψ|2 + (2tamin)

−1 δij

)

max
k=1,...,N

∣
∣
∣K̃kk(ψ, t)

∣
∣
∣ dψ

6

∫

Rd

eηp|ψ|
(

(2tamin)
−2 |ψ|2 + (2tamin)

−1 δij

)

(4πtamin)
− d

2 e
−b0t−

a0
4ta2

max
|ψ|
dψ

=(4πtamin)
− d

2 e−b0t
2π

d
2

Γ
(
d
2

)

∫ ∞

0

(

(2tamin)
−2
r2 + (2tamin)

−1
δij

)

rd−1e
−

a0
4ta2

max
r2+ηpr

dr

=

(
a2max

amina0

) d+2
2

e−b0t
2

Γ
(
d
2

) (tamin)
−1
∫ ∞

0

sd+1e
−s2+

(

4a2
maxη2p2t

a0

) 1
2
s
ds

+ δij

(
a2max

amina0

) d
2

e−b0t
1

Γ
(
d
2

) (tamin)
−1
∫ ∞

0

sd−1e
−s2+

(

4a2
maxη2p2t

a0

) 1
2
s
ds = C3(t).

�

In order to show that the Ornstein-Uhlenbeck operator L0 coincide with the in-
finitesimal generator of the Ornstein-Uhlenbeck semigroup we need the following
Lemma.

Lemma 4.7. Let the assumptions (A1), (A2) and (A7B) be satisfied for K = C

and let K be given by (4.24), then for every i, j = 1, . . . , d and t > 0 we have

(1)

∫

Rd

K(ψ, t)dψ = e−Bt,

(2)

∫

Rd

K(ψ, t)ψidψ = 0,

(3)

∫

Rd

K(ψ, t)ψiψj =

{

2te−BtA , i = j

0 , i 6= j
.
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Remark. Throughout this proof we will use d-dimensional polar coordinates: Let
x ∈ Rd, Ω :=]0,∞[×[0, 2π[×[0, π]d and (r, φ, θ1, . . . , θd−2) ∈ Ω, then we define

x1 =Φ1(r, φ, θ1, . . . , θd−2) := r cosφ

d−2∏

k=1

sin θk,

x2 =Φ2(r, φ, θ1, . . . , θd−2) := r sinφ

d−2∏

k=1

sin θk,(4.37)

xi =Φi(r, φ, θ1, . . . , θd−2) := r cos θi−2

d−2∏

k=i−1

sin θk, 3 6 i 6 d.

The transformation Φ : Ω → Rd is a C∞-diffeomorphism, [8, X.8.8 Lemma], satis-
fying Φ(Ω) = Rd and

detDΦ(r, φ, θ1, . . . , θd−2) = (−1)drd−1
d−2∏

k=1

(sin θk)
k
.

Proof. First note that (A2), (A7B) and componentwise integration yields for every
n > −1

∫ ∞

0

rne−(4tA)−1r2dr =

∫ ∞

0

rne−Y (4tΛA)−1Y −1r2dr

=Y

∫ ∞

0

rne−(4tΛA)−1r2drY −1 =
Γ
(
n+1
2

)

2
Y (4tΛA)

n+1
2 Y −1

=
Γ
(
n+1
2

)

2
(4tA)

n+1
2 .

(4.38)

(1): From (4.24), (4.38) (with n = d − 1), the transformation theorem (with d-
dimensional polar coordinates) and (A7B) we directly obtain for t > 0

∫

Rd

K(ψ, t)dψ =(4πtA)
− d

2 e−Bt
∫

Rd

e−(4tA)−1|ψ|2dψ

=(4πtA)−
d
2 e−Bt

2π
d
2

Γ
(
d
2

)

∫ ∞

0

rd−1e−(4tA)−1r2dr

=(4πtA)
− d

2 e−Bt
2π

d
2

Γ
(
d
2

)
Γ
(
d
2

)

2
(4tA)

d
2 = e−Bt.

(2): Now we must use d-dimensional polar coordinates. From the transformation
theorem we obtain
∫

Rd

e−(4tA)−1|ψ|2ψidψ

=

∫

Ω

e−(4tA)−1r2 ·







r cosφ
∏d−2
k=1 sin θk , i = 1

r sinφ
∏d−2
k=1 sin θk , i = 2

r cos θi−2

∏d−2
k=i−1 sin θk , 3 6 i 6 d− 2







· |detDΦ(r, φ, θ1, . . . , θd−2)| drdφdθ1 · · · dθd−2

=

∫

Ω

e−(4tA)−1r2 ·







r cosφ
∏d−2
k=1 sin θk , i = 1

r sinφ
∏d−2
k=1 sin θk , i = 2

r cos θi−2

∏d−2
k=i−1 sin θk , 3 6 i 6 d− 2







· rd−1
d−2∏

k=1

|sin θk|k drdφdθ1 · · · dθd−2
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=

(∫ ∞

0

rde−(4tA)−1r2dr

)∫ 2π

0

∫ π

0

· · ·
∫ π

0






cosφ
∏d−2
k=1 sin θk

∏d−2
k=1 |sin θk|

k
, i = 1

sinφ
∏d−2
k=1 sin θk

∏d−2
k=1 |sin θk|

k
, i = 2

cos θi−2

∏d−2
k=i−1 sin θk

∏d−2
k=1 |sin θk|

k
, 3 6 i 6 d− 2







dφdθ1 · · · dθd−2

In case of i = 1 and i = 2 the φ-integrals vanishes and in case of 3 6 i 6 d− 2 the
θi−2-integral vanishes, since using for example

(sin a)
n
=

1

2n

n∑

k=0

(
n
k

)

cos
(

(n− 2k)
(

a− π

2

))

, n ∈ N,

we obtain
∫ π

0

cos θi−2 |sin θi−2|i−2
dθi−2 =

∫ π

0

cos θi−2 (sin θi−2)
i−2

dθi−2 = 0.(4.39)

Hence, we have for every i = 1, . . . , d and t > 0
∫

Rd

K(ψ, t)ψidψ = (4πtA)
− d

2 e−Bt
∫

Rd

e−(4tA)−1|ψ|2ψidψ = 0.

(3): Finally, let us use d-dimensional polar coordinates once more. Similar to (2)
from the transformation theorem we obtain

∫

Rd

e−(4tA)−1|ψ|2ψiψjdψ

=

(∫ ∞

0

rd+1e−(4tA)−1r2dr

)∫ 2π

0

∫ π

0

· · ·
∫ π

0






cosφ
∏d−2
k=1 sin θk , i = 1

sinφ
∏d−2
k=1 sin θk , i = 2

cos θi−2

∏d−2
k=i−1 sin θk , 3 6 i 6 d− 2







d−2∏

k=1

|sin θk|k







cosφ
∏d−2
k=1 sin θk , j = 1

sinφ
∏d−2
k=1 sin θk , j = 2

cos θj−2

∏d−2
k=j−1 sin θk , 3 6 j 6 d− 2







dφdθ1 · · · dθd−2

=

{
π

d
2

2 (4tA)
d
2+1

, i = j

0 , i 6= j
.

Accept the last equality, we first deduce from (4.38) with n = d+ 1
∫ ∞

0

rd+1e−(4tA)−1r2dr =
Γ
(
d+2
2

)

2
(4tA)

d
2+1.(4.40)

Moreover, for Re l > −1, a, b ∈ N0 with a 6 b it holds

b∏

l=a

∫ π

0

(sin θ)
l
dθ =

b∏

l=a

π
1
2
Γ
(
l+1
2

)

Γ
(
l+2
2

) = π
b−a+1

2
Γ
(
a+1
2

)

Γ
(
b+2
2

) .(4.41)

Let is first consider the cases i = j = 1 and i = j = 2. Here we must use
∫ 2π

0

(cosφ)
2
dφ = π,

∫ 2π

0

(sinφ)
2
dφ = π

and (4.41) with a = 3 and b = d

d−2∏

k=1

∫ π

0

(sin θk)
2 |sin θk|k dθk =

d−2∏

k=1

∫ π

0

(sin θ)
k+2

dθ =

d∏

l=3

∫ π

0

(sin θ)
l
dθ
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=π
d
2−1 Γ

(
4
2

)

Γ
(
d+2
2

) =
π

d
2−1

Γ
(
d+2
2

) .

Now, let us consider the case 3 6 i = j 6 d. Here we can deduce from (4.41) (with
a = 1 and b = i− 3, a = b = i− 2, a = b = i as well as a = i+ 1 and b = d)

∫ 2π

0

1dφ = 2π,

i−3∏

k=1

∫ π

0

|sin θk|k dθk =
i−3∏

k=1

∫ π

0

(sin θ)k dθ = π
i−3
2

Γ(1)

Γ
(
i−1
2

) =
π

i−3
2

Γ
(
i−1
2

) ,

∫ π

0

(cos θi−2)
2 |sin θi−2|i−2

dθi−2 =

∫ π

0

(

1− (sin θi−2)
2
)

(sin θi−2)
i−2

dθi−2

=

∫ π

0

(sin θ)i−2 dθ −
∫ π

0

(sin θ)i dθ = π
1
2

(

Γ
(
i−1
2

)

Γ
(
i
2

) − Γ
(
i+1
2

)

Γ
(
i+2
2

)

)

,

d−2∏

k=i−1

∫ π

0

(sin θk)
2 |sin θk|k dθk =

d−2∏

k=i−1

∫ π

0

(sin θ)
k+2

dθ

=
d∏

l=i+1

∫ π

0

(sin θ)l dθ = π
d−i
2

Γ
(
i+2
2

)

Γ
(
d+2
2

) .

Multiplying these four terms with (4.40) and using Γ(x + 1) = xΓ(x) we obtain
π

d
2

2 (4tA)
d
2+1. Next, we consider the cases 3 6 i < j 6 d and 3 6 j < i 6 d. Let

w.l.o.g. i < j, then the term from (4.39) vanishes. For all the other cases exactly
one term vanishes, namely

∫ 2π

0

sinφ cosφdφ = 0, if (i = 1, j = 2) or (i = 2, j = 1),

∫ 2π

0

cosφdφ = 0, if (i = 1, 3 6 j 6 d) or (3 6 i 6 d, j = 1),

∫ 2π

0

sinφdφ = 0, if (i = 2, 3 6 j 6 d) or (3 6 i 6 d, j = 2).

�

4.3. Some useful integrals. Under the assumption (A2) and with the notation
from Section 1.1 we define

C4(t) =CθM
d
2 e−b0t

[

1F1

(
d

2
;
1

2
;κt

)

+ 2
Γ
(
d+1
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 1

2
;
3

2
;κt

)] 1
p

,

C5(t) =CθM
d+1
2 e−b0t (tamin)

− 1
2

[
Γ
(
d+1
2

)

Γ
(
d
2

) 1F1

(
d+ 1

2
;
1

2
;κt

)

+ 2
Γ
(
d+2
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 2

2
;
3

2
;κt

)] 1
p

,

C6(t) =CθM
d+2
2 e−b0t (tamin)

−1

[
Γ
(
d+2
2

)

Γ
(
d
2

) 1F1

(
d+ 2

2
;
1

2
;κt

)

+ 2
Γ
(
d+3
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 3

2
;
3

2
;κt

)

+
δij
2
M−1

1F1

(
d

2
;
1

2
;κt

)

+ δijM
−1Γ

(
d+1
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 1

2
;
3

2
;κt

)] 1
p

,
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with M :=
a2max

amina0
> 1, κ :=

a2maxη
2p2

a0
> 0, 1 6 p 6 ∞ and η > 0. In case of p = ∞

the constants are given by C4+|β|(t) with p = 1 for every |β| = 0, 1, 2. Moreover, in
case of p = 1 it holds C4+|β|(t) = CθC1+|β|(t). In order to show that the solutions of
the steady state problems for the Ornstein-Uhlenbeck operator decay exponentially,
see Theorem 5.14, we need the following Lemma. The upper bound for η2 can be
considered as the maximal decay rate.

Lemma 4.8. Let the assumption (A2) be satisfied for 1 6 p < ∞ and K = C.
Moreover, let 0 < ϑ < 1, ω̃ ∈ R, ω := ω̃ − b0, λ ∈ C with Reλ > ω and 0 6 η2 6

ϑa0(Reλ−ω)
a2maxp

2 , then we have

(1)

∫ ∞

0

e−ReλtC4(t)dt 6
C7

Reλ− ω
,

(2)

∫ ∞

0

e−ReλtC5(t)dt 6
C8

(Reλ− ω)
1
2

,

with M :=
a2max

amina0
> 1 and

C7 =CθM
d
2

(
1

1− ϑ

) 1
p
(

2F1

(

−d− 1

2
, 1;

1

2
;− ϑ

1− ϑ

)

+ π
1
2
Γ
(
d+1
2

)

Γ
(
d
2

)

(
ϑ

1− ϑ

) 1
2

2F1

(

−d− 2

2
,
3

2
;
3

2
;− ϑ

1− ϑ

)) 1
p

,

C8 =CθM
d+1
2

Γ
(
1
2

)

a
1
2

min

(
1

1− ϑ

) 1
2p
(
Γ
(
d+1
2

)

Γ
(
d
2

) 2F1

(

−d
2
,
1

2
;
1

2
;− ϑ

1− ϑ

)

+ 2
Γ
(
d+2
2

)

Γ
(
1
2

)
Γ
(
d
2

)

(
ϑ

1− ϑ

) 1
2

2F1

(

−d− 1

2
, 1;

3

2
;− ϑ

1− ϑ

)) 1
p

.

Proof. (1): From c0 := Reλ− ω, Hölder’s inequality (with 1
p
+ 1

q
= 1 and 1 6 p <

∞), the transformation theorem (with transformation Φ(t) =
a2maxη

2p2t

a0
), formula

(4.30) (with a = d
2 , b =

1
2 , x = s and a = d+1

2 , b = 3
2 , x = s) and formula (4.31)

(with α = 1, c =
a0c0−a

2
maxη

2p2

a2maxη
2p2

, a = − d−1
2 , b = 1

2 and α = 3
2 , c =

a0c0−a
2
maxη

2p2

a2maxη
2p2

,

a = − d−2
2 , b = 3

2 – note that because of (A2), c0 > 0 and η2 < a0c0
a2maxp

2 we have

Re c > 0) we obtain
∫ ∞

0

e−ReλtC4(t)dt

=

∫ ∞

0

Cθ

(
a2max

amina0

) d
2

e−c0t
[

1F1

(
d

2
;
1

2
;
a2maxη

2p2t

a0

)

+ 2
Γ
(
d+1
2

)

Γ
(
d
2

)

(
a2maxη

2p2t

a0

) 1
2

1F1

(
d+ 1

2
;
3

2
;
a2maxη

2p2t

a0

)] 1
p

dt

6Cθ

(
a2max

amina0

) d
2
(∫ ∞

0

e−c0tdt

) 1
q
(∫ ∞

0

e−c0t1F1

(
d

2
;
1

2
;
a2maxη

2p2t

a0

)

dt

+ 2
Γ
(
d+1
2

)

Γ
(
d
2

)

∫ ∞

0

(
a2maxη

2p2t

a0

) 1
2

e−c0t1F1

(
d+ 1

2
;
3

2
;
a2maxη

2p2t

a0

)

dt

) 1
p

=CθM
d
2

(
1

c0

) 1
q
((

a2maxη
2p2

a0

)−1 ∫ ∞

0

e
−

a0c0
a2
maxη2p2

s
1F1

(
d

2
;
1

2
; s

)

ds
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+ 2
Γ
(
d+1
2

)

Γ
(
d
2

)

(
a2maxη

2p2

a0

)−1 ∫ ∞

0

s
1
2 e

−
a0c0

a2
maxη2p2

s
1F1

(
d+ 1

2
;
3

2
; s

)

ds

) 1
p

=CθM
d
2

(
1

c0

)((
a2maxη

2p2

a0c0

)−1 ∫ ∞

0

e
−

(

a0c0
a2
maxη2p2

−1

)

s

1F1

(

−d− 1

2
;
1

2
;−s

)

ds

+ 2
Γ
(
d+1
2

)

Γ
(
d
2

)

(
a2maxη

2p2

a0c0

)−1 ∫ ∞

0

s
1
2 e

−

(

a0c0
a2
maxη2p2

−1

)

s

1F1

(

−d− 2

2
;
3

2
;−s

)

ds

) 1
p

=CθM
d
2

(
1

c0

)(
a0c0

a0c0 − a2maxη
2p2

) 1
p
(

2F1

(

−d− 1

2
, 1;

1

2
;− a2maxη

2p2

a0c0 − a2maxη
2p2

)

+ π
1
2
Γ
(
d+1
2

)

Γ
(
d
2

)

(
a2maxη

2p2

a0c0 − a2maxη
2p2

) 1
2

2F1

(

−d− 2

2
,
3

2
;
3

2
;− a2maxη

2p2

a0c0 − a2maxη
2p2

)) 1
p

.

Finally, to obtain C7 we must use that 2F1 is strictly monotone decreasing in ]−∞, 0]
as well as the inequalities

a0c0
a0c0 − a2maxη

2p2
6

1

1− ϑ
and

a2maxη
2p2

a0c0 − a2maxη
2p2

6
ϑ

1− ϑ
.

(2): From c0 := Reλ − ω, Hölder’s inequality (with 1
p
+ 1

q
= 1 and 1 6 p < ∞),

the transformation theorem (with transformation Φ(t) =
a2maxη

2p2t

a0
), formula (4.30)

(with a = d+1
2 , b = 1

2 , x = s and a = d+2
2 , b = 3

2 , x = s) and formula (4.31) (with

α = 1
2 , c =

a0c0−a
2
maxη

2p2

a2maxη
2p2

, a = − d
2 , b =

1
2 and α = 1, c =

a0c0−a
2
maxη

2p2

a2maxη
2p2

, a = − d−1
2 ,

b = 3
2 – note that because of (A2), c0 > 0 and η2 < a0c0

a2maxp
2 we have Re c > 0) we

obtain

∫ ∞

0

e−ReλtC5(t)dt

=

∫ ∞

0

Cθ

(
a2max

amina0

) d+1
2

e−c0t (tamin)
− 1

2

[
Γ
(
d+1
2

)

Γ
(
d
2

) 1F1

(
d+ 1

2
;
1

2
;
a2maxη

2p2t

a0

)

+ 2
Γ
(
d+2
2

)

Γ
(
d
2

)

(
a2maxη

2p2t

a0

) 1
2

1F1

(
d+ 2

2
;
3

2
;
a2maxη

2p2t

a0

)] 1
p

dt

6Cθ

(
a2max

amina0

) d+1
2

a
− 1

2

min

(∫ ∞

0

t−
1
2 e−c0tdt

) 1
q

·
(
Γ
(
d+1
2

)

Γ
(
d
2

)

∫ ∞

0

t−
1
2 e−c0t1F1

(
d+ 1

2
;
1

2
;
a2maxη

2p2t

a0

)

dt

+ 2
Γ
(
d+2
2

)

Γ
(
d
2

)

(
a2maxη

2p2

a0

) 1
2
∫ ∞

0

e−c0t1F1

(
d+ 2

2
;
3

2
;
a2maxη

2p2t

a0

)

dt

) 1
p

=CθM
d+1
2

((
1

c0

) 1
2

Γ

(
1

2

))
1
q

a
− 1

2

min

·
(
Γ
(
d+1
2

)

Γ
(
d
2

)

(
a2maxη

2p2

a0

)− 1
2
∫ ∞

0

s−
1
2 e

−
a0c0

a2
maxη2p2

s
1F1

(
d+ 1

2
;
1

2
; s

)

ds

+ 2
Γ
(
d+2
2

)

Γ
(
d
2

)

(
a2maxη

2p2

a0

)− 1
2
∫ ∞

0

e
−

a0c0
a2
maxη2p2

s
1F1

(
d+ 2

2
;
3

2
; s

)

ds

) 1
p
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=CθM
d+1
2

(
1

c0

) 1
2 Γ

(
1
2

)

a
1
2

min

·
(

Γ
(
d+1
2

)

Γ
(
1
2

)
Γ
(
d
2

)

(
a2maxη

2p2

a0c0

)− 1
2
∫ ∞

0

s−
1
2 e

−

(

a0c0
a2
maxη2p2

−1

)

s

1F1

(

−d
2
;
1

2
;−s

)

ds

+ 2
Γ
(
d+2
2

)

Γ
(
1
2

)
Γ
(
d
2

)

(
a2maxη

2p2

a0c0

)− 1
2
∫ ∞

0

e
−

(

a0c0
a2
maxη2p2

−1

)

s

1F1

(

−d− 1

2
;
3

2
;−s

)

ds

) 1
p

=CθM
d+1
2

(
1

c0

) 1
2 Γ

(
1
2

)

a
1
2

min

(
a0c0

a0c0 − a2maxη
2p2

) 1
2p

·
(
Γ
(
d+1
2

)

Γ
(
d
2

) 2F1

(

−d
2
,
1

2
;
1

2
;− a2maxη

2p2

a0c0 − a2maxη
2p2

)

+ 2
Γ
(
d+2
2

)

Γ
(
1
2

)
Γ
(
d
2

)

(
a2maxη

2p2

a0c0 − a2maxη
2p2

) 1
2

2F1

(

−d− 1

2
, 1;

3

2
;− a2maxη

2p2

a0c0 − a2maxη
2p2

)) 1
p

.

Finally, to obtain C8 we use the same tools as in (1). �

5. The complex Ornstein-Uhlenbeck operator in Lp(Rd,CN )

In this section we apply semigroup theory to the Ornstein-Uhlenbeck operator

[L0v] (x) := A△v(x) + 〈Sx,∇v(x)〉 , x ∈ Rd, d > 2,

and characterize its maximal domain in Lp(Rd,CN ).

5.1. Application of semigroup theory. Let us consider the Ornstein-Uhlenbeck
kernel of L0 from Theorem 4.4 (with B = 0)

H0(x, ξ, t) = (4πtA)−
d
2 exp

(

− (4tA)−1 ∣∣etSx− ξ
∣
∣
2
)

and the family of mappings (T0(t))t>0 given by

[T0(t)v] (x) :=

{∫

Rd H0(x, ξ, t)v(ξ)dξ , t > 0

v(x) , t = 0
, x ∈ Rd(5.1)

on the (complex-valued) Banach space
(
Lp(Rd,CN ), ‖·‖Lp

)
, 1 6 p 6 ∞. In

the scalar real-valued case, formula (5.1) is due to Kolmogorov, [34]. The next
three theorems show that the semigroup defined in (5.1) is strongly continuous on
Lp(Rd,CN ), 1 6 p <∞. In order to show exponential decay of the solutions of the
resolvent equation via a-priori estimates, we have to prove the boundedness of T0
and its derivatives up to order 2 in exponentially weighted norms.

Theorem 5.1 (Boundedness on Lpθ(R
d,CN )). Let the assumptions (A1), (A2),

(A4) be satisfied for 1 6 p 6 ∞ and K = C. Then for every radial weight function
θ ∈ C(Rd,R) of exponential growth rate η > 0 and for every v ∈ Lpθ(R

d,CN)

‖T0(t)v‖Lp
θ
(Rd,CN ) 6 C4(t) ‖v‖Lp

θ
(Rd,CN ) , t > 0,(5.2)

‖DiT0(t)v‖Lp
θ
(Rd,CN ) 6 C5(t) ‖v‖Lp

θ
(Rd,CN ) , t > 0, i = 1, . . . , d,(5.3)

‖DjDiT0(t)v‖Lp
θ
(Rd,CN ) 6 C6(t) ‖v‖Lp

θ
(Rd,CN ) , t > 0, i, j = 1, . . . , d,(5.4)

where the constants C4+|β|(t) = C4+|β|(t; b0 = 0) are from Section 4.3 for every
|β| = 0, 1, 2, i.e.

C4(t; b0 = 0) =CθM
d
2

[

1F1

(
d

2
;
1

2
;κt

)

+ 2
Γ
(
d+1
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 1

2
;
3

2
;κt

)] 1
p

,
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C5(t; b0 = 0) =CθM
d+1
2 (tamin)

− 1
2

[
Γ
(
d+1
2

)

Γ
(
d
2

) 1F1

(
d+ 1

2
;
1

2
;κt

)

+ 2
Γ
(
d+2
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 2

2
;
3

2
;κt

)] 1
p

,

C6(t; b0 = 0) =CθM
d+2
2 (tamin)

−1

[
Γ
(
d+2
2

)

Γ
(
d
2

) 1F1

(
d+ 2

2
;
1

2
;κt

)

+ 2
Γ
(
d+3
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 3

2
;
3

2
;κt

)

+
δij
2
M−1

1F1

(
d

2
;
1

2
;κt

)

+ δijM
−1Γ

(
d+1
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 1

2
;
3

2
;κt

)] 1
p

.

In case p = ∞ they are given by C4+|β|(t; b0 = 0) with p = 1, whereM :=
a2max

amina0
> 1

and κ :=
a2maxη

2p2

a0
> 0. Note that C4+|β|(t) ∼ t

−p|β|+d+|β|−1
2p e

κ
p
t as t → ∞ and

C4+|β|(t) ∼ t−
|β|
2 as t→ 0 for every |β| = 0, 1, 2.

Proof. Let v ∈ Lpθ(R
d,CN ). In the following β ∈ Nd0 denotes a d-dimensional

multi-index with |β| 6 2 and we will use the notation

Dβv =







v ,|β| = 0

Div ,|β| = 1

DjDiv ,|β| = 2

, DβH0 =







H0 ,|β| = 0

DiH0 ,|β| = 1

DjDiH0 ,|β| = 2

, Kβ =







K ,|β| = 0

Ki ,|β| = 1

Kji ,|β| = 2

where i, j = 1, . . . , d. Note that H0(x, ξ, t) = H(x, ξ, t) since we have B = 0.
Moreover, in this proof K, Ki and Kji are given by (4.24), (4.26) and (4.28) with
B = 0. To show (5.2), (5.3) and (5.4) for 1 6 p <∞we use (5.1), the transformation
theorem (with transformation Φ(ξ) = etSx − ξ in ξ and Φ(x) = etSx − ψ in x),
(4.24), (4.26), (4.28), the triangle inequality, Hölder’s inequality (with q such that
1
p
+ 1

q
= 1), Fubini’s theorem, (3.1), (W1)–(W2), Lemma 4.6 (1),(2),(3)

∥
∥DβT0(t)v

∥
∥
L

p
θ

=

(∫

Rd

θp(x)
∣
∣Dβ [T0(t)v] (x)

∣
∣
p
dx

) 1
p

=

(∫

Rd

θp(x)

∣
∣
∣
∣

∫

Rd

[
DβH0(x, ξ, t)

]
v(ξ)dξ

∣
∣
∣
∣

p

dx

) 1
p

=

(∫

Rd

θp(x)

∣
∣
∣
∣

∫

Rd

Kβ(ψ, t)v(etSx− ψ)dψ

∣
∣
∣
∣

p

dx

) 1
p

6

(∫

Rd

(∫

Rd

θ(x)
∣
∣Kβ(ψ, t)

∣
∣
2

∣
∣v(etSx− ψ)

∣
∣ dψ

)p

dx

) 1
p

6

(
∫

Rd

(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2
dψ

) p
q
∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2

(
θ(x)

∣
∣v(etSx− ψ)

∣
∣
)p
dψdx

) 1
p

=

(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2
dψ

) 1
q
(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2

∫

Rd

(
θ(x)

∣
∣v(etSx− ψ)

∣
∣
)p
dxdψ

) 1
p

=

(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2
dψ

) 1
q
(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2

∫

Rd

(
θ(e−tS(y + ψ)) |v(y)|

)p
dydψ

) 1
p

6

(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2
dψ

) 1
q
(∫

Rd

Cpθ e
ηp|ψ|

∣
∣Kβ(ψ, t)

∣
∣
2

∫

Rd

(θ(y) |v(y)|)p dydψ
) 1

p
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6Cθ

(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2
dψ

) p−1
p
(∫

Rd

eηp|ψ|
∣
∣Kβ(ψ, t)

∣
∣
2
dψ

) 1
p

‖v‖Lp
θ

6C4+|β|(t; b0 = 0) ‖v‖Lp
θ

for t > 0, if |β| = 0 and for t > 0, if |β| = 1 or |β| = 2. Similarly, to show (5.2), (5.3)
and (5.4) for p = ∞ we use (5.1), the transformation theorem (with transformation
Φ(ξ) = etSx− ξ in ξ and Φ(x) = etSx− ψ in x), (4.24), (4.26), (4.28), the triangle
inequality, (3.1), (W1)–(W2), Lemma 4.6 (1),(2),(3) and obtain
∥
∥DβT0(t)v

∥
∥
L∞

θ

=ess sup
x∈Rd

θ(x)
∣
∣Dβ [T0(t)v] (x)

∣
∣

=ess sup
x∈Rd

θ(x)

∣
∣
∣
∣

∫

Rd

[
DβH0(x, ξ, t)

]
v(ξ)dξ

∣
∣
∣
∣

=ess sup
x∈Rd

θ(x)

∣
∣
∣
∣

∫

Rd

Kβ(ψ, t)v(etSx− ψ)dψ

∣
∣
∣
∣

6ess sup
x∈Rd

∫

Rd

θ(x)
∣
∣Kβ(ψ, t)

∣
∣
2

∣
∣v(etSx− ψ)

∣
∣ dψ

6

∫

Rd

ess sup
x∈Rd

θ(x)
∣
∣Kβ(ψ, t)

∣
∣
2

∣
∣v(etSx− ψ)

∣
∣ dψ

=

∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2
ess sup
y∈Rd

θ(e−tS(y + ψ)) |v(y)| dψ

6Cθ

(∫

Rd

eη|ψ|
∣
∣Kβ(ψ, t)

∣
∣
2
dψ

)

‖v‖L∞
θ

6 C4+|β|(t; b0 = 0) ‖v‖L∞
θ
.

�

Theorem 5.2 (Semigroup on Lp(Rd,CN)). Let the assumptions (A1), (A2), (A4)
be satisfied for 1 6 p 6 ∞ and K = C. Then the operators (T0(t))t>0 given by

(5.1) generate a semigroup on Lp(Rd,CN ), i.e. T0(t) : L
p(Rd,CN ) → Lp(Rd,CN)

is linear and bounded for every t > 0 and satisfies the semigroup properties

T0(0) = I,(5.5)

T0(t)T0(s) = T0(t+ s), ∀ s, t > 0.(5.6)

Proof. The boundedness of T0(t) in Lp(Rd,CN ) for every t > 0 can be deduced
from (5.2) (with θ ≡ 1, η = 0, Cθ = 1). The linearity of T0(t) and property (5.5)
follow from the definition of T0(t) in (5.1). Property (5.6) can easily be verified
by using (5.1), Lemma 4.5 (with B = 0, i.e. with H0 instead of H) and Fubini’s
theorem

[T0(t) (T0(s)v)] (x) =

∫

Rd

H0(x, ξ̃, t) [T0(s)v] (ξ̃)dξ̃

=

∫

Rd

H0(x, ξ̃, t)

∫

Rd

H0(ξ̃, ξ, s)v(ξ)dξdξ̃

=

∫

Rd

∫

Rd

H0(x, ξ̃, t)H0(ξ̃, ξ, s)dξ̃v(ξ)dξ

=

∫

Rd

H0(x, ξ, t + s)v(ξ)dξ = [T0(t+ s)v] (x), x ∈ Rd.

�

The next theorem states that the semigroup (T0(t))t>0 is strongly continuous on

Lp(Rd,CN ) for every 1 6 p <∞, which justifies to define its infinitesimal generator.
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Theorem 5.3 (Strong continuity on Lp(Rd,CN )). Let the assumptions (A1), (A2),
(A4) be satisfied for 1 6 p < ∞ and K = C. Then (T0(t))t>0 is a C0-semigroup

(or strongly continuous semigroup) on Lp(Rd,CN ), i.e.

lim
t↓0

‖T0(t)v − v‖Lp(Rd,CN ) = 0 ∀ v ∈ Lp(Rd,CN ).(5.7)

Proof. 1. Let us define the (d-dimensional) diffusion semigroup (Gaussian semi-
group, heat semigroup)

[G(t)v] (y) :=

∫

Rd

H0(e
−tSy, ξ, t)v(ξ)dξ

=

∫

Rd

(4πtA)
− d

2 exp
(

− (4tA)
−1 |y − ξ|2

)

v(ξ)dξ

(5.8)

then we have [T0(t)v] (x) = [G(t)v] (etSx). Let 1 6 p < ∞. Motivated by [25], we
consider the decomposition

‖T0(t)v − v‖Lp 6
∥
∥[G(t)v] (etS ·)− v(etS ·)

∥
∥
Lp +

∥
∥v(etS ·)− v(·)

∥
∥
Lp

=: ‖v1(·, t)‖Lp + ‖v2(·, t)‖Lp

Here and in the sequel of the proof we abbreviate ‖·‖Lp(Rd,CN ) by ‖·‖Lp .

2. First we compute the v1-term. Therefore, we use the transformation theorem
with Φ(x) = etSx and consider the decomposition

‖v1(·, t)‖Lp =
∥
∥[G(t)v] (etS ·)− v(etS ·)

∥
∥
Lp = ‖[G(t)v] (·) − v(·)‖Lp

6

∥
∥
∥
∥

∫

Rd

H0(e
−tS ·, ξ, t) (v(ξ) − v(·)) dξ

∥
∥
∥
∥
Lp

+

∥
∥
∥
∥

(∫

Rd

H0(e
−tS ·, ξ, t)dξ − IN

)

v(·)
∥
∥
∥
∥
Lp

=: ‖v3(·, t)‖Lp + ‖v4(·, t)‖Lp

3. Let us consider the v4-term. Using the transformation theorem (with transfor-
mation Φ(ξ) = y − ξ) and Lemma 4.7 (1) (with B = 0), we obtain

‖v4(·, t)‖Lp

=

(∫

Rd

∣
∣
∣
∣

(∫

Rd

H0(e
−tSy, ξ, t)dξ − IN

)

v(y)

∣
∣
∣
∣

p

dy

) 1
p

=

(∫

Rd

∣
∣
∣
∣

(∫

Rd

(4πtA)−
d
2 exp

(

− (4tA)−1 |y − ξ|2
)

dξ − IN

)

v(y)

∣
∣
∣
∣

p

dy

) 1
p

=

(∫

Rd

∣
∣
∣
∣

(∫

Rd

K(ψ, t)dψ − IN

)

v(y)

∣
∣
∣
∣

p

dy

) 1
p

6

∣
∣
∣
∣

∫

Rd

K(ψ, t)dψ − IN

∣
∣
∣
∣
2

‖v‖Lp

= |IN − IN |2 ‖v‖Lp = 0 for t > 0.

4. The v3-term is much more delicate: First we need the following integral for
b0 = 0 and some constant δ0 > 0, compare proof of Lemma 4.6,

∫

|ψ|>δ0

|K(ψ, t)|2 dψ

6

∫

|ψ|>δ0

(4πtamin)
− d

2 e
−b0t−

a0
4ta2

max
|ψ|2

dψ

=(4πtamin)
− d

2 e−b0t
2π

d
2

Γ
(
d
2

)

∫ ∞

δ0

rd−1e
−

a0
4ta2

max
r2

dr
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=

(
a2max

amina0

) d
2

e−b0t
2

Γ
(
d
2

)

∫ ∞

(

a0
4ta2

max

) 1
2
δ0

sd−1e−s
2

ds =: C(t, δ0)

where we used the transformation theorem (with transformations for d-dimensional

polar coordinates and Φ(r) =
(

a0
4ta2max

) 1
2

r). Note, that C(t, δ0) → 0 as t → 0

for every fixed δ0 > 0. Using the transformation theorem (with transformations
Φ(ξ) = y − ξ and Φ(y) = y − ψ), the triangle inequality, Hölder’s inequality (with
q such that 1

p
+ 1

q
= 1), Fubini’s theorem, the Lp-continuity from [7, Satz 2.14(1)],

(4.24) and Lemma 4.6(1) (with η = 0 and b0 = 0) we obtain

‖v3(·, t)‖Lp

=

(∫

Rd

∣
∣
∣
∣

∫

Rd

H0(e
−tSy, ξ, t) (v(ξ)− v(y)) dξ

∣
∣
∣
∣

p

dy

) 1
p

=

(∫

Rd

∣
∣
∣
∣

∫

Rd

(4πtA)
− d

2 exp
(

− (4tA)
−1 |y − ξ|2

)

(v(ξ)− v(y)) dξ

∣
∣
∣
∣

p

dy

) 1
p

=

(∫

Rd

∣
∣
∣
∣

∫

Rd

K(ψ, t) (v(y − ψ)− v(y)) dψ

∣
∣
∣
∣

p

dy

) 1
p

6

(∫

Rd

(∫

Rd

|K(ψ, t)|2 |v(y − ψ)− v(y)| dψ
)p

dy

) 1
p

6

(
∫

Rd

(∫

Rd

|K(ψ, t)|2 dψ
) p

q
∫

Rd

|K(ψ, t)|2 |v(y − ψ)− v(y)|p dψdy
) 1

p

=

(∫

Rd

|K(ψ, t)|2 dψ
) 1

q
(∫

Rd

|K(ψ, t)|2
∫

Rd

|v(y − ψ)− v(y)|p dydψ
) 1

p

=

(∫

Rd

|K(ψ, t)|2 dψ
) 1

q
(∫

Rd

|K(ψ, t)|2 ‖v(· − ψ)− v(·)‖pLp dψ

) 1
p

=

(∫

Rd

|K(ψ, t)|2 dψ
) 1

q
(∫

|ψ|6δ0

|K(ψ, t)|2 ‖v(· − ψ)− v(·)‖pLp dψ

+

∫

|ψ|>δ0

|K(ψ, t)|2 ‖v(· − ψ)− v(·)‖pLp dψ

) 1
p

6

(∫

Rd

|K(ψ, t)|2 dψ
) 1

q
(

εp0

∫

|ψ|6δ0

|K(ψ, t)|2 dψ

+ 2p−1

∫

|ψ|>δ0

|K(ψ, t)|2 (‖v(· − ψ)‖pLp + ‖v‖pLp) dψ

) 1
p

6

(∫

Rd

|K(ψ, t)|2 dψ
) 1

q
(

εp0

∫

Rd

|K(ψ, t)|2 dψ + 2p
∫

|ψ|>δ0

|K(ψ, t)|2 dψ ‖v‖pLp

) 1
p

6C
1
q

1 (t) (ε
p
0C1(t) + 2pC(t, δ0) ‖v‖pLp)

1
p

Hence, limt→0 ‖v3(·, t)‖Lp 6 ε0C1(0) = ε0M
d
2 . Now, choose ε0 > 0 arbitrary small.

5. Finally, let us consider the v2-term. Let ε > 0. Since C∞
c (Rd,CN ) is dense

in Lp(Rd,CN ) w.r.t. ‖·‖Lp for every 1 6 p < ∞, see [7, Satz 2.14(3)], we can

choose ϕε ∈ C∞
c (Rd,CN ) such that ‖v − ϕε‖Lp 6 ε

3 . Since ϕε ∈ C∞
c (Rd,CN ), ϕε

is uniformly continuous on supp(ϕε), i.e.

∀ ε0 > 0 ∃ δ0 = δ0(ε0) > 0 ∀x, x0 ∈ supp(ϕε)
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with |x− x0| 6 δ0 : |ϕε(x)− ϕε(x0)| 6 ε0

Choosing x0 := etSx we have

∃ t0 = t0(δ0) > 0 ∀ 0 6 t 6 t0 :
∣
∣etSx− x

∣
∣ 6 δ0

Thus, choosing ε0 := ε
(

3 |supp(ϕε)|
1
p

)−1

and combining this facts yields

∥
∥ϕε(e

tS ·)− ϕε(·)
∥
∥
Lp =

(
∫

supp(ϕε)

∣
∣ϕε(e

tSx)− ϕε(x)
∣
∣
p

) 1
p

6 ε ∀ 0 6 t 6 t0(ε).

This implies

‖v2(·, t)‖Lp =
∥
∥v(etS ·)− v(·)

∥
∥
Lp

6
∥
∥v(etS ·)− ϕε(e

tS ·)
∥
∥
Lp +

∥
∥ϕε(e

tS ·)− ϕε(·)
∥
∥
Lp + ‖ϕε(·)− v(·)‖Lp

6
ε

3
+
ε

3
+
ε

3
= ε ∀ 0 6 t 6 t0(ε).

Hence, limt→0 ‖v2(·, t)‖Lp 6 ε. Now, choose ε > 0 arbitrary small. �

Now, the infinitesimal generator Ap : D(Ap) ⊆ Lp(Rd,CN ) → Lp(Rd,CN) of
(T0(t))t>0 in Lp(Rd,CN ) for 1 6 p < ∞, short (Ap,D(Ap)), can be defined by,

[28, II.1.2 Definition],

Apv := lim
t↓0

T0(t)v − v

t
, 1 6 p <∞

for every v ∈ D(Ap), where the domain of Ap is given by

D(Ap) :=

{

v ∈ Lp(Rd,CN ) | lim
t↓0

T0(t)v − v

t
exists in Lp(Rd,CN)

}

=
{
v ∈ Lp(Rd,CN) | Apv ∈ Lp(Rd,CN )

}
.

Note that D(Ap) is a linear subspace of Lp(Rd,CN ). Moreover, from [28, II.1.3
Lemma, II.1.4 Theorem], we obtain the following result:

Lemma 5.4. Let the assumptions (A1), (A2), (A4) be satisfied for 1 6 p <∞ and
K = C.
(1) Ap : D(Ap) ⊆ Lp(Rd,CN) → Lp(Rd,CN ) is a linear, closed and densely defined
operator that determines the semigroup (T0(t))t>0 uniquely.

(2) For every v ∈ D(Ap) and t > 0 we have

T0(t)v ∈ D(Ap)

d

dt
T0(t)v = T0(t)Apv = ApT0(t)v

(3) For every v ∈ Lp(Rd,CN ) and every t > 0 we have
∫ t

0

T0(s)vds ∈ D(Ap)

(4) For every t > 0 we have

T0(t)v − v =Ap

∫ t

0

T0(s)vds , for v ∈ Lp(Rd,CN )

=

∫ t

0

T0(s)Apvds , for v ∈ D(Ap)
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Since (Ap,D(Ap)) is a closed operator on the Banach space Lp(Rd,CN ) for 1 6 p <
∞, we can define

σ(Ap) := {λ ∈ C | λI −Ap is not bijective} spectrum of Ap,

ρ(Ap) :=C\σ(Ap) resolvent set of Ap,

R(λ,Ap) := (λI −Ap)
−1

, for λ ∈ ρ(Ap) resolvent of Ap.

The next identities follow from [28, II.1.9 Lemma].

Lemma 5.5. Let the assumptions (A1), (A2), (A4) be satisfied for 1 6 p <∞ and
K = C. Then for every λ ∈ C and t > 0,

e−λtT0(t)v − v =(Ap − λI)

∫ t

0

e−λsT0(s)vds , for v ∈ Lp(Rd,CN ),

=

∫ t

0

e−λsT0(s) (Ap − λI) vds , for v ∈ D(Ap).

By (5.2) from Theorem 5.1 (with θ ≡ 1, η = 0 and Cθ = 1) we have

∃ω0 ∈ R ∧ ∃M0 > 1 : ‖T0(t)‖L(Lp,Lp) 6M0e
ω0t ∀ t > 0,(5.9)

whereM0 :=
(

a2max

amina0

) d
2

and ω0 := 0. For the next statement we refer to [28, II.1.10

Theorem].

Theorem 5.6. Let the assumptions (A1), (A2), (A4) be satisfied for 1 6 p < ∞
and K = C.
(1) For every λ ∈ C such that R(λ)v :=

∫∞

0
e−λsT0(s)vds exists for every v ∈

Lp(Rd,CN ) we have

λ ∈ ρ(Ap) and R(λ,Ap) = R(λ).

(2) For every λ ∈ C with Reλ > ω0 we have

λ ∈ ρ(Ap), R(λ,Ap) = R(λ)

and

‖R(λ,Ap)‖L(Lp,Lp) 6
M0

Reλ− ω0
.

A direct consequence of Theorem 5.6 is the following:

Corollary 5.7 (Solvability and uniqueness in Lp(Rd,CN)). Let the assumptions
(A1), (A2), (A4) be satisfied for 1 6 p < ∞ and K = C. Moreover, let λ ∈ C with
Reλ > ω0. Then for every g ∈ Lp(Rd,CN ) the resolvent equation

(λI −Ap) v = g

admits a unique solution v⋆ ∈ D(Ap), which is given by the integral expression

v⋆ = R(λ)g =

∫ ∞

0

e−λsT0(s)gds

=

∫ ∞

0

e−λs
∫

Rd

H0(·, ξ, s)g(ξ)dξds.

Moreover, the following resolvent estimate holds

‖v⋆‖Lp(Rd,CN ) 6
M0

Reλ− ω0
‖g‖Lp(Rd,CN ) .

For the next statement we refer to [28, II.1.11 Corollary].
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Corollary 5.8. Let the assumptions (A1), (A2), (A4) be satisfied for 1 6 p < ∞
and K = C. Moreover, let λ ∈ C with Reλ > ω0. Then, for every n ∈ N and every
v ∈ Lp(Rd,CN ) it hold

R(λ,Ap)
nv =

(−1)n

(n− 1)!
· d

n−1

dλn−1
R(λ,Ap)v

=
1

(n− 1)!

∫ ∞

0

sn−1e−λsT0(s)vds

and the estimate

‖R(λ,Ap)n‖L(Lp,Lp) 6
M0

(Reλ− ω0)
n .

Let us now define the spectral bound s(Ap) of Ap, [28, II.1.12 Definition]:

−∞ 6 s(Ap) := sup
λ∈σ(Ap)

Reλ 6 ω0 = 0 < +∞

5.2. A core for the infinitesimal generator. Let 1 6 p <∞. A subspace D ⊂
D(Ap) of the domain D(Ap) of the linear operator Ap : D(Ap) ⊆ Lp(Rd,CN ) →
Lp(Rd,CN ) is called a core for (Ap,D(Ap)) if D is dense in D(Ap) with respect to
the graph norm

‖v‖Ap
:= ‖Apv‖Lp(Rd,CN ) + ‖v‖Lp(Rd,CN ) , v ∈ D(Ap),

see [28, II.1.6 Definition]. The next theorem states that the formally defined
Ornstein-Uhlenbeck operator L0, which was defined only for smooth functions,
and the infinitesimal generator Ap of the Ornstein-Uhlenbeck semigroup coincide
on the Schwartz space S. Moreover, the Schwartz space is a core for (Ap,D(Ap)).

Theorem 5.9 (Core for the infinitesimal generator). Let the assumptions (A1),
(A2) and (A4) be satisfied for 1 6 p <∞ and K = C. Then:
(1) S ⊂ Lp(Rd,CN ) is dense for the Lp–norm ‖·‖Lp(Rd,CN ).

(2) S is a subspace of D(Ap), i.e. S ⊂ D(Ap) and Apφ = L0φ for every φ ∈ S.
(3) S is invariant under the semigroup (T0(t))t>0, i.e.

T0(t)S ⊆ S for every t > 0.

(4) S ⊂ D(Ap) is a core for (Ap,D(Ap)), i.e.

D(Ap) = S‖·‖Ap =: Dp
max.

This is an extension of the real-valued scalar result in [42, Proposition 2.2 and
3.2] to complex valued systems. The details have still to be filled in and will be
discussed in the appendix.

5.3. Characterization of the maximal domain (Part 1). In this subsection
we characterize the maximal domain D(Ap) = Dp

max of the infinitesimal generator
Ap : D(Ap) ⊆ Lp(Rd,CN ) → Lp(Rd,CN ) of the semigroup (T0(t))t>0 and the
infinitesimal generator Ap itself. Assuming in addition 1 < p < ∞ and the Lp-
dissipativity condition (A3) for L0, we show that the domain Dp

max coincides with

Dp(L0) :=
{

v ∈ W 2,p
loc (R

d,CN ) ∩ Lp(Rd,CN ) | A△v + 〈S·,∇v〉 ∈ Lp(Rd,CN )
}

=
{

v ∈ W 2,p
loc (R

d,CN ) ∩ Lp(Rd,CN ) | L0v ∈ Lp(Rd,CN )
}

,

where L0v is meant in the distributional sense, i.e. L0v ∈ Lp(Rd,CN ) if and only
if there exists u ∈ Lp(Rd,CN ) such that

∫

Rd

[L∗
0ϕ] (x)

T
v(x)dx =

∫

Rd

ϕ(x)
T
u(x)dx ∀ϕ ∈ C∞

c (Rd,RN ).
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L∗
0 denotes the formal adjoint operator of L0 and is given by

[L∗
0v] (x) = AH△v(x) − 〈Sx,∇v(x)〉 − Tr(S)v(x),

with AH = A
T
. We then conclude that the infinitesimal generator Ap and the

Ornstein-Uhlenbeck operator L0 coincide on Dp(L0). For this purpose, it will be
sufficient to verify the closedness of L0 : Dp(L0) → Lp(Rd,CN ) and the unique-
ness of the resolvent equation for L0 in Dp(L0). The following Lemma shows the
closedness of L0. A proof for the real-valued case can be found in [42].

Lemma 5.10. Let the assumptions (A1), (A2) and (A4) be satisfied for 1 < p <∞
and K = C, then the operator L0 : Dp(L0) → Lp(Rd,CN ) is closed in Lp(Rd,CN ).

Proof. Let (vn)n∈N
⊂ Dp(L0) be such that vn converges to v ∈ Lp(Rd,CN ) w.r.t.

‖·‖Lp and L0vn converges to u ∈ Lp(Rd,CN) w.r.t. ‖·‖Lp , then we obtain
∫

Rd

[L∗
0ϕ] (x)

T
v(x)dx = lim

n→∞

∫

Rd

[L∗
0ϕ] (x)

T
vn(x)dx

= lim
n→∞

∫

Rd

ϕ(x)
T
[L0vn] (x)dx =

∫

Rd

ϕ(x)
T
u(x)dx ∀ϕ ∈ C∞

c (Rd,RN ).

Hence L0v ∈ Lp(Rd,CN ) and L0v = u. v ∈ W 2,p
loc (R

d,CN) follows by local elliptic
regularity, see [30]. We conclude v ∈ Dp(L0), thus L0 is closed. �

In order to prove uniqueness of the resolvent equation for L0 we need the following
Lemma. This is the scalar complex-valued version of [43, Lemma 2.1].

Lemma 5.11. Let Ω ⊂ Rd be a bounded domain with a C2-boundary or Ω = Rd

and v ∈ W 2,p(Ω,C) ∩W 1,p
0 (Ω,C). Moreover, let η ∈ C1

b (Ω,R) be nonnegative and
α ∈ C with Reα > 0. Then for 1 < p <∞ it holds

−Re

∫

Ω

ηv |v|p−2
α△v >Re

∫

Ω

|v|p−2
d∑

i=1

DiηαvDiv

+Re (p− 1)α

∫

Ω

η |v|p−2
d∑

i=1

|Div|2 χ{v 6=0}

− Re (p− 2)αi

∫

Ω

η |v|p−4
d∑

i=1

Im (vDiv) vDivχ{v 6=0}.

Proof. We only provide the proof for Ω ⊂ Rd bounded and 2 6 ∞. In case Ω = Rd

integration by parts yields no boundary terms due to decay at infinity and the case
1 < p <∞ can be treated in an analogous way.
Let Ω ⊂ Rd be bounded and 2 6 ∞. First note that we obtain from z + z = 2Re z
for every v ∈ C and p > 2

Di (|v|p) =Di

((

|v|2
) p

2

)

=
p

2

(

|v|2
) p

2−1

Di

(

|v|2
)

=
p

2
|v|p−2 [(

Div
)
v + v (Div)

]
=
p

2
|v|p−2

[

v (Div) + v (Div)
]

=p |v|p−2 Re (vDiv)

(5.10)

Note that this formula holds also for every v 6= 0 and p > 0. Using Re z = Re z and
Re z = z − iIm z this implies for every v 6= 0 and p > 2

Di

(

v |v|p−2
)

=(Div) |v|p−2 + vDi

(

|v|p−2
)

=(Div) |v|p−2
+ (p− 2)v |v|p−4

Re (vDiv)
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=(Div) |v|p−2
+ (p− 2)v |v|p−4

Re
(
vDiv

)

=(Div) |v|p−2
+ (p− 2)v |v|p−4 [

vDiv − iIm
(
vDiv

)]

=(Div) |v|p−2
+ (p− 2) |v|p−2

Div − (p− 2)iv |v|p−4
Im
(
vDiv

)

=(p− 1) |v|p−2
(Div)− (p− 2) |v|p−4

ivIm
(
vDiv

)

Multiplying α△v from left by ηv |v|p−2
, integrating over Ω, taking real parts and

using integration by parts formula we obtain

− Re

∫

Ω

ηv |v|p−2
α△v = −Re

∫

Ω

ηv |v|p−2
α

d∑

i=1

D2
i v

=− Re

d∑

i=1

α

∫

Ω

ηv |v|p−2
D2
i v = Re

d∑

i=1

α

∫

Ω

Di(ηv |v|p−2
)Div

=Re

d∑

i=1

α

∫

Ω

(Diη)v |v|p−2
Div +Re

d∑

i=1

α

∫

Ω

ηDi(v |v|p−2
)Div

=Re

d∑

i=1

α

∫

Ω

(Diη)v |v|p−2
Div +Re (p− 1)

d∑

i=1

α

∫

Ω

η |v|p−2
DivDivχ{v 6=0}

− Re (p− 2)

d∑

i=1

αi

∫

Ω

ηv |v|p−4
Im
(
vDiv

)
Divχ{v 6=0}

=Re

∫

Ω

|v|p−2
d∑

i=1

(Diη)αvDiv +Re (p− 1)α

∫

Ω

η |v|p−2
d∑

i=1

|Div|2 χ{v 6=0}

− Re (p− 2)αi

∫

Ω

η |v|p−4
d∑

i=1

Im
(
vDiv

)
vDivχ{v 6=0}

�

We are now able to prove the uniqueness of the resolvent equation for the Ornstein-
Uhlenbeck operator L0 in Dp(L0). The main idea of the following proof comes from
[43, Theorem 2.2] for the scalar real-valued case. For the the maximal domain of
the scalar real-valued Ornstein-Uhlenbeck operator we refer to [43] and [51] for the
Lp-spaces and to [44] for the Lp-spaces with invariant measures.

Theorem 5.12 (Uniqueness in Dp(L0) – Resolvent Estimates). Let the assump-
tions (A1), (A2), (A3) and (A4) be satisfied for 1 < p <∞ and K = C. Moreover,
let λ ∈ C with Reλ > ω0 and let v⋆ ∈ Dp(L0) denote a solution of

(λI − L0) v = g

in Lp(Rd,CN ) for some g ∈ Lp(Rd,CN). Then v⋆ is the unique solution in Dp(L0)
and satisfies the resolvent estimate

‖v⋆‖Lp(Rd,CN ) 6
1

Reλ− ω0
‖g‖Lp(Rd,CN ) .

Remark. (1): The Lp-dissipativity condition from (A3) for the complex Ornstein-
Uhlenbeck operator L0 comes originally for the scalar case with N = 1 from [22].
There it was shown, that the diffusion part Ldiff

0 of L0 is dissipative in Lp(Rd,C) if
and only if (A3) with N = 1 is satisfied.
(2): In the scalar real-valued case, i.e. α, λ ∈ R with α > 0 and λ > ω0, the solution
v⋆ is real valued and hence the dissipativity condition (A3) can be dropped, since
Im (v⋆Div⋆) = 0, see 4th term in step 3 of the proof.
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(3): For p = 2 the Lp-dissipativity condition is automatically satisfied for both the
real-valued and complex-valued case.

Proof. It is sufficient to consider only the scalar case with N = 1. Assume v⋆ ∈
Dp(L0) satisfies

(λI − L0) v⋆ = g(5.11)

in Lp(Rd,C) for some g ∈ Lp(Rd,C) with 1 < p <∞. Let us define

ηn(x) = η
(x

n

)

, η ∈ C∞
0 (Rd,R), η(x) =







1 , |x| 6 1

∈ [0, 1], smooth , 1 < |x| < 2

0 , |x| > 2

.

1. Multiply (5.11) from left by η2nv⋆ |v⋆|p−2
and integrate over Rd, 1 < p <∞

∫

Rd

η2n |v⋆|p−2 v⋆g =λ

∫

Rd

η2n |v⋆|p − α

∫

Rd

η2n

(
d∑

i=1

D2
i v⋆

)

v⋆ |v⋆|p−2

−
∫

Rd

η2n

(
d∑

i=1

(Sx)iDiv⋆

)

v⋆ |v⋆|p−2 .

2. Taking real parts yields

Re

∫

Rd

η2n |v⋆|p−2
v⋆g =Reλ

∫

Rd

η2n |v⋆|p − Re

(

α

∫

Rd

η2n

(
d∑

i=1

D2
i v⋆

)

v⋆ |v⋆|p−2

)

− Re

(
∫

Rd

η2n

(
d∑

i=1

(Sx)iDiv⋆

)

v⋆ |v⋆|p−2

)

.

3. Note that S ∈ Rd,d, −S = ST , the integration by parts formula and (5.10) imply

0 =
1

p

∫

Rd

η2n

(
d∑

i=1

Sii

)

|v⋆|p =
1

p

∫

Rd

η2ndiv (Sx) |v⋆|p

=
1

p

∫

Rd

η2n

(
d∑

i=1

Di ((Sx)i)

)

|v⋆|p =
1

p

d∑

i=1

∫

Rd

η2nDi ((Sx)i) |v⋆|p

=− 1

p

d∑

i=1

∫

Rd

Di

(
η2n
)
(Sx)i |v⋆|p −

1

p

d∑

i=1

∫

Rd

η2n(Sx)iDi (|v⋆|p)

=− 2

p

d∑

i=1

∫

Rd

ηn(Diηn)(Sx)i |v⋆|p −
d∑

i=1

∫

Rd

η2n(Sx)iRe (v⋆Div⋆) |v⋆|p−2

=− 2

p

∫

Rd

ηn

(
d∑

i=1

(Sx)i(Diηn)

)

|v⋆|p − Re

∫

Rd

η2n

(
d∑

i=1

(Sx)iDiv⋆

)

v⋆ |v⋆|p−2
.

Applying Lemma 5.11 (with Ω = Rd and η = η2n) we obtain

Re

∫

Rd

η2n |v⋆|p−2 v⋆g

>Reλ

∫

Rd

η2n |v⋆|p + Re

∫

Rd

α

(
d∑

i=1

Di

(
η2n
)
Div⋆

)

v⋆ |v⋆|p−2

+Re (p− 1)α

∫

Rd

η2n

(
d∑

i=1

|Div⋆|2
)

|v⋆|p−2
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− Re (p− 2)iα

∫

Rd

η2n

(
d∑

i=1

Im (v⋆Div⋆)Div⋆

)

v⋆ |v⋆|p−4

− Re

∫

Rd

η2n

(
d∑

i=1

(Sx)iDiv⋆

)

v⋆ |v⋆|p−2

=Reλ

∫

Rd

η2n |v⋆|p + Re

∫

Rd

2αηn

(
d∑

i=1

(Diηn)(Div⋆)

)

v⋆ |v⋆|p−2

+ (Reα)(p − 1)

∫

Rd

η2n

(
d∑

i=1

|Div⋆|2
)

|v⋆|p−2

− Re (p− 2)iα

∫

Rd

η2n

(
d∑

i=1

Im (v⋆Div⋆)Div⋆

)

v⋆ |v⋆|p−4

+
2

p

∫

Rd

ηn

(
d∑

i=1

(Sx)i(Diηn)

)

|v⋆|p

4. Putting the 2nd, 4th and 5th term on the left hand side yields

Reλ

∫

Rd

η2n |v⋆|p + (Reα)(p− 1)

∫

Rd

η2n

(
d∑

i=1

|Div⋆|2
)

|v⋆|p−2

6Re

∫

Rd

η2n |v⋆|p−2
v⋆g − Re

∫

Rd

2αηn

(
d∑

i=1

(Diηn)(Div⋆)

)

v⋆ |v⋆|p−2

+Re (p− 2)iα

∫

Rd

η2n

(
d∑

i=1

Im (v⋆Div⋆)Div⋆

)

v⋆ |v⋆|p−4

− 2

p

∫

Rd

ηn

(
d∑

i=1

(Sx)i(Diηn)

)

|v⋆|p

For the 1st term we use Re z 6 |z| and Hölder’s inequality (with q such that
1
p
+ 1

q
= 1)

Re

∫

Rd

η2n |v⋆|p−2
v⋆g =

∫

Rd

η2n |v⋆|p−2
Re (v⋆g)

6

∫

Rd

η2n |v⋆|p−1 |g| 6
(
∫

Rd

(

η
2(p−1)

p
n |v⋆|p−1

) p
p−1

) p−1
p (∫

Rd

(

η
2
p
n |g|

)p) 1
p

=

(∫

Rd

η2n |v⋆|p
) p−1

p
(∫

Rd

η2n |g|p
) 1

p

For the 2st term we use Re z 6 |z|, Hölder’s inequality (with p = q = 2) and
Cauchy’s inequality (with ε > 0)

− Re

∫

Rd

2αηn

(
d∑

i=1

(Diηn)(Div⋆)

)

v⋆ |v⋆|p−2

62|α|
∫

Rd

ηn

(
d∑

i=1

|Diηn| |Div⋆|
)

|v⋆|p−1

6
2|α| ‖η‖1,∞

n

d∑

i=1

∫

Rd

ηn |Div⋆| |v⋆|p−1
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6
2|α| ‖η‖1,∞

n

d∑

i=1

(∫

Rd

η2n |Div⋆|2 |v⋆|p−2

) 1
2
(∫

Rd

|v⋆|p
) 1

2

6
2|α| ‖η‖1,∞ ε

n

d∑

i=1

∫

Rd

η2n |Div⋆|2 |v⋆|p−2
+

2d|α| ‖η‖1,∞
4nε

∫

Rd

|v⋆|p

6
2|α| ‖η‖1,∞ ε

n

d∑

i=1

∫

Rd

|Div⋆|2 |v⋆|p−2
+

2d|α| ‖η‖1,∞
4nε

∫

Rd

|v⋆|p

Here we used that for every x ∈ Rd and i = 1, . . . , d

|Diηn(x)| =
∣
∣
∣Di

(

η
(x

n

))∣
∣
∣ =

1

n

∣
∣
∣(Diη)

(x

n

)∣
∣
∣ 6

1

n
max
i=1,...,d

max
y∈Rd

|Diη(y)| =
‖η‖1,∞
n

For the 3st term we use Re (iαz) = −ImαRe z − ReαIm z, Im z = −Im z for
z = v⋆Div⋆ and x 6 |x|

− Re (p− 2)iα

∫

Rd

η2n

(
d∑

i=1

Im (v⋆Div⋆)Div⋆

)

v⋆ |v⋆|p−4

=− (p− 2)

∫

Rd

η2n |v⋆|p−4
d∑

i=1

Im (v⋆Div⋆)Re (iαv⋆Div⋆)

=(Reα)(p− 2)

∫

Rd

η2n |v⋆|p−4
d∑

i=1

(Im (v⋆Div⋆))
2

+ (Imα)(p− 2)

∫

Rd

η2n |v⋆|p−4
d∑

i=1

Im (v⋆Div⋆)Re (v⋆Div⋆)

6(Reα)(p− 2)

∫

Rd

η2n |v⋆|p−4
d∑

i=1

|Im (v⋆Div⋆)|2

+ |Imα| |p− 2|
∫

Rd

η2n |v⋆|p−4
d∑

i=1

|Im (v⋆Div⋆)| |Re (v⋆Div⋆)|

For the 4st term we use that ηn(x) = 0 for |x| > 2n and ηn(x) = 1 for |x| 6 n.
Hence Diηn(x) = 0 for |x| 6 n and we obtain

− 2

p

∫

Rd

ηn

(
d∑

i=1

(Sx)i(Diηn)

)

|v⋆|p 6
2

p

d∑

i=1

∫

Rd

ηn |(Sx)i| |Diηn| |v⋆|p

=
2

p

d∑

i=1

∫

n6|x|62n

ηn |(Sx)i| |Diηn| |v⋆|p 6 2d |S| ‖η‖1,∞
∫

n6|x|62n

|v⋆|p .

The last inequality is justified by ηn(x) 6 1 and

|(Sx)i| |Diηn(x)| =
1

n
|(Sx)i|

∣
∣
∣(Diη)

(x

n

)∣
∣
∣ 6

1

n
|Sx|

∣
∣
∣(Diη)

(x

n

)∣
∣
∣

6
1

n

(

sup
n6|x|62n

|Sx|
)

max
i=1,...,d

max
y∈Rd

|Diη(y)| 6
|S|
n

(

sup
n6|x|62n

|x|
)

‖η‖1,∞

=2 |S| ‖η‖1,∞ .

Altogether, we obtain

Reλ

∫

Rd

η2n |v⋆|p + (Reα)(p− 1)

∫

Rd

η2n

(
d∑

i=1

|Div⋆|2
)

|v⋆|p−2
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6

(∫

Rd

η2n |v⋆|p
) p−1

p
(∫

Rd

η2n |g|p
) 1

p

+
2|α| ‖η‖1,∞ ε

n

d∑

i=1

∫

Rd

|Div⋆|2 |v⋆|p−2

+
2d|α| ‖η‖1,∞

4nε

∫

Rd

|v⋆|p + (Reα)(p − 2)

∫

Rd

η2n |v⋆|p−4
d∑

i=1

|Im (v⋆Div⋆)|2

+ |Imα| |p− 2|
∫

Rd

η2n |v⋆|p−4
d∑

i=1

|Im (v⋆Div⋆)| |Re (v⋆Div⋆)|

+ 2d |S| ‖η‖1,∞
∫

n6|x|62n

|v⋆|p .

5. Let n → ∞, using Reλ = Reλ − ω0 > 0 and Reα > 0, use that if 0 6 fn 6 gn
then limn→∞ fn 6 limn→∞ gn and that the last integral from step 4 tends to 0
(since v⋆ ∈ Lp(Rd,C)) we obtain

(Reλ− ω0)

∫

Rd

|v⋆|p + (Reα)(p− 1)

∫

Rd

(
d∑

i=1

|Div⋆|2
)

|v⋆|p−2

6

(∫

Rd

|v⋆|p
) p−1

p
(∫

Rd

|g|p
) 1

p

+ (Reα)(p− 2)

∫

Rd

|v⋆|p−4
d∑

i=1

|Im (v⋆Div⋆)|2

+ |Imα| |p− 2|
∫

Rd

|v⋆|p−4
d∑

i=1

|Im (v⋆Div⋆)| |Re (v⋆Div⋆)|

6. Putting the last two terms on the left hand side and using (A3) yields

(Reλ− ω0) ‖v⋆‖pLp(Rd,C) = (Reλ− ω0)

∫

Rd

|v⋆|p

6 (Reλ− ω0)

∫

Rd

|v⋆|p +
∫

Rd

|v⋆|p−4
d∑

i=1

[

(Reα)(p − 1) |v⋆Div⋆|2

− (Reα)(p − 2) |Im (v⋆Div⋆)|2 − |Imα| |p− 2| |Re (v⋆Div⋆)| |Im (v⋆Div⋆)|
]

=(Reλ− ω0)

∫

Rd

|v⋆|p + (Reα)(p− 1)

∫

Rd

(
d∑

i=1

|Div⋆|2
)

|v⋆|p−2

− (Reα)(p − 2)

∫

Rd

|v⋆|p−4
d∑

i=1

|Im (v⋆Div⋆)|2

− |Imα| |p− 2|
∫

Rd

|v⋆|p−4
d∑

i=1

|Im (v⋆Div⋆)| |Re (v⋆Div⋆)|

6

(∫

Rd

|v⋆|p
) p−1

p
(∫

Rd

|g|p
) 1

p

= ‖v⋆‖p−1
Lp(Rd,C) ‖g‖Lp(Rd,C)

To accept the first inequality, let us abbreviate z = v⋆Div⋆. Using (A3) we can
show for every z ∈ C

(Reα)(p− 1) |z|2 − (Reα)(p− 2) |Im z|2 − |Imα| |p− 2| |Re z| |Im z| > 0.

Therefore, let us define the positive constants a := ((Reα)(p− 1))
1
2 and b :=

(Reα)
1
2 , then we have for every z ∈ C

(Reα)(p− 1) |z|2 − (Reα)(p− 2) |Im z|2 − |Imα| |p− 2| |Re z| |Im z|
=(Reα)(p− 1) |Re z|2 + (Reα) [(p− 1)− (p− 2)] |Im z|2 − |Imα| |p− 2| |Re z| |Im z|
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=(Reα)(p− 1) |Re z|2 + (Reα) |Im z|2 − |Imα| |p− 2| |Re z| |Im z|
=(a |Re z| − b |Im z|)2 + (2ab− |Imα| |p− 2|) |Re z| |Im z|
The first term is nonnegative without any restrictions. In the second term the co-
efficient (2ab− |Imα| |p− 2|) coincides exactly with the Lp-dissipativity condition
for L0 from (A3). Hence, also this term cannot be negative.
7. Using Reλ − ω0 > 0 once more and dividing both hand sides by Reλ− ω0 and

by ‖v⋆‖p−1
Lp(Rd,C) we end up with

‖v⋆‖Lp(Rd,C) 6
1

Reλ− ω0
‖g‖Lp(Rd,C) .

8. To show uniqueness in Dp(L0), let both u⋆, v⋆ ∈ Dp(L0) be a solution of

(λI − L0)u⋆ = g and (λI − L0) v⋆ = g

in Lp(Rd,C). Then w⋆ := v⋆ − u⋆ ∈ Dp
max(L0) is a solution of (λI − L0)w⋆ = 0

in Lp(Rd,C). From the resolvent estimate we obtain ‖w⋆‖Lp 6 0, hence u⋆ and v⋆
coincide in Lp(Rd,C). Since u⋆, v⋆ ∈ Dp(L0) and Dp(L0) ⊂ Lp(Rd,CN ) we deduce
that v⋆ = u⋆ in Dp(L0). �

The next theorem gives us a complete characterization of the infinitesimal generator
Ap and its maximal domain D(Ap) in L

p(Rd,CN ) for 1 < p <∞. It shows that Ap
is the maximal realization (or maximal extension) of the complex-valued Ornstein-
Uhlenbeck operator L0 in Lp(Rd,CN ) for every 1 < p <∞. The main idea for the
first part of the proof comes from [42, Proposition 2.2 and 3.2].

Theorem 5.13 (Maximal domain, Part 1). Let the assumptions (A1), (A2), (A3)
and (A4) be satisfied for 1 < p < ∞ and K = C, then it holds D(Ap) = Dp(L0),
where Dp(L0) is given by

Dp(L0) :=
{

v ∈ W 2,p
loc (R

d,CN ) ∩ Lp(Rd,CN ) | A△v + 〈S·,∇v〉 ∈ Lp(Rd,CN )
}

.

Proof. ⊆: Let v ∈ D(Ap). Since S is dense in D(Ap) with respect to the graph
norm ‖·‖Ap

by Theorem 5.9(4), we have

∃ (vn)n∈N
⊂ S : ‖vn − v‖Ap

→ 0 as n→ ∞.

This yields

‖vn − v‖Lp → 0 as n→ ∞.

and using Theorem 5.9(2)

‖L0vn −Apv‖Lp = ‖Apvn −Apv‖Lp → 0 as n→ ∞,

where Apv ∈ Lp(Rd,CN ) because v ∈ D(Ap). Since obviously S ⊂ Dp(L0), we have
(vn)n∈N

⊂ Dp(L0) and we deduce by the closedness of L0 : Dp(L0) → Lp(Rd,CN)
from Lemma 5.10 that v ∈ D(L0) and L0v = Apv.
⊇: Let v ∈ Dp(L0). Choose λ ∈ C with Reλ > ω0 and define g := (λI − L0)u ∈
Lp(Rd,CN ). Then Corollary 5.7 yields a unique solution v⋆ ∈ D(Ap) of (λI −Ap) v⋆ =
g. Since D(Ap) ⊆ Dp(L0) we conclude v⋆ ∈ Dp(L0) and since Apu = L0u for every
u ∈ Dp(L0) we have

(λI − L0) v⋆ = g and (λI − L0) v = g.

From the uniqueness of the resolvent equation for L0 from Theorem 5.12 we deduce
v = v⋆, thus v ∈ D(Ap) and L0v = Apv. �
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5.4. Exponential decay.

Theorem 5.14 (A-priori estimates in Lpθ(R
d,CN )). Let the assumptions (A1),

(A2) and (A4) be satisfied for 1 6 p < ∞ and K = C. Moreover, let 0 < ϑ < 1
and λ ∈ C with Reλ > ω0. Then for every radially nondecreasing weight function

θ ∈ C(Rd,R) of exponential growth rate η > 0 with 0 6 η2 6 ϑa0(Reλ−ω0)
a2maxp

2 and for

every g ∈ Lpθ(R
d,CN ) we have v⋆ ∈W 1,p

θ (Rd,CN ) with

‖v⋆‖Lp
θ
(Rd,CN ) 6

C7

Reλ− ω0
‖g‖Lp

θ
(Rd,CN ) ,(5.12)

‖Div⋆‖Lp

θ
(Rd,CN ) 6

C8

(Reλ− ω0)
1
2

‖g‖Lp

θ
(Rd,CN ) , i = 1, . . . , d,(5.13)

where v⋆ ∈ Dp
max denotes the unique solution of (λI − Ap)v = g in Lp(Rd,CN)

and the λ-independent constants C7, C8 are given by Lemma 4.8 (with b0 = 0 and
ω = ω0).

Proof. By Corollary 5.7 we have the representation

v⋆(x) =

∫ ∞

0

e−λt
∫

Rd

H0(x, ξ, t)g(ξ)dξdt,(5.14)

where H0(x, ξ, t) = H(x, ξ, t) since we have B = 0. In the following we make use of
the notation from Theorem 5.1 once more. To show (5.12) and (5.13) for 1 6 p <∞
we use (5.14), the transformation theorem (with transformation Φ(ξ) = etSx− ξ in
ξ and Φ(x) = etSx−ψ in x), (4.24) and (4.26) (with B = 0), the triangle inequality,
Hölder’s inequality (with q such that 1

p
+ 1

q
= 1), Fubini’s theorem, (3.1), (W1)–

(W2), Lemma 4.8 (with b0 = 0 and ω = ω0) and obtain for every β ∈ Nd0 with
|β| ∈ {0, 1}
∥
∥Dβv⋆

∥
∥
L

p
θ

=

(∫

Rd

θp(x)
∣
∣Dβv⋆(x)

∣
∣
p
dx

) 1
p

=

(∫

Rd

θp(x)

∣
∣
∣
∣

∫ ∞

0

e−λt
∫

Rd

[
DβH0(x, ξ, t)

]
g(ξ)dξdt

∣
∣
∣
∣

p

dx

) 1
p

=

(∫

Rd

θp(x)

∣
∣
∣
∣

∫ ∞

0

e−λt
∫

Rd

Kβ(ψ, t)g(etSx− ψ)dψdt

∣
∣
∣
∣

p

dx

) 1
p

6

∫ ∞

0

e−Reλt

(∫

Rd

θp(x)

∣
∣
∣
∣

∫

Rd

Kβ(ψ, t)g(etSx− ψ)dψ

∣
∣
∣
∣

p

dx

) 1
p

dt

6

∫ ∞

0

e−Reλt

(∫

Rd

(∫

Rd

θ(x)
∣
∣Kβ(ψ, t)

∣
∣
2

∣
∣g(etSx− ψ)

∣
∣ dψ

)p

dx

) 1
p

dt

6

∫ ∞

0

e−Reλt

(∫

Rd

Z
p
q (t)

∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2

(
θ(x)

∣
∣g(etSx− ψ)

∣
∣
)p
dψdx

) 1
p

dt

=

∫ ∞

0

e−ReλtZ
1
q (t)

(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2

∫

Rd

(
θ(x)

∣
∣g(etSx− ψ)

∣
∣
)p
dxdψ

) 1
p

dt

=

∫ ∞

0

e−ReλtZ
1
q (t)

(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2

∫

Rd

(
θ(e−tS(y + ψ)) |g(y)|

)p
dydψ

) 1
p

dt

6

∫ ∞

0

e−ReλtZ
1
q (t)

(∫

Rd

Cpθ e
ηp|ψ|

∣
∣Kβ(ψ, t)

∣
∣
2

∫

Rd

θp(y) |g(y)|p dydψ
) 1

p

dt

=

∫ ∞

0

e−ReλtCθ

(∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2
dψ

) p−1
p
(∫

Rd

eηp|ψ|
∣
∣Kβ(ψ, t)

∣
∣
2
dψ

) 1
p

dt ‖g‖Lp
θ
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6

∫ ∞

0

e−ReλtC4+|β|(t; b0 = 0)dt ‖g‖Lp
θ
6

C7+|β|

(Reλ− ω0)
1− |β|

2

‖g‖Lp
θ
,

where we used the abbreviation

Z(t) :=

∫

Rd

∣
∣Kβ(ψ, t)

∣
∣
2
dψ.

�

Remark. Theorem 5.14 states for θ ≡ 1 (with η = 0 and Cθ = 1) that

Dp
max ⊆W 1,p(Rd,CN ), for every 1 6 p <∞.

Remark. In the proof of Theorem 5.14 it is in general not possible to specify also

an estimate for ‖DjDiv⋆‖Lp
θ
(Rd,CN ) since C4+|β|(t) ∼ t−

|β|
2 as t → 0, see Theorem

5.1, and consequently we have the singularity t−1 at t = 0 for |β| = 2.

5.5. Cauchy problems and exponential decay. In this subsection we study
abstract (i.e. Banach-space-valued) linear initial value problems of the form

vt(t) =Apv(t) + f(t), t > 0,

v(0) =v0,

in Lp(Rd,CN ) for 1 6 p < ∞, where v : R+ → Lp(Rd,CN ) with R+ = [0,∞[,
Ap : Dp

max ⊂ Lp(Rd,CN ) → Lp(Rd,CN) denotes the infinitesimal generator of
the strongly continuous semigroup (T0(t))t>0, v0 ∈ Lp(Rd,CN ) the initial data

and f : R+ → Lp(Rd,CN ) the inhomogenity. During this subsection we require
that the assumptions (A1), (A2), (A4) and 1 6 p < ∞ are satisfied. In the first
part of this subsection we investigate the homogeneous, and in the second part the
inhomogeneous abstract Cauchy problem in Lp(Rd,CN ). For the homogeneous and
inhomogeneous abstract Cauchy problem we refer the reader to [28, Chapter II.6]
and [28, Chapter VI.7], respectively, where this theory was done in a more general
framework.

5.5.1. Homogeneous Cauchy problems. In the following we consider the (homoge-
neous) abstract linear initial value problem, [28, Chapter II.6],

vt(t) =Apv(t), t ∈ [0, T ],

v(0) =v0,
(5.15)

in Lp(Rd,CN ) for 1 6 p <∞. (5.15) is called the abstract Cauchy problem in [0, T ]
associated to (Ap,Dp

max) and the initial value v0 ∈ Lp(Rd,CN ).

Definition 5.15. Let T > 0 and let the assumptions (A1), (A2) and (A4) be
satisfied for 1 6 p < ∞ and K ∈ {R,C}. A function v : [0, T ] → Lp(Rd,KN) is
called a (classical) solution of (5.15) in [0, T ] if

v ∈ C1([0, T ], Lp(Rd,KN )), v(t) ∈ Dp
max ∀ t ∈ [0, T ] and (5.15) holds.

A function v : [0,∞[→ Lp(Rd,KN) is called a (classical) solution of (5.15) in
[0,∞[, if v |[0,T ] is a classical solution of (5.15) in [0, T ] for every T > 0.

We already know from the privious subsections that Ap is the generator of the
strongly continuous Ornstein-Uhlenbeck semigroup (T0(t))t>0 in L

p(Rd,CN ). Hence,

we can deduce from Lemma 5.4(2) that the semigroup (T0(t))t>0 provides us solu-

tions of the associated abstract Cauchy problem (5.15), [28, Proposition II.6.2].
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Proposition 5.16 (Existence and uniqueness of classical solution in Lp(Rd,CN )).
Let T > 0 and let the assumptions (A1), (A2) and (A4) be satisfied for 1 6 p <∞
and K = C. Then for every v0 ∈ Dp

max the function

v : [0,∞[→ Lp(Rd,CN), v(t) := T0(t)v0

is the unique classical solution of (5.15) in [0,∞[.

Definition 5.17. Let T > 0 and let the assumptions (A1), (A2) and (A4) be
satisfied for 1 6 p < ∞ and K ∈ {R,C}. A function v : [0, T ] → Lp(Rd,KN) is
called a mild solution of (5.15) in [0, T ] if

∫ t

0

v(s)ds ∈ Dp
max ∀ t ∈ [0, T ] and v(t) = Ap

∫ t

0

v(s)ds+ v0.

A function v : [0,∞[→ Lp(Rd,KN) is called a mild solution of (5.15) in [0,∞[ if
v |[0,T ] is a mild solution of (5.15) in [0, T ] for every T > 0.

Proposition 5.18 (Existence and uniqueness of mild solution in Lp(Rd,CN )). Let
the assumptions (A1), (A2) and (A4) be satisfied for 1 6 p <∞ and K = C. Then
for every v0 ∈ Lp(Rd,CN ) the function

v : [0,∞[→ Lp(Rd,CN), v(t) := T0(t)v0

is the unique mild solution of (5.15) in [0,∞[.

In the following we investigate the regularity of the mild solution of (5.15). The
result and its proof is motivated by [43, Theorem 3.3].

Theorem 5.19 (Regularity for mild solution). Let the assumptions (A1), (A2),
(A3) and (A4) be satisfied for 1 6 p < ∞ and K = C. Moreover, let T > 0,
v0 ∈ Lp(Rd,CN ) and let v(t) = T0(t)v0 denote the unique mild solution of (5.15)
in [0, T ]. Then

v ∈ C
(
[0, T ], Lp(Rd,CN )

)
∩ C

(
]0, T ],W 2,p(Rd,CN )

)
∩ C1

(
]0, T ], Lploc(R

d,CN )
)
.

Proof. Let u(x, t) be a solution of

ut(x, t) = A△u(x, t),
u(x, 0) = v0(x),

then v(x, t) = u(etSx, t) solves

vt(x, t) = A△v(x, t) + 〈Sx,∇v(x)〉 ,
v(x, 0) = v0(x).

Applying [39, Corollary 6.1.6(i)] with X = Lp(Rd,CN ), A(t) = A△, D(A(t)) =
W 2,p(Rd,CN ), f(t) = 0, x = v0, s = 0 with arbitrary θ we obtain

u ∈ C
(
[0, T ], Lp(Rd,CN )

)
∩ C

(
]0, T ],W 2,p(Rd,CN )

)
∩C1

(
]0, T ], Lp(Rd,CN )

)
.

Note that, in order to apply [39, Corollary 6.1.6(i)], the diffusion operator A△ :
W 2,p(Rd,CN ) ⊃ Lp(Rd,CN ) → Lp(Rd,CN ) is sectorial in Lp(Rd,CN ) for 1 <
p < ∞ by assumption (A2). Now, using v(x, t) = u(etSx, t) we deduce from the
regularity for u that

v ∈ C
(
[0, T ], Lp(Rd,CN )

)
∩ C

(
]0, T ],W 2,p(Rd,CN )

)
∩ C1

(
]0, T ], Lploc(R

d,CN )
)
.

�

The proof of the following regularity result for the mild solution is a direct conse-
quence of Proposition 5.18 and Theorem 5.1.
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Theorem 5.20 (A-priori estimates in Lpθ(R
d,CN )). Let the assumptions (A1),

(A2) and (A4) be satisfied for 1 6 p < ∞ and K = C. Then for every radially
nondecreasing weight function θ ∈ C(Rd,R) of exponential growth rate η > 0 and

for every initial data v0 ∈ Lpθ(R
d,CN ) we have v(t) ∈W 2,p

θ (Rd,CN) for every t > 0
with

‖v(t)‖Lp
θ
6 C4(t) ‖v0‖Lp

θ
(Rd,CN ) , t > 0,(5.16)

‖Div(t)‖Lp

θ
6 C5(t) ‖v0‖Lp

θ
(Rd,CN ) , t > 0, i = 1, . . . , d,(5.17)

‖DjDiv(t)‖Lp
θ
6 C6(t) ‖v0‖Lp

θ
(Rd,CN ) , t > 0, i, j = 1, . . . , d,(5.18)

where v : [0,∞[→ Lp(Rd,CN ) denotes the unique mild solution of (5.15) in Lp(Rd,CN )
and the constants C4+|β|(t) are given by Theorem 5.1 for every |β| = 0, 1, 2.

5.5.2. Inhomogeneous Cauchy problems. In the following we consider the (inhomo-
geneous) abstract linear initial value problem, [28, Chapter VI.7],

vt(t) =Apv(t) + f(t), t ∈ [0, T ],

v(0) =v0,
(5.19)

in Lp(Rd,CN) for 1 6 p <∞. (5.19) is called the inhomogeneous abstract Cauchy
problem associated to (Ap,Dp

max), the initial value v0 ∈ Lp(Rd,CN ) and the inho-
mogenity f : [0, T ] → Lp(Rd,CN ).

Definition 5.21. Let the assumptions (A1), (A2) and (A4) be satisfied for 1 6

p < ∞ and K ∈ {R,C}. Moreover, let T > 0, v0 ∈ Lp(Rd,KN ) and f ∈
Lp([0, T ], Lp(Rd,KN )). Then the function v : [0, T ] → Lp(Rd,KN ) given by

v(t) := T0(t)v0 +

∫ t

0

T0(t− s)f(s)ds, t ∈ [0, T ],(5.20)

is called the mild solution of (5.19) in [0, T ]. A function v : [0,∞[→ Lp(Rd,KN) is
called the mild solution of (5.19) in [0,∞[ if v |[0,T ] is the mild solution of (5.19)
in [0, T ] for every T > 0.

Note, that by definition the mild solution is unique. In the following we investigate
the regularity of the mild solution of (5.19). This result and its proof is again
motivated by [43, Theorem 3.4]. Note, that one can identify Lp([0, T ], Lp(Rd,CN ))
with Lp(Rd × [0, T ],CN). The details for the proof will be filled in later.

Theorem 5.22 (Regularity for mild solution). Let the assumptions (A1), (A2),
(A3) and (A4) be satisfied for 1 6 p <∞ and K = C. Moreover, let T > 0, v0 = 0,
f ∈ Lp([0, T ], Lp(Rd,CN )) and let v given by (5.20) denote the unique mild solution
of (5.19) in [0, T ]. Then

v ∈ W (2,1),p(Rd×]0, T [,CN)

and satisfies

v, vt − 〈S·,∇v〉 , Div,DjDiv ∈ Lp(Rd × [0, T ],CN).

The proof of the following regularity result for the mild solution (5.20) is a direct
consequence of Theorem 5.1.

Theorem 5.23 (A-priori estimates in Lpθ(R
d,CN )). Let the assumptions (A1),

(A2) and (A4) be satisfied for 1 6 p < ∞ and K = C. Then for every radially
nondecreasing weight function θ ∈ C(Rd,R) of exponential growth rate η > 0, for

every v0 ∈ Lpθ(R
d,CN ) and f ∈ Lpθ(R

d,CN ) we have v(t) ∈W 1,p
θ (Rd,CN ) for every

t > 0 with

‖v(t)‖Lp
θ
6 C4(t) ‖v0‖Lp

θ
(Rd,CN ) + C9(t) ‖f‖Lp

θ
(Rd,CN ) , t > 0,
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‖Div(t)‖Lp
θ
6 C5(t) ‖v0‖Lp

θ
(Rd,CN ) + C10(t) ‖f‖Lp

θ
(Rd,CN ) , t > 0, i = 1, . . . , d,

where v : R+ → Lp(Rd,CN ) given by (5.20) denotes the unique mild solution
of (5.19) in Lp(Rd,CN ) and the constants C4+|β|(t) and C9+|β|(t) are given by
Theorem 5.1 and

C9+|β|(t) :=

∫ t

0

C4+|β|(s)ds,

respectively, for every |β| = 0, 1.

Definition 5.24. Let the assumptions (A1), (A2) and (A4) be satisfied for 1 6 p <
∞ and K ∈ {R,C}. Moreover, let T > 0, v0 ∈ Dp

max and f ∈ Lp([0, T ], Lp(Rd,KN )).
A function v : [0, T ] → Lp(Rd,KN) is called a (classical) solution of (5.19) in [0, T ]
if

v ∈ C1([0, T [, Lp(Rd,KN )), v(t) ∈ Dp
max ∀ t ∈ [0, T ] and (5.19) holds.

A function v : [0,∞[→ Lp(Rd,KN ) is called a (classical) solution of (5.19) in [0,∞[
if v |[0,T ] is a classical solution of (5.19) in [0, T ] for every T > 0.

5.6. Characterization of the maximal domain (Part 2). The next theorem
states that the domain of the Ornstein-Uhlenbeck operator coincides with the in-
tersection of the domains of its diffusion and drift part, i.e.

D (L0) = D
(
Ldiff
0 + Ldrift

0

)
= D

(
Ldiff
0

)
∩ D

(
Ldrift
0

)
.

This result was proved in [43, Theorem 1] for the scalar real case, where Metafune,
Pallara and Vespri used ∇(P∇·) as the diffusion part of the Ornstein-Uhlenbeck
operator.

Theorem 5.25 (Maximal domain, Part 2). Let the assumptions (A1), (A2), (A3)
and (A4) be satisfied for 1 < p < ∞ and K = C. Then it holds Dp(L0) = Dp,
where Dp is given by

Dp :=
{
v ∈ W 2,p(Rd,CN ) | 〈S·,∇v〉 ∈ Lp(Rd,CN )

}
.

Proof. • Dp ⊂ Dp(L0): Let v ∈ Dp, then we have v ∈ W 2,p
loc (R

d,CN ) and v ∈
Lp(Rd,CN ) since v ∈ W 2,p(Rd,CN ). Moreover, v ∈ W 2,p(Rd,CN ) implies A△v ∈
Lp(Rd,CN ). Thus, using 〈S·,∇v〉 ∈ Lp(Rd,CN ) we conclude L0v ∈ Lp(Rd,CN ).
• Dp ⊃ Dp(L0): Let v ∈ Dp(L0), then g := L0v ∈ Lp(Rd,CN ), i.e. 0 = L0v − g.
Then w(t) = v is a stationary solution of

w(t) = L0w(t) − g, t ∈ [0, T ]

w(0) = v.

Since v ∈ Lp(Rd,CN ) and g ∈ Lp([0, T ], Lp(Rd,CN )) for every fixed T > 0, the
unique mild solution is given by

v = w(t) = T0(t)v −
∫ t

0

T0(t− s)gds =: w1(t) + w2(t), t ∈ [0, T ].

w1 is the mild solution of (5.15) in [0, T ] with initial data v0 = v. Theorem 5.19
states now that w(t) ∈ W 2,p(Rd,CN ) for every t ∈]0, T ]. w2 is the mild solution
of (5.19) in [0, T ] with initial data v0 = 0 and inhomogenity f = −g. Theorem
5.22 states now that w2 ∈ Lp([0, T ],W 2,p(Rd,CN )), i.e. w2(t) ∈ W 2,p(Rd,CN ) for
almost every t ∈ [0, T ]. If we consider such a t̄ ∈]0, T ], we can deduce that

v = w(t̄) = T0(t̄)v +

∫ t̄

0

T0(t̄− s)fds = w1(t̄) + w2(t̄) ∈W 2,p(Rd,CN)
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and thus we have A△v ∈ Lp(Rd,CN). Consequently, using L0v ∈ Lp(Rd,CN ), we
conclude

〈S·,∇v〉 = L0v −A△v ∈ Lp(Rd,CN ),

that means v ∈ Dp. �

5.7. The essential spectrum. The study of the essential spectrum shows that
the semigroup (T0(t))t>0 is not analytic. For a detailed study see Theorem 7.8
and Corollary 7.9. Here we just make a general remark about the structure of the
essential spectrum. Consider the operator A△v(x) + 〈Sx,∇v(x)〉 on Lp(Rd,CN)
for 1 6 p <∞ with A satisfying (A1), (A2), (A3) and S satisfying (A4). It is well-
known that the operators A△ and 〈S·,∇〉 commute, see e.g. proof of Theorem 8.3.
Since A△ generates a holomorphic semigroup, we can apply [9, Theorem 7.3] to
deduce that the spectrum ofA△+〈S·,∇〉 is contained in the algebraic sum σ(A△)+
σ(〈S·,∇〉). Moreover, we can deduce from [42, Theorem 2.6] that σ(〈S·,∇〉) = G,
where G is a discrete subgroup of iR (independent of p). Altogether, we have

σ(A△+ 〈S·,∇〉) ⊂ σ(A△) + σ(〈S·,∇〉) = σ(A△) +G.

Note that this fact means that the spectrum of the Ornstein-Uhlenbeck operator
is contained in the algebraic sum of the spectra of its diffusion and drift terms. In
case of A = IN we have σ(△) =] − ∞, 0] and hence, σ(△ + 〈S·,∇〉) is contained
in a countable union of half-lines. For the case d = p = 2 the essential spectrum
of A△v(x) + 〈Sx,∇v(x)〉 − Bv(x) in L2(R2,RN ) was computed explicitly in [17,
Theorem 8.1] for matrices A,B ∈ RN,N with A > 0 and also in case of variable
coefficients by using polar coordinates and a Fourier ansatz.

6. Constant coefficient perturbations of the complex

Ornstein-Uhlenbeck operator in Lp(Rd,CN )

Consider the operator

[L∞φ] (x) := [L0φ] (x)−Bφ(x), φ ∈ S

6.1. Application of semigroup theory. During this section we claim that the
assumptions (A1), (A2) and (A4) are satisfied. In the following (Ap,Dp

max) de-
notes the infinitesimal generator of the Ornstein-Uhlenbeck semigroup (T0(t))t>0

on Lp(Rd,CN ) for 1 6 p < ∞, that is given by (5.1). We already know that
(T0(t))t>0 is a strongly continuous semigroup in Lp(Rd,CN ) for every 1 6 p < ∞
satisfying

‖T0(t)‖L(Lp,Lp) 6M0e
ω0t ∀ t > 0,

where M0 :=
(

a2max

amina0

) d
2

> 1 and ω0 := 0 ∈ R, compare (5.9). Moreover, under

the additional assumptions (A3), we know that Ap is the maximal realization of
the complex Ornstein-Uhlenbeck operator L0 in Lp(Rd,CN ) for every 1 < p < ∞
and we have a complete characterization of its maximal domain. In this section we
investigate constant coefficient perturbations of Ap in Lp(Rd,CN ). Therefore, let
Ep ∈ L(Lp, Lp) be a perturbation defined by

Ep : L
p(Rd,CN ) → Lp(Rd,CN ), [Epv] (x) := −Bv(x)

where B ∈ CN,N . If we define [Lbddφ] (x) := −Bφ(x) then it is obvious, that Ep is
the maximal realization of Lbdd in Lp(Rd,CN ). Applying [28, III.1.3 Bounded Per-
turbation Theorem, III.1.7 Corollary and III.1.10 Theorem] we obtain the following
theorem.
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Theorem 6.1 (Bounded Perturbation Theorem). Let the assumptions (A1), (A2),
(A4) and B ∈ KN,N be satisfied for 1 6 p <∞ and K = C. Then the operator

Bp := Ap + Ep with D(Bp) := Dp
max

generates a strongly continuous semigroup (T∞(t))t>0 on Lp(Rd,CN ) satisfying

‖T∞(t)‖L(Lp,Lp) 6M0e
(ω0+M0‖Ep‖L(Lp,Lp))t ∀ t > 0.(6.1)

Moreover, for every v ∈ Lp(Rd,CN ) and t > 0 the semigroup (T∞(t))t>0 satisfies

the integral equation (variation of parameters formula)

T∞(t)v = T0(t)v +

∫ t

0

T0(t− s)EpT∞(s)vds,

is unique and can be obtained by

T∞(t) =

∞∑

n=0

T (n)
∞ (t)(6.2)

where

T (0)
∞ (t) := T0(t), T (n+1)

∞ (t) :=

∫ t

0

T0(t− s)EpT
(n)
∞ (s)ds.(6.3)

Theorem 6.1 states that (Bp,Dp
max) is the infinitesimal generator of (T∞(t))t>0 in

Lp(Rd,CN ), 1 6 p < ∞. Assuming in addition (A3), (Bp,Dp
max) is the maximal

realization of L∞ in Lp(Rd,CN ) for 1 6 p < ∞ and its maximal domain Dp
max is

given by Dp from Theorem 5.25. Under the assumption that the matrices A,B ∈
CN,N are simultaneously diagonalizable (over C), see (A7B), we are able to derive
an explicit representation for the semigroup (T∞(t))t>0. We require this additonal
assumption for the rest of this section.

Theorem 6.2 (Semigroup representation). Let the assumptions (A1), (A2), (A4)
and (A7B) be satisfied for 1 6 p <∞ and K = C. Then the semigroup (T∞(t))t>0

in Lp(Rd,CN) is given by

[T∞(t)v] (x) :=

{∫

Rd H∞(x, ξ, t)v(ξ)dξ , t > 0

v(x) , t = 0
, x ∈ Rd,(6.4)

where H∞(x, ξ, t) = H(x, ξ, t) is the heat kernel from Theorem 4.4.

Remark. As we have already mentioned before (see remarks after Theorem 4.4),
the situation changes dramatically if the assumption (A7B) is not satisfied. In this
case one could use for example the Hadamard Lemma, since the kernel H0 and B
in general do not commute.

Proof. From Theorem 6.1 we know that the semigroup (T∞(t))t>0 is given by (6.2)

where (6.3) is satisfied. By induction over n ∈ N0 we show that

T (n)
∞ (t) = T0(t)

(−tB)n

n!
, n ∈ N0, t > 0.(6.5)

The case n = 0 is satisfied by (6.3). Let us consider the case n→ n+ 1:

T (n+1)
∞ (t) =

∫ t

0

T0(t− s)EpT
(n)
∞ (s)ds

=−
∫ t

0

T0(t− s)BT0(s)
(−sB)

n

n!
ds

=

∫ t

0

T0(t− s)T0(s)s
nds

(−B)
n+1

n!
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=T0(t)

∫ t

0

snds
(−B)

n+1

n!

=T0(t)
(−tB)

n+1

(n+ 1)!
.

This proves (6.5). Thus, using (6.2) it yields

T∞(t) = T0(t)

∞∑

n=0

(−tB)
n

n!
= T0(t)e

−Bt.

�

Remark. The representation from Theorem 6.2 is true if and only if the opera-
tors T0(t) and Ep commute. Since for both operators we have explicit expressions,
we can interchange them, whenever the matrix B commutes with the Ornstein-
Uhlenbeck kernel H0. If A and B are simultaneously diagonalizable, it is obvious
that BH0 = H0B hold. In order to investigate the nonlinear problem for the
Ornstein-Uhlenbeck operator, it is obligatory to have a representation for the semi-
group of the bounded perturbation, since the estimate (6.1) has no good behavior
as t→ ∞.

Theorem 6.3 (Boundedness on Lpθ(R
d,CN )). Let the assumptions (A1), (A2),

(A4) and (A7B) be satisfied for 1 6 p 6 ∞ and K = C. Then for every radial
weight function θ ∈ C(Rd,R) of exponential growth rate η > 0 and for every v ∈
Lpθ(R

d,CN )

‖T∞(t)v‖Lp
θ
(Rd,CN ) 6 C4(t) ‖v‖Lp

θ
(Rd,CN ) , t > 0,(6.6)

‖DiT∞(t)v‖Lp
θ
(Rd,CN ) 6 C5(t) ‖v‖Lp

θ
(Rd,CN ) , t > 0, i = 1, . . . , d,(6.7)

‖DjDiT∞(t)v‖
L

p
θ
(Rd,CN ) 6 C6(t) ‖v‖Lp

θ
(Rd,CN ) , t > 0, i, j = 1, . . . , d,(6.8)

where the constants C4+|β|(t) are from Section 4.3 for every |β| = 0, 1, 2, i.e.

C4(t) =CθM
d
2 e−b0t

[

1F1

(
d

2
;
1

2
;κt

)

+ 2
Γ
(
d+1
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 1

2
;
3

2
;κt

)] 1
p

,

C5(t) =CθM
d+1
2 e−b0t (tamin)

− 1
2

[
Γ
(
d+1
2

)

Γ
(
d
2

) 1F1

(
d+ 1

2
;
1

2
;κt

)

+ 2
Γ
(
d+2
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 2

2
;
3

2
;κt

)] 1
p

,

C6(t) =CθM
d+2
2 e−b0t (tamin)

−1

[
Γ
(
d+2
2

)

Γ
(
d
2

) 1F1

(
d+ 2

2
;
1

2
;κt

)

+ 2
Γ
(
d+3
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 3

2
;
3

2
;κt

)

+
δij
2
M−1

1F1

(
d

2
;
1

2
;κt

)

+ δijM
−1Γ

(
d+1
2

)

Γ
(
d
2

) (κt)
1
2
1F1

(
d+ 1

2
;
3

2
;κt

)] 1
p

,

and in case of p = ∞ they are given by C4+|β|(t) with p = 1, where M :=
a2max

amina0
> 1

and κ :=
a2maxη

2p2

a0
> 0. Note that C4+|β|(t) ∼ t

−p|β|+d+|β|−1
2p e−(b0−

κ
p
)t as t→ ∞ and

C4+|β|(t) ∼ t−
|β|
2 as t→ 0 for every |β| = 0, 1, 2.

Proof. Using the semigroup representation from Theorem 6.2, the proof can be
adopted from Theorem 5.1, where we have to replace T0 and H0 by T∞ and H∞ =
H , respectively. �
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By (6.6) from Theorem 6.3 (with θ ≡ 1, η = 0 and Cθ = 1) we have

∃ω∞ ∈ R ∧ ∃M∞ > 1 : ‖T∞(t)‖L(Lp,Lp) 6M∞e
ω∞t ∀ t > 0,(6.9)

where M∞ := M0 =
(

a2max

amina0

) d
2

> 1 and ω∞ := −b0, which gives a better estimate

as in (6.1). For the next statement we refer to [28, II.1.3 Lemma, II.1.4 Theorem]:

Lemma 6.4. Let the assumptions (A1), (A2), (A4) and (A7B) be satisfied for
1 6 p <∞ and K = C.
(1) Bp : Dp

max ⊆ Lp(Rd,CN ) → Lp(Rd,CN ) is a linear, closed and densely defined
operator.
(2) For every v ∈ Dp

max and t > 0 we have

T∞(t)v ∈ Dp
max

d

dt
T∞(t)v = T∞(t)Bpv = BpT∞(t)v

(3) For every v ∈ Lp(Rd,CN ) and every t > 0 we have
∫ t

0

T∞(s)vds ∈ Dp
max

(4) For every t > 0 we have

T∞(t)v − v =Bp

∫ t

0

T∞(s)vds , for v ∈ Lp(Rd,CN ),

=

∫ t

0

T∞(s)Bpvds , for v ∈ Dp
max.

Since (Bp,Dp
max) is a closed operator on the Banach space Lp(Rd,CN ) for 1 6 p <

∞, we can define

σ(Bp) := {λ ∈ C | λI −Bp is not bijective} spectrum of Bp,

ρ(Bp) :=C\σ(Bp) resolvent set of Bp,

R(λ,Bp) := (λI −Bp)
−1

, for λ ∈ ρ(Bp) resolvent of Bp.

The next identities follow from [28, II.1.9 Lemma].

Lemma 6.5. Let the assumptions (A1), (A2), (A4) and (A7B) be satisfied for
1 6 p <∞ and K = C. Then for every λ ∈ C and t > 0,

e−λtT∞(t)v − v =(Bp − λI)

∫ t

0

e−λsT∞(s)vds , for v ∈ Lp(Rd,CN),

=

∫ t

0

e−λsT∞(s) (Bp − λI) vds , for v ∈ Dp
max.

Theorem 6.6. Let the assumptions (A1), (A2), (A4), (A7B) and 1 6 p < ∞ be
satisfied for K = C.
(1) For every λ ∈ C such that R(λ)v :=

∫∞

0
e−λsT∞(s)vds exists for every v ∈

Lp(Rd,CN ) we have

λ ∈ ρ(Bp) and R(λ,Bp) = R(λ).

(2) For every λ ∈ C with Reλ > ω∞ we have

λ ∈ ρ(Bp), R(λ,Bp) = R(λ)

and

‖R(λ,Bp)‖L(Lp,Lp) 6
M∞

Reλ− ω∞
.
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A direct consequence of Theorem 6.6 is the following:

Corollary 6.7 (Solvability and uniqueness in Lp(Rd,CN)). Let the assumptions
(A1), (A2), (A4) and (A7B) be satisfied for 1 6 p <∞ and K = C. Moreover, let
λ ∈ C with Reλ > ω∞. Then for every g ∈ Lp(Rd,CN ) the resolvent equation

(λI −Bp) v = g

admits a unique solution v⋆ ∈ Dp
max, which is given by the integral expression

v⋆ = R(λ)g =

∫ ∞

0

e−λsT∞(s)gds

=

∫ ∞

0

e−λs
∫

Rd

H∞(·, ξ, s)g(ξ)dξds.
(6.10)

Moreover, it holds the resolvent estimate

‖v⋆‖Lp(Rd,CN ) 6
M∞

Reλ− ω∞
‖g‖Lp(Rd,CN ) .

Remark. Let the assumptions (A1), (A2), (A4), (A7B) and (A8B) be satisfied
for 1 6 p < ∞ and K = C. By Corollary 6.7 (with λ = 0) we obtain for every
g ∈ Lp(Rd,CN ) a unique solution v⋆ ∈ Dp

max of the resolvent equation

Bpv = g

which is given by (6.10). We believe one can apply Fubini’s theorem in equation
(6.10) to obtain

v⋆(x) = − [R(0)g] (x) =

∫

Rd

G(x, ξ)g(ξ)dξ,

where

G(x, ξ) := −
∫ ∞

0

H∞(x, ξ, s)ds

denotes the Green’s function of Bp. In particular, by Corollary 6.7 the following
resolvent estimate holds:

‖v⋆‖Lp(Rd,CN ) 6
M∞

−ω∞
‖g‖Lp(Rd,CN ) .

For the next statement we refer to [28, II.1.11 Corollary].

Corollary 6.8. Let the assumptions (A1), (A2), (A4) and (A7B) be satisfied for
1 6 p < ∞ and K = C. Moreover, let λ ∈ C with Reλ > ω∞. Then, for every
n ∈ N and every v ∈ Lp(Rd,CN ) it hold

R(λ,Bp)
nv =

(−1)n

(n− 1)!
· d

n−1

dλn−1
R(λ,Bp)v

=
1

(n− 1)!

∫ ∞

0

sn−1e−λsT∞(s)vds.

and the estimate

‖R(λ,Bp)n‖L(Lp,Lp) 6
M∞

(Reλ− ω∞)
n .

Let us now define the spectral bound s(Bp) of Bp, [28, II.1.12 Definition]:

−∞ 6 s(Bp) := sup
λ∈σ(Bp)

Reλ 6 ω∞ = −b0 < +∞.
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6.2. Exponential decay.

Theorem 6.9 (A-priori estimates in Lpθ(R
d,CN )). Let the assumptions (A1), (A2),

(A4) and (A7B) be satisfied for 1 6 p < ∞ and K = C. Moreover, let 0 < ϑ < 1
and λ ∈ C with Reλ > ω∞. Then for every radially nondecreasing weight function

θ ∈ C(Rd,R) of exponential growth rate η > 0 with 0 6 η2 6 ϑa0(Reλ−ω∞)
a2maxp

2 and for

every g ∈ Lpθ(R
d,CN ) we have v⋆ ∈W 1,p

θ (Rd,CN ) with

‖v⋆‖Lp
θ
(Rd,CN ) 6

C7

Reλ− ω∞
‖g‖Lp

θ
(Rd,CN ) ,(6.11)

‖Div⋆‖Lp

θ
(Rd,CN ) 6

C8

(Reλ− ω∞)
1
2

‖g‖Lp

θ
(Rd,CN ) , i = 1, . . . , d,(6.12)

where v⋆ ∈ Dp
max denotes the unique solution of (λI −Bp)v = g in Lp(Rd,CN ) and

the λ-independent constants C7, C8 are given by Lemma 4.8 (with ω = ω∞).

Proof. By Corollary 6.7 we have the representation

v⋆(x) =

∫ ∞

0

e−λt
∫

Rd

H∞(x, ξ, t)g(ξ)dξdt,(6.13)

where H∞(x, ξ, t) = H(x, ξ, t). Using this representation, the proof can be adopted
from Theorem 5.14. In the last inequality, we must apply Lemma 4.8 with ω =
ω∞. �

Remark. Theorem 6.9 states for θ ≡ 1 (with η = 0 and Cθ = 1) that

Dp
max ⊆W 1,p(Rd,CN ), for every 1 6 p <∞.

Remark. In the proof of Theorem 6.9 it is in general not possible to specify also

an estimate for ‖DjDiv⋆‖Lp
θ
(Rd,CN ) since C4+|β|(t) ∼ t−

|β|
2 as t → 0, see Theorem

6.3, and consequently we have the singularity t−1 at t = 0 for |β| = 2.

7. Variable coefficient perturbations of the complex

Ornstein-Uhlenbeck operator in Lp(Rd,CN )

Consider the operator

[LQφ] (x) := [L∞φ] (x) +Q(x)φ(x), φ ∈ S

7.1. Application of semigroup theory. During this section we claim that the
assumptions (A1), (A2), (A4) and (A7B) are satisfied. In the following (Bp,Dp

max)
denotes the infinitesimal generator of the semigroup (T∞(t))t>0 on Lp(Rd,CN) for

1 6 p < ∞, that is given by (5.1). We already know that (T∞(t))t>0 is a strongly

continuous semigroup in Lp(Rd,CN) for every 1 6 p <∞ satisfying

‖T∞(t)‖L(Lp,Lp) 6M∞e
ω∞t ∀ t > 0,

where M∞ :=
(

a2max

amina0

) d
2

> 1 and ω∞ := −b0 ∈ R, compare (6.9). Moreover, under

the additional assumptions (A3), we know that Bp is the maximal realization of
the perturbed complex Ornstein-Uhlenbeck operator L∞ in Lp(Rd,CN ) for every
1 < p < ∞ and we have a complete characterization of its maximal domain. In
this section we investigate variable coefficient perturbations of Bp in Lp(Rd,CN).
for this purpose, let Fp ∈ L(Lp, Lp) be a perturbation defined by

Fp : L
p(Rd,CN ) → Lp(Rd,CN ), [Fpv] (x) := Q(x)v(x)

where Q ∈ L∞(Rd,CN,N). If we define [Lvarφ] (x) := Q(x)φ(x) then it is obvious,
that Fp is the maximal realization of Lvar in Lp(Rd,CN ). Applying [28, III.1.3
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Bounded Perturbation Theorem, III.1.7 Corollary and III.1.10 Theorem] we obtain
the following result.

Theorem 7.1 (Bounded Perturbation Theorem). Let the assumptions (A1), (A2),
(A4), (A7B) and Q ∈ L∞(Rd,KN,N) be satisfied for 1 6 p <∞ and K = C. Then
the operator

Cp := Bp + Fp with D(Cp) := Dp
max

generates a strongly continuous semigroup (TQ(t))t>0 on Lp(Rd,CN ) satisfying

‖TQ(t)‖L(Lp,Lp) 6M∞e
(ω∞+M∞‖Fp‖L(Lp,Lp))t ∀ t > 0.

Moreover, for every v ∈ Lp(Rd,CN ) and t > 0 the semigroup satisfies the integral
equation (variation of parameters formula)

TQ(t)v = T∞(t)v +

∫ t

0

T∞(t− s)FpTQ(s)vds,

is unique and can be obtained by

TQ(t) =

∞∑

n=0

T
(n)
Q (t)

where

T
(0)
Q (t) := T∞(t), T

(n+1)
Q (t) :=

∫ t

0

T∞(t− s)FpT
(n)
Q (s)ds.

Theorem 7.1 states that (Cp,Dp
max) is the infinitesimal generator of (TQ(t))t>0 in

Lp(Rd,CN ), 1 6 p < ∞. Assuming in addition (A3), (Cp,Dp
max) is the maximal

realization of LQ in Lp(Rd,CN ) for 1 6 p < ∞ and its maximal domain Dp
max is

given by Dp from Theorem 5.25. Contrary to the case of constant coefficients, we
cannot assume here, that Q(x) commutes with both A and B for every x ∈ Rd,
since this is in general not satisfied in order to investigate the nonlinear problem of
the Ornstein-Uhlenbeck operator. Thus, we are not able to derive a closed form for
the representation of the semigroup (TQ(t))t>0. In particular, it is not possible in

this case to optimize the boundedness property of ‖TQ(t)‖L(Lp,Lp) from Theorem

7.1. For the next statement we refer to [28, II.1.3 Lemma, II.1.4 Theorem]:

Lemma 7.2. Let the assumptions (A1), (A2), (A4), (A7B) and Q ∈ L∞(Rd,KN,N)
be satisfied for 1 6 p <∞ and K = C.
(1) Cp : Dp

max ⊆ Lp(Rd,CN ) → Lp(Rd,CN ) is a linear, closed and densely defined
operator.
(2) For every v ∈ Dp

max and t > 0 we have

TQ(t)v ∈ Dp
max

d

dt
TQ(t)v = TQ(t)Cpv = CpTQ(t)v

(3) For every v ∈ Lp(Rd,CN ) and every t > 0 we have
∫ t

0

TQ(s)vds ∈ Dp
max

(4) For every t > 0 we have

TQ(t)v − v =Cp

∫ t

0

TQ(s)vds , for v ∈ Lp(Rd,CN ),

=

∫ t

0

TQ(s)Cpvds , for v ∈ Dp
max.
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Since (Cp,Dp
max) is a closed operator on the Banach space Lp(Rd,CN ) for 1 6 p <

∞, we can define

σ(Cp) := {λ ∈ C | λI − Cp is not bijective} spectrum of Cp,

ρ(Cp) :=C\σ(Cp) resolvent set of Cp,

R(λ,Cp) := (λI − Cp)
−1 , for λ ∈ ρ(Cp) resolvent of Cp.

The next identities follow from [28, II.1.9 Lemma].

Lemma 7.3. Let the assumptions (A1), (A2), (A4), (A7B), Q ∈ L∞(Rd,CN,N)
and 1 6 p <∞ be satisfied for K = C. Then for every λ ∈ C and t > 0 it hold

e−λtTQ(t)v − v =(Cp − λI)

∫ t

0

e−λsTQ(s)vds , for v ∈ Lp(Rd,CN ),

=

∫ t

0

e−λsTQ(s) (Cp − λI) vds , for v ∈ Dp
max.

The following statement comes from [28, II.1.10 Theorem].

Theorem 7.4. Let the assumptions (A1), (A2), (A4), (A7B) and Q ∈ L∞(Rd,KN,N)
be satisfied for 1 6 p <∞ and K = C.
(1) For every λ ∈ C such that R(λ)v :=

∫∞

0 e−λsTQ(s)vds exists and for every

v ∈ Lp(Rd,CN ) it holds

λ ∈ ρ(Cp) and R(λ,Cp) = R(λ).

(2) For every λ ∈ C with Reλ > ω∞ +M∞ ‖Q‖L∞ it holds

λ ∈ ρ(Cp), R(λ,Cp) = R(λ)

and

‖R(λ,Cp)‖L(Lp,Lp) 6
M∞

Reλ−
(
ω∞ +M∞ ‖Q‖Cb

) .

Corollary 7.5 (Solvability and uniqueness in Lp(Rd,CN)). Let the assumptions
(A1), (A2), (A4), (A7B) and Q ∈ L∞(Rd,KN,N) be satisfied for 1 6 p < ∞ and
K = C. Moreover, let λ ∈ C with Reλ > ω∞ + M∞ ‖Q‖L∞. Then for every

g ∈ Lp(Rd,CN ) the resolvent equation

(λI − Cp) v = g

admits a unique solution v⋆ ∈ Dp
max which satisfies the integral expression

v⋆ = R(λ)g =

∫ ∞

0

e−λsTQ(s)gds

=

∫ ∞

0

∫

Rd

e−λsH∞(·, ξ, s) (g(ξ) +Q(ξ)v⋆(ξ)) dξds.

Moreover, it holds the resolvent estimate

‖v⋆‖Lp(Rd,CN ) 6
M∞

Reλ− (ω∞ +M∞ ‖Q‖L∞)
‖g‖Lp(Rd,CN ) .

The following statement comes from [28, II.1.11 Corollary].

Corollary 7.6. Let the assumptions (A1), (A2), (A4), (A7B) and Q ∈ L∞(Rd,KN,N)
be satisfied for 1 6 p < ∞ and K = C. Moreover, let λ ∈ C with Reλ >
ω∞ +M∞ ‖Q‖L∞. Then, for every n ∈ N and every v ∈ Lp(Rd,CN ) it hold

R(λ,Cp)
nv =

(−1)n

(n− 1)!
· d

n−1

dλn−1
R(λ,Cp)v
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=
1

(n− 1)!

∫ ∞

0

sn−1e−λsTQ(s)vds.

and the estimate

‖R(λ,Cp)n‖L(Lp,Lp) 6
M∞

(Reλ− (ω∞ +M∞ ‖Q‖L∞))
n .

Let us now define the spectral bound s(Cp) of Cp, [28, II.1.12 Definition]:

−∞ 6 s(Cp) = sup
λ∈σ(Cp)

Reλ 6 ω∞ +M∞ ‖Q‖L∞ < +∞

7.2. The essential spectrum. In this section we extend the approach from [17,
Theorem 8.1] to compute the essential spectrum of LQ in Lp(Rd,CN ) and 1 < p <
∞. The paper [17] analyzes the case p = d = 2. For the spectrum of the Ornstein-
Uhlenbeck operator in Lp(Rd,R), 1 < p <∞, without perturbation terms, we refer
to [42]. First, let us introduce the definition of the essential spectrum, [32]:

Definition 7.7. Let X be a (complex-valued) Banach space and let
A : D(A) ⊂ X → X be a closed, densely defined, linear operator. Moreover,
let λ ∈ C.
(1) λ ∈ ρ(A) if and only if the following properties hold

• (λI −A) : D(A) → X is 1− 1 (injective) and onto (surjective),

• (λI −A)
−1

is bounded on X.

(2) λ0 ∈ ρ(A) is called isolated if and only if

∃ ε > 0 ∀λ ∈ C with 0 < |λ− λ0| < ε : λ ∈ ρ(A).

(3) The multiplicity of λ0 ∈ σ(A) is defined as the dimension of the algebraic
eigenspace

{

v ∈ X | (λ0I −A)
k
= 0 for some k ∈ N

}

.

(4) λ ∈ C is called a normal point of A if and only if one of the following properties
hold

• λ ∈ ρ(A),
• λ ∈ σpoint(A) := {λ ∈ σ(A) | λ is isolated with finite multiplicity}.

(5) The set

σess(A) = {λ ∈ C | λ is not a normal point of A}
is called the essential spectrum of A.

By definition it holds

C = ρ(A)
·∪ σ(A) = ρ(A)

·∪
(

σess(A)
·∪ σpoint(A)

)

.

We first give a short motivation, how we can determine the essential spectrum of
LQ, see [17, Section 8.2] for the casee d = p = 2 and see [42, Theorem 2.6] for the
essential spectrum of the drift term in Lp(Rd,R), 1 < p <∞:
1. (Orthogonal transformation). Let us consider the operator

[LQv] (x) = A△v(x) + 〈Sx,∇v(x)〉 −Bv(x) +Q(x)v(x), x ∈ Rd.

Note that for space dimensions d > 3 the axis of rotation is in general not orthogonal
to some plane (xl, xk), 1 6 l, k 6 d. Furthermore, in space dimensions d > 4 the
pattern can also rotate rigidly around several axes of rotation simultaneously. In
order to investigate the essential spectrum of LQ the main idea of the first step
is to seperate the axes of rotation such that they are orthogonal to (completely)
different planes. For this purpose we perform an orthogonal transformation: Since
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S ∈ Rd,d with ST = −S we have σ(S) ⊂ iR. Let ±iσ1, . . . ,±iσk denote the nonzero
eigenvalues of S, 1 6 k 6 ⌊d2⌋, then

∃P ∈ Rd,d orthogonal matrix : S = PΛSblockP
T ,

where

ΛSblock =













ΛS1 0
. . .

ΛSk
0

. . .

0 0













∈ Rd,d, ΛSj =

(
0 σj

−σj 0

)

∈ R2,2,

for every j = 1, . . . , k. The orthogonal transformation of coordinates

T1(x) = Px, T−1
1 (x) = PTx

yields the transformed operator LQ,T1v = LQ
(
v ◦ T−1

1

)
◦ T1 given by

[LQ,T1v] (x) = A△v(x) +
〈
ΛSblockx,∇v(x)

〉
−Bv(x) +Q(Px)v(x), x ∈ Rd,

with

〈
ΛSblockx,∇v(x)

〉
=

k∑

l=1

σl (x2lD2l−1 − x2l−1D2l) v(x).

2. (Transformation into several planar polar coordinates). Since now we have k
angular derivatives in k different planes it is helpful to use the following transfor-
mations into planar polar coordinates

(
x2l−1

x2l

)

= T (rl, φl) :=

(
rl cosφl
rl sinφl

)

, l = 1, . . . , k, φl ∈]− π, π], rl > 0.

All further coordinates, i.e. x2k+1, . . . , xd, remain fixed. Denoting the total trans-
formation by T2(r1, φ1, . . . , rk, φk, x2k+1, . . . , xd) we obtain the transformed opera-
tor LQ,T2v = LQ,T1

(
v ◦ T−1

2

)
◦ T2 given by

[LQ,T2v] (x) =A

[
k∑

l=1

(

∂2rl +
1

rl
∂rl +

1

r2l
∂2φl

)

+

d∑

l=2k+1

∂2xl

]

v(ξ)

−
k∑

l=1

σl∂φl
v(ξ)−Bv(ξ) +Q(ξ)v(ξ),

where ξ := (r1, φ1, . . . , rk, φk, x2k+1, . . . , xd) and Q(T1(T2(ξ))) is abbreviated by
Q(ξ).
3. (Simplified operator and finite-dimensional eigenvalue problem). Neglecting the
terms of order O

(
1
r

)
we obtain the simplified operator

[
Lsim
Q,T2

v
]
(x) = A

[
k∑

l=1

∂2rl +

d∑

l=2k+1

∂2xl

]

v(ξ)−
k∑

l=1

σl∂φl
v(ξ) −Bv(ξ).

If we choose

v(ξ) = exp

(

iκ

k∑

l=1

rl

)

exp

(

i

k∑

l=1

nlφl

)

v̂, nl ∈ Z, κ ∈ R, v̂ ∈ CN , |v̂| = 1

φl ∈]− π, π], rl > 0, l = 1, . . . , k,
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then

[(
λI − Lsim

Q,T2

)
v
]
(ξ) =

(

λIN + κ2A+ i
k∑

l=1

nlσlIN +B

)

v(ξ).

Therefore,
[(
λI − Lsim

Q,T2

)
v
]
(ξ) = 0 for every ξ if and only if λ ∈ C satisfies

(
κ2A+B

)
v̂ = −

(

λ+ i

k∑

l=1

nlσl

)

v̂.

Theorem 7.8. Let the assumptions (A1), (A2), (A3), (A4), (A7B)
and Q ∈ L∞(Rd,KN,N) with

ηR := ess sup
|x|>R

|Q(x)|2 → 0 as R → ∞

be satisfied for 1 < p < ∞ and K = C. Moreover, let λj(κ) denote the eigenvalues
of κ2A+B for j = 1, . . . , N . Then every number λ ∈ C with

λ = −λj(κ)− i

k∑

l=1

nlσl, nl ∈ Z, κ ∈ R, j = 1, . . . , N,

belongs to the essential spectrum of LQ in Lp(Rd,CN ), i.e. λ ∈ σess(LQ).
Remark. (1): Theorem 7.8 shows that σess(LQ) ⊂ {λ ∈ C | Reλ 6 b0}, where
b0 = −s(−B). If there exists σn, σm such that σnσ

−1
m /∈ Q then σess(LQ) is dense in

{λ ∈ C | Reλ 6 b0}, i.e. σess(LQ) = {λ ∈ C | Reλ 6 b0}. Otherwise σess(LQ) is a
discrete subgroup of {λ ∈ C | Reλ 6 b0} (independently of p). The reason for this
conclusion is given by Metafune in [42, Theorem 2.6]: It is proved that the essential
spectrum of the drift term is dense in iR, i.e. σess(〈Sx,∇v(x)〉) = iR, if and only if
there exists σm, σm such that σnσm /∈ Q. Otherwise, σess(〈Sx,∇v(x)〉) is a discrete
subgroup of iR (independently of p).
(2): If we require in addition assumption (A8B) then Reλj(κ) > 0 and thus
σess(LQ) ⊂ C−, where C− := {λ ∈ C | Reλ < 0}. If in addition there exists σn, σm
such that σnσ

−1
m /∈ Q then σess(LQ) is dense in C−, i.e. σess(LQ) = C−. Otherwise

σess(LQ) is a discrete subgroup of C− (independently of p).
(3): Note that in Theorem 7.8 we can choose Q = 0 and B = Q = 0, which yields
information about the essential spectrum of L∞ and L0, respectively.

Remark. The condition

det

(

λIN + κ2A+B + i

k∑

l=1

nlσlIN

)

= 0 (⇔ λ ∈ σess(LQ))

is called the dispersion relation for LQ in Lp(Rd,CN ), 1 < p < ∞. This condition
is necessary for the localization (and the existence) of the essential spectrum. Note,
that the essential spectrum provides information about the stability of the solution.

Proof. 1. Let R > 2 be large and let χR : [0,∞[→ [0, 1] be a cut-off function such
that χR ∈ C2([0,∞[, [0, 1]) with bounded derivatives independently of R and

χR(r) =







0 , r ∈ [0, R− 1],

∈ [0, 1] , r ∈ [R− 1, R],

1 , r ∈ [R, 2R],

∈ [0, 1] , r ∈ [2R, 2R+ 1],

0 , r ∈ [2R+ 1,∞[.
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2. Define

vR(ξ) :=

(
k∏

l=1

χR(rl)

)

χR(|x̃|)v(ξ)

=

(
k∏

l=1

χR(rl)

)

χR(|x̃|) exp
(

iκ

k∑

l=1

rl

)

exp

(

i

k∑

l=1

nlφl

)

v̂,

where x̃ := (x2k+1, . . . , xd), ξ := (r1, φ1, . . . , rk, φk, x̃), nl ∈ Z, κ ∈ R, v̂ ∈ CN with
|v̂| = 1, φl ∈]− π, π], rl > 0 and l = 1, . . . , k. By definition of χR we have

(
λI − Lsim

Q,T2

)
vR(ξ) = 0,(7.1)

whenever |x̃| ∈ [0, R − 1] ∪ [2R + 1,∞[ or rl ∈ [0, R − 1] ∪ [2R + 1,∞[ for some
1 6 l 6 k. Moreover, by the choice of λ and by definition of χR we have

(
λI − Lsim

Q,T2

)
vR(ξ) = 0,(7.2)

if |x̃|, rl ∈ [R, 2R] for every l = 1, . . . , k.
3. By the choice of λ,

∂2rl
(
χR(rl)e

iκrl
)
= χ′′

R(rl)e
iκrl + 2iκχ′

R(rl)e
iκrl + χR(rl)∂

2
rl
eiκrl , l = 1, . . . , k,

∂2xl
(χR(|x̃|)) =

|x̃|2 − x2l
|x̃|3 χ′

R(|x̃|) +
x2l
|x̃|2χ

′′
R(|x̃|), l = 2k + 1, . . . , d,

the triangle inequality, |χR(r)| 6 1, χ′
R(r) 6 ‖χR‖C2

b
, χ′′

R(r) 6 ‖χR‖C2
b
, |v(ξ)| = 1

and 1
|x̃| 6

1
R−1 6 1, since R > 2, we have

∣
∣
(
λI − Lsim

Q,T2

)
vR(ξ)

∣
∣

=

∣
∣
∣
∣
∣

(

λI −A

[
k∑

l=1

∂2rl +

d∑

l=2k+1

∂2xl

]

+

k∑

l=1

σl∂φl
+B

)(
k∏

l=1

χR(rl)

)

χR(|x̃|)v(ξ)
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(
k∏

l=1

χR(rl)

)

χR(|x̃|)
(

λI −A

[
k∑

l=1

∂2rl +
d∑

l=2k+1

∂2xl

]

+
k∑

l=1

nl∂φl
+B

)

v(ξ)

︸ ︷︷ ︸

=0 (by the choice of λ)

−A

k∑

l=1

(χ′′
R(rl) + 2iκχ′

R(rl))

(
k∏

j=1
j 6=l

χR(rj)

)

χR(|x̃|)v(ξ)

−A

d∑

l=2k+1

( |x̃|2 − x2l
|x̃|3 χ′

R(|x̃|) +
x2l
|x̃|2χ

′′
R(|x̃|)

)




k∏

j=1

χR(rj)



 v(ξ)

∣
∣
∣
∣
∣

6 |A|2
k∑

l=1

(|χ′′
R(rl)|+ 2|κ| |χ′

R(rl)|)
(

k∏

j=1
j 6=l

|χR(rj)|
)

|χR(|x̃|)| |v(ξ)|

+ |A|2
( |d− 2k − 1|

|x̃| |χ′
R(|x̃|)|+ |χ′′

R(|x̃|)|
)




k∏

j=1

|χR(rj)|



 |v(ξ)|

6 |A|2 (k(1 + 2|κ|) + |d− 2k − 1|+ 1) ‖χR‖C2
b
=: C,

for every |x̃|, rl ∈ [R− 1, R] ∪ [R, 2R] ∪ [2R, 2R+ 1] and 1 6 l 6 k.
4. Furthermore, we have by the definition of χR, |v(ξ)|p = 1 and by the transfor-
mation theorem

‖vR‖pLp(Rd,CN ) =

∫

Rd

|vR(x)|p dx
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=

∫ ∞

0

∫ π

−π

· · ·
∫ ∞

0

∫ π

−π

∫

Rd−2k

(
k∏

l=1

rl

)

|vR(ξ)|p dx̃dφkdrk · · · dφ1dr1

=

∫ 2R+1

R−1

∫ π

−π

· · ·
∫ 2R+1

R−1

∫ π

−π

∫

R−16|x̃|62R+1

(
k∏

l=1

rl

)

|vR(ξ)|p dξ

=

∫ 2R+1

R−1

∫ π

−π

· · ·
∫ 2R+1

R−1

∫ π

−π

∫

R−16|x̃|62R+1

(
k∏

l=1

rl

)(
k∏

l=1

χpR(rl)

)

χpR(|x̃|)dξ

=

∫

R−16|x̃|62R+1

χpR(|x̃|)dx̃
k∏

l=1

∫ 2R+1

R−1

∫ π

−π

rlχ
p
R(rl)dφldrl

=

(∫

R−16|x̃|6R

χpR(|x̃|)
︸ ︷︷ ︸

>0

dx̃+

∫

R6|x̃|62R

χpR(|x̃|)
︸ ︷︷ ︸

=1

dx̃+

∫

2R6|x̃|62R+1

χpR(|x̃|)
︸ ︷︷ ︸

>0

dx̃

)

·
k∏

l=1

2π

(∫ R

R−1

rl χ
p
R(rl)
︸ ︷︷ ︸

>0

drl +

∫ 2R

R

rl χ
p
R(rl)
︸ ︷︷ ︸

=1

drl +

∫ 2R+1

2R

rl χ
p
R(rl)
︸ ︷︷ ︸

>0

drl

)

>

∫

R6|x̃|62R

1dx̃ ·
k∏

l=1

2π

∫ 2R

R

rldrl = CRd̃
k∏

l=1

3πR2 = (3π)kCR2k+d̃ = CRd,

where dξ := dx̃dφkdrk · · · dφ1dr1 and d̃ := d − 2k denotes the dimension of the
x̃-integral. Moreover, we used the following formula with a = R and b = 2R

∫

a6|x̃|6b

1dx̃ =







1 , d̃ = 0,

b− a , d̃ = 1,

2π π
d̃−2
2

Γ
(

d̃
2

)

(

bd̃−ad̃
)

d̃
, d̃ > 2.

(7.3)

5. Furthermore, we have by (7.1)

∥
∥
(
λI − Lsim

Q,T2

)
vR
∥
∥
p

Lp(Rd,CN )
=

∫

Rd

∣
∣
(
λI − Lsim

Q,T2

)
vR(x)

∣
∣
p
dx

=

∫ ∞

0

∫ π

−π

· · ·
∫ ∞

0

∫ π

−π

∫

Rd−2k

(
k∏

l=1

rl

)

∣
∣
(
λI − Lsim

Q,T2

)
vR(ξ)

∣
∣
p
dx̃dφkdrk · · · dφ1dr1

=

∫ 2R+1

R−1

∫ π

−π

· · ·
∫ 2R+1

R−1

∫ π

−π

∫

R−16|x̃|62R+1

(
k∏

l=1

rl

)

∣
∣
(
λI − Lsim

Q,T2

)
vR(ξ)

∣
∣
p
dξ

Defining d̃ := d− 2k we distinguish between the following cases:
Case 1: (d̃ = 0). From step 3, (7.2), the multinomial theorem,

∫ R

R−1

rldrl =
1

2
(2R− 1),

∫ 2R

R

rldrl =
1

2
3R2,

∫ 2R+1

2R

rldrl =
1

2
(4R+ 1),(7.4)

k = d
2 and

(2R− 1)j1(3R2)j2 (4R+ 1)j3 6 CRj1+2j2+j3 = CRk+j2 6 CRk+k−1 = CRd−1

we further obtain

=

∫ 2R+1

R−1

∫ π

−π

· · ·
∫ 2R+1

R−1

∫ π

−π

(
k∏

l=1

rl

)

∣
∣
(
λI − Lsim

Q,T2

)
vR(ξ)

∣
∣
p
dx̃dφkdrk · · · dφ1dr1
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6
∑

j1+j2+j3=k

j2 6=k

(
k

j1, j2, j3

)(∫ R

R−1

)j1 (∫ 2R

R

)j2 (∫ 2R+1

2R

)j3

Cp

(
k∏

l=1

rl

)

(2π)kdr1 · · · drk

=
∑

j1+j2+j3=k

j2 6=k

(
k

j1, j2, j3

)

Cp(2π)k
1

2k
(2R− 1)j1(3R2)j2(4R+ 1)j3 6 CRd−1.

Case 2: (d̃ > 1). Again from step 3, (7.2), the multinomial theorem, (7.3), (2R −
1)j1 6 CRj1 , (3R2)j2 6 CR2j2 and (4R+ 1)j3 6 CRj3 we further obtain

6
∑

j1+j2+j3=k

(
k

j1, j2, j3

)(∫ R

R−1

)j1 (∫ 2R

R

)j2 (∫ 2R+1

2R

)j3

∫

R−16|x̃|6R

Cp

(
k∏

l=1

rl

)

(2π)kdx̃dr1 · · · drk

+
∑

j1+j2+j3=k

j2 6=k

(
k

j1, j2, j3

)(∫ R

R−1

)j1 (∫ 2R

R

)j2 (∫ 2R+1

2R

)j3

∫

R6|x̃|62R

Cp

(
k∏

l=1

rl

)

(2π)kdx̃dr1 · · · drk

+
∑

j1+j2+j3=k

(
k

j1, j2, j3

)(∫ R

R−1

)j1 (∫ 2R

R

)j2 (∫ 2R+1

2R

)j3

∫

2R6|x̃|62R+1

Cp

(
k∏

l=1

rl

)

(2π)kdx̃dr1 · · · drk

=
∑

j1+j2+j3=k

(
k

j1, j2, j3

)
1

2k
(2R− 1)j1(3R2)j2(4R+ 1)j3







1 , d̃ = 1

2π π
d̃−2
2

Γ
(

d̃
2

)

(

Rd̃−(R−1)d̃
)

d̃
, d̃ > 2






Cp(2π)k

+
∑

j1+j2+j3=k

j2 6=k

(
k

j1, j2, j3

)
1

2k
(2R− 1)j1(3R2)j2(4R+ 1)j3







R , d̃ = 1

2π π
d̃−2
2

Γ
(

d̃
2

)

(

(2R)d̃−Rd̃
)

d̃
, d̃ > 2






Cp(2π)k

+
∑

j1+j2+j3=k

(
k

j1, j2, j3

)
1

2k
(2R− 1)j1(3R2)j2(4R+ 1)j3







1 , d̃ = 1

2π π
d̃−2
2

Γ
(

d̃
2

)

(

(2R)d̃−Rd̃
)

d̃
, d̃ > 2






Cp(2π)k

6
∑

j1+j2+j3=k

(
k

j1, j2, j3

)

CRj1+2j2+j3+d̃−1 +
∑

j1+j2+j3=k

j2 6=k

(
k

j1, j2, j3

)

CRj1+2j2+j3+d̃

+
∑

j1+j2+j3=k

(
k

j1, j2, j3

)

CRj1+2j2+j3+d̃−1 6 CRd−1.
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6. Now, let us consider the operator LQ,T2 instead of Lsim
Q,T2

. By definition of χR
we have

[(λI − LQ,T2) vR] (ξ) = 0,

whenever |x̃| ∈ [0, R − 1] ∪ [2R + 1,∞[ or rl ∈ [0, R − 1] ∪ [2R + 1,∞[ for some
1 6 l 6 k. Moreover, we have by the choice of λ, by definition of χR and since
R > 1

|(λI − LQ,T2) vR(ξ)|

=

∣
∣
∣
∣
∣

(
λI − Lsim

Q,T2

)
vR(ξ)−A

k∑

l=1

(
1

rl
∂rl +

1

r2l
∂φl

)

vR(ξ)−Q(ξ)vR(ξ)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
A

k∑

l=1

(
1

rl
∂rl +

1

r2l
∂φl

)

vR(ξ) +Q(ξ)vR(ξ)

∣
∣
∣
∣
∣

6 |A|2
k∑

j=1

( |iκ|
rl

+
|inl|2
r2l

)

+ |Q(ξ)|

6 |A|2
k∑

j=1

(
|κ|+ |nl|2

) 1

rl
+ ηR

6



|A|2
k∑

j=1

(
|κ|+ |nl|2

) 1

rl
+ ηR





1
p

, 1 < p <∞

if |x̃|, rl ∈ [R, 2R] for every l = 1, . . . , k.
7. From the choice of λ, step 3, 1

rl
6 1

R−1 6 1 (since R > 2), 1
r2
l

6 1, |χR(y)| 6 1,

|χ′
R(y)| 6 ‖χR‖C2

b
and |v(ξ)| = 1 we obtain

|(λI − LQ,T2) vR(ξ)|

=

∣
∣
∣
∣
∣

(
λI − Lsim

Q,T2

)
vR(ξ)−A

k∑

l=1

(
1

rl
∂rl +

1

r2l
∂φl

)

vR(ξ)−Q(ξ)vR(ξ)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(
λI − Lsim

Q,T2

)
vR(ξ)−A

k∑

l=1

1

rl
χ′
R(rl)






k∏

j=1
j 6=l

χR(rj)




χR(|x̃|)v(ξ)

−A
k∑

l=1

1

rl
iκ





k∏

j=1

χR(rj)



χR(|x̃|)v(ξ)−A
k∑

l=1

1

r2l
inl





k∏

j=1

χR(rj)



χR(|x̃|)v(ξ)

−Q(ξ)





k∏

j=1

χR(rj)



χR(|x̃|)v(ξ)
∣
∣
∣
∣
∣

6
∣
∣
(
λI − Lsim

Q,T2

)
vR(ξ)

∣
∣ + |A|2

k∑

l=1

1

rl
|χ′
R(rl)|

(
k∏

j=1
j 6=l

|χR(rj)|
)

|χR(|x̃|)| |v(ξ)|

+ |A|2
k∑

l=1

1

rl
|κ|





k∏

j=1

|χR(rj)|



 |χR(|x̃|)| |v(ξ)|

+ |A|2
k∑

l=1

1

r2l
|nl|





k∏

j=1

|χR(rj)|



 |χR(|x̃|)| |v(ξ)|



SPATIAL DECAY OF ROTATING WAVES IN PARABOLIC SYSTEMS 75

+ ‖Q‖L∞





k∏

j=1

|χR(rj)|



 |χR(|x̃|)| |v(ξ)|

6C + |A|2

(

k ‖χR‖C2
b
+ k |κ|+

k∑

l=1

|nl|+ ‖Q‖L∞

)

= C,

for every |x̃|, rl ∈ [R− 1, R] ∪ [R, 2R] ∪ [2R, 2R+ 1] and 1 6 l 6 k.
8. Hence, we obtain from the transformation theorem and step 6

‖(λI − LQ) vR‖pLp(Rd,CN )

=

∫

Rd

|(λI − LQ) vR(x)|p dx =

∫

Rd

|(λI − LQ,T1) vR(x)|p dx

=

∫ ∞

0

∫ π

−π

· · ·
∫ ∞

0

∫ π

−π

∫

Rd−2k

(
k∏

l=1

rl

)

|(λI − LQ,T2) vR(ξ)|p dξ

=

∫ 2R+1

R−1

∫ π

−π

· · ·
∫ 2R+1

R−1

∫ π

−π

∫

R−16|x̃|62R+1

(
k∏

l=1

rl

)

|(λI − LQ,T2) vR(ξ)|p dξ

Using the abbreviation d̃ := d−2k we distinguish again between the following cases:
Case 1: (d̃ = 0). From step 6, step 7 and (7.4) we deduce

=

∫ 2R

R

∫ π

−π

· · ·
∫ 2R

R

∫ π

−π

(
k∏

l=1

rl

)[
k∑

l=1

|A|2
(
|κ|+ |nl|2

)

rl
+ ηR

]

dφkdrk · · · dφ1dr1

+
∑

j1+j2+j3
j2 6=k

(
k

j1, j2, j3

)(∫ R

R−1

)j1 (∫ 2R

R

)j2 (∫ 2R+1

2R

)j3

Cp

(
k∏

l=1

rl

)

(2π)kdr1 · · · drk

6

∫ 2R

R

· · ·
∫ 2R

R

(2π)k






k∑

l=1

(
k∏

j=1
j 6=l

rj

)

|A|2
(
|κ|+ |nl|2

)






+ (2π)k

(
k∏

l=1

rl

)

ηRdrk · · · dr1 + CRd−1

=

k∑

l=1

|A|2
(
|κ|+ |nl|2

)
∫ 2R

R

· · ·
∫ 2R

R

k∏

j=1
j 6=l

rjdr1 · · · drk

+ (2π)kηR

∫ 2R

R

· · ·
∫ 2R

R

(
k∏

l=1

rl

)

dr1 · · · drk + CRd−1

=

k∑

l=1

(2π)k |A|2
(
|κ|+ |nl|2

)

(
k∏

j=1
j 6=l

∫ 2R

R

rjdrj

)
∫ 2R

R

drl

+ (2π)kηR

k∏

j=1

∫ 2R

R

rjdrj + CRd−1

=

(
k∑

l=1

(2π)k |A|2
(
|κ|+ |nl|2

)
(
3

2

)k−1

R2k−1

)

+ (2π)kηR

(
3

2

)k

R2k + CRd−1

6CRd−1 + CRdηR.
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Here we refer to case 1 from step 5 for an estimate of the sum.
Case 2: (d̃ > 1). From the procedure used in case 2 from step 5 and in case 1 and
(7.3) we obtain

6

∫ 2R

R

∫ π

−π

· · ·
∫ 2R

R

∫ π

−π

∫

R6|x̃|62R

(
k∏

l=1

rl

)[
k∑

l=1

|A|2
(
|κ|+ |nl|2

)

rl
+ ηR

]

dξ

+ CRd−1

6
(
CR2k−1 + CR2kηR

)
∫

R6|x̃|62R

dx̃+ CRd−1

6CR2k−1+d̃ + CRd−1 + CR2k+d̃ηR = CRd−1 + CRdηR.

The constant CRd−1 in the first inequality comes from an estimate of three sums,
compare case 2 from step 5. For the second inequality compare case 1.
9. Define

wR :=
vR

‖vR‖Lp(Rd,CN )

∈ Lp(Rd,CN ),

which belongs to Lp(Rd,CN ) by step 4, then we obtain from step 4 and step 8

‖(λI − LQ)wR‖pLp(Rd,CN ) =
‖(λI − LQ) vR‖pLp(Rd,CN )

‖vR‖pLp(Rd,CN )

6
CRd−1 + CRdηR

CRd
=
C

R
+ ηR → 0 as R → ∞.

10. Hence, we must have

λ ∈ σ(LQ) or (λI − LQ)−1 is unbounded on Lp(Rd,CN ).

If λ = −λj(κ) − i
∑k
l=1 nlσl ∈ σ(LQ), i.e. λ is an eigenvalue of LQ, then varying

κ ∈ R shows that λ cannot be isolated, i.e. λ is not a normal point of LQ. Therefore,
all such numbers λ belongs to the essential spectrum of LQ, i.e. λ ∈ σess(LQ). �

For the next Corollary recall the definition of an analytic semigroup, [28, II.4.5],
and a sectorial operator, [28, II.4.1].

Corollary 7.9. Let the assumptions (A1), (A2), (A3), (A4), (A7B),
and Q ∈ L∞(Rd,KN,N) with

ηR := ess sup
|x|>R

|Q(x)|2 → 0 as R → ∞

be satisfied for 1 < p < ∞ and K = C. Then the operator LQ is not sectorial
in Lp(Rd,CN ) and, consequently, the corresponding semigroup (TQ(t))t>0 is not

analytic on Lp(Rd,CN).

Remark. Note that in Theorem 7.8 and in Corollary 7.9 it is allowed to choose
Q = 0. Thus, the operator L∞ is not sectorial in Lp(Rd,CN ) and, consequently,
the corresponding semigroup (T∞(t))t>0 is not analytic on L

p(Rd,CN ), 1 < p <∞.
Analogously, if we choose B = Q = 0, we can deduce that the operator L0 is not
sectorial in Lp(Rd,CN ) and, consequently, the corresponding semigroup (T0(t))t>0

is not analytic on Lp(Rd,CN ), 1 < p <∞.
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7.3. Exponential decay for small perturbations. Let us consider the operator

[LQε
φ] (x) := [L∞φ] (x) +Qε(x)φ(x), φ ∈ S

for some small perturbation Qε ∈ L∞(Rd,CN,N). In this subsection we want
to apply the theory from subsection 7.1 with Q = Qε. Thus, in this subsection
Cεp := Cp denotes the maximal realization of LQε

.

Theorem 7.10 (A-priori estimates in Lpθ(R
d,CN )). Let the assumptions (A1),

(A2), (A3), (A4), (A7B) and (A8B) be satisfied for 1 < p < ∞ and K = C.
Then for every 0 < ϑ < 1 and for every radially nondecreasing weight function
θ ∈ C(Rd,R) of exponential growth rate η > 0 with 0 6 η2 6 ϑ 2

3
a0b0
a2maxp

2 , for every

Qε ∈ L∞(Rd,CN,N) with ‖Qε‖L∞ 6
b0
3 min

{
1
C7
, 1
M∞

}

, for every λ ∈ C with

Reλ > − b0
3 and for every g ∈ Lpθ(R

d,CN ) we have v⋆ ∈ W 1,p
θ (Rd,CN ) with

‖v⋆‖Lp

θ
(Rd,CN ) 6

C7

Reλ+ 2b0
3

‖g‖Lp

θ
(Rd,CN ) ,(7.5)

‖Div⋆‖Lp
θ
(Rd,CN ) 6

√
2C8

(
Reλ+ 2b0

3

) 1
2

‖g‖Lp
θ
(Rd,CN ) , i = 1, . . . , d,(7.6)

where v⋆ ∈ Dp
max denotes the unique solution of (λI −Cεp)v = g in Lp(Rd,CN ) and

the λ-independent constants C7, C8 are given by Lemma 4.8 (with ω = ω∞).

Proof. 1. First, let us show that there exists a unique solution v⋆ of (λI−Cεp)v = g

in Lp(Rd,CN) with v⋆ ∈ Dp
max. Therefore, note that since θ is nondecreasing we

have Lpθ(R
d,CN ) ⊂ Lp(Rd,CN ) and hence g ∈ Lp(Rd,CN). Using

Reλ > −b0
3

= −2

3
b0 +

b0
3

> −2

3
b0 +M∞ ‖Qε‖L∞ > ω∞ +M∞ ‖Qε‖L∞

the statement follows directly from Corollary 7.5 (with Q = Qε and C∞ = Cε∞).
Moreover, v⋆ satisfies the integral expression

v⋆ =

∫

Rd

∫ ∞

0

e−λsH∞(·, ξ, s)ds (g(ξ) +Qε(ξ)v⋆(ξ)) dξ.(7.7)

2. In order to ’apply’ Theorem 6.9 (with g = g −Qεv⋆) we have to check that the
assumptions are satisfied. Indeed, since ω∞ = −b0 < 0 by (A8B) we have

Reλ > −b0
3

=
ω∞

3
> ω∞

and from Reλ > − b0
3 it follows

0 6 η2 6 ϑ
2

3

a0b0
a2maxp

2
=ϑ

a0b0
a2maxp

2
+ ϑ

a0
a2maxp

2

(

−b0
3

)

6ϑ
a0(Reλ+ b0)

a2maxp
2

= ϑ
a0(Reλ− ω∞)

a2maxp
2

.

Moreover, by step 1, v⋆ ∈ Dp
max is the unique solution of

(λI − L∞) v⋆ = (λI −Bp) v⋆ = g −Qεv⋆

in Lp(Rd,CN ). Note that for the moment we don’t know if g−Qεv⋆ ∈ Lpθ(R
d,CN)

and consequently, we cannot apply Theorem 6.9 directly. Nevertheless, the in-
equalities (6.11) and (6.12) hold with g − Qεv⋆ instead of g. To accept this, one
can replicate the proof of the inequalities using the representation (7.7) instead of
(6.13). Thus (6.11) implies

‖v⋆‖Lp

θ
6

C7

Reλ− ω∞
‖g −Qεv⋆‖Lp

θ
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6
C7

Reλ+ b0

(

‖g‖Lp

θ
+ ‖Qε‖L∞ ‖v⋆‖Lp

θ

)

6
C7

Reλ+ b0
‖g‖Lp

θ
+

b0
3

Reλ+ b0
‖v⋆‖Lp

θ

Subtracting the second term from both hand sides
(

Reλ+ 2b0
3

Reλ+ b0

)

‖v⋆‖Lp
θ
6

C7

Reλ+ b0
‖g‖Lp

θ

and dividing by the coefficient of ‖v⋆‖Lp

θ
yields (7.5). Furthermore, (7.6) can be

deduced from the inequalities (6.12) and (7.5) for every i = 1, . . . , d

‖Div⋆‖Lp
θ
6

C8

(Reλ− ω∞)
1
2

‖g −Qεv⋆‖Lp
θ

6
C8

(Reλ+ b0)
1
2

(

‖g‖Lp

θ
+ ‖Qε‖L∞ ‖v⋆‖Lp

θ

)

6
C8

(Reλ+ b0)
1
2

(

‖g‖Lp

θ
+

b0
3C7

C7

Reλ+ 2b0
3

‖g‖Lp

θ

)

=
C8

(
Reλ+ 2b0

3

) 1
2

(

Reλ+ b0

Reλ+ 2b0
3

) 1
2

‖g‖Lp
θ

6

√
2C8

(
Reλ+ 2b0

3

) 1
2

‖g‖Lp
θ
.

For the last inequality we used Reλ 6 − b0
3 and

Reλ+ b0

Reλ+ 2b0
3

= 1+
b0
3

Reλ+ 2b0
3

6 2.

This shows that v⋆ ∈ W 1,p
θ (Rd,CN ). �

7.4. Exponential decay for relatively compact perturbations. Let us con-
sider the operator

[LQφ] (x) := [LQε
φ] (x) +Qc(x)φ(x)

= [L∞φ] (x) +Q(x)φ(x), φ ∈ S
with Q ∈ L∞(Rd,CN,N) such that Q = Qε + Qc with a small perturbation
Qε ∈ L∞(Rd,CN,N) and a compact perturbation Qc ∈ L∞(Rd,CN,N). LQ can
be understood as a compact perturbation of LQε

or - with Q = Qε + Qc - as a
relatively compact perturbation of L∞. In this subsection we want to apply the
theory from subsection 7.1 with Q = Qε+Qc. Thus, in this subsection Cp denotes
the maximal realization of LQ.
Theorem 7.11 (A-priori estimates in Lpθ(R

d,CN )). Let the assumptions (A1),
(A2), (A3), (A4), (A7B) and (A8B) be satisfied for 1 < p < ∞ and K = C.
Moreover, let 0 < ϑ < 1, Q ∈ L∞(Rd,CN,N) satisfy

ess sup
|x|>R0

|Q(x)|2 6
b0
3
min

{
1

C7
,

1

M∞

}

(7.8)

for some R0 > 0, λ ∈ C with Reλ > − b0
3 and let v⋆ ∈ Dp

max denote a solution

of (λI − LQ) v = 0 in Lp(Rd,CN ). Then we have v⋆ ∈ W 1,p
θ (Rd,CN ) for every

radially nondecreasing weight function θ ∈ C(Rd,R) of exponential growth rate

η > 0 with 0 6 η2 6 ϑ 2
3

a0b0
a2maxp

2 .
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Proof. 1. For positive real R choose a C∞ cut-off function χR : [0,∞[→ [0, 1] with

χR(r) =







0 , r 6 R

smooth , R 6 r 6 2R

1 , r > 2R

.

We decompose Q as follows

Q(x) = χR0(|x|)Q(x) + (1− χR0(|x|))Q(x) =: Qε(x) +Qc(x),

where R0 > 0 comes from (7.8).
2. Since Q ∈ L∞(Rd,CN,N) and χR (|·|) ∈ Cb(R

d, [0, 1]) we conclude that Qε, Qc ∈
L∞(Rd,CN,N). Moreover, Qc is compactly supported because Qc(x) = 0 for every
|x| > 2R0 and Qε is bounded by

‖Qε‖L∞(Rd,CN,N) = ‖χR0(|·|)Q(·)‖L∞(Rd,CN,N )

= ‖χR0(|·|)Q(·)‖L∞(Rd\BR0 ,C
N,N)

6 ‖χR0(|·|)‖Cb(Rd\BR0 ,[0,1])
‖Q(·)‖L∞(Rd\BR0 ,C

N,N )

6
b0
3
min

{
1

C7
,

1

M∞

}

.

3. Let λ ∈ C with Reλ > − b0
3 and let v⋆ ∈ Dp

max denote a solution of (λI − LQ) v =

0 in Lp(Rd,CN ), i.e.
(
λI − Cεp

)
v⋆ = (λI − LQε

) v⋆ = Qcv⋆, in L
p(Rd,CN ).(7.9)

Now, let θ ∈ C(Rd,R) be a radially nondecreasing weight function of exponential

growth rate η > 0 with 0 6 η2 6 ϑ 2
3

a0b0
a2maxp

2 and let us consider the problem
(
λI − Cεp

)
u⋆ = Qcv⋆, in L

p
θ(R

d,CN ).(7.10)

Our aim is to show by Corollary 7.5 that u⋆ = v⋆ (in Lp(Rd,CN )) is the unique

solution of (7.10) in Lp(Rd,CN) and by Theorem 7.10 that u⋆ ∈W 1,p
θ (Rd,CN ).

4. First we consider the case θ ≡ 1 (with η = 0). Defining w⋆ := u⋆ − v⋆ we obtain
by substracting (7.9) from (7.10)

(
λI − Cεp

)
w⋆ = 0, in Lp(Rd,CN ).(7.11)

Since Qε ∈ L∞(Rd,CN,N) and λ ∈ C satisfies

Reλ > −b0
3

= −2

3
b0 +

b0
3

> −2

3
b0 +M∞ ‖Qε‖L∞ > ω∞ +M∞ ‖Qε‖L∞ ,

where we used the bound from step 2, we can apply Corollary 7.5 (with Q = Qε
and g = 0) that yields a unique solution w⋆ ∈ Dp

max of (7.11), which satisfies
‖w⋆‖Lp = 0, i.e. u⋆ = v⋆ in Lp(Rd,CN ). Since v⋆, w⋆ ∈ Dp

max and since Dp
max is a

closed subspace of Lp(Rd,CN ), we deduce u⋆ = w⋆ + v⋆ ∈ Dp
max. Moreover, since

w⋆ is the unique solution of (7.11), we conclude that u⋆ = v⋆ is the unique solution
of (7.10).
5. Finally, we consider equation (7.10) in Lpθ(R

d,CN ). In order to apply Theorem
7.10, we have to check that the assumptions are satisfied. Indeed, we have 0 6

η2 6 ϑ 2
3

a0b0
a2maxp

2 , Qε ∈ L∞(Rd,CN,N) with ‖Qε‖L∞(Rd,CN,N ) 6 b0
3 min

{
1
C7
, 1
M∞

}

(compare stap 2) and Reλ > − b0
3 . Furthermore, since v⋆ ∈ Dp

max ⊂ Lp(Rd,CN)
and Qc is compactly supported in B2R0(0) it holds

‖Qcv⋆‖Lp
θ
(Rd,CN ) = ‖θQcv⋆‖Lp(Rd,CN ) = ‖θQcv⋆‖Lp(B2R0 ,C

N )

6 ‖θ‖Cb(B2R0 ,R)
‖Qc‖L∞(B2R0 ,C

N,N ) ‖v⋆‖Lp(B2R0 ,C
N )

62 ‖θ‖Cb(B2R0 ,R)
‖Q‖L∞(Rd,CN,N) ‖v⋆‖Lp(Rd,CN )
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=Cθ,Q,R0 ‖v⋆‖Lp(Rd,CN )

i.e. Qcv⋆ ∈ Lpθ(R
d,CN ). Since u⋆ ∈ Dp

max is the unique solution of (7.10), we can

apply Theorem 7.10 that implies u⋆ ∈ W 1,p
θ (Rd,CN). Since u⋆ = v⋆ in Lp(Rd,CN)

(‖w⋆‖Lp = 0 by step 3) and u⋆ ∈ Lpθ(R
d,CN ) ⊂ Lp(Rd,CN ), we conclude that

v⋆ ∈ W 1,p
θ (Rd,CN ) as well. �

Remark. From (7.5), (7.6) and the estimate from step 4 we can deduce

‖v⋆‖Lp
θ
(Rd,CN ) 6

C7Cθ,Q,R0

Reλ+ 2b0
3

‖v⋆‖Lp(Rd,CN ) ,

‖Div⋆‖Lp
θ
(Rd,CN ) 6

√
2C8Cθ,Q,R0

(
Reλ+ 2b0

3

) 1
2

‖v⋆‖Lp(Rd,CN ) , i = 1, . . . , d,

where the constants C7, C8 are from Lemma 4.8 (with ω = ω∞).

8. The nonlinear problem and complex Ornstein-Uhlenbeck

operators

8.1. Proof of main theorem. In this section we investigate the nonlinear problem

[L0v] (x) + f(v(x)) := A△v(x) + 〈Sx,∇v(x)〉 + f(v(x)) = 0, x ∈ Rd, d > 2.

We are now able to prove our main result from Theorem 1.7:

Proof. Let 0 < ϑ < 1 be fixed, 1 < p < ∞ and θ ∈ C(Rd,R) be a radially
nondecreasing weight function of exponential growth rate η > 0 with 0 6 η2 6

ϑ 2
3

a0b0
a2maxp

2 , where amax, a0 and b0 are from (1.7).

1. Let v⋆ denote a classical solution of (1.9) satisfying v⋆ − v∞ ∈ Lp(Rd,RN ) and
(1.8). From Taylor’s theorem, (A5) and (A6) we obtain

f(v⋆(x)) = f(v∞)
︸ ︷︷ ︸

=0

+Df(v∞)
︸ ︷︷ ︸

=:−B

(v⋆(x)− v∞)

+

∫ 1

0

(Df(v∞ + t(v⋆(x) − v∞))−Df(v∞)) dt

︸ ︷︷ ︸

=:Q(x)

(v⋆(x)− v∞)

=−B (v⋆(x)− v∞) +Q(x) (v⋆(x)− v∞) .

2. Defining w⋆ := v⋆ − v∞ then w⋆ ∈ C2(Rd,RN )∩Cb(Rd,RN )∩Lp(Rd,RN ) since
v⋆ is a classical solution of (1.1) and v⋆ − v∞ ∈ Lp(Rd,RN ), and we obtain

0 =A△v⋆(x) + 〈Sx,∇v⋆(x)〉 + f(v⋆(x))

=A△ (v⋆(x) − v∞) + 〈Sx,∇ (v⋆(x) − v∞)〉
−B (v⋆(x)− v∞) +Q(x) (v⋆(x)− v∞)

=A△w⋆(x) + 〈Sx,∇w⋆(x)〉 −Bw⋆(x) +Q(x)w⋆(x) = [LQw⋆] (x).

3. In order to apply Theorem 7.11 (with λ = 0) we have to check, that the
assumptions are satisfied. The assumptions (A1), (A2), (A3) and (A4) are directly
satisfied, (A7B) follows from (A7) and (A8B) follows from (A8), by definition of B.
To verify (7.8), let us choose K1 = K1(A, f, v∞, d, p, θ, ϑ) > 0 such that

K1

(

sup
z∈BK1 (v∞)

∣
∣D2f(z)

∣
∣
2

)

6
b0
3
min

{
1

C7
,

1

M∞

}
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is satisfied, where C7 = C7(A, d, p, θ, ϑ) is from Lemma 4.8, M∞ =M∞(A, d) from
(6.9), b0 = b0(f, v∞) from (1.7) and

∣
∣D2f(z)

∣
∣
2
:=
∥
∥D2f(z)

∥
∥
L(RN ,RN,N )

:= sup
v∈RN

|v|=1

∣
∣D2f(z)v

∣
∣
2
.

Using the fundamental theorem of calculus, (A5), (1.9) and the choice of K1 we
obtain for every |x| > R0

|Q(x)|2

=

∣
∣
∣
∣

∫ 1

0

Df(v∞ + tw⋆(x)) −Df(v∞)dt

∣
∣
∣
∣
2

=

∣
∣
∣
∣

∫ 1

0

∫ 1

0

D2f(v∞ + s(v∞ + tw⋆(x) − v∞))ds(v∞ + tw⋆(x) − v∞)dt

∣
∣
∣
∣
2

=

∣
∣
∣
∣

∫ 1

0

∫ 1

0

D2f(v∞ + stw⋆(x))ds · tw⋆(x)dt
∣
∣
∣
∣
2

6

∫ 1

0

∫ 1

0

sup
|x|>R0

∣
∣D2f(v∞ + st(v⋆(x) − v∞))

∣
∣
2
ds · t |v⋆(x) − v∞| dt

6K1

(

sup
z∈BK1 (v∞)

∣
∣D2f(z)

∣
∣
2

)

6
b0
3
min

{
1

C7
,

1

M∞

}

.

Taking the suprema over |x| > R0 yields

sup
|x|>R0

|Q(x)|2 6
b0
3
min

{
1

C7
,

1

M∞

}

.

4. To verify Q ∈ L∞(Rd,CN,N), note that w⋆ ∈ Cb(R
d,RN ). Hence, we have for

every x ∈ Rd and 0 6 t 6 1

|v∞ + tw⋆(x)| 6 |v∞|+ t |w⋆(x)| 6 |v∞|+ ‖w⋆‖∞ =: R1 = R1(v∞, v⋆).

This implies by (A5) for every x ∈ Rd

|Q(x)|2 6

∫ 1

0

|Df(v∞ + tw⋆(x))|2 + |Df(v∞)|2 dt

6 sup
z∈BR1(0)

|Df(z)|2 + |Df(v∞)|2 ,

which is of course finite by the continuity of Df on compact sets. Taking the
suprema over x ∈ Rd we obtainQ ∈ Cb(R

d,RN,N), thusQ belongs to L∞(Rd,CN,N)
5. Next we verify that w⋆ ∈ Dp

max. By assumption we know that w⋆ = v⋆ − v∞ ∈
Lp(Rd,RN ) and w⋆ ∈ W 2,p

loc (R
d,RN ) since w⋆ ∈ C2(Rd,RN ). It remains to prove

that L0w⋆ ∈ Lp(Rd,RN ): Since v⋆ ∈ Cb(R
d,RN ) there exists a constant R1 > 0

such that |v⋆(x) − v∞| 6 R1 for every x ∈ Rd. From (A5) we deduce that f is
locally Lipschitz continuous, i.e. there exists L = L(R1) > 0 such that

|f(v⋆(x)) − f(v∞)| 6 L |v⋆(x) − v∞| ∀x ∈ Rd

Now, we obtain from (A6) and (1.1)

‖L0w⋆‖pLp =

∫

Rd

|[L0w⋆] (x)|p dx =

∫

Rd

|[L0v⋆] (x)|p dx

=

∫

Rd

|f(v⋆(x))|p dx =

∫

Rd

|f(v⋆(x)) − f(v∞)|p dx 6 Lp
∫

Rd

|v⋆(x) − v∞|p dx

=Lp ‖v⋆ − v∞‖pLp



82 SPATIAL DECAY OF ROTATING WAVES IN PARABOLIC SYSTEMS

Thus L0w⋆ ∈ Lp(Rd,CN ) since w⋆ = v⋆− v∞ ∈ Lp(Rd,RN ) and hence w⋆ ∈ Dp
max.

Moreover, we have the equality LQw⋆ = 0 in Lp(Rd,RN ): Since w⋆ ∈ Dp
max we have

LQw⋆ ∈ Lp(Rd,RN) and since w⋆ ∈ C2(Rd,RN ) satisfies [LQw⋆] (x) = 0 for every
x ∈ Rd we obtain LQw⋆ = 0 in Lp(Rd,RN ). Now, we can deduce from Theorem

7.11 that v⋆ − v∞ = w⋆ ∈W 1,p
θ (Rd,RN ). �

8.2. Application to complex-valued systems. Next we apply Theorem 1.7 to
complex systems

A△v(x) + 〈Sx,∇v(x)〉 + f(v(x)) = 0,

whose nonlinearities are of the form

f : CN → CN , f(u) = g
(
|u|2
)
u,

where g : R → CN,N is a sufficiently smooth function with some additional proper-
ties. More precisely, we prove the following:

Corollary 8.1. Let the assumptions (A1)–(A4) be satisfied for 1 < p < ∞ and
K = C. Moreover, let g ∈ C2(R,CN,N) such that, g(0) is diagonalizable (over C),
g(0)A = Ag(0), σ(g(0)) ⊂ C− and define

f : CN → CN , f(u) = g
(
|u|2
)
u.

Then for every 0 < ϑ < 1 and for every radially nondecreasing weight function
θ ∈ C(Rd,R) of exponential growth rate η > 0 with

0 6 η2 6 ϑ
2

3

a0b0
a2maxp

2

with amax, a0 from (1.7), b0 = −s(g(0)), there exists a constantK1 = K1(A, g, d, p, θ, ϑ) >
0 with the following property:
Every classical solution v⋆ of

A△v(x) + 〈Sx,∇v(x)〉 + f(v(x)) = 0, x ∈ Rd,(8.1)

such that v⋆ ∈ Lp(Rd,CN ) and

sup
|x|>R0

|v⋆(x)| 6 K1 for some R0 > 0(8.2)

satisfies

v⋆ ∈ W 1,p
θ (Rd,CN ).

Proof. 1. We transform the N -dimensional complex-valued system (8.1) into the
coupled 2N -dimensional real-valued system

AR△vR(x) + 〈Sx,∇vR(x)〉+ fR(vR(x)) = 0, x ∈ Rd,(8.3)

where A = A1 + iA2 with A1, A2 ∈ RN,N , v = v1 + iv2 with v1, v2 : Rd → RN ,
f1, f2 : R2N → RN with f1(u1, u2) = Re f(u1+iu2) and f2(u1, u2) = Im f(u1+iu2),
g = g1 + ig2 with g1, g2 : R → R,

AR :=

(
A1 −A2

A2 A1

)

, vR :=

(
v1
v2

)

and fR :=

(
f1
f2

)

=

(
g1v1 − g2v2
g1v2 + g2v1

)

.

2. In order to apply Theorem 1.7 to the 2N -dimensional problem (8.3), we have to
check, that the assumptions (A1)–(A8) are satisfied for K = R: First note, that

λ ∈ σ(A) ⇐⇒ λ, λ ∈ σ(AR)(8.4)

Y −1AY = ΛA ⇐⇒
(
iY Y
Y −iY

)

AR

(
iY Y
Y −iY

)−1

=

(
ΛA 0
0 ΛA

)

(8.5)
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Since A satisfies (A1) we deduce that AR satisfies (A1) by (8.5). Analogously, since
A satisfies (A2) and (A3) we deduce that AR satisfies (A2) and (A3) by (8.4) and
by the symmetry of the sector σp with respect to the real-axis. The condition (A4)
is directly satisfied. Since g ∈ C2(R,C) the assumption (A5) is clearly satisfied.
Choosing v∞ = 0 ∈ R2N , condition (A6) is satisfied, i.e. fR(v∞) = 0, by definition
of fR. Since

DfR(0) =

(
g1(0) −g2(0)
g2(0) g1(0)

)

and since g(0) is diagonalizable (over C) we conclude (8.5) that DfR(0) is diago-
nalizable (over C). Since A and g(0) commute, we deduce that also AR and DfR(0)
commute. Thus, AR and DfR(0) are simultaneously diagonalizable (over C) and
assumption (A7) is satisfied. Finally, since σ(g(0)) ⊂ C− we deduce by (8.4) that
σ(DfR(0)) ⊂ C−, i.e. assumption (A8) is also satisfied.
3. Let 0 < ϑ < 1 be fixed, 1 < p <∞ and θ ∈ C(Rd,R) be a radially nondecreasing
weight function of exponential growth rate η > 0 with 0 6 η2 6 ϑ 2

3
a0b0
a2maxp

2 , where

amax, a0 and b0 are from (1.7) with AR and DfR(0) instead of A and Df(v∞).
Moreover, let v⋆ be a classical solution of (8.1) satisfying v⋆ ∈ Lp(Rd,CN ) and
(8.2). Then the function

vR,⋆ :=

(
Re v⋆
Im v⋆

)

is a classical solution of (8.3), which also satisfies vR,⋆ ∈ Lp(Rd,R2N) and (8.2)

since |v⋆(x)| = |vR,⋆(x)|. Applying Theorem 1.7 we obtain vR,⋆ ∈ W 1,p
θ (Rd,R2N)

and thus v⋆ ∈ W 1,p
θ (Rd,CN ). �

8.3. Eigenfunctions of the linearized problem. In this section we consider the
linearized operator

[Lv] (x) := A△v(x) + 〈Sx,∇v(x)〉 +Df(v⋆(x))v(x)(8.6)

under the conditions of Theorem 1.7 and we will analyze the corresponding eigen-
value problem

[Lv] (x) = λv(x), x ∈ Rd,(8.7)

with λ ∈ C.

Definition 8.2. A function v : Rd → CN is called a classical solution of (8.7) if

v ∈ C2(Rd,CN )(8.8)

and v solves (8.7) pointwise.

Theorem 8.3 (Eigenfunctions of L with eigenvalues on the imaginary axis). Let
the assumptions (A1), (A2), (A3), (A4) and (A5) be satisfied for 1 < p < ∞ and
K = R. Moreover, let v⋆ ∈ C3(Rd,CN ) be a classical solution of (1.8). Then the
following assertions hold:
(1) The function

v(x) = 〈Sx,∇v⋆(x)〉
solves Lv = 0 in the classical sense, i.e. v is an eigenfunction of L with eigenvalue
λ = 0.
(2) Let (w, µ) ∈ R2d×R denote a solution of the 2d-dimensional eigenvalue problem

(
0 ST

S 0

)

w = µw.(8.9)
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The functions

v(x) =
d∑

j=1

wjDjv⋆(x) + i
d∑

j=1

wj+dDjv⋆(x)(8.10)

solve Lv = iµv in the classical sense, i.e. v is an eigenfunction of L with eigenvalue
λ = iµ.

Proof. (1): Using (A4) and v⋆ ∈ C3(Rd,RN ) we deduce that the operatorsA△v⋆(x)
and 〈Sx,∇v(x)〉 commute, i.e.

A△ (〈Sx,∇v⋆(x)〉)

=A

d∑

k=1

D2
k





d∑

i=1

d∑

j=1

SijxjDiv⋆(x)





=A

d∑

i=1

d∑

j=1

d∑

k=1

D2
k (SijxjDiv⋆(x))

=A

d∑

i=1

d∑

j=1

d∑

k=1

Dk (Sij (Dkxj)Div⋆(x) + SijxjDkDiv⋆(x))

=A
d∑

i=1

d∑

j=1

d∑

k=1

(

Sij
(
D2
kxj
)

︸ ︷︷ ︸

=0

Div⋆(x) + 2Sij (Dkxj)
︸ ︷︷ ︸

=δjk

DkDiv⋆(x) + SijxjD
2
kDiv⋆(x)

)

=A

d∑

j=1

d∑

i=1

SjiDjDiv⋆(x) +A

d∑

j=1

d∑

i=1

SjiDjDiv⋆(x) +A

d∑

i=1

d∑

j=1

d∑

k=1

SijxjDiD
2
kv⋆(x)

=A

d∑

i=1

d∑

j=1

(Sij + Sji)
︸ ︷︷ ︸

=0

DjDiv⋆(x) +

d∑

i=1

d∑

j=1

SijxjDi

(

A

d∑

k=1

D2
kv⋆(x)

)

= 〈Sx,∇ (A△v⋆(x))〉 .
This fact was already mentioned in [42, Remark 5.2] for the scalar real-valued case
and in [17, Proof of Lemma 2.3] for the complex-valued case in 2 space dimensions
with polar coordinates. In particular, we conclude from (A5) and v⋆ ∈ C1(Rd,RN)

〈Sx,∇ (f(v⋆(x)))〉 =
d∑

i=1

d∑

j=1

SijxjDi (f(v⋆(x)))

=

d∑

i=1

d∑

j=1

SijxjDf(v⋆(x))Div⋆(x)

=Df(v⋆(x)) 〈Sx,∇v⋆(x)〉 .
To verify that v(x) = 〈Sx,∇v⋆(x)〉 is a eigenfunction of L with eigenvalue λ = 0
we multiply (1.1) from left by SijxjDi and sum this equation for both i and j from
1 to d

0 = 〈Sx,∇ (A△v⋆(x) + 〈Sx,∇v⋆(x)〉 + f(v⋆(x))))

= 〈Sx,∇ (A△v⋆(x))〉+ 〈Sx,∇ (〈Sx,∇v⋆(x)〉)〉+ 〈Sx,∇ (f(v⋆(x)))〉
= A△ (〈Sx,∇v⋆(x)〉) + 〈Sx,∇ (〈Sx,∇v⋆(x)〉)〉+Df(v⋆(x)) 〈Sx,∇v⋆(x)〉
= L 〈Sx,∇v⋆(x)〉 .

(2): Applying Dk to (1.1) for every k = 1, . . . , d yields

0 =Dk (A△v⋆(x) + 〈Sx,∇v⋆(x)〉 + f(v⋆(x)))
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=A△ (Dkv⋆(x)) +

d∑

i=1

d∑

j=1

[

Sij (Dkxj)
︸ ︷︷ ︸

δjk

Div⋆(x) + SijxjDiDkv⋆(x)

]

+Df(v⋆(x))Dkv⋆(x)

=A△ (Dkv⋆(x)) + 〈Sx,∇Dkv⋆(x)〉 +Df(v⋆(x))Dkv⋆(x) +

d∑

i=1

SikDiv⋆(x)

=LDkv⋆(x) +

d∑

i=1

SikDiv⋆(x).

To find the eigenfunctions v of the eigenvalue problem (8.7) with corresponding
eigenvalues λ = iµ on the imaginary axis, i.e. µ ∈ R, we put the ansatz (8.10) into
(8.7)

i





d∑

j=1

µwjDjv⋆(x) + i

d∑

j=1

µwj+dDjv⋆(x)





=iµv(x) = Lv(x)

=

d∑

j=1

wjLDjv⋆(x) + i

d∑

j=1

wj+dLDjv⋆(x)

=

d∑

j=1

wj

(

−
d∑

i=1

SijDiv⋆(x)

)

+ i

d∑

j=1

wj+d

(

−
d∑

i=1

SijDiv⋆(x)

)

=i





d∑

i=1



−
d∑

j=1

wj+dSij



Div⋆(x) + i

d∑

i=1





d∑

j=1

wjSij



Div⋆(x)





=i





d∑

j=1

(

−
d∑

k=1

wk+dSjk

)

Djv⋆(x) + i

d∑

j=1

(
d∑

k=1

wkSjk

)

Djv⋆(x)





that leads us to the equations

µwj = −
d∑

k=1

wk+dSjk , j = 1, . . . , d,

µwj+d =
d∑

k=1

wkSjk , j = 1, . . . , d,

which can be formulated as the 2d-dimensional eigenvalue problem (8.9). Finding
real eigenvalues µ and eigenvectors w ∈ R2d of this finite dimensional eigenvalue
problem will give us directly the eigenvalues λ = iµ on the imaginary axis and the
corresponding eigenfunctions v from (8.10) for the eigenvalue problem (8.7). �

Remark. (1) By assumption (A4) the matrix

(
0 ST

S 0

)

is real and symmet-

ric. Hence the correspondig eigenvalues µ for the eigenvalue problem (8.9) are real.
Moreover, every eigenvalue µ of (8.9) has algebraic and geometric multiplicity 2.
Since every eigenvalue µ has geometric multiplicity 2, they admit exactly two lin-
early independent eigenvectors w1, w2 ∈ R2d. This two eigenvectors generate two
linearly dependent eigenfunctions v1, v2 of (8.7). For odd space dimensions d the
eigenvalue problem (8.9) admits the eigenvalue µ = 0 and the resulting eigenfunc-
tion v of (8.7) differs from the eigenfunction from (1) in Theorem 8.3, since the
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eigenfunction from (1) has unbounded coefficients. For even space dimensions the
eigenvalue µ = 0 does never appears for the eigenvalue problem (8.9). Thus, asser-
tion (2) in Theorem 8.3 provides us d pairwise different eigenvalues λ = iµ ∈ iR
(see Figure 8.3) and their associated eigenfunctions v.

Figure 8.1. Eigenvalues λ = iµ ∈ iR of L on the imaginary axis
given by Theorem 8.3 (2) for d = 2 (left) to d = 6 (right)

(2) Consider the coupled eigenvalue problem (8.9) with w = (w1,W2)
T ∈ R2d and

µ ∈ R, i.e.

STw2 = µw1

Sw1 = µw2

To decouple (8.9) we must distinguish between the case µ = 0 (which appears if
the space dimension d is odd) and µ 6= 0.
Case 1: (µ = 0). In this case we have

−Sw2 = STw2 = Sw1 ⇒ Sz := S(w1 + w2) = 0

and hence, we can choose w1, w2 such that z = w1 + w2, where z ∈ Rd solves
Sz = 0.
Case 2: (µ 6= 0). In this case we have

µw1 = STw2 = ST
(
1

µ
Sw1

)

=
1

µ
STSw1

Let (µ2, w1) be a solution of STSw1 = µ2w1 and let w2 := 1
µ
Sw1, then (µ,w1, w2)

solves (8.9). Since STS ∈ Rd,d is a real and symmetric, the corresponding eigen-
values µ2 are real.

Example 8.4. In the two dimensional case, i.e. d = 2, the eigenvalue problem
(8.9) admits the solutions

µ1 = +S12, e1 =
(
−1 0 0 1

)T
,
(
0 1 1 0

)T
,

µ2 = −S12, e2 =
(
1 0 0 1

)T
,
(
0 −1 1 0

)T
.

By (8.10) this yields the following eigenfunctions and eigenvalues of the operator L
λ1 = +iS12, v1(x) = −D1v⋆(x) + iD2v⋆(x),

λ1 = +iS12, v2(x) = D2v⋆(x) + iD1v⋆(x),

λ2 = −iS12, v3(x) = D1v⋆(x) + iD2v⋆(x),

λ2 = −iS12, v4(x) = −D2v⋆(x) + iD1v⋆(x).

Note that v1(x) = iv2(x) and v3(x) = iv4(x). Hence, v1, v2 and v3, v4 are linearly
dependent, respectively. Thus we have (see [17, Lemma 2.3] for the case d = 2)

λ = 0, v(x) =S12 (x2D1v⋆(x)− x1D2v⋆(x)) ,

λ = ±iS12, v(x) =D1v⋆(x)∓ iD2v⋆(x).
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Example 8.5. In the three dimensional case, i.e. d = 3, the eigenvalue problem
(8.9) admits the solutions

µ1 = 0, e1 =
(
0 0 0 S23 −S13 S12

)T
,

(
S23 −S13 S12 0 0 0

)T
,

µ2 = +E, e2 =
(
−S13S23 −(S2

12 + S2
23) −S12S13 −ES12 0 ES23

)T
,

(
−S12S23 S12S13 S2

13 + S2
23 ES13 ES23 0

)T
,

µ3 = −E, e3 =
(
S13S23 S2

12 + S2
23 S12S13 −ES12 0 ES23

)T
,

(
S12S23 −S12S13 −(S2

13 + S2
23) ES13 ES23 0

)T
.

where E :=
√
−STS =

√

S2
12 + S2

13 + S2
23 denotes the length of the angular velocity

vector. By (8.10) this yields the following eigenfunctions and eigenvalues of the
operator L

λ1 = 0, v1(x) =i (S23D1v⋆(x) − S13D2v⋆(x) + S12D3v⋆(x)) ,

λ1 = 0, v2(x) =S23D1v⋆(x)− S13D2v⋆(x) + S12D3v⋆(x),

λ2 = +iE, v3(x) = − S13S23D1v⋆(x) − (S2
12 + S2

23)D2v⋆(x)− S12S13D3v⋆(x)

+ i (−ES12D1v⋆(x) + ES23D3v⋆(x)) ,

λ2 = +iE, v4(x) = − S12S23D1v⋆(x) + S12S13D2v⋆(x) + (S2
13 + S2

23)D3v⋆(x)

+ i (ES13D1v⋆(x) + ES23D2v⋆(x)) ,

λ2 = −iE, v5(x) =S13S23D1v⋆(x) + (S2
12 + S2

23)D2v⋆(x) + S12S13D3v⋆(x)

+ i (−ES12D1v⋆(x) + ES23D3v⋆(x)) ,

λ2 = −iE, v6(x) =S12S23D1v⋆(x)− S12S13D2v⋆(x) − (S2
13 + S2

23)D3v⋆(x)

+ i (ES13D1v⋆(x) + ES23D2v⋆(x)) .

Note that v1, v2 as well as v3, v4 and v5, v6 are linearly dependent. Thus we have

λ = 0, v(x) =S12 (x2D1v⋆(x) − x1D2v⋆(x))

+ S13 (x3D1v⋆(x)− x1D3v⋆(x))

+ S23 (x3D2v⋆(x)− x2D3v⋆(x)) ,

λ = 0, v(x) =S23D1v⋆(x)− S13D2v⋆(x) + S12D3v⋆(x),

λ = ±iE, v(x) =±
(
−S12S23D1v⋆(x) + S12S13D2v⋆(x) + (S2

13 + S2
23)D3v⋆(x)

)

+ i (ES13D1v⋆(x) + ES23D2v⋆(x)) .

Theorem 8.6 (Exponential decay of eigenfunctions). Let the assumptions
(A1)–(A8) be satisfied for 1 < p < ∞ and K = R. Then for every 0 < ϑ < 1
and for every radially nondecreasing weight function θ ∈ C(Rd,R) of exponential
growth rate η > 0 with

0 6 η2 6 ϑ
2

3

a0b0
a2maxp

2

with amax, a0, b0 from (1.7), there exists a constantK1 = K1(A, f, v∞, d, p, θ, ϑ) > 0
with the following property:
Given a classical solution v⋆ of (1.8) such that v⋆ − v∞ ∈ Lp(Rd,RN ) and (1.9)
hold. Then every classical solution v ∈ Lp(Rd,CN ) of the eigenvalue problem

A△v(x) + 〈Sx,∇v(x)〉 +Df(v⋆(x))v(x) = λv(x), x ∈ Rd,(8.11)
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with λ ∈ C and Reλ > b0
3 satisfies

v ∈W 1,p
θ (Rd,CN ).

Proof. Let 0 < ϑ < 1 be fixed, 1 < p < ∞ and θ ∈ C(Rd,R) be a radially
nondecreasing weight function of exponential growth rate η > 0 with 0 6 η2 6

ϑ 2
3

a0b0
a2maxp

2 , where amax, a0 and b0 are from (1.7).

1. Let v be a classical solution of (8.7) with v ∈ Lp(Rd,RN ), then we can write
(8.7) as

0 = λv(x) − [Lv] (x)
= λv(x) − (A△v(x) + 〈Sx,∇v(x)〉 +Df(v∞)v(x) + (Df(v⋆(x)) −Df(v∞)) v(x))

= λv(x) − (A△v(x) + 〈Sx,∇v(x)〉 −Bv(x) +Q(x)v(x))

= (λI − LQ) v(x)
where B := −Df(v∞) and Q(x) := Df(v⋆(x)) −Df(v∞).
2. In order to apply Theorem 7.11 we have to check, that the assumptions are
satisfied. Assumptions (A1), (A2), (A3) and (A4) are directly satisfied, (A7B)
follows from (A7) and (A8B) follows from (A8), by definition of B. To verify (7.8),
let us choose K1 = K1(A, f, v∞, d, p, θ, ϑ) > 0 (as in Theorem 1.7) such that

K1

(

sup
z∈BK1 (v∞)

∣
∣D2f(z)

∣
∣
2

)

6
b0
3
min

{
1

C7
,

1

M∞

}

is satisfied, where C7 = C7(A, d, p, θ, ϑ) is from Lemma 4.8, M∞ =M∞(A, d) from
(6.9), b0 = b0(f, v∞) from (1.7) and

∣
∣D2f(z)

∣
∣
2
:=
∥
∥D2f(z)

∥
∥
L(RN ,RN,N )

:= sup
v∈RN

|v|=1

∣
∣D2f(z)v

∣
∣
2
.

Using the fundamental theorem of calculus, (A5), (1.9) and the choice of K1 we
obtain for every |x| > R0

|Q(x)|2
= |Df(v⋆(x)) −Df(v∞)|2

=

∣
∣
∣
∣

∫ 1

0

D2f(v∞ + s(v⋆(x)− v∞))ds(v⋆(x) − v∞)

∣
∣
∣
∣
2

6

∫ 1

0

∣
∣D2f(v∞ + s(v⋆(x)− v∞))

∣
∣
2
ds |v⋆(x) − v∞|

6

∫ 1

0

(

sup
|x|>R0

∣
∣D2f(v∞ + s(v⋆(x)− v∞))

∣
∣
2

)

ds

(

sup
|x|>R0

|v⋆(x) − v∞|
)

6K1

(

sup
z∈BK1(v∞)

∣
∣D2f(z)

∣
∣
2

)

6
b0
3
min

{
1

C7
,

1

M∞

}

.

Taking the suprema over |x| > R0 yields

sup
|x|>R0

|Q(x)|2 6
b0
3
min

{
1

C7
,

1

M∞

}

.

3. To verify Q ∈ L∞(Rd,CN,N), note that v⋆ − v∞ ∈ Cb(R
d,RN ) since v⋆ is a

classical solution of (1.8). Thus

∃R1 > 0 : |v⋆(x)− v∞| 6 R1 ∀x ∈ Rd.

This implies by (A5) for every x ∈ Rd

|Q(x)|2 = |Df(v⋆(x)) −Df(v∞)|2
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6 sup
x∈Rd

|Df(v⋆(x))|2 + |Df(v∞)|2
6 sup
z∈BR1(0)

|Df(z)|2 + |Df(v∞)|2 ,

which is of course finite by the continuity of Df on compact sets. Taking the
suprema over x ∈ Rd we obtain Q ∈ Cb(R

d,RN,N), thus Q belongs also to Q ∈
L∞(Rd,CN,N).
4. Next we verify that v ∈ Dp

max. By assumption we know that v ∈ Lp(Rd,CN)

and v ∈ W 2,p
loc (R

d,CN ) since v ∈ C2(Rd,CN). It remains to prove that L0v ∈
Lp(Rd,CN ): From (A5) we deduce that Df is locally Lipschitz continuous, i.e.
there exists L = L(R1) > 0 such that

|Df(v⋆(x))−Df(v∞)| 6 L |v⋆(x)− v∞| ∀x ∈ Rd.

Now, we obtain from (8.11) and Hölder’s inequality

‖L0v‖Lp 6 |λ| ‖v‖Lp + |Df(v∞)| ‖v‖Lp + ‖Df(v⋆(x)) −Df(v∞)‖L∞ ‖v‖Lp

6 (|λ|+ |Df(v∞)|+ LR1) ‖v‖Lp .

Thus L0v ∈ Lp(Rd,CN ) since v ∈ Lp(Rd,CN ) and hence v ∈ Dp
max. Moreover,

we have the equality λv − LQv = 0 in Lp(Rd,CN ): Since v ∈ Dp
max we have that

LQv and thus λv − LQv belongs to Lp(Rd,CN) and since [LQv] (x) = λv(x) for
every x ∈ Rd we obtain Lv = λv in Lp(Rd,CN ). Finally, applying Theorem 7.11

we conclude that v ∈W 1,p
θ (Rd,CN ). �
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[16] W.-J. Beyn and V. Thümmler. Freezing solutions of equivariant evolution equations. SIAM

J. Appl. Dyn. Syst., 3(2):85–116 (electronic), 2004.
[17] Wolf-Jürgen Beyn and Jens Lorenz. Nonlinear stability of rotating patterns. Dyn. Partial

Differ. Equ., 5(4):349–400, 2008.



90 SPATIAL DECAY OF ROTATING WAVES IN PARABOLIC SYSTEMS
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