Stability and Computation
of Dynamic Patterns in PDEs

Wolf-Jurgen Beyn and Denny Otten and Jens Rottmann-Matthe

Abstract Nonlinear waves are a common feature in many applicatiocis as the
spread of epidemics, electric signaling in nerve cells, extltable chemical re-
actions. Mathematical models of such systems lead to tiepeiwdent PDEs of
parabolic, hyperbolic or mixed type. Common types of suckiesaare fronts and
pulses in one, rotating and spiral waves in two, and scrolleman three space
dimensions. These patterns may be viewed as relative ledaitf an equivariant
evolution equation where equivariance is caused by theracfia Lie group. Typ-
ical examples of such actions are rotations, translatiorgaage transformations.
The aim of the lectures is to give an overview of problemsteeldo the theoretical
and numerical analysis of such dynamic patterns. One miagarétical topic is to
prove nonlinear stability and relate it to linearized dlibdetermined by the spec-
tral behavior of linearized operators. The numerical pacusses on the freezing
method which uses equivariance to transform the given PREaipartial differen-
tial algebraic equation (PDAE). Solving these PDAEs getesrmnoving coordinate
systems in which the above-mentioned patterns becomersiayi
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1 Dynamics of patterns and equivariance:
traveling waves in one space dimension

The first lecture is of introductory character and servestmduce basic notions
and properties. We use the well known topic of traveling wawmkitions in order
to illustrate the topics of this course such as equivarigstedility with asymptotic
phase, spectral properties, and the associated commatiimblems. There are by
now quite a few monographs and survey articles that treatdipic and we refer to
[29],[39],[69],[60].

1.1 Traveling fronts and pulses

Consider a parabolic system in one space variable
U (X,t) = Ux(X,t) + F(U(x,t)), XER, t >0, (1)

wheref : R™ — RM is assumed to be sufficiently smooth and we look for smooth
solutionsu(x,t) € R™ x € R, t > 0. In the following we omit arguments in (1) and
simply write

U = U+ f(u), xeR, t>0. 2
Definition 1. A special solution of (2), which is of the form
u(xt) =v(x—ut), xeR, teR (3)
for someu € R and some/ TR — R™, is called araveling waveif the limits

im (&) = e, Im &) = u- (4)

exist and satisfyf (u+) = 0. The functionv: R — R™ is called theprofile of the
wave and the valug € R is called its velocity. In casa, # u_ one speaks of a
front solution and in casel, = u_ of apulse solution

Note that the wave moves to the rightif> 0 and to the leftifu < 0. In caseu =0
we have a standing wave.

Example 1 (Nagumo equatiorfjhis well known example wittm = 1 is given by
the equation

U = Uxx+U(1—u)(u—a), (5)

where 0< a < 1 is a parameter. For this equation there is a simple exfdigitula
of a traveling front due to Huxley



Dynamic Patterns in PDEs 3

_ 1 — 1
V(E)ZW,QIGR H=ﬁ<a—§)a (6)

with u;. = 1 andu_ = 0. The wave travels to the right & > % and to the left if
o< % The following Figure 1 shows the profile and the time-degemdolution
(3) for the special case = %:
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Fig. 1 Profile of the Nagumo front (left) and space-time diagramht) for a = %

1.2 Traveling waves and ODEs

Usually, both the profile and the velocity of a traveling ware unknown. Hence
the task is to find a functiomand a parametegr such thau(x,t) = v(x— ut) solves
(2). This leads to solving a second order ordinary diffae¢r@quation forv with
boundary conditions given at infinity

0=Vix+ UV + f(v), lim v(x)=uy, f(uy)=0. (7)

X—1-00

IntroducingV = (zl) = (\Y) this can be rewritten as a first order system of
2 X

dimension 2n

(z;)x =V=FVap) = (—uvzv—z f(Vl)) v Jim V(x) =V = (uoi) . (8)

Traveling pulses and fronts therefore correspontidmoclinic and heteroclinic
orbits that connect two steady statés to V, of the dynamical system (8) for a
specific value of the parametgr
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Example 2 (Nagumo equatiorfjor an illustration we return to the Nagumo equa-
tion (6), where the first order system (8) reads

(zi)x N <HV2V1(1V2 vi)(vq — a)> ’ 9)

Jm, (A= (5)- im (19) = (5): o)

Figure 2 shows the phase diagrams of the two-dimensiontrayf) for values
U< U, U=, andu > u, whereu = —%,a = 1. At the valuep = [ we have a
heteroclinic orbit connecting the two sadd(€s0) and(1,0).

8 1 12

(@-3=n<i () F=p=4i ©—4=H>H
Fig. 2 Phase diagrams of (9) far = %1 andp-values close tu = —‘/TE

We briefly discuss how to compute the profife) € R™ andu € R from

VX:F(V,u),XiTWV(x):Vi,F(Vi,u):O. (11)

Note that such connecting orbits always come in familieé/]f1) solves (11) then
so doesV (- —y),u) for any y € R. In order to eliminate this ambiguity one in-
troduces ghase conditionand solves the following boundary value problem for

(V,u)
Vi =F(V,u),xeR, WV):=(VV-V)2=0. (12)

Here the phase condition uses an initial approximationraptate function/ which
we require to have the correct limits I{mimV(x) =V, and such that the inner
product in (12) exists. In Section 2 we will motivate this ddgion and discuss al-
ternatives.

For numerical computations one chooses a bounded intéryalx_,x. ] and
then solves the following boundary value problemVoe C*(J,R™), u € R,
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VX:F(Vvu)aerv (VX‘J;V_\’]‘J)LZ(J):O (13)
P (1)(V(x:) =Vi) =0, P (u)(V(x)—V_)=0. (14)

The most common choice for the boundary operaarareprojection boundary
conditions which require the endpoin(x_) to lie in the linear approximation of
the unstable manifold af_ andV(x;) to lie in the linear approximation of the
stable manifold a¥/, , see Figure 3. Concretely, one chooBgs= P, (i) € R™*M

of maximal rank such th&®, (1)DF (Vy, 1) = APy (i) and such that the spectrum
of AL € R™*™i coincides with the spectrum &fF (V.. i) with positive real part.
The rows ofP;. then span the left unstable eigenvectorDéf(V,, u) which are
orthogonal to the right stable eigenvectors. Similarlye choose®_ (i) € R™*M
such that the rows d®_ span the left stable eigenvectordff (V_, ). Note that in
general the projection matrices dependuoso that the boundary value problem (13)
becomes nonlinear both W and u. We refer to [8],[23],[30] for various methods
that allow to compute such projection matrices dependingoshly on a parameter.
Finally, note that the boundary value problem (13) has theesaumber of equations
and boundary conditions provides + m, = m, which is obviously satisfied in the
homoclinic case but an assumption in the heteroclinic cékere is also a well
established theory that studies the errors when passing tine infinite problem
(12) to the finite problem (13), (14), see [8].

Vx

Fig. 3 Linear approximation of the stable manifold by projecti@mubdary conditions.

1.3 Dynamics of PDE and shift equivariance

Let us return to the time-dependent equation (2) in a sljghtire general form
U = Al + f(U,Ux), XER, t >0, u(x,t) e R™, (15)

whereA € R™ ™ s assumed to be positive definite ahdR?™ — R™is smooth. For
a fixedu € R we transform into a moving coordinate frame uia,t) = v(x— ut,t).
This leads to
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Vi = Avix+ UV + (V). (16)

This is a parabolic system for which a traveling waye t) = v(x— pt) now appears
as a steady stat®, 11). In fact, we have a family of steady state$ — y), 1),y € R.

In Section 3 we will deal with the classical Hodgkin-Huxlggsseem for which
m = 4. Then the matriA is only positive semidefinite since there is no diffusion
in 3 of 4 variables. The system (15) is then of mixed hypedphrabolic type and
this creates extra difficulties, both theoretically as veslinumerically, see section
3.

In the following it will be useful to phrase (15) in a more alast way as

U =F(u), F(u)=Abx+ f(uuy), 17
where we considef as an operator
F:Y=w+H?3R,R™ — L*(R,R™) = X. (18)

Herel?, H? are standard Lebesgue and Sobolev spaces, the fumcti@?(R,R™)
satisfies for some > 0

[W(x) — U] + ()| + [iee(X)] < C&*X, x € R,

and we assumé(u.,0) = 0. We have carefully choséhas an affine space in order
to incorporate traveling fronts with different limits &to. Under these assumptions,
using Sobolev embedding one can show thatapsy into X.

Now consider the shift operator as an action of the giGupR onY

a:GxY =Y (yu)—alyu), [ay.u)](x)=ux—-y),xeR.  (19)
Obviously,a(y,u) has the following properties far,ve Y, y, 1,1 € G, A € R,

a(y1+ y2,u) =a(y1,a(ys,u)), homomorphism,
a(y,Au+(1-2A)v)=Aa(y,u)+ (L—A)a(y,v)  affine linearity w.r.t. u.

Moreover, the action immediately extendsXo= L(R,R™) with the same prop-
erties. We often writea(y)u instead ofa(y,u), in particular whera(y) is a linear
operator orX.

The most important property of the operafois equivariance under the action
of the group, i.e.

a(y)F(u)=F(a(y)u), ueY, yeG. (20)
This follows from
(FU)(-—y) =Aux(- = V) + Fu(- —y),ux(- —y)) =F(u(-—y)), yeR.

Thus, we have recast (15) as an absteagtivariant evolution equation (17), (20).
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Some further notations are useful. For a given elemenY the set

Oc(v) ={a(y)v: yc G}

is called itsgroup orbit. For the shift action (19) the group orbit of a function
consists of all its translates. iklative equilibrium of (17) is a solutioru(t),t € R
that lies in a single group orbit, i.e.

u(t) = a(y(t))v, forsomevey, y(-) € CY(R,G). (21)

In this sense, traveling wavegx;t) = v(x— ut) are relative equilibria w.r.t. shift
equivariance where in this special cage) = pt.

1.4 Stability with asymptotic phase

In the previous section we saw that traveling waves, andivelaquilibria in gen-
eral, always appear in families. In order to take this intoamt the classical notion
of Lyapunov stability is modified as follows.

Definition 2. A traveling wave solutioru(x,t) = v(x — ut) of the system (15) is
calledasymptotically stable with asymptotic phasewith respect to given norms
I-|l; and]|-||, onY, if for any € > O there exists & > 0 such that for any initial data
Up € Y with |Jug — V]|; < & there exists somg, € R with the following property. The
Cauchy problenu = Aux+ f(u,ux),u(-,0) = up has a unique solution(-,t) € Y,

t > 0and

<¢g forallt >0,

22
— 0 ast — . (22)

-, t) = V(- — it — Voo)|2{

In general, the valug, depends on the initial functiom and is called thasymp-
totic phase The definition is not completely rigorous since it leavesmthe precise
notion of solution and of the associated function spacess&liepend on the par-
ticular type of application. Note that our formulation alt®an affine space fof as
in (18). For PDEs with hyperbolic parts it is important to we® different norms
in the definition, see Section 3. Then initial perturbatioften must be measured
in stronger norms than perturbations of solutions. On therdhand, for parabolic
systems it is often possible to use the same Sobolev Heljp for both norms. For
various stability theorems we refer to the monographs [[B%]} and to the survey
article [60].

An essential feature of all stability results are the sdgiroperties of the lin-
earized differential operator

A = Adyct (1 + Daf (V%)) 0 + Dy £ (7, %). (23)

We introduce coefficient matrices in (23) by writing
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A = Adxx+ B(X)dx + C(X) (24)
and note that, due to our assumption, the following limitistex

B = XirEWB(x) =l +D,f(us,0), Cyi= xiTooC(X) =D;f(ug,0). (25)

1.5 Spectral properties of second order operators

In this section we recall basic facts about spectra of secoder linear differential
operators as they arise from linearizations at travelingesaSince these opera-
tors are defined on the whole line they typically have esakasi well as isolated
spectrum. The essential spectrum is determined by thedipgitators

Ny =Ady+Bid+Cy (26)

obtained from the coefficients in (25). The spectrunv\af can be computed by
evaluating the so-calledispersion relation, see (30) below. On the contrary, it is
not so easy to determine the remaining isolated eigenvaduespt for the fact that
zero is always an eigenvalue due to shift equivariance.

Let us first look at the real scalar case of (26), i.e.

AoV = awx+bw+cv, ab,ceR. 27)
We look for eigenvalues e C with eigenfunctions of the form
v(X) =€ xeR, weR. (28)
This leads us to the dispersion relation
s=—aw’+ibw+c, weR. (29)

Any values € S= {s= —aw? +ibw+c | w € R} is an eigenvalue af\y with a
bounded eigenfunctiod®*. Standard function spaces suchl&sor H! will not
contain these eigenfunctions, but their presence leadstiounded resolvents. For
the scalar case with > 0,b # 0 the algebraic s&is a left open parabola with the
vertex aftc, see Figure 4.

For the general operator (26) one has to consider two algetets
S: = {se C: def—w?A+iwBy +Cy —sl) = 0 for somew € R}. (30)
If, for instance A is positive definite andB.. is the identity then the curves 8.

asymptotically attain a parabolic shape iw— O)Z)\j ,whereAj, j=1,...,mare the
eigenvalues oA. Let us first recall some standard definitions from specdtebty.
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\
7

Fig. 4 Spectrum ofAg = ad? + bdx+ ¢

Definition 3. Let X be a Banach space and let: 2(A) C X — X be a densely
defined closed operator.df — A is one-to-one fok € C then the operatd®s(A) =
(sl—A)~tis defined onZ(Rs(A)) = Rangésl — A) and called theesolvent ofA.
Then one defines thesolvent set

p(N) ={se C: Rs(A) exists,Z(Rs(A)) is denseRs(A ) bounded, (31)
thespectrum o (A) = C\ p(A), thepoint spectrum
Opoint(/A) = {s € C is an isolated eigenvalue of finite multiplicjty (32)

and theessential spectrumesd/\) = 0(A) \ Gpoint(A).

In the following we introduce the crucial
Spectral Condition (SC):
There exist3, Amin > 0 such thatReA | > A, for all A € C which satisfy

defA%?A+AB.+C—sl) =0, forsome Rs> —f. (33)

If Ais positive definite then a continuation argument shows ttiatalgebraic
setsS; lie in the half plane{z: Re(z) < —f3} and hence are bounded away from
the imaginary axis. More generally, the following theorennfi [39] shows that the
spectral condition is also sufficient to guarantee that #eemtial spectrum of the
variable coefficient operatat from (24) lies in this half plane.

Theorem 1. (Essential spectrum of, [39]) Let the variable coefficient operator
A from (24) have continuous coefficients such that B limy_, 1. B(x) and C. =
limx—+ C(X) exist and A is positive definite.

Then the spectrum of the operaibrconsidered in E(R,R™) satisfies

S US; C Gesd/\) C ME, (34)

where the algebraic sets;Sare defined in(30) and M is the unique connected
component of \ (S_ US;) that contains a right half planéz: Rez > } for some
{ € R. Moreover, if the spectral conditioBC holds therRegesd ) < —f.

Since the proof is quite involved, we only describe the mdigaj see [39]. De-
compose = L + K, whereL has constant coefficients on bd&h = (—e,0] and
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R} = (0,) andK is of lower order and has decaying coefficients

(35)

L A- onR_, K — (B(x) —B_)dx+ (C(x) —C_), XxeR_,

Ay onRY, (B(x) =By )dx+ (C(x) —Cy), xeR:.

Then, one applies the following theorem on invariance ofdkgential spectrum
[36].

Theorem 2.Let X be a Banach space,:lZ(L) C X — X be a closed linear op-
erator and K: 2(K) > 2(L) — X be a linear operator such that ol —L)*

is compact for somég € p(L). Let U C C be open and connected such that
U C p(L) U Opoint(L). Then either UC p(L+ K) U 0point(L 4 K) or U contains only
eigenvalues of k- K.

A perturbationK of an operatoi. for which K(Agl —L)~* is compact, is called
relatively compact In the special case (35) one shows tfal — L)~ is bounded
from L2(R,R™) into HY(R,R™). Then, using the fact that the coefficientskofan-
ish asx — -0 one shows compactness of the oper#tprol — L)~ as an operator
in L2(R,R™) by invoking the Riesz-Fréchet compactness criteriol?ifR, R™™),
see [3].

We close this subsection with some remarks on the point spaafyoint(A).
Differentiating the equation & vk + vy + f(V, vx) with respect toc leads to

0= (V)xx + K (V) + D2 f (V, Vo) Vo + D1 F(V, Vi) Vi = A i (36)

Hence, we always havedopoint(A) with eigenfunctiony, = — %v(- -) o pro-
y=

vided this function is in the appropriate function spacee Pnoblem of detecting
further eigenvalues in the domalh (see Theorem 2) can be reduced to studying
zeros of the so-calleBvans function, see [2],[52]. Several approaches have been
developed for this purpose. However, if the analysis cabealone explicitly one
has to resort to numerical computations for detecting thetgpectrum, compare
[601,[17],[18],[43],[42],[48],[47],[59]. In Figure 5 waketch the typical appearance
of the spectrum, where we used that the operata sectorial inL?(R,R™).

° Upoint(/\)

T ) o)

Fig. 5 Schematic picture of spectrum for a second order linearabpef. .
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For the stability results in the next subsection we will néeslfollowing
Eigenvalue condition (EC):
There are no isolated eigenvalues of finite multiplicity fom Res > —f3 except 0,
and the eigenvalue 0 is algebraically simple.

1.6 Nonlinear stability of traveling waves and applications

With the preparation about the spectra of linear operat@snay now formulate
the main nonlinear stability theorem.

Theorem 3. (Stability of traveling waves in B
Consider a parabolic syste(@5)with a smooth nonlinearity f that satisfies

(v, vi) = Fr (V) fa(v), @37
f1, f2, 1, f5 € Ct globally Lipschitz (38)

Let ux,t) = v(x— ut) be a traveling wave of15) such that the spectral condition
(SC) and the eigenvalue condition (EC) are satisfied for ithealrized operaton

in (23). Then the traveling wavgy, 1) is stable with asymptotic phase in the space
HY(R,R™).

Remark 1 Stability in HY(R,R™) means that the statement of Definition 2 holds
with both norms taken to big- ||,,1. We refer to [39] for a proof of this result in case
f depends only on, but satisfies weaker assumptions than Lipschitz boundsdne
For the version above see [66]. Note that (37) includes thitant example of the
viscous Burgers equation whefév) = vw,.

Proof (general idea from [39]): Nonlinear change of coordinates
V— (V,\7) where V:\R'_V)'i_va (LI"7\7)L2 :07 (39)

where/A* @ = 0 (left eigenfunction)(y, ), 2 = 1.
The transformed system is

% = QF (V4 — ), W.0)=t (PDE)
¥ = R(Vv \7)a V(O) =0, (ODE2)

whereQu = u— V ((,u), 2 is the projector onto the orthogonal complemerit.
The next steps are:

1. Show that the linearizatioQA of (PDE1) has spectrum R€ —f3 < 0O,
2. prove asymptotic stability of (PDE1) k! uniformly in y,

3. show|y| < ce using (ODEZ2),
4. determine the asymptotic phase frgmi¥) = y(0,V) + [ vz (1,V)d1. O
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Example 3.Nagumo equation

As a first application we study the Nagumo wave from (5),(6y.this equation we
haveu_ =0,uy =1, f(uy) =0, f'(u-) = —a, f'(uy) = a — 1. The dispersion
relation (29) leads to the two parabolas

S. ={s=-w*+pw+f'(u): weR}, (40)

which have their vertices ata anda — 1. Both lie in the negative half plane since
0< a < 1, see the following Figure 6.

Fig. 6 Essential spectrum for the Nagumo front

Thus the spectral conditiofsC) is satisfied. Moreover, one can show that 0 is
indeed a simple eigenvalue and there are no further eiggesal with ReA > 0
(see [39)).

Example 4 (FitzHugh-Nagumo systerAs another example we mention the well
studied FitzHugh-Nagumo system ([32])

_fury (10
" <U2)t <Oe> U+ F(U) 1)
1,3
i) _ [ W—3ui— N
f (“2) (@(ul+a buz)) , 9,ab>0e>0. (42)

For an extensive study of the stability of traveling wavestfas system we refer
to Evans 1972-1975. We first choose parameter value$.1, ¢ = 0.08,a= 0.7,

b = 3 for which f has three zeros so that a traveling front occurs. For a paeame
setting which leads to the classical FitzHugh Nagumo pulsegefer to Example
7 below. Figure 7 shows the profile of both components foriéeeting front (left)
and a space-time plot of the first component of a solution4a4),(42) (right). In

this case, we have
L, _ (11877 _ (-15644
-~ 06292)" "+~ \-0.2881)
04106 —1 ~1.4474 -1
B:Df(“):( 0.08 0.24)’ B+:Df(“+):( 0.08 o.24)
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-60 -40 -20 0 20 40 60

Fig. 7 Profile of the traveling wave for the FitzHugh-Nagumo systgeft) and space-time dia-
gram ofu; (right) fore =0.1, p=0.08,a=0.7,b= 3.

and the dispersion relation (30) yields the two algebrate &#. [10] for a drawing)

S = {se(C:det<—w2 <(1)g) +ini—s|> :OforsomeweR}, £>0.

1.7 Equivariant evolution equations

In Section 1.3 we already mentioned that traveling waves lbeayiewed as relative
equilibria of an abstract evolution equation that has arvagiance property. In this
section we will extend this abstract point of view and discas application to a
wave which is traveling and rotating simultaneously. Fameageneral theory of
equivariant evolution equations we refer to [20],[31]][37

As in (17) we consider the Cauchy problem for a general eimigquation

U = F(u), u(0) = o, (43)

where we assumé : Y C X — X with X a Banach space antla dense subspace.
The whole approach can be written in terms of Banach marsfrdther than Ba-
nach spaces. But, for the sake of simplicity, we avoid suchreenlization. Note,
however, that the treatment of traveling fronts alreadyies to use affine spaces
for Y andX, compare Section 1.3.

Let G be aLie group, i.e. a finite dimensional manifold with a smooth invertible
group operation. Byl we denote the unit element i@. The group operation
induces the operators of left and right multiplication via

(44)

O_{ GxG—G,
"L (v,9) = yog=Lyg=Ryy.

The Lie algebra is the tangent space & at 1, i.e. T; G = .« and the derivative
of the left multiplicationL, : G — G is denoted bylLy(g) : TyG — Ty.¢G.
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We further assume that the groGmacts onX via

_G—GLX], a()=I,

Ay say).  alyow) =aaly). (45)

The evolution equation (43) is calledjuivariant under the action of the group
if forall y € G,

F(a(y)u)=a(y)F(u)forallue, (46)
aly)y cv. (47)

It is important to be careful with smoothness assumptionshenaction. As our
examples will show, it is reasonable to assume that the a(gp: y — a(y)v is
continuous for every € X and continuously differentiable for evenye Y. We will
denote the derivative with respectjte G at 1 by

da(l)v =dfa(y)v],_; : & =T1 G = X. (48)

Our second example is an equation that is equivariant wigpheaet to a two-
dimensional Lie group.

Example 5 (Quintic-cubic Ginzburg Landau equation (QCGL))

W = U+ f(Ju)u, u(xt)eC, aeC,

(49)
f(u®) = ylu*+Blu®+0, B.y.8eC.

Note thatu(x,t) is complex-valued in this case. But we can rewrite (49) asah re

system of dimension 2 which turns out to be parabolic in case R 0. Suitable

function spaces for this case axe= Cynit(R,C), Y = C24+(R,C). Now the Lie

group isG = R x S' 3 (1, 8) with the action given by

a(1,0)v(x) = e Ov(x—1), veX,

. (50)
d [a(07 O)V] (Nn IJB) = —HrVx — 1 UgV, (IJTa Ne) €A = Rz'

Relative equilibria are of the form(x,t) = e~ 'Ho'V(x — p;t) wherep; andug denote

translational and rotational velocities, respectivelybdth velocities are different
from zero then we have a wave that rotates and travels sinadtssly. In fact, for

the parameter setting

14 1
- 10’

5 .
> 0= > B—2+|, y=-1
the QCGL exhibits a rotating pulsg{ # 0, u; = 0) as well as a rotating and travel-
ing wave {ug # 0, u; # 0). The real and imaginary parts of both types of solutions
are shown in Figure 8 and 9. When hitting the boundary withrii@on boundary
conditions, the pulse stops traveling but keeps rotatingally, recall that a relative
equilibriumv, i = (ur, Hg) of the QCGL satisfies
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14 —Reu ) 15
—Imu
12 -

-1.5

-20 -10 0 10 20

Fig. 8 Profile of the rotating wave of the QCGL (left) and space-tiimgram of Re (right) for
i 1 p_5_ i \_ i
a=5,0=—5B=3+iy=-1-1

-20 -10 0 10 20

Fig. 9 Profile of the rotating and traveling wave of the QCGL (leftidaspace-time diagram of

Reu(right) fora =31, 6=-3,B=3+i,y=-1- 4

0= aVx+ T (IV°)V+ eV + i gV. (51)

We also point out that the stability theory outlined in Sewctll.6 applies only to
pulses for which lim; 1, v(x) = 0.

1.8 Summary

Let us summarize the results of this section:

e Traveling pulses and fronts can be computed from hetelioaksp. homoclinic
orbits of dynamical systems,

e Traveling fronts and pulses may be viewed as relative dayidliwith respect to
shift equivariance, this is a special case of abstract agat evolution equa-
tions,

¢ Nonlinear stability of traveling waves in Sobolev spaces ba derived from
linear stability via a nonlinear change of coordinates,

e Linearized differential operators may have essential dsasgpoint spectrum,
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e The essential spectrum can be handled theoretically vidipersion relation,
while determining point spectrum often needs numericalmatations,

e Nonlinear stability theory does not directly apply to wattest travel and rotate
simultaneously.

2 Stability of traveling waves and the freezing method

In the previous lecture we already studied the stabilityrafeling waves with
asymptotic phase. Our main assumptions are concerned péttiral properties of
the differential operator that arises by linearizing altbetprofile of the wave. The
basic idea is to transform into a coordinate system that siasith the velocity of
the wave and then to perform a nonlinear transformation lwhiows to study the
exponential decay towards the profile and the dynamics gitlase separately. All
these transformations assume the knowledge of the exae arm hence are not
suitable for numerical calculations. In this section wedgta numerical method
that allows to circumvent this problem: tifieezing methodThe method was in-
dependently proposed in [58], [13]. Meanwhile, it has beeereded to a variety
of time-dependent partial differential equations, seg,[l%], and applied to con-
trol problems, for example [1]. There is also a parallel depment by Cvitanovic
and co-workers (see [33] for a recent review and an apptisdt a 5-dimensional
Lorenz system), where the term 'method of sclices’ is use@é$sentially the same
approach.

The method introduces new time-dependent coordinatesibaktie underlying
Lie group and in the function space. The extra degrees ofin@ein the group is
compensated by a corresponding number of phase conditiahsry to keep the
current profile as constant as possible. Altogether, onéchsslve a partial differ-
ential algebraic equation (PDAE). For solutions of Cauctgbfems that are close
to relative equilibria this allows to adaptively computevimg coordinate systems
within which the wave idrozen Simultaneously, the flow on the group provides
information about the speed and location of the originafifgolrhe method can be
formulated for equivariant evolution equations in genaral thus has a wide range
of applications. In this section we emphasize stabilityéssof the freezing method.
In particular, we show that stability with asymptotic ph&sea traveling wave turns
into classical Lyapunov stability for the PDAE formulation

2.1 Moving frames:. the freezing method and phase conditions

Consider the Cauchy problem associated with (15),

U = Augc+ F(u,ux), U(x,0) =uUp(x), Xxe€R,t>0. (52)
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The idea of the freezing method is to introduce new unknoi@xs) € R™, y(t) € R,
such that the solution of (52) is of the form

u(xt) =v(x—y(t),t), xeR, t > 0. (53)

Inserting the ansatz into (52) and introducjng) = ¥ (t) leads to a Cauchy problem
for the positiony(t) and the profiles(-,t),

Vi = A+ (v, v) + U(t)vg,  v(-,0) = up,
¥=H(t), y(0)=0.

We note the similarity to equations (PDE1),(ODE2), but noghave not reduced
the function space for. Therefore, the system is not yet well posed. We compensate
the extra variable!(t) by an extra condition which is calledpase conditionas in

(12). There, the phase condition was used to remove the aitbpig the traveling
wave profile. Here, we use it to keep the time-dependentisalas constant as
possible. We consider two possible choices for the phasgitiam, both based on a
minimization principle.

(54)

1. Fixed phase condition
Choose a template functione™X whereX is the underlying function space for
solutionsu(-,t),v(-,t). As an example take the affine space- w-+H(R,R™)
wherew : R — R™ is smooth and bounded and has the desired limit behavior
limy_ 1 W(X) = uy, cf. (7). In this case one may choose- W or V= up € X.
The phase condition requirgso be the closest point t-,t) on the group orbit

{V(-—9g):geR},ie.

min|[v(-, 1) =¥ = @)z = IV(-0) ) 2 (55)

The necessary condition is (cf. (12))

d
0= G5V = U~ g)lZ2lg-0 = 2(v(,1) 0%y (56)

Thus, instead of (52) the freezing method solved the folhgygartial differential
algebraic equation (PDAE)

Vi = Ay + f(V, Vx) + [.l(t)VX, V(~,0) = Up,
0= (V—0,%),2 (57)
= u(t), ¥(0)=0.

This is a PDAE of index 2. Differentiating the constraint vitespect td and
inserting the PDE leads to
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Ve = A+ T (V, W) + Uy, v(-,0) = o,
0= H (v, V)2 + (Avioc+ T (Vi W), B) 12 = Wi (Vo 1) (58)
=), y(0) =0.

If (v, V) 2 # O the constraint can be solved fprand hence (58) is a PDAE of
index 1.

2. Orthogonality phase condition
Here we select the phase shift such tat-,t)|| 2 is minimal at each time in-
stancd, i.e.

d 2 d 2
0= @||Vt('at)”|_2|u:u(t) = @”AVXXJr (v, V) + V| 2 | =)
= 2[“ (t)(VXaVX)LZ + (AVXX+ f(V7 VX)aVX)LZ] . (59)

Therefore, instead of (52) we solve the PDAE

Ve = Ay + f(V7 Vx) + UVy, V(-,O) = Uop,
0= p(Vx, V)2 + (A + F(V, V), V) 2 = Worth(V; 1), (60)
= u(), y(0) =0.

This PDAE is of index 1 providefix, vx), 2 # 0, i.e. if vis nonconstant. Note that
Worth differs from rix only in replacing the template functianby v. Since (60)
requires no previous knowledge of a template it is easieppdyedar away from
any traveling wave. However, close to a traveling wave, yfstesn (58) turns out
to be more robust, in particular when fixing="v(-,T) at some later tim&@ and
leaving it constant from then on.

To summarize, we replace (52) by a PDAE of the general form
Ve = Aot (VW) + pvy, - V(+,0) = o,

0=y(vu) (61)
y=u(t), y(0) =0,

where : X x R — R. Using a proper notion of solutions, one can show that any
solution of (61) leads to a solution of (52) via (53), cf. [I8B]. Conversely, iti(-,t)
solves (52) then we obtain a solution of (61), provided thplicit ODE

Gu-+y(t),1), %) =0, y(0)=0

has a unique solutiop(t) on the interval under consideration.
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2.2 Numerical experimentswith traveling fronts and pulses

For numerical computations we solve the PDAE (61) on a larggvald = [x_, X, ],
and we use two-point boundary conditions given by a mapR*™ — R2M,

Vi = Avx+ T (V,vy) + vy in J x [0, ), v(-,0) = gy,
OZLIJJ(VaIJ)v ‘%((V7VX)(X*)7(V5VX)(X+)) :Oa
= H(b), y(0)=0

(62)

Examples for# are Neumann boundary conditiof( (v, vx)(X-), (V,Vx)(X}+)) =
(vx(X2),w(X4)) and projection boundary conditions (cf. (14), note thét) enters
into the projection matrices).

Example 6 (Nagumo equatiour first example is the Nagumo equation (5),

Vi =Vax+V(1—V)(Vv—a)+ vy, V(-,0) = Ugl;,
0= (v, 1) (63)
w=u(), y(0) =0,

with parameten = %, solved onJ = [-50,50], with Ax= 0.1, At = 0.1 For the
nonfrozen system odi = [x_,x;], the front forms and travels to the left as we ex-
pect, see Figure 10(a). When it reaches the boundary it diedue to Neumann

1
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Fig. 10 Traveling frontu(x,t) of the original Nagumo equation (a), solutigfx,t) of the frozen
Nagumo equation (b), time dependence of velopit) (c). Piecewise linear initial function, Neu-

mann boundary conditions, fixed phase condition with refegefunctionv’= ug and parameter
valuea = 3.
4

boundary conditions. On the contrary, the front stabilineshe frozen system, see

Figure 10(b), the variablg(t) approaches the final spegd= f@ of the front, see
Figure 10(c), while the value df(t) still indicates the position of the front on the
real line.

Our conclusion is that the longtime behavior of the initialibdary value prob-
lem on the finite interval (62) can be completely differewinfrthe behavior of the
original system (52) when truncated to the same interviiipalyh on the infinite
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line both systems are equivalent. The freezing method airasreoving coordinate
system in which a pattern close to the initial data beconsfostary, and this be-
havior is stable under truncation to a bounded domain. Ifidb@ving subsections
we will provide theorems which make this observation rigero

Example 7 (FitzHugh-Nagumo syste@yur second example is the FitzHugh-Nagumo
system, which in the frozen form reads

Wt = Avx+ T(V) + pvy, v(+,0) = v,
0= wJ(Vvu)a '@((\LVX)(X*)? (VaVX)(X+)) = Oa (64)
¥ =H(t), y(0) =0.

with v = (vi,v2)T,

(10 (-3,
A= (O 8) T = <(p(v1+a— bw) )’
parameters =0.1,a=0.7,b= 0.8, ¢ = 0.08, solved ord = [-60,60], with Ax=
0.1, At = 0.1. For these parameter values, the functioadmits only one zero at
(vi,v2)T = (—1.1994 —0.6243 T and pulses occur. Note that (64) is a parabolic
system due t@ > 0. The case& = 0 leads to a coupled hyperbolic-parabolic system

with principal term beinguv, x in the second equation. We consider such mixed
systems later in Section 3. Starting with a ramp-like fumctfor the voltagev;,

) 20 40 60 80 100 120

@) (b) ©)

Fig. 11 u; component of traveling pulse (a) of the nonfrozen and¢omponent of frozen pulse
(b) with velocity u(t) (c) of the frozen FitzHugh-Nagumo system with piecewisedininitial
function, Neumann boundary conditions, fixed phase camtlitiith reference functiom = ug and
parameter values=0.1,a=0.7,b= 0.8, ¢ = 0.08.

the pulse forms as expected and travels to the left untieis diut at the boundary,
see Figure 11(a). On the contrary, as above the freezingotetiptures the shape
of the pulse and makes it stationary, see Figure 11(b). $amebusly, the correct
speed of the pulse is attained by the varigb{g), which tends tqu = —0.7892, see
Figure 11(c).

An interesting phenomenon happens when the system iscstaittea pulse-like
initial function. Then two pulses develop, one travelingteleft, the other traveling
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to the right, see Figure 12(a). Which of these two travelinlg@s is captured by the
freezing system, is unpredictable and can be affectedn&iamnce, by the solver
tolerances. In this example, the fixed phase condition happe freeze the left
going pulse while the right going one dies out at the boundseg Figure 12(b).
The velocityp (t) of the left frozen pulse neags = —0.7892, see Figure 12(d). On
the contrary, the orthogonal phase condition freezes tite going pulse and the
left going one dies out, see Figure 12(c). The velogiy) of the right frozen pulse
tends tou = 0.7892, see Figure 12(e) as expected.

) 20 40 60 80 100 120 ) 20 40 60 80 100 120

(d) (€)

Fig. 12 u;-component of traveling wave of the nonfrozen system (ad faulse-like initial function

in the FitzHugh-Nagumo system.-component of frozen pulse with fixed phase condition (b) and
orthogonal phase condition (c). Figures (d) and (e) showithe dependence of the velocitt)

for cases (b) and (c), respectively. For all plots Neumarnimbdary conditions and the reference
functionv'= ug are used, parameter values are 0.1,a=0.7,b= 0.8, ¢ = 0.08.

The experiments from Example 7 show two new problems thabeitealt with
in the following lectures.

1. For parabolic systems coupled to ODEs, the freezing ndetbads to mixed
hyperbolic-parabolic systems with the newly introducedveation term enter-
ing the principal part of the equation. The stability thefoy such systems is
much more subtle than for parabolic systems (cf. Sectionan@ will be topic
of Section 3.

2. When the solutions exhibit multiple fronts and pulsesréhs no longer a com-
mon moving frame in which the patterns become stationarg fildezing method
then tends to capture one of the patterns and let the otteersl| towards the
boundary. In Section 5 we discuss an extension of the frgeniethod that al-
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lows to handle multiple coordinate frames and to deal wittakvend strong
interactions of patterns.

2.3 Error analysis of numerical approximations

The experiments of the previous subsection suggest th&ide formulation (61)
is robust with respect to numerical approximations suchuagtion to a bounded
interval with two-point boundary conditions and subsedukscretization of time
and space. Such expectations have been made rigorous itk@fw. Thimmler
[66],[68],[67]. It is shown in [68] in which sense relativej@libria of parabolic
systems are inherited by numerical discretizations, ané7h conditions are set
up that guarantee asymptotic stability of these discréterpuilibria. Moreover, the
exponential rate of convergence is proved to be indeperd#me truncated interval
and of the step-size used. Below we will only consider the addraveling waves
and indicate the main results. We also mention the paper [&revthe nonlocal
equations obtained by eliminating from the phase condition in (61), have been
treated directly by truncation to a finite interval.

We consider a finite difference approximation of the PDAE) (&7 an equidis-
tant gridJy = {xp = nh: n=n_,... ,n.} with step-sizeh > 0. For functions
Vn = V(Xn),%» = nh, defined on an extended gdfi= {nh:n=n_—-1,....n, +1},
we use standard difference quotients as follows,

1
5+Vn:_(Vn+1*Vn)a n:n,*].,...,rh,,

h
1
O Vn==(Vn—Vp-1), N=n_,....,np +1,
1
5+57Vn = E(anl*ZVnWLVnJrl)v n=n_,...,N4,
1
doVn = §(6+vn+6,vn), n=n_,...,n..

Leaving time continuous, a spatial discretizaton of (5@}keto the following DAE:

Vn,t :A5+57Vn+ f(Vn,50Vn)+l-‘50Vna n=n_,...,Ny,
0:(%\75V_\7)L2(Jh) (65)
N =P_vn_ +Q_&Vn_ +PyVn, + Q4 doVn,,

whereP., Q. € R?™™ are given boundary matrices and=P_u_ +P, u, (see Sec-
tion 1.3 foru.). Here and in the following we use discrete analbggl,), H(J),
H?(J,) of the Sobolev spacds’(J,R™M),H(J,R™M), H2(J,R™M). The following con-
ditions are imposed on the continuous problem.

Contl: The functiorv € w-+H?(R,R™) (cf. (18)) is a traveling wave of spegdc R
for equation (15) such that. = limy_, 1, V(X).
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Cont2: The nonlinearityf satisfies the condition (37) from Theorem 3.
Cont3: 0 is a simple eigenvalue of the linearized operdtdrom (23), and 0 lies in
the setM defined in Theorem 1.

Note that the condition & M is weaker than the spectral conditiBe (cf. (33))
which require§Rez> —f3} C M. It implies that the quadratic eigenvalue problems
(A2A+AB. +Cy)y = 0 havem eigenvalues with real part positive andwith real
part negative. More precisely, there are matri¥€sA? € R™™ which solve the
quadratic invariant subspace equation,

AYS(A$)2+BLYSAS +C.LYS =0, Re(a(A$)) <O. (66)

S
such that ran Yg/i\j) = m. Similarly, there existr{!, A{ € R™" satisfying the
same conditions except Rg(AY)) > 0. The next two conditions impose a coupling
between boundary matrices and data of the continuous proble

Discrete 1:n = P_u_ + P, uy (consistency of boundary values)
. _ Ys yu
Discrete 2.det<(P Q) <YSA5> ‘(P+ Qy) (Yﬂj\J‘i)) £0
ConditionDiscrete 2ensures that modes increasingtat can be controlled by

S
the boundary conditions, see [10]. Note that the cqumn{@IAs) determine

u
growing solutions of (the first order version of) at —c while those of(YI/*\u>
+/4

determine growing solutions ateo.

Theorem 4. ([68]) AssumeCont1-3, let ¥ € w+ H?(R,R™) be a template function
such that(v, V) 2 # 0 and let the boundary matrices satidbiscretel,2. Then
there exist Cp, T, hy, @ > 0 such that the DAE65) has a steady state/, u") for
all 0 < h<hp, T <min(n+, —n_)h which is unigue in the ball

[,

= h
— < pD.

H2(Jh)+|u ul<p

Moreover the following error estimate holds

s

M2 + |- p" <C[h?+exp(—ahmin(n.,—n_))].  (67)

The estimate (67) shows, that the errors due to finite diffleszeapproximation
and truncation to a bounded interval simply add up. Underetktea conditions
that vV decays exponentially as— +, one can show (see [68, Th.2.6]) that the
linearization of the right hand side of (65) @', u") has an eigenvalue close to 0
and an eigenfunction close %3, with the same estimate as in (67).

For a stronger statement on the asymptotic stability of thgctete traveling
wave’ (W1, uM), more conditions are needed (see [67]). In particular, $semptions
of the Stability theorem 3 are assumed to hold. Further, itiomdiscrete 2now is
strengthened to
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YSs (S) YU(S)
det((F’ Q) (YS(S)/\S (s)) ’(PJr Q+) (YE(SJS/\E(S)) ) #0, Re(s)> -8,
(68)
whereY$ = Y$(s), AS = AS(s) solve thes-dependent equation

AYE(A3)2+BLYEAL +(CL —s)YE =0, Re(0(A)<0,  (69)

cf. (66). Under a final condition on the Dirichlet and Neumaarnts of the boundary
matrices (see [67, Hypothesis 2.6]), the following estanasdlds for the solutions
vn(t), u(t) of the time-dependent DAE (65),

||V(t)_VhHH1(Jh)+|u(t)_uh| Sceiatv t ZO) hghoa inih>Ta (70)

provided [v(0) — V[|y13,) < p and P, u° are consistent initial values (cf. [67,
Sec.2.1]). It is worth noting that all constar@sp,a, T in this result do neither
depend on the step-sizenor on the values ofi_,n,. While the extra condition
[67, Hypothesis 2.6] is satisfied for all standard choicehsas Dirichlet, Neumann

or periodic boundary conditons, condition (68) is ess¢mbiathe stability of the
discretized traveling wave. As shown in [67, Sec.5.2] by anterexample, violat-
ing (68) at one value of can destabilize the discrete wave by spurious oscillations
while the continuous wave is perfectly stable.

2.4 Thefreezing method in an abstract setting

The freezing method of the previous section can be genedalizequivariant evo-
lution systems on Banach manifolds, see [14],[68]. For $izitp, we consider here
the setting of Banach spaces as in Section 1.7. General{zBjg the solution of
(43) is written as

ut) =a(y®)v(t), y(t) eGv(t) Y. (71)
Then,a(y)F(v) = F(a(y)v) = F(u) = u; = a(y)w + d[a(y)v]y holds and hence
vi =F(v) —a(y) 'da(y)vu. (72)

Itis convenientto introducg(t) € o =Ty Gvia % (t) = dL) u(t). Then differenti-
atinga(y)a(g)v = a(L,g)v with respect tay € G atg = 1 leads toa(y)d[a(1)v|u =

da(y)vjdLy,(1)u. Therefore, (72) can be rewritten &s= F(v) —d[a(1)v]u. Fi-

nally, we add dins phase conditiong)(v,u) = O defined by a functionalp :

Y x o — «/*. This leads to the abstract formulation of the freezing méths
differential algebraic evolution equation (DAEV)
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v =F(v)—da@)Mu, v(0) =,
0= U’(Vvll)a (73)
= dLyu, y(0) = 1.

The last equation of this system is called teeonstruction equationin [58]. It is
decoupled from the first two equations and can be solved irsegrocessing step
in order to obtain the orbit within the group. If a continudmser product-,-)x on
X is given, the two phase conditions discussed in Sectiorg2rieralize to

(da@)VA,v—0)x =0 forallA € &, (74)
(dla(l)v]A,w)x =0 forallA € o, (75)

see Figure 13. Differentiating (74) with respectttand inserting the differential

\' A

(@) (b)

Fig. 13 lllustration of fixed phase condition—V L Te&'(V) = £2(d[a(1)¥]) with group orbit

o) ={a(y)v: y € G} (a), illustration of orthogonal phase conditianl. T,0'(v) = Z(d[a(1)V])

with group orbit& (v) (b).

equation from (73) into both, leads to the phase fixing opesdtf. (58),(60))
Wix (v, )A = (d[a(1)V]A, F(v))x — (d[a(1)V]A, d[a(l)V]u)x, A€o/, (76)

Worth(V, 1)A = (d[a(1)VIA,F (v))x — (d[a(1)v]A,d[a(l)v]p)x, A €. (77)
If the mapd[a(1)v] : & — X is one to one, then the linear systebpn(v, ) =0

has a unique solutiop € o7 and hence (73) is a DAEV of index 1.
2.5 A numerical experiment with a two-dimensional group

Example 8 (Quintic-cubic Ginzburg Landau equation (QCGA} an example we
treat the quintic-cubic Ginzburg Landau equation from eplen2. With the group
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operations from (50) the DAEV (73) witly = ik yields the following PDAE to
be solved

Vi = aVx+ F(IVP)V+ pav+ oy, v(0) = uo,
0= (%,vV—V)2 = (iv,vy = V)2 =0, (78)
Tt = I-’ll; 9[ = “25 T(O) = 9(0) =0.

For the parameter values
a=1 pB=3+i, y=3+i, 0=-275+i, (79)

one finds a rotating pulse with translational velogity= 0 and rotational velocity
L> =, see Figure 14(a)-(c), and a pulse that rotates and traveldtaneously with

Fig. 14 Real part of the rotating pulsgXx,t) of the nonfrozen system (a) and of the frozen pulse
v(x,t) (b), with velocities(y, ) (c) for the frozen QCGL. Solution by COMSOL Multiphysics
with piecewise linear finite elements, Neumann boundanditimms, fixed phase condition with
template functiorv = ug and parameter values from (79).

translational velocityu; = 1.18 andu, = —2.801, see Figure 15(a)-(c). In both

() pa, p2

Fig. 15 Real part of the traveling and rotating pulg;t) for the nonfrozen system (a) amtk,t)
for the frozen system (b), time-dependence of velocities ) (c). Further data are as in Figure
14.

cases, freezing of patterns is successful. Note, howdartte stability analysis of
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[67] applies only to the first case, since the profilg) keeps rotating as— o and
only its absolute value converges.

2.6 Summary

Let us summarize the main results of this section.

e The freezing method allows to automatically generate ngpfiiames in which
traveling waves become asymptotically constant.

e For the discretized PDAE formulation, one can prove existeof a 'discrete
traveling wave’ as well as their asymptotic stability wittes independent of the
discretization parameters. For such a result one needsitfiead wave to satisfy
the standard stability conditions and the boundary magrioecontrol unstable
modes att-co.

e The freezing method generalizes to abstract equivariaoluon equations
posed on a Banach manifold.

e The method successfully freezes waves in the quintic-c@izburg Landau
equation that rotate and travel simultaneously.

3 Patterns in hyperbolic and hyperbolic-parabolic systems

The freezing method discussed in lecture 2, leads to clwligrproblems, both
numerically and theoretically, when applied to hyperbolichyperbolic-parabolic
systems.

A famous example of this type are the Hodgkin-Huxley equregtifor the prop-
agation of signals in nerve axons. We will use them, both lfostrating the ana-
Iytical difficulties and for showing numerical applicatgnn this section we sur-
vey results due to J. Rottmann-Matthes [56] on the stahifitthe freezing method
for hyperbolic-parabolic mixed systems of rather genefaét The main difficulty
arises from the fact that such mixed systems generate@hlgemigroups so that
the techniques for analytic semigroups do no longer applyrddver, as in the
Hodgkin-Huxley example, nonstrictly hyperbolic parts ecevhich make the sta-
bility analysis even more delicate. The essential tool sohéng these problems is
the vector valued Laplace transform applied directly toRBEAE formulation and
combined with rather sophisticated resolvent estimates.

We also show an application of the freezing method to Burgeusation for
which equivariance includes scalings of the variabless then possible to freeze
similarity solutions such akll-waves. However the stability of the method for this
case, and for conservation laws in general, is largely wesbl
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3.1 Mixed systems and the Hodgkin-Huxley example

The spatially extended version of the Hodgkin-Huxley mdreh 1952 [41] serves
as our standard example,

Ve = SVioe— (Y = Vic) — Ghamh(V — Vi) = 61 (V — V)

M= an(V)(1—n)—Ba(V)n (80)
m = (V) (1—m) — Br(V)m

he = an(V) (1—h) —Bn(V)h,

The system models electric signalling in nerve cells and aferrto [41, 44]) for
details of the modelling, in particular for the special foohthe nonlinearities
O, Om, 0h, Bn, Bm, Bn- We note that the system consists of a parabolic PDE that is
coupled nonlinearly to a system of three nonlinear ODEss Mvell-known that
there exists a traveling wave solution (see for example)[28plot of the traveling
pulse is given in Figure 16.

In a co-moving frame, see (16), a tepvy is added to the first equation, a term
uny to the second equation and so forth. The resulting systeheisparabolic-
hyperbolic, with a hyperbolic part that is not strictly hyperbolic basa of the
common factow in the convection terms.

120, T T T T T

100} —-Voltage 4

_ 1 1 1 1 1
2—%0 -15 -10 -5 0 5 10

Fig. 16 Traveling pulse of the Hodgkin-Huxley equations.
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In the following we analyze the asymptotic stability of teéimg waves for mixed
systems of the general form

U = AUk + g(uaV)X+ f]_(U,V), U(X, O) = UO(X)a (81)

Vi = Bw+ fo(u,v), v(x,0) = vp(x),
whereu(x,t) € R", v(x,t) € R™. Note that (81) includes the Hodgkin-Huxley sys-
tem. The following conditions are imposed on (81).
Basic Assumptions

() g fr € C3R™MR") f, € C3R™MRM),

(i) theu—equationis parabolic, i.& € R™" satisfiesA+ A" > a > 0in the sense
of inner products,

(iiiy the v—equation is hyperbolic, i.8 € R™M is diagonal,

(iv) there exists a traveling wave soluti¢n, v)(x,t) = (T,V)(x— 11t) of the PDE
(81) with profile(t,v) € CL(R,R™™M) andty, ¥ € HZ(R,RMM).

Remark 2(a) In general, hyperbolicity of the second equation in (8Bans that
the matrixB is real diagonalizable. By a similarity transformation ves @utB into
diagonal form and hence assume (iii) without loss of geitgral

(b) Note that assumption (iv) allows for pulse as well as fsmutions.

Before proving stability of traveling waves for (81), we deexistence and
uniqueness of solutions to the Cauchy problem, when thilimiata belong to a
proper neighborhood of the traveling wave.

Theorem 5 ([56, Thm. 2.5]).Let theBasic Assumptions (i)-(iv) hold. Then for all
Up € U+ H1 vg € V4 H? there exists a unique maximal solution@f1). More pre-
cisely, there exists Te (0,] and (u*,v*) such that u= u*|p 7} and v= v*|jg
satisfy(81)in L2 x L? fora.e.t€ [0,T],0< T < T*, and

ueC([0,Tl;u+HYHNL?0,T;u+H?) NHY(O,T;u+HY),

82

ve C([0,T|;v+HYH NHL(O,T;v+HY). (62)
Conversely, any paifu,Vv) for which(82) holds and which solve@1)in L? x L2 for
a.e.te [0, T], satisfies u= u*(jgr) and v= v*| o 1. Moreover,

gither T" =0 or 0< T < and&m* [lu*(t) — Tl g1 + [|V*(t) — V||y1 = oo.

Due to its importance, nonlinear stability of traveling wavin systems of the
form (81) has been considered by many authors. We just meatiew: In a series
of papers [24, 25, 26, 27] J.W. Evans presented a full arebfsHodgkin-Huxley
type equations. By a dynamical systems approach Bates aied J¢] were able to
discuss the stability of systems of the general form (81hauit theg(u,v)x term.
But due to a compactness argument, their result does nodecthe case of fronts.
In [46] Kreiss et al. proved stability of traveling waves iysgems of the form (81)
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but they assumed strict hyperbolicity which is not satisfaedhe Hodgkin-Huxley
model in a co-moving frame. Finally, we mention [35], wheeggbolic-hyperbolic
systems are considered. There the authors allow the spetdnouch the imaginary
axis, but they assumg(u,v)x = aux for a constant matri|@ and thev-equation is
simply an ODE.

We consider (81) in a moving coordinate frame, see (16). Taeling wave
then becomes a steady state of

U = Ao+ (9(u, V) + Hu), + fa(u,v),
_ (83)
vt = (B-+TI)Vx+ f2(u,v).

As in Sect. 1.4, we expect stability with asymptotic phagw. fotational conve-
nience we denotéu,v)" =U and(T,v) " = U and write (83) in the short form

U =F(U).

We aim at a result in the spirit of Theorem. 3. The linear@atf (83) about the
profile reads
Ut = Alboc+ (019 + H)Ux + 020% + (01 + 01 F 1 Ju+ (92T + 02T 1)V,
_ - - (84)
Vi = (B+T)vx+ 01 fou+ a2 f,v,

where we abbreviatg(x) = g(T(x),v(x)), 619(x) = gu(TU(x),V(x)), etc.. The linear
operatorA on the right hand side of (84) has the following block struetu

A (0)-(60)0), - (58 (), (&) 0) e

For simplicity we abbreviate

~. (AOQ ~. (B11 B ~. (CuiCp2
A= (0 0>’ B:= < 0 Bzz)’ Ci= <C21C22>'

As we already saw in Sect. 1.5 shift equivariance impligsvy) ' € .4 (A).

3.2 The stability theorem

Similar to Section 1 we impose the following conditions oe tperaton.
Linear Assumptions:

() AcR"™satisfiesA+AT >0,

(i) Bpp=B+ml €« RMMisinvertible,

(i) B,C are continuously differentiable with bounded derivatjves
(iv) the limits limy_, 1+ B= B and limy_,+., C = C.. exist,
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(v) if se C satisfies dgt-w?A+iwB, +C. —sl) = 0 for somew € R, then
Res< -6 <0,
(Vi) Opoint(A)N{Res> -6} = {0} and 0 is a simple eigenvalue Af

Note that assumptions (i), (iii), (iv) are already impliegdur Basic Assumptions
assumption (v) is related to the spectral condit®®, and (vi) is just the eigen-
value conditionEC from Sect. 1.5. The stability of traveling waves in paragoli

X

X

Fig. 17 Sketch of the spectrum ¥ satisfying theLinear Assumptions.

hyperbolic systems is the main result of the following tregor

Theorem 6 (Stability with asymptotic phase [56, Thm. 6.1])Assume that the
Basic Assumptions hold for (81) and the linearizatiom\ about the traveling wave
(see(84), (85)) satisfies thé.inear Assumptions.

Then, for all0o < & < J there existp = p(d) > 0 such that for all initial data with
|luo —U||a2 +||vo —\7||a2 < p there is a unique global solutiofu*, v*) with T* =
for the systen(81).

Moreover, there are G= C(J), Yoo = Voo (Ug, Vo) € R with

[Veo> < C([Uo—Tl[Z2 + [IVo—VIIF;2)
so that for all t> 0 the following estimate holds:

U (8) =T~ T — o) [ IV (1) — W — Tt = o) s
<C(|luo— T[22+ [[Vo—V|[Z2) e 22",

(86)

As is typical for hyperbolic equations, the initial data aneasured in a stronger
norm than the solution ds— co.

3.3 Central ideas of the stability proof

The proof of Thm. 6 is quite involved and proceeds in four mageps. We only
describe the main ideas and refer to [55, 56] for the detlithout loss of general-
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ity we assume that the problem is posed in a co-moving frambatdhe traveling
wave is a steady state.

Step 1 [Nonlinear coordinates]:Use a nonlinear change of coordinates, in the
spirit of Henry [39]: Choose a linear functiongl: H~%(R,C™™) — R that satisfies

thenondegeneracy assumptiony(Uy) # 0 and write the solution in the form
U@t)=U(@t)+U(-—yt)), where U(t) €4 ().
This leads to gartial differential algebraic equation (PDAE) forU:

U =FU+U(—y))+yUx(- - ),
0=y().

This change of coordinates is justified because the origid problem (83) and
the PDAE reformulation (87) are equivalent fdrclose toU and (U, y) close to
zero, see [56, Thm. 3.5]. Therefore, it suffices to show thasblution of (87) with
transformed initial dat® (0) = Up, y(0) = y» converges exponentially fast.

Step 2 [Linearization]: We introduceu = y as a new variable. Then the PDAE
(87) can be written in the form

(87)

¥=H, y(0) =y,
Ur = F(~U U= HO-y @8)
=AU +Uxp+Q(U, y, 1), U (0) = Uo,
0=y(U).

Note that in (88) the initial value fqu is given by hidden constraints. The remain-
der termQ(U, y, i) in (88) is of the form

Q= ((Gl +Gz2)x+ Fu1+ Frza+ R1>
P+ Fa+Re ’

and has estimates which are quadratic in its arguments x@on@e, we have
1 _ o .
G1 = - [ DU~ 5)) [Ux(: ~ sy). 0] ds
1 _ e~
G2~ [ (1-9D%(U(-—y)+s0)[0.0] ds
and similar expressions féf;. TheR; are quadratic terms ip andy.

To prove stability for the nonlinear PDAE problem (88) weatrthe higher order
terms as inhomogeneities for the linear problem which tleewls
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¥=H,
Uy =AU + Uy + (Fl EZGX), (89)
0=y(U).

In (89) the first equation decouples from the other two eguatand can be solved
in an additional step. Therefore, we consider only the lineAomogeneous PDAE

U, = AU + Uy + (Fl ;fx)
0=y(U),

subject to consistent initial data(0) = ({i(0),¥(0)) € H2 x H2, u(0) € R.
The following linear stability result is the key to nonlimesability.

(90)

Theorem 7 (Linear PDAE stability ([56, Thm. 5.1])). Let the assumptions be as
above and assumey E C([0,%);L?), G,F, € C(]0,%);HY). Then there exists a
unique solutior(u, v, i) of (90), and it satisfies

t
(0 B+ IO [+ €2 [ ull+ VI3 + 1} dr
t
< Ce ™ |uol3a + [Wol3e+ [ @ {IGIFs+ IFal>+ [l Zu o] (o)

The proof of this theorem will be indicated 8tep 4below.
Step 3 [From linear to nonlinear stability]: Nonlinear stability of the PDAE
(87) can be obtained from Theorem 7 by the following steps:

e Show local existence and uniqueness for (88) for smalkihitatal, y(0).

e ConsiderQ(U,y, ) in (88) as inhomogeneity in (90) and use the linear result,
Theorem 7, to obtain a priori estimates for the local sotutio

e Use the a priori estimate in a bootstrapping argument to shatvthe solution
can be extended to all positive times and decays exponlgntial

Since the PDAE problem (87) and the PDE problem (83) arellpeguivalent, this
proves Theorem 6.

Step 4 [Proof of linear stability via Laplace-technique]:We indicate the main
steps in the proof of Theorem 7. A crucial step is to use theldaptechnique
which, in simple terms, translates resolvent estimatetheid heorem of Plancherel
into decay estimates. Using Laplace-transform for stghjiifoofs is standard, but
applying the technique in the context of PDAEs such as (9@)risvel approach,
see [54].

By homogenizing the initial data, we may assume without loEgeneral-
ity U(0) = 0,v(0) = 0 in (90). More precisely, one writes the equations in terms
of the new functiongi — e 2%'0;; and V — e 2%\, This adds a term of the form



34 Wolf-Jirgen Beyn and Denny Otten and Jens Rottmannheiatt

e 2%A(Tp, V%) " to the inhomogeneity (see [54, Thm. 5.3]). The linear inhgero
neous problem is exponentially well-posed so that Laplegestormation of (90) is
justified for spectral valueswith Res > a for some sufficiently larger (see [56]).

This leads to the following resolvent equation which we &viit operator matrix

ol (2 @) (-(5) =
u 1] 0 0

Here.e7 (s) is an operator oh? x L2 x C with domainH? x H x C.
We first show how resolvent estimates, i.e. solution eses&br (92) lead to
stability. By Plancherel's Theorem we have fpe> a,

1}
v
[

1

fy & mIET T @ = 57 [ 1@ (1 +EFE @

PPN

where]|(G,V, 1) " [|2, = [|Tl|Z, + V][4 + |1[2. In Step 6below, we show estimates
for solutions of (92) which hold uniformly ifRes > — &} for a fixedd < 0,

1€0(8), (), A(9)) "[[Z1 < CII(Fa(9), G(8). Fa(8)) T 172 - (94)

Here we used the norif{F,G, ) T[1%, 1 = [F1l% + |GlI21 + |F2[121. Note that
G,V, 11 in equation (92) are analytic functions, given as the Laplaansforms of
U,V, 1, which is only justified in{Res > a}. But the resolvent equation (92) is in
fact uniquely solvable in the larger domgiRes > —d} and the solution depends
analytically onsin this region. Therefordj, v, [i in (94) coincide with the analytic
continuations of the Laplace transforms. By [4, Thm. 4.3th& implies that the
Laplace transforms af, v, u even exist in the larger doma{fiRes > —&}. Then the
Payley-Wiener and Plancherel Theorem [4, Sect. 1.8] shat(&8) even holds for
n > —& > —9. This crucial step of shifting contours in the Laplace tfan® to
the left is illustrated in Figure 18.

We use (93) fon = —&, insert estimate (94) into the right hand side and finally
use Plancherel’s Theorem for the inhomogeneities to obtain

0 o 1 r00 ~ o~ o~ .
| e I@um @Fadr < o [ ClIlFLGR) (1 +i8) s 8
= [ e ™ (FLGR) (1)t (95)

This estimate proves the linear stability result and leadbe estimate (91).

Step 5 [Fredholm-properties]: It remains to analyze (92) and show (94). We
begin with Fredholm properties @# (s). For this rewrite the second order operator
sl—A :H?x H! — L? x L? as a first order operator by introducing: (u, Au,V) .
This leads to an operatbs) : H? x H1 x HY — H x L2 x L? given by

L(s)z=z—M(x,9)z
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I ] ol
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| "(.-5‘ |
| g' |Laplace is a priori only justified to the right of
I 2 I
I I
| -~ P I
~_-~ S~ - ~So_ -
: Path for inverse Laplace may be moved to the lefffof

Fig. 18 Initially, equality (93) only holds for a path of integratido the right ofa. Then it is
justified in a much larger region, and the line of integrai®shifted from the right o to the left
of iR.

where the matrix valued functidv (x, s) € C?"*™ reads

0 Al 0
M(x,S) = | sl+ B12B53Co1 —C11 —B11A™t —B1oB,5 (sl — Cpa) — Ci2
—8521C21 0 Bgzl(S| — C22)

We employ the following Lemma from [11].

Lemma 1. The second order operator sIA on L? x L2 with domain H x H! is
Fredholm if and only if the first order operator($) on H! x L? x L2 with domain
H2 x H! x H1 is Fredholm. In this case the Fredholm indices as well as theed-
sions of the nullspaces of the two operators coincide.

It is not difficult to show that the assumptions on the coedfits of the linear op-
erator, in particulatinear Assumptions parts (iv) and (v), imply that the limit
matrices lim— 1. M(X,S) = M..(s) exist and are hyperbolic matrices. Moreover, the
dimensions of the generalized eigenspaces for eigenvalitieseal part less than
zero is the same fo¥_(s) andM. (s), see [56, App. A]. By classical results of
Coppel [21], the linear first order operald(s) has exponential dichotomies &a.,
and a result of Palmer [50] shows the following,

Lemma 2. For Res> —§ the operator I(s) is Fredholm of inde® anddim.4"(L(0)) =
codim#Z(L(0)) = 1.

Using the bordering lemma, e.g. [8], this proves that thginal operatore/(s) is
Fredholm of index zero for all Re> —9.
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Step 6 [Resolvent estimatesAfter these preliminaries, the resolvent estimates
are shown separately in the following three reglons of thrapglex plane:

Regionl: {seC:Res> —d&, |s| > 0}, ‘ iR |
here the parabolic-hyperbolic structu !
dominates, thalispersion relationis cru- el
cial for the estimates (this is different frot | m
the purely parabolic case!). |
Regionll:  Q C p(A)Nn{Res> —&} com- ; C\
pact. w 5% R
Regionlll:  {seC:|g « 1}, . .
here the PDAE formulation removes s
from the spectrum and leads to approprii 0
estimates. s

Since Region Il is compact in the resolvent sent, the eséismate obvious. In
Region | we assumfg| to be large. Th&inear Assumption (v) then states that

sco — WA+ iwB11+Cq1 iwB12+Ch2
Co B2+ C22

for somew € R implies Res < —&. Here and in the following we drop the index
for simplicity. By a matrix perturbation result, e.g. fro@], there iscy > 0 so that
the matrix is similar to

fm2A+inll+C11+ﬁ(|w|*1) iwB12>+Cq2
0 iWB22+Coo+ 0 (|w| 1)

for all || > ap. Together with thelispersion relationthis shows

Lemma 3. For every0 < &’ < 9 there isw, so that for allw € R, |w| > wy holds
thehyperbolic dispersion relation

s€ o(iwByy+Cyp) = Res< —9&'. (96)

For the hyperbolic part we have the following result from]{54

Proposition 1. For everydy < 0 there exist constanyg, K > 0 such that the equa-
tion
(sl — Bgax — Coa(X))v=F inL%(R,C™),

has a unique solutiong H? for all F € H! and for all s withRes > — &, |s| > po.
The solution satisfies the estimate

2 2
IVIZ2 < KIFIIE2,  IVIZ: < KIF[I

A corresponding result for the parabolic part is proved 8]{4

Proposition 2. There are constants;cK,& > 0 so that for all s=re??, r > ¢,
|8| < 11/4+ £ there exists a unique solutionauH? of
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SU— Ak — B1ilx — Crau = f +gyin L2

forall f € L2, g HL. The solution satisfies the estimate
s2Iul?+ st luxl? < K (111117 +[si1g]12)-
By applying Propositions 1 and 2 to the coupled system

SU— Alkx— B1iux — C1iu = (Fl +Crov— Bj_z,XV) + (G + 812V)X7
SV— Boovx — Coov = 2 +Caau,

one obtains unique solvability and solution estimates igi&el.
In Region Il we benefit from the formulation as a partial diffntial algebraic
equation. First consider= 0 and assume th&tV,A) is in the nullspace of7(0),

Ux

w06 0
1] 0

But our assumptions, 0 is a simple eigenvalue and, thergfiar@y) " is not in the

range ofAA, which enforces\ = 0. ThenW must belong to the kernel @t which

is the one-dimensional space spannedtyVy) ' . The nondegeneracy assumption

on ¢ then implies that alsw vanishes, so that’(0) : H2 x H1 x C — L2 x L2 x C

is a linear homeomorphism due to Fredholm index zero. A pleation argument

then allows to deal with smattvalues.

Lemma 4. There exist ¢ K > 0 so that for all s C |g] < ¢ there is a unique
solution(G,7,A) € H2 x H! x C of

(sI-A) (g)
w 0

and the solution satisfies

ﬁl‘t éx
F ;
0

>) <) o)
I

[z + 1942 + AT < K(IFall + Gl + [IF21])-

This finishes the proof of Theorem 7.

3.4 Freezing waves in hyperbolic-parabolic systems

In this section we consider the freezing method when solkayerbolic-parabolic
systems in the neighborhood of traveling waves. Recall émegal form (61) of the
freezing method for a shift-equivariant evolution equatilp = F (U),



38 Wolf-Jirgen Beyn and Denny Otten and Jens Rottmannheiatt

Vi =F (V) + uVy, (Fr1)
0= an(Vvl'l)a (FrZ)

where (Fp) is the phase condition. Further recall the two standardételsdor phase
conditions from Section 2.1:

Fixed phase condition: = Given a template functibnforce the solution of (R
to align best under all shifts &f with the unshifted template functidn, i.e.

0= argmin.g |V — V(- - )|
If the norm is given by some inner produet:) andV is sufficiently smooth, the
condition above implies & (Vy,V —V).
Orthogonal phase condition:  Force the time evolution ofgblketionV of (Fry)
to be orthogonal to the orbit of the spatial shiftsvoin the Hilbert spacé?:
0= (VM) = (Vi F(V) + V).

For a sketch of these conditions see Figure 19.

Ty (shift)

Fig. 19 Geometric interpretation of the orthogonal phase condlifieft) and of the fixed phase
condition (right).

Example 9 (FitzHugh-Nagumo systeRgcall the FitzHugh-Nagumo equation from
Example 4 with parametess= 0.7, b= 3, ¢ = 0.08. We sekt = 0, so that we have
the hyperbolic-parabolic mixed case as in [57]. The sysegus

Ut :Uxx—f—u—%us—v, U(X,O):UO(X),

vi = g(u+a—hv), v(x,0) = vp(x), ©7)

Figure 20 shows a colorplot of the time-evolutioruandv for the frozen system.
The initial data are chosen as a jump function, which eqh&isedst state at o for
x < 0 and the rest state ate for x > 0. A plot of the asymptotic profile, calculated
by the solution of a boundary value problem, is given in ttieftame of Figure 21.
We indicate the rate at which the solution to the freezinghoétconverges to the
asymptotic profile by plotting the2-norm of the time-derivative in the right frame
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of Figure 21. In [57] this behavior is related to the specyap of the linearized
operator.

Time-evolution ofu Time-evolution ofv

E
6f
4
2)
ot

-1

-1o0 -5 0 Spaée 10 0 -5 0 Spaée 10

Fig. 20 Plot of frozen FitzZHugh-Nagumo solutiongx,t) (left) andv(x,t) (right). Note thatu
appears to be smooth immediately, whilexhibits a discontinuity that decays with time.

— VAT
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Fig. 21 Space dependence of FitzHugh Nagumo solutigrg ) v(x,t) (left) and temporal decay
of ||(u,w)|| 2 with time (right)

Example 10 (Hodgkin-Huxley systems a second example we use the freezing
method for a long-time simulation of the Hodgkin-Huxley &ya (80). For suit-
able initial data, which are chosen as a simple jump in théagel, the long-time
simulation approximates the traveling pulse. The resuttre such long-time sim-
ulation was used as initial guess to calculate the traveliige shown in Figure 16
from a boundary value problem (cf. (12)). We sketch the nugaéspectrum of the
linearization about the traveling pulse in Figure 22.

3.5 Stability theorem for the freezing method

An obvious question is, whether stability with asymptoti@pe for traveling waves
in hyperbolic-parabolic problems translates into stapaif equilibria for the freez-
ing method. This is in fact true, as the following result vgitiow.



40 Wolf-Jirgen Beyn and Denny Otten and Jens Rottmannheiatt

Fig. 22 Numerical approximation of the spectrum near zero for thedrization of the co-moved
Hodgkin-Huxley equations about the traveling pulse.

Consider a hyperbolic-parabolic partial differential atjon of the general form
(81). The freezing method for this system is

U = Al +g(U, V)x+ f1(U,V) + iy,
Vi = Bw+ fa(u,v) + vy, (98)
O=y(l—uv—v).
We impose théasic Assumptionfrom Sect. 3.1 for and theinear Assumptions
from Sect. 3.2. In addition, we require for the phase coaditi
(i) -1, V—veH,
(i) W(a-1,9-v)=0,
(iii) W(ux,Vx) #£0. (non-degeneracy condition)
Condition (ii) implies thai{u,v, 1) is a steady state of (98). With these assumptions
the following result holds.
Theorem 8 ([55], [57]). For all 0 < & < d there existsop > 0 such that for all
consistent initial data 0{98) with ||up — U||ﬁ2 + |Ivo— \7||a2 < po there is a unique
global solution(u, v, 1) of the freezing equatiof®8). The solution satisfies

u—teC([0,T;HY) NL3(0,T;H2) NHL(0,T;L?),
v—veC([0,T];HY)NHY0,T;L?), wueC([0,T;R),
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and converges exponentially fast to the asymptotic profild ta the speed of the
traveling pulse. More precisely, there is<€C(&p) such that for all t> 0,

lu(t) =l s + Iv(t) —VIZa + u(t) — 7P
< C(Jluo — Tz + IIvo — VI|F2) &2,

It is worth noting, that the result also applies to viscoussayvation laws with a
source term. The following numerical experiment shows am#e of this type.

Example 11 (Burgers’ equatiorfionsider Burgers’ equation with a source term,
u+ (3u), = 01U+ u(l—u)(u—13). (99)

The following results are taken from [53]. Figure 23 showesribsult of a numerical
simulation of (99) with the freezing method. The left plotRigure 24 shows the

15

Fig. 23 Numerical simulation of (99) with the freezing method. Thaddbline indicates the initial
data (cf. [53]).

dispersion curves and the right plot shows a nhumerical aqpiation of the spec-
trum for the operator linearized about the traveling wasendmerical experiments
one observes an approximate rate of convergenté ast — c.

Example 12We present results for hyperbolic systems without a paralpalrt.
This was first analyzed in [54] and [55]. A large number of epéan of such sys-
tems are obtained by using the so-called Cattaneo-Maxweliriktead of the usual
Fickian law:

Consider a system of reaction diffusion equations
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4
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Fig. 24 Dispersion relation for Burgers’ equation with a sourcenteleft), plot of a numerical
approximation for the spectrum of the linearized operatghf).

Vi +Ox = r(v),

wherev denotes the concentrations of the substrajesands for the fluxes of the
substrates, andcontains reactions terms for the substrates. Usually tixedlare
given by the Fickian lawd = —Dvy), but this leads to the unphysical phenomenon
of infinite speed of propagation of the substrates. Cattfit@gproposed a different
flux law for the case of heat transfer. He added a damping termet Fickian law
which reads

Tag+g=—W

This leads to the following semilinear hyperbolic problem

(o), (), (55

As is well-known, solutions to hyperbolic problems have dtdirspeed of propa-
gation. This removes the apparent paradox of infinite spépdopagation for the
substrates. Moreover, the Fickian law appears as a sitgplarturbed limit if the
parametefl becomes large.

In [55] we consider a hyperbolic variant of the Hodgkin-Hexxkequations (80)
by using the Cattaneo-Maxwell flux. The system then becomes

a _ _ _

Ve = 5R0k— gkn*(V —Vk) — GnaPh(V —Viva) = G (V — M),

G = 7VX7 q,

Mk = an(V) (1—n) = Ba(V)n, (100)

m = am(V) (L—m) — Bn(V)m,

ht = an(V) (1—h) = Ba(V)h,
where the nonlinearitiea,, B, etc. are the same as in the original equation (80).
The freezing method works for this example just as well afifeoriginal Hodgkin-

Huxley system. After a first long-time simulation, one camiagise the final state
of the initial value problem as initial guess for the boundalue problem and then
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do the standard subsequent analysis for the traveling wasle & computing the
spectrum, performing parameter continuation, etc..

We plot in Figure 25 the dispersion relation of the steadtestaoblem, i.e. of
the problem in a co-moving frame with the correct velogitgf the traveling wave.
Due to the hyperbolic character of the equations, all cuaypgsoach vertical lines,
for more details we refer to [55, Sect. 8] and [53].

a1

iR
o

5t

Fig. 25 Dispersion relation for the steady state of the hyperbatision of the Hodgkin-Huxley
equation (cf. [55]).

3.6 Numerical experimentsfor more general symmetries

Note that equivariance of an evolution equation (43) cotebleavoids transfor-
mation of the time variable. So far we just used equivariandbe form (46) and
kept the time variable in the ansatz (71). But it is possiblentlude more general
symmetries that involve the time variable, and this hasadlyebeen proposed in
[58].

As an example we consider the viscous Burgers’ equation

U = —(3U%)x+ vu=: F(u), xE R,t >0, (101)

and take the Lie group
G=R} xR,

with multiplication fory, n € G given by:

(v1,¥2) 0 (N1,n2) = (N1, o +yanz), 1=(1,0).
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We use the group actiomsandm, given by

F(a(y)u) = m(y)a(y)F (u). (102)

Note that, instead of commutiiganda(y) as in (46), we have an additional factor
m(y). This factor leads to a time scaling as we will see in the feiify discussion.
We replace (71) by the followingnsatz:

u(t) = a(y(1))v(), (103)

wherey is a smooth curve i, vis a smooth curve in the domainBfandt = 7(t)
is a smooth real valued function tof

Using the symmetry property (102) in the evolution equafiil), we arrive at
the following:

u=F(u=F (a(y(r))v(r)) =m(y)a(y)F(v), and also
d

e = a(y)dla(LVAL, 1 (Y)Y T + aly)viT. (104)

If we chooser to satisfy the ordinary differential equatian= m(y(1)), then (104)
leads to the system

ve = F(v) —d[ay(1)v]u, (105)
Tt = m(V(T))7 (106)
yr = dLy(1)p. (107)

Note that it is not necessary to solve (105)—(107) simuttash. In fact, equations
(106) and (107) are only needed for reconstruction, i.ebtaia the solution in the
original coordinates. The relative equilibrium is complgtdescribed by a steady
solution of (105). For the simulation of (105) the same idea@ Section 2 apply.
We only present the results of one simulation in Figure 2&Hilng at the scales
in Figure 26 it is nice to observe that the solution decaysetm Zn the original
variables and spreads to infinity. In the transformed véembowever, the solution
becomes a steady state. Moreover, using the freezing meatheds able to directly
observe a transient behavior: For a very long time (in thgioai time variable) the
solution is close to what is called &hwave in the theory of hyperbolic conservation
laws, before it finally approaches the correct viscosityavdihis behavior has been
observed already in [45], but there the authors used thaaghptotic values for
U and, therefore, a correct asymptotic scaling of space ane &éire known. Our
method applies also to systems where the asymptotic seairggnot easily found
and, moreover, the method yields these asymptotic scadingart of its solution.
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Fig. 26 Result of the freezing method for the viscous Burgers’ equait four different times. In
each of the four plots the scale on top is for the original spaciablex, the bottom scale is in the

transformed variablé = X;l‘fr()r ), the scale on the left is for the transformed dependent iviaria

v(&,1) and the scale on the right is for the original dependent blia(x,t). In each plot we also
give the actual original timeand the transformed timet) (see [53]).

3.7 Summary

A summary of the results of this section is the following:

e Stability with asymptotic phase for general coupled paliadoyperbolic sys-
tems can be proved under the assumption that the spectruma tihearization
lies strictly to the left of the imaginary axis except for enpie zero eigenvalue,

e The idea of the proof is to use Laplace-transform and denfom resolvent
estimates for the transformed equation,

e For large spectral values, resolvent estimates are olotdinen the parabolic-
hyperbolic structure and the dispersion relation,

e For small spectral values, the zero-eigenvalue is remawed the spectrum by
the phase condition which appears in the PDAE formulation,

Numerical experiments confirm the predicted exponenttakra
The freezing method applies to the computation of similesdtlutions.
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4 Rotating patterns in two and three space dimensions

While the previous lectures were restricted to patternim gpace dimension, we
will progress in this section to nonlinear waves in two ane¢hspace dimensions.
Since the freezing method is formulated in abstract ternis iiather straightfor-
ward to make it work for equivariant parabolic systems ir 2 dimensions, where
the Lie group is now the-dimensional Euclidean group or consists of products or
subgroups thereof. It is much harder, however, to proveineat stability of such
patterns under reasonable assumptions on the associatdtbsn this section we
discuss the stability result from [9] which applies to twioaénsional rotating pat-
terns that are localized, i.e. which decay at infinity. Agais in Section 3 a major
difficulty results from the fact that, due to the angular mgdbe linearized opera-
tors only lead taC%-semigroups. Moreover, due to equivariance with respettteto
two-dimensional Euclidean group, three eigenvalues nqueapon the imaginary
axis. We show how to obtain exponential decay of the sempjitoa subspace com-
plementary to the eigenvectors that belong to these thgemedlues. Then stability
with asymptotic phase follows in a suitable Sobolev spaaalsb show some sim-
ulations of the freezing method for cases where the theogg darrently not apply:
two-dimensional rotating spirals for Barkley’s excitalskestem (see [6]) and three
dimensional spinning solitons for the quintic-cubic GinalpLandau equation.

4.1 Reaction diffusion systemsin R? and the freezing method

We apply the abstract freezing approach from Section 2.daotion diffusion sys-
tems in two dimensions

W =AAu+ f(u),t >0, xeR% u(-,0) = up, (108)
whereu(x,t) € R™andA € R™Mis positive definite. The system (108) is equivariant

with respect to the Euclidean gro@= SE(2) under the actiora(y), given for
y=(6,1) € St x R? by

a(y)V(x) =V(R_g(Xx— 1)), X€ R, Rg= (;‘;f(ee) 2?!5%?) . (109)

Here we used the representatiors 2) as a semi-direct product 8 andR? with
the group operation defined through

(61,11) 0 (62, T2) = (61 + 62, R, T2 + T1). (110)
The derivative ofa(y)v with respect tay € G turns out to be

dla(l)vju = pu1DgV+ pD1v+ DoV, U = (U1, U2, 43) € o/ =s€2), (111)
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whereDgV(x) = xD1V(X) — x1D,Vv(X) is the angular derivative and: R? — R™ is
assumed to be sufficiently smooth.
Therefore, the freezing system (73) associated with (1€8)s as follows

Vi = AAv+ f(V) + U1DgV+ poD1v+ pzDav, V(~, O) = Ug
0: (DQ\?,V*\?)LZ - (D]_\?,V*\?)LZ - (D2\7,V7\7)L2,

(112)
(8 (10 0) = 0
M*thORGLLVfO-
A rotating wave solution of (108) is of the form
ux,t) =u. (R ¢x), xeR? teR, (113)

whereu, denotes the profile and denotes the angular velocity of the wave. In
terms of the group action we may write such a solutionu@$ = a(ct,0)u,, t €

R which is a relative equilibrium of (108). For ar§ € S, T € R? the function
a((8,1) o (ct,0))u.(x) = u.(R_¢_g(x— 1)) is then also a rotating wave, but with
phase shif® and with center of rotation at. These solutions are equilibria of the
first equation in (112) and solve the reconstruction equati¢112) with initial data

y(0) = (6,7).

Example 13 (Quintic-cubic Ginzburg-Landau equation (Q@)3Consider the QCGL
in two space dimensions (compare Example 5):

= aAu+ (5+Blu+yutu, xeR? u(xt)eC, (114)

with parametersr, 8,y,6 € C,Rea > 0. In real coordinates = u; + iu this leads
to a parabolic system of the type (108). According to [22] skistem (114) has so
called spinning soliton solutions for parameter values
1 . 5 . [ 1
a_2(1+|), B—2+|, y=-1 10 0= 5 (115)

Figure 27 shows the result of the numerical computatiortfes¢ parameter values,
both for the given system (108) and for the frozen system)(Il# computations
were done with COMSOL Multiphysi¢¥ on a ball of radius 20 and with Neumann
boundary conditions. Figure 27(c) shows the final profilehef$pinning soliton. In
Figure 27 we plot the time dependence olURe0,t) at the cross-section = 0 both
for the nonfrozen system 27(a) and the frozen system 27(#) time evolution of
the velocitiequ(t) = (ua(t), Ua(t), us(t)) are shown in Figure 27(d).

The system (114) is in fact equivariant with respect to thdirdensional group
G = S' x SE(2) where (109) is replaced by the actiafly)v(x) = €®Vv(R_g(x —
T)),x € R2for y= (¢,0, 1) € G. It turns out that the spinning solitonsx,t) con-
sidered here are symmetric in the following sereésu, (x) = u.(RyX). Then there
is a nontrivial isotropy subgrou@(u.) = {g € G: a(g)u. = u,} and the linear map
d[a(1)u] : & — Y is no longer one-to-one. This causes problems with the phase
conditions (76),(77) which become ill-posed with respedhe parameteu. In the
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Fig. 27 Spinning solitons in the quintic-cubic Ginzburg-Landawaiipn. Cross-section & =0
for the real part of solutions to the nonfrozen system (184)ahd to the frozen system (112)
(b). Profilev of the spinning soliton (c) and time-dependence of velesitj, Lz, 13) (d). All
solutions obtained by Comsol Multiphysics with piecewisear finite elements and Neumann
boundary conditions. A fixed phase condition as in (112) vsesiwith template function taken
from the solution of the nonfrozen system at titne 50. Parameter-values are given by (115).

current example we avoided such complications by considegguivariance only
with respect to the three-dimensional gr@&#g(2). In this smaller group the isotropy
subgroup becomes trivial.

4.2 Spectra of 2D rotating waves. essential and point spectrum

In the following we discuss the behavior of the spectrum eflthear differential
operator obtained by linearizing about a rotating wave eftarabolic system (108).
We consider a localized rotating wave (113). By this we méa the profile con-
verges to a zera, of f as|x| — « and that all derivatives up to order 2 converge to
zero. By shiftingv., into the origin we may assunmf&0) = 0 and hence

sup|D%u,(x)| -0 as r—o for |a|<2. (116)
[x|=r
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We transform (108) into rotating coordinates uix,t) = v(R_¢x,t) and obtain
Wt = AAV+CDyV+ f(V), with Dyv = —xoD1V+ X1 DoV. (117)
Linearizing at the steady state= u, of (117) yields the operator
ZLu=AAU+cDyu+B(X)u, B(x) = f'(u.(x)), xc R (118)

Applying D1,D2,D to AAu, + cDyus + f(u,) = 0 and using the commutator rela-
tions[D1,Dgy| = D, [D2,D¢] = —D1, [Dy,AA] = 0 leads to the equations

0=_2ZDgu, = £ (D1u,) +cDyu, = Z(Dau,) — cD1U,, (119)
in particular,.Z (Dju, £iD>u,) = +ic(Diu. +iD,u,). Therefore, the operata?’

has at least the three eigenvalueig in its spectrum (see Figure 28(a)) provided
the function®Du,, D,u,,Dg lie in the function space under consideration. Next we

ox isolated eigenvalues
>< essential spectrum

ic ic “bic

@ (b) (©

Fig. 28 Critical eigenvalues Qric for a linearized rotating wave (a), essential spectrum f6GQ
from Example 13s=inc+ 5 — k2(a1 +iaz), kK € R, n € Z with parameter values from (115) (b),
Schematic picture of essential spectrum, critical eigeses and further isolated eigenvalues for
the QCGL from Example 13 (d).

discuss the essential spectrumdf In polar coordinates the operator reads
2, 1 1.2 ’
.ZA<D, +?Dr+r_2D9) +cDg + f'(us(r, 8)). (120)
Asr — o we find the constant coefficient operator
Fu = AD? +cDg + /(0) (121)

With u(r, 8) = €"9€¢*"u, we obtains € 0(%), if s satisfies for some € R and
n € Z thedispersion relation

de{—k?A+inc+ f'(0) —s) = 0. (122)
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For the quintic-cubic Ginzburg-Landau equation from Ex&i3 the curves from
(122) turn out to be infinitely many copies of two half linesfstd along the imag-
inary axis, see Figure 28(b),

s=-—k2a+inc+05, s=-k2a+inc+d, KeR, neZ. (123)

We indicate why these curves belong to the essential spedfthe variable coef-
ficient operator?, i.e. 0(Zw) C Oesd-Z). With the eigenfunctions above let

ur(r,8) = Yr(r) (ei”"ei”um)

whereyr is a smooth cut-off function such that

UR(r) = {é -

R,

<2
<R-1,2R+1<r.

<r
<r
By a straightforward computation one shows

lurl?> > CRE,  [[(£ ~9)ur|[f < C(R+ Ree)

whereer = sup.rg|f'(U*(r,8)) — f'(0)| = 0 asR — c. This contradicts the con-
tinuity of (. —s)~! with respect td| - || 2, i.e. ||ur]| .2 < C||(-Z — S)uR]| 2. For the
QCGL from Example 13 we expect further isolated eigenvaladke right of the
essential spectrum, see Figure 28(c) for a schematic dgawin

Clearly, since the spectrum ¥ is not contained in a sector, we expect the
semigroupd to be continuous but not analytic. This has serious impbeatfor
the nonlinear stability theory to be discussed in the nelseation.

Figure 29 shows details of the numerical spectrum that isddar a numerical
discretization ofZ of size 1@. The detail shows about 400 eigenvalues lying in a
ball centered at 3. It turns out that, in addition to the theiegenvalues Gtic on the
imaginary axis, there are clusters of eigenvalues whicheydmate the essential
spectrum from Figure 28(b), and there is a total of 8 pairsamhglex conjugate
eigenvalues (indicated by crosses in Figure 29) betweerinthginary axis and
the essential spectrum. The contour plots of the assocéageshfunctions (see [9,
Figure 3]) show that these eigenfunctions are actuallyliped, i.e. we assume
their continuous counterparts to lie if(R?,C). On the contrary, the numerical
eigenfunctions found for eigenvalues within the clusters, easily recognized as
being non-localized (cf. [9, Figure 3]).

4.3 A nonlinear stability theorem

In this section we outline the nonlinear stability theory fotating patterns follow-
ing [9]. We mention the alternative approach of [62] whiclesigenter manifold
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Fig. 29 Plot of numerical spectrum for the QCGL from Example 13 witlngmeter values from
(115). In addition to 3 eigenvalues on the imaginary axisthedlusters approximating the essen-
tial spectrum from Figure 28(b), one finds additional pafrsolated eigenvalues indicated by the
blue crosses.

reductions. Recall the Sobolev spattis= H! (R?,R™), j = 0,1,2 and the Sobolev
embeddind?(R?) ¢ L*(R?) NC(RR?) and introduce the subspace

HZ o = HE,o(R%,R™) = {u€ H?: Dgu € LA(R? R™)}.

As above we assume the existence of a rotating wave (113héosystem (108)
with nonvanishing velocitg # 0, and we impose the following
Wave conditions

(i) feCHRMR™M andf(0) =0,

(i) SUPK>rjaj<2| DT UL(X)| — O asr — oo

(iii) f'(0) < —2BI for somef > 0.

(iv) The eigenvalues.@-ic have eigenfunction®gu,,Dju, +iD>u, in Héucl, and
they are algebraically simple for the operatr= AA + cDg + f/(u,) in HZ

(v) There are no further eigenvalues C for £ with Re(s) > —2(3.

Theorem 9.([9]) Under the wave conditions (i)-(v) above, there exiatse > 0
such that for any solution 0f108) satisfying||u(0) — u.||2 < € there is a G-
function y(t) = (6(t),7(t)) € SE(2),t > 0 and some(6w, T) € SE(2) such that
fort >0,

Ce P u(0) — llye,

Ce P |u(0) — |y -

[Ju(-,t) —a(y(t) sl

(124)
[0(t) 4 Ct— O] + | T(t) — Too|

NN

Note that this theorem stategability with asymptotic phase as we know it for
traveling waves from Theorems 3 and 6.

In the following we provide some ingredients from the prdefst we transform
into rotating coordinates (117).
Step 1 [Nonlinear coordinates]:
Decompose the solution of (117) and the initial vali@) = up in a way analogous
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to (87) (see Figure 4.3 for an illustration):

VD) =alyt)u +wi), v = (00 T0) €S R
UO = a(WJ)U* +W05 y(o) = (907 TO))

wherew(t),wp lie in the subspac®/ = {1, ¢, Y3} + of H2. Here, orthogonality

holds with respect t@-,-), 2, and the functiongn £ iyp, Y3 € Héud are eigenfunc-

tions of the adjoint operato#* corresponding to the eigenvalugsc, 0 (cf. wave

condition (iv)).

o(u.) ={a(y)u. : y€ SE2)}
Fig. 30 Decomposition of dynamics near a two-dimensional groujit orb

Step 2 [The decomposed systemlnserting (125) into (117), expanding the non-
linearities and inverting the linear parts leads to theofelhg system of coupled
integral equations for the new variableg), y(t):

wit) = €m0 + [ €7 pM () ),
0 (126)

V() =%y + [ e TEeplw(r) y(m)r,

0cO

whereE; has the matrix representatiéig = (—c 0 O) andpW, p™ are quadratic
000

remainder terms.

Step 3 [From linear to nonlinear decay estimates]:

The crucial step in the proof is the linear decay estimate

€4W|| 2 <CePYw,2 for weWw, (127)

which will be discussed in more detail in Step 4 below. Thelim@ar estimate
(124) is obtained by using Gagliardo Nirenberg type eseéndbr the remainders
p™ resp.pl¥ and combining them with the linear estimate (127).

Step 4 [Exponential decay of a&°-semigroup]:

We collect the available information for the variable caséint operatorZ from
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(119) and the constant coefficient operator (121). The waweliion (ii) guaran-
tees Réo (%)) < —f. Using condition (iii) one can also prove that = %, +
(f'(u.) — '(0)) : HZ — L2 is a relatively compact perturbation &f., which by
Theorem 2 shows Res{.¥) < 7{23 < 0. But now the problem arises that the spec-
tral mapping theorem foE%-semigroups holds for the point spectrum, but in gen-
eral not for the essential spectrum, see [51],[28]. Thaip,o () = o(exp(.Z))
holds forg = dpoint (Up to the number 0) but not faress

However, it turns out that, instead of Theorem 2 one can uséottowing The-
orem on relatively compact perturbation of the semigroselft

Theorem 10.Let A: D(A) C X — X denote the generator of &emigroup & of

type
w(A) :tingt’llogHe‘AH = lim t~tlog|/e?,
> 0

and let Be L[X] be linear, bounded such that
Bé” is compactforall t 0.
Then A+B: D(A) — X generates a &semigroup €48 with
| Oesd €7B)| < 2. (128)

Moreover,Re [Gpoin(A+ B)| < wy impliesw(A+ B) < max{w(A), w; }.

For a proof of the theorem we refer to [9, Appendix], and weertbgt it can also

be derived by combining several results from [28]. In owraiton we can apply the
theorem to the operatofs= %, A+ B= ¢, B= f'(u,) — f'(0) since(f'(u.) —
f/(0))é“= is compact inH2. Equation (128) then leads to an exponential estimate
for desd€%), in particular|ges{€?)| < 1. Now one restrictsZ to the subspace
W which is invariant under exg (but not undere?~ 1) and applies the spectral
mapping theorem to finqjapoim(eLlW)| < 1 from wave condition (v). Combining
both results, finally proves the estimate (127).

4.4 Further experimentswith wavesin 2D and 3D

We finish this section with numerical experiments in two ameké space dimen-
sions. We note that for these non-localized waves, therari®tly no rigorous
nonlinear stability analysis available.

Example 14 (Barkley modelyhe frozen version (112) of the well-known Barkley
spiral system [6] reads
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1 v+b
U = Au+ gu(l —u)(u— T) + Ha(XaUx, — XqUy, ) + Holy, + H3Uyy,
Vi =uU—-Vv+ /Jl(XZVxl - XlVXz) + IJZVXl + IJ3VX23
0= (X2U07x1 X1Uo,x,, U — UO)LZ + (XzV0 V0 V— VO) 12>

X2

0= (UO,leu* u0)|_2 =+ (V>O<1aV VO)Lz = (UO,szu* u0)|_2 =+ (V>O<27V VO)
For parameter values

1
- — -07 —0.01 12
850,a05,b00, (129)

Figure 31(d) shows the behavior of the 3 group velocitiesfobzen spiral.

(b)

f 3
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0 10 20 30 40 50
t
(c) (d)

Fig. 31 Cross-section a& = 0 for the first component of the Barkley spitdk,t) of the nonfrozen
system (a) and of the frozen system (b). First componenegbibfilev of the Barkley spiral (c) and
time-dependence of velocitiggl, 12, 43) (d). Solution by Comsol Multiphysics with piecewise
linear finite elements, Neumann boundary conditions, fixeasp condition with template function
Vv taken from the solution of the nonfrozen system at timel50 and parameter values from (129).

Let us compute the motiop(t) = (8(t), 7(t)) in the group when the solution has
reached its relative equilibrium, i.e. we determin(e) = exp(ty) € G for a given
U € </ from the reconstruction equation
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j=dL = (g ) B V0 =0 (130)

The solution is

_ G(I)) ( [t > 1 <—E3)
t)= = where xe=—=1{ 1°|. 131
MY (T(t) (I = Rat)x)’ AETRNT (131)
Note thatr (t) moves on a circle of radiybc|| centered ax.. Inserting this into the
profile u, we obtain the solution

00x,t) = U (R (x-+ (Rige — 1)) = U (Rge(X— %) + %), (132)

If a specific pointx'of the profileu, is of interest, e.g. the tip of a spiral, then this
point will be visible at positiorx(t) with x= R_,t (X(t) — X¢) + X, i.e. on the circle
given byx(t) = Ryt (X—Xc) +Xc. Our conclusion is that the freezing method gives
the information about the centeg and the speed of rotatiom for free. There
is no need to use ad-hoc definitions for locating the tip ofieagdfor example. A
comparison of this method with traditional ways of follogithe tip of a spiral from

a direct simulation of the given system is provided in [14bwéver, we note that
it can be useful to impose such spiral tip conditions if omesaat phase conditions
that lead to global sections. In [34] such an approach is fmefileezing not only
rigidly rotating spirals (relative equilibria) but also tecognize meandering spirals
(relative periodic orbits). The work [40] contains anotiv@eresting application of
the freezing methodology, namely to follow the large comatliof spiral waves, i.e.
to observe the behavigrn, — 0 or xc — o under parametric perturbations, without
solving the equations on extremely large domains.

Example 15 (Quintic-cubic Ginzburg-Landau equationle continue the QCGL
equations from Example 13 in three space dimensions

U = aAu+(3+BluP+yluhu, xeR® u(xt)eC, (133)

and look for D spinning solitons. The system is equivariant with respedhe
action of the 6-dimensional Euclidean groBp= SE(3) = SQ(3) x R3, given by

(V) =v(R Y(x~1)), y=(RT)€SE®3). (134)

Recall that the group operation in this representatiopd§ = (RR, T + RT). The
freezing method leads to the PDE

Vi = QAV+ (8 + BIuf® + yul*)u+ pav, + HsVx, + HeVig

(135)
+ U1 (Vyy X3 — VxgX2) + 2 (Vg X1 — Vg X3) + H3 (Vi Xo — Vi X1),

complemented by 6 phase conditions. In Figure 32 we showethiglts of a sim-
ulation of this system for the same parameter values as i) (Elgure 32(a)-(c)
shows the spinning solitons for 3 different time instanciethe original equation,
while Figure 32(d) displays the profile of the frozen solatlwy showing two iso-
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aq
ah

ah

(d) (e)
Fig. 32 Isosurfaces Re(x1, X2, x3,t) = +£0.5 at timeg = 0, 32, 6.5 (a)-(c), isosurfaces of the real
part of the profilevand time-dependence of velocitigét) for the three-dimensional QCGL (133)

surfaces of the real part. The behavior of the six algebrai@blesy;, ..., s is
shown in Figure 32(e). The resulting relative equilibri@rseto be localized and
stable with asymptotic phase, but we are not aware of anyaigoresult in this
direction comparable to Theorem 9.

4.5 Summary

Let us summarize the results of this section:

e The freezing method applies to 2D and 3D rotating patterisaartomatically
generates information about angular velocities and cewfenotation.

e For rotating localized 2D waves one can prove nonlinearilgatvith asymp-
totic phase in the Sobolev spadé from linear stability.

o Differential operators obtained by linearizing about tiotg two-dimensional
patterns generate onGP-semigroups.

e Numerical approximations and convergence of the freeziathod are not yet
analyzed theoretically. There are also no rigorous thesi@monlinear stability
of nonlocalized rotating patterns such as spiral waves.
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5 Decomposition and freezing of multi-structures

Many excitable systems discussed in the first sections agpeitial solutions that
are composed of several waves and thus cannot be frozen gl sioordinate
frame. Often such patterns travel at different speeds ghdrainove towards each
other (the case ddtrong interactiol or repel each other (the casewéak inter-
action). As long as the patterns do not interact strongly they seebehave like
linear superpositions, though this cannot be true in thietstense for a nonlinear
system. In this section we discuss an extension of the figaniethod to handle
multiple coordinate frames in which the single profiles ctatéize independently
while still capturing their nonlinear interaction. The laglea is to use dynamic
partitions of unity in order to decompose the system intageiasystem of PDAES,
the dimension of which is determined by the maximal numbegadterns. The basic
idea is taken from [12] while we follow here the improvemewoinfi [64]. In partic-
ular, we explain a highly sophisticated stability resutinfr the thesis [64] which
applies to weakly interacting fronts and pulses. We alsctimeithat this numerical
approach is closely related to an analytical method deeelop [63], [70] where
so-called exit and shooting manifolds are constructed lwhie followed by the
multi-structures for a certain time.

5.1 Multi-pulses and multi-fronts

Consider the Cauchy problem for a parabolic (or mixed hypiparabolic) sys-
tem in one space variable

U = Al + f(U), XER,t >0,

136
u(-,0) = up, (136)
for a functionu(x,t) € R™ on the real line, wher& € R™™ is assumed to be positive
semidefinite and : R™ — R™ is assumed to be sufficiently smooth. Multi-pulses
and multi-fronts generically appear in a large variety afteyns of the form (136)
and we mention two standard examples:

Example 16FitzHugh-Nagumo system
Recall the FitzHugh-Nagumo system

U = (Si)t — (é 2) Upct F(U)

Up up—1ud—u,
f = 371 , @,ab>0e>0.
(uz) (qo(u1+a buz)) ¢

In Example 7 we observed for pulse like initial data the gatien of adouble
pulse solution, see Figure 12. More precisely, the solution toGaeichy problem
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develops two pulses, traveling in opposite directions.Beample 7 for the details
of the numerical simulation.

We have seen that the numerical method of freezing capturesobthe two
evolving pulses, while the other leaves the computatiopatain. In fact, in the
numerical experiments the phase condition determinedhwtii¢che two traveling
pulses is captured and which is lost.

Example 17 (Nagumo equatiorAs an example that generatdsuble fronts we
consider again the Nagumo equation, compare Example 6,

U =Uy+Uu(l—u)(u—a), xeR,t>0, u(-,0)=up,

with parametela = %. As initial condition for the Cauchy problem we choose the
piecewise linear function

X+ 50 50— x
Uo(X) = 1(—s00/(X) - 5~ +Li050/(X) - —z5 (137)

wherely(x) = 1 forx e M and1u(x) = 0 for x ¢ M is the indicator function of a
setM. The solution to this problem consists of two fronts travglivith the same
speed in opposite directions. A numerical solution is showigure 33.

Fig. 33 Space-time diagram of a double front solution to the Nagugquagon for parameter value
a= %1 on the domain = [—100,10(. Solution by Comsol Multiphysics with piecewise linear
finite elements, Neumann boundary conditiofsss = 0.1, At = 0.1, BDF of order 2 and initial
dataug from (137).

The above examples show that it is important to be able taucaphulti-pulses
and multi-fronts. Obviously, this cannot be done by usingngle moving frame.
For patterns sufficiently far apart, the individual partdhaf pattern seem not to in-
fluence each other and the multi-structures look like lireegrerpositions, but due
to nonlinearities they cannot be linear superpositionselktbeless, in the case of
weak interaction, i.e. when the patterns are far apart for large times, liseperpo-
sition is a good model. Currently, there is no theory avédai the case o$trong
interaction, i.e. when the individual parts of the multi-structure gktse to each
other.
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5.2 Decompose and freeze multi-structures

Now consider the Cauchy problem (136) and assume that tiwicsol consists
of N single profiles. To generalize the freezing ansatz to thimgon we write the
solution as the superposition Nfprofiles in the following form

N
Z (x—gj(t (138)

Here the functiorg; : [0,[— R denotes the time dependent position of fhih
profile vj : R x [0,00[— R™, (x,t) — vj(x,t). Of course, due to nonlinearity, the
solutionu is not just the superposition of separate profiles as pretended in (138).
To overcome this difficulty and to make use of the fact that sepparated profiles

basically behave like linear superpositions, we use the dd@artition of unity: Let

¢ € C*(R,R) be a positive bump function such that the main mass is locsad
zero and O ¢ (x) < 1 for everyx € R. A suitable choice fop is ¢ (x) = sech{Bx) =
Cowx with B > 0. Then forg = (gy,...,0n) : [0,%0) — RN andx € R the functions

px-g) .
S ot gay TN (139)

have non-vanishing denominators and form a time-depenetition of unity, i.e.

EPNSTL LTINS
YRS jZlQJ (9,x)

Qi(g(t),x) =

We are interested in solutions of (136) of the form (138). idew to investigate
such solutions we insert the ansatz (138) into (136) and hes@artition of unity
(139). Abbreviating/(x) = w(- — gk(t),t) this leads to

[Via(+) = Vix(x)gjt] = U = Au+ F(u)

M=

N
Z AV xx(*) +Qj (g, ) (Z Vie(x )] (140)
N
= Z AV) xx(*) + F(vj(*)) +Qj(9, { <z Vi ( ) —kz f(Vk(*))}]
I= =1

Now, we require that the summands on the left and on the righdl Iside of (140)
coincide for everyj = 1,...,N. The idea is to consider each of the summands in its
own co-moving frame and apply the freezing ansatz: We dubs§ = x — gj(t),
Hj = g,t andx; = & — gk(t) +gj(t), add initial and phase condition for eagf

j =1,...,N and obtain the following coupled systemfp=1,....N,{ e R,t >0
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Vit(&,1) = AV g (1) + V) e (E,0) k(1) + F(vi(E,1))

+Zfl¢(*kj)[ ( b ! ) kZl (vl )]’ (141)

it = Hj, gj( )=gj-

To enforce that also the initial condition in (136) is saéidfiwe additionally require
Up = z'j\':lv?(~ — g?). It is easy to see that ifvj,g;) solves (141) and satisfies the
assumption on the initial condition, ther-,t) = ZE\I:]_VJ'(' —gj(t),t) solves the
Cauchy problem (136). Note that the decomposition is najwsi

In the case of multi-fronts one has different limitsda¢ and it is, even in the
linear case, not possible to simply add the single profilewaglid in (138). In
order to employ the above procedure also in this case, weedefin

U = {‘_’ =t (142)

limys_wwj(x) ,j>2,

wherew; is the expecteg-th wave. The situation is depicted in Figure 34, where a
double front is considered. Writing thjeth wave as/j(€,t) + u; and following the

1
ﬁ W1 =Vp
Wy (- — o) +Wa(- — Cot) — Uy
1 \ W2 — Uy, =V2

Fig. 34 The sum of two fronts forming a multi-front.

1

recipe from (140), we obtain the coupled PDAE systemjferl,... N:

Vit(&,t) = Avj £ (&,1) + Vv £ (§, 1) pj(t) + F(vi (&) +uy

_ 9@ | . A i
o) [ (ZVK o ) k;ka U] (149
V?

0=(vj(,t) =V}, Vjx)2,  Vi(,0
gj,t :uji ( ) J

Again we requireip = 3.1 Vo(- — g@%), so that a solutiorfvj,g;) to (143) yields
a solution of (136) via (138). Note that aIIowiruj =0, (143) includes the case
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of pulses (141) and also the cases of solutions that corfdittb, pulse and front
solutions.

We just mention, that the PDAE systems (141) and (143) comanlinear and
nonlocal coupling terms. For solving the PDAE on a boundedalnJ = [x_, x4 ],
we have to interpolate by the left and the right limit, redpety, wheneves; =
& —ak(t) +gj(t) ¢ [x_,x;]. Namely, we extend the function to be constant equal
to its boundary values.

Example 18 (Nagumo equatior@fonsider the Nagumo equation from Example 6
with parametea = 1,

U =Uy+Uu(l—u)(u—a), xeR,t>0, u(-,0)=up.

(a) First consider the case of two repelling fronts. This sitwrabccurs, for
example, when the initial data form a hat function as in (13V@ use the PDAE
system (143) wittN = 2 andu;, = 1. As initial data we choose

X+ 25
V(%) = 1(_2525)(X)- zo T Llizse) (x), xeR,

X+ 25
vg(x) = —1(_2525(X)- 50 1o50)(X), X€ER

for the two profiles ang9 = —25, gg = 25 for the initial shifts. The simulation is
performed on the finite intervdl= [—50,50] with ¢ (x) = sech(%) and the solutions
v; andv, are assumed to equal their asymptotic values outside th@wtatonal
domain. The results of a simulation are plotted in FigureT3te performance of
the decompose and freeze method can be demonstrated bygtbg difference
of the superposition (138) from the result obtained by aadisenulation of the full
system (see [12] for such a comparison).

(b) As a second example we consider the case of two collidingdrdtor this
we take initial conditions

x4+ 100 x—100
Uo(X) = 1—1(_1000/(X) - oo T 1(0,100(X) - oo X€ R,

which we split as followslg = V(- — g?) +V3(- — g9), with

X-+50
VR(X) = 1w 50 (X) — 1(_5050)(X) - oo’ X€ R,
X+50
VO(X) = 1(_s050)(¥) - oo T lsow) (), XER.

The initial shifts aregf = —50, g3 = 50. Note that in this case we haug = 0 and

¢ (x) = sech(}). A result of the method is shown in Figure 36. Note that the de-
compose and freeze method successfully handles the stitargdtion. The single
waves assume a common velocity and asymptotically convertyeo steady pro-
files which sum up to the final profile (which is identically 1this case). So far, we
have no theory which proves this behavior for the case ohgtioteraction.
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0.8,

50 100 150
t

(d)

Fig. 35 The decompose and freeze method for a repelling double iincthie Nagumo equation.
Thev; component (a) and the component (b), plot of the superpositiog, t) = vi (x,t) +Va(x,1)
with supports of single fronts indicated by dark shading ésplution of the individual speeds
converging tou; = — > = 0.3536 (d). Solution of (143) by Comsol Multiphysics with peedse
linear finite elements, Neumann boundary conditiahs,= 0.1, At = 0.1, BDF of order 2.

Example 19 (Quintic Nagumo equatioAl an example supporting multi-structures
with more than two patterns, we consider the quintic Naguquagon

5
U = Uyy— I_l(LFai)’ xeR,t>0, (144)
=

with parameters 6= a; < ap < az < a4 < as = 1. Depending on the choices of
ap,as, a4 one observes different patterns which can be captured bgebempose
and freeze method. We present the results for a selectioarafyeter values. In all
cases we solve (143) with Neumann boundary conditions,sghtbee bump function
¢ (x) = sech(55) and use spatial step-siZe = 0.4.

(a) Parametersa, = 0.03125a3 = 0.4,a4 = 0.73,At = 0.8, initial data:g;(0) =
82(0) =0, ,u; =ag, V(x) = Z (tanh(%) +1),3(x) = W—f’” (tanh(%) +1). The
solutions are shown in Figure 37. We start with the supetioosof two front-like
functions located at the same position. Then two frontsldgya fast one traveling
traveling at speedl; = —0.159 and a slow one with spegd = —0.02131. The
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-5

t

(d)

Fig. 36 Freezing two colliding fronts in the Nagumo equation. Plotpcomponent (a)y, com-
ponent (b), superposition(-,t) = vi(x,t) 4+ Va(x,t) with supports of single fronts indicated by
dark shading (c), evolution of speefds,u» of the components; ,v,, both converging ultimately
to U = Uz = 0. Solution of (143) by Comsol Multiphysics with piecewisedar finite elements,
Neumann boundary conditiongx = 0.1, At = 0.1, BDF of order 2.

single frontsvy in (a) andv, in (b) converge, Figure 37 shows their superposition
according to (138) with the supports ef,v, indicated by dark shading. This is a
case of weak interaction.

(b) Parametersa; = 0.125,a3 = 0.4, a, = 0.58, At = 0.3, initial data:g1(0) =
~50,02(0) =50,u, = ag, V}(x) = % (tanh(%) +1),V3(x) = (172u2) (tanh(%) +1).
The results are shown in Figure 38. Starting with a stairéasetion, two fronts
of different speed develop, with the faster one overtakimg glower one. Then
strong interaction takes place and both fronts merge to glesifiont of speed
U1 = o = —0.08312, cf. Figure 38 (d). The componenisv, stabilize at profiles
with little kinks that add up to the merged travelling frofhe decompose and
freeze method is able to handle this case of strong interacti

(c) Parametersa, = 0.0625,a3 = 0.4, a4 = 0.7, At = 0.8, initial data:g; (0) =

~50,02(0) = 0,93(0) = 50,u, = ag, U3 = as, VY(x) = % (tanh(¥) + 1), V3(x) =

L;p (tanh(%) + 1), V3(x) = @ (tanh(%) + 1). Results are shown in Figure
39. We start with a multi-front consisting of three stairbrée fronts develop, one
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Fig. 37 Two fronts of different speed developing out of a single fronthe quintic Nagumo
equation (144): convergence of the decompose and free et single fronts; (a) andv, (b),

plot of superposition (138) with supportsaf,v, indicated by dark shading (c), time-dependence
of single speeds (d).

traveling to the right with speeds; = 0.05088. and two traveling to the left with
speedgn, = —0.1172,u, = —0.05088. This is a case of weak interaction since the
initial locations of fronts are in the same order as the @gpoading velocities. The
system (143) is now solved witk = 3.

Example 20 (FitzHugh-Nagumo syste@iur final example are repelling and collid-
ing pulses in the FitzHugh-Nagumo system from Example 7.ale the parameter
values

e=01 =008 a=0.7 b=0.8,

for which we know traveling pulses to exist (see also [49))e Bpatial domain is
J=[x_,x;] =[-100,100 and we impose Neumann boundary conditions.
(a) In our simulation for two repelling pulses we use the folloginitial data

V() = uy + <1+2(§f 'fk:hix’ 5)> V() = (H‘%z ~f|oczhs(x, 5)) |
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Fig. 38 Strong interaction in the quintic Nagumo equation (144)ast fwvave overtaking a slow
wave and merging into a single travelling front. Single feon (a), v» (b), superposition (138) of
both functions with their supports indicated by dark shgdt), time-dependence of speqdsii,
during strong interaction (d).

with initial positionsg = g3 = 0, whereu, denotes the unique zero 6ffrom Ex-
ample 7 and flc2Hg,scalg is a smoothed Heaviside function provided by Comsol
Multiphysics. Note that the superpositiomdfandvi coincides with the initial value
Up from Example 7, see also Figure 12. For the computation wesshthe fixed
phase condition in both frames with template function) = v?(x) for j=1,2
and the bump functiogp (x) = sech(bx) with b = 0.5. We discretize with continu-
ous piecewise linear finite elements in space with stepsize- 0.5 and with the
BDF method of order 2 in time with stepsizZst = 0.1. The results for the case of
two repelling pulses are shown in Figure 40. One clearly olesethe evolution of
two pulses traveling in opposite directions with velogitig = — i, = —0.7966,
both being nicely captured by the method.

(b) A situation with two colliding pulses occurs for the init@nditions

o=+ ("), o= (M),

wherew is a ramp function given by
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Fig. 39 Weak interaction of three traveling fronts in the quinticgeno equation (144). The initial
function develops into the superposition of three singbats (d), the functionsy,v,,v3 converge
to their limiting profiles (a)-(c), and the speeds L, L3 attain their limiting values (e).

1 ,X € [-100 —10],
W(X) = § %(10—X) ,x€[-10,10],
0 ,X € [10,100.
The initial positions areg‘f = -100 andgg = 100. Thus, for the decompose and

freeze method with spatial domajir100,100, these are completely separated at
t = 0 and only influence each other through interpolated datzohtrast to all
previous experiments, we choose the orthogonal phasetmmdi both frames.
The bump function i (x) = sech(bx) with b = 0.01. We discretize in space with
continuous piecewise linear finite elements with stepgize= 0.5 and with the
BDF method of order 5 with stepsizat = 0.1. First the two pulses are generated
from the opposite ramps, then they travel towards each athglrtheir domains
begin to overlap. Then the two pulses collide and finally ehrach other. A result
of the simulation is shown in Figure 41. When both pulses atieguished to their
stationary values, the PDAE system (141) becomes ill-pcsiade the derivatives
vj ¢ vanish and the velocities can no longer be determined frerphiase condition.
As shown in Figure 41(d), the two velocities start to becomeudar after collision.
This phenomenon happens already at collision for the fixed@lsondition, which
is the reason for taking the orthogonal phase conditions.
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i
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Fig. 40 Two repelling pulses in the FitzHugh-Nagumo system. (&)#irst components of the
profilesv; andv,, (c): first component of the superpositionvafandv,, (d): time evolution of the
velocitiesp and

5.3 Stability of the decomposition system

In this subsection we present the main stability result fier decomposition sys-
tem (143). We sketch only the main ideas in the rather teahaitd involved proof
which can be found in the PhD thesis of S. Selle [64]. The tasuklated to the
work of J.D. Wright [63, 70], who constructs manifolds foettPDE) that are in-
variant for certain time intervals during which they attriee multi-structures.

We impose the following conditions.

(A1) Letf e C?(R™R™) and letA € R™™ be positive definite.
(A2) The systemui = Auy+ f(u) hasN traveling wave solutions

uj(x,t) =wj(x—cjt), j=1,...,N,

such thatc; < ¢, < --- < cy and the Iimitswf = limy_, £ W;j(X) satisfy

Wj+:wj*+1,j:1,...,N—1.
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Fig. 41 Simulation of two colliding pulses in the FitzHugh-Nagumetem with the decompose
and freeze method. (a)-(b): First components of the profilemdv,, (c): first component of the
superposition of;, andv,, (d): time evolution of the velocitieg; and i

(A3) ForsomeB >0, the constant coefficient operatdrs. := Adxx+Cjox+Cj +
with Cj 1 = Df(wji) for j =1,...,N satisfiy theSpectral Condition SC
from Sect. 1.5 for the givefi, cf. (33).

(A4) The variable coefficient operatofg = Adxw+Cjox+Df(wj) j=1,...,N,
have the simple eigenvalue 0 and no further eigenvaluesRasy> — 3 and
eigenfunctions in.?(R,R™).

(A5) There exist,Cy,Cs > 0 such that € C*(R,R) satisfies for alk € R

Cre PM < ¢ (x) < Cre P,
|9/(x)| < Cae PM.

(A6) The template functiong;,”j = 1,...,N, satisfyvj + uj —wj € H2(R,R™),
(\7j + UJT —Wj,\?LX) 12 =0 and (Wj,X,VI‘,X)Lz #0.

Note that the same constghappears in all conditions (A3)-(A5). In essenfe; 0
should be chosen such thag is an upper bound for the spectrum ofAlfs except
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zero. Then one can take a bump function with the asymptotiaier ofe 2, for
exampleg (x) = secl{3x),x € R.

Under these assumptions one can prove what is cgllatiasymptotic stability
in [64], i.e. stability of the system (143) for initial datagt lead to weak interaction,
see Theorem 11 below. The result holds in weightedndH?® spaces given by

L2(R,R™) = {u: coshb-)u € L(R,R™} with norm|uf > = | coshb)ull 2
and
HL(R,R™M) = {u: costb-)u € H}(R,R™M)} with norm|jullyy: = [|coshb-)ulls,

whereb > 0 must be chosen positive and sufficiently small.

Theorem 11 (Stability Theorem, [64]).Assume (A1)—(A6). Then there exisgsb
0 so that for every > b > O there existd > 0, gmin > 0 such that for all initial data

W, of, satisfying

HV(J-)—i—qu _WjHHl,b <9, (VJaX7V(J')_\7])|_2 =0,

R <gd<- <ol gmn< |1 —of|, forallj=1,..,N,
the PDAE (143) has a unique global solution(t) = (vi(t),...,wn(t)), u(t) =

(M (1), N (1)), 9(t) = (9a(t), ..., On(t)) forallt > 0.
Moreover, there exist asymptotic phas&fsc R, j = 1,...,N such that the solu-
tion converges exponentially fast with some 1@te € < 3,

Vi +uj —w)|

H1$b+‘gj(t)7CJ’tfg(j)7TFo|+|I.1j(t)*Cj| <Ce® vj=1,...,N.

Consider the original PDE (136) with initial conditian(x) = 3, V?(x—gf),
whereV? andgf satisfy the assumptions from Theorem 11. Then the theorem im
plies exponential convergence of the solutioto a (linear) superposition of the
individual traveling waves with individual asymptotic fses:

i <Cef,

Hu(-,t) =S wi(-—cit—of - Tj”)‘
]
In [70] results of this type are proved directly for the onigi system (136) by using
analytic information about the single waves. On the cogtrBheorem 11 states a
result about the "blown-up’ system (143) which is accesstblnumerical compu-
tation.

Proof (A sketch of ideas, for details see [64, pp. 37-98]).
Step 1 First linearize the system (141) at the shifted exact wawes uj (see
(142)) and their speeds for eachj =1,...,N. This yields a system of the form
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Ujt = Ajuj +Aj(OW) x+Ej(t)u+ Tj(t) +Nj(t,u,r,A),
Mt =Aj(t),
0= (Vjx,Uj).2,

for the unknownsij = vj — (Wj - uj’), rj(t) =gj(t) —cjt—af, Aj = yj — cj. When
omitting the coupling termkg;j, T;, andN;j, the system decouples with linear differ-
ential operators known from the analysis of single trayglivaves in Sects. 1 and
2.

Step 2 All coupling termsEj, T; andN; turn out to be nonlocal. The teri(t)
collects the nonlocal term (3 k() — SR, f(Wk(x)) from (140) obtained by
inserting the exact traveling waves shifted to the initial and well separated posi-
tionsg(j),j =1,...,N. Due to assumption (A2), the individual waves j=1,...,N
are exponentially converging towards their limits. Theref the influence of one
wave on the other decays exponentially in time. This statérs@ll holds in the
weighted spacel?}, if the weightb is taken sufficiently small (which is the reason
for the smallness assumption bin the theorem). In a sense this property expresses
the well-known phenomenon abnvective (in)stabilitysee [61].

The operatolE(t) is the linearization of the nonlinear coupling terms above,
when applied to the different patteros, ..., un , located at the positionst Jrg‘jJ
of the individual traveling waves. Here the use of the weightipaces wittp > 0
implies that theu; are exponentially located. An interplay with the separatibthe
positions as time increases, then shows exponential dé¢hg operatoE; in the
weighted space.

Combining these considerations yields an estimate in thighted space_g of
the form

T; (t)HLg + ||E; (t)HL%AL% < CLexp(—C{ gmin) exp(—C{'t) forallt >0,

with positive constant€ ,C/,C/’. Therefore, these terms decay exponentially in
time and exponentially with respect to the initial sepamabf patterns.

Step 3 The termsN; contain the nonlinear and nonlocal terms in all variables
that are at least of second order. Using the weighted nornc@msehow an estimate

Nyt ur )z < Coulull (l1ullag -+ 1251+ exp(Ghlel) I )
+Cuexp(CilIr ) I (14 1ullz ) €XP(— it — Wgmin)  for allt > 0.

Step 4 Consider the linear PDAE witl; andN;j replaced by an inhomogeneity,
i.e. the following coupled system € 1,...,N),

Ujt =Ajuj+Aj (0w x+ Ej(tHu+K;(t),
fe= A1), (145)
0= (VjxUj)a-
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This can be reduced to a PDAE of index 1 with the algebraiaiéesA eliminated.
For this inhomogeneous system one shows a variation of aotssformula by first
proving that the systems yield sectorial operators. Thiatian of constants formula
is then used to prove an estimate of the form

sup €°|u(s)|yz < C(||u°||H& + sup ||k<S)IILg)
0<s<t 0<s<t

with a suitablee > 0 for the solutioru = (u,...,uy) of the coupled linear problem
(145).

Step 5 Finally, the estimates from Steps 2—4 are combined andl ygkibal
existence as well as the asserted exponential decay.

5.4 Generalization to an abstract framework

The idea to decompose and freeze multi-structures can beinedwith the general
idea of freezing solutions in equivariant evolution eqoiasi. For this we consider
the setting from Sect. 1.7, i.e.

w=F(u), u(0)=u, (146)

whereF : Y ¢ X — X with X is a Banach space and a dense subspace. The
evolution equation (146) is assumed to be equivariant utfderction of a Lie
groupG so that

a:G— GL(X), F(a(y)u)=a(y)F(u)

holds. To generalize the idea of a time-dependent partitfamity from Sect. 5.2,
we use the abstract concept of a modtiléa vector space with abelian multiplica-
tion) that acts on the state spaXe

o ExX—=X, (¢,u)—¢eu.

As a standard example consider= Cl (RY) andX = HY(RY,R™) with the action
of E on X given by multiplication.
We assum that the Lie groupalso acts ore, denoting the action by

a:G—=GL(E), y—a(y).
We require that both actiorssanda satisfy the identities:

a(y)(p@) = (a(y)9) e (a(y) W),
a(y)(¢eu)=(a(y)p)e (a(y)u)

forallye G, ¢,y € E andu € X.

(147)

Example 21 (Ginzburg-Landau equationli). Reconsider Example 5, i.e.
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W = OUxx+ OUu+ Bluu+yju[*u, xeR, t>0, (148)

whereu(x,t) € C. Recall that (148) is equivariant under the act&onG — GL(X)
of the Lie groupG =R x S' 5 (1, 8) onX given by

[a(t,0)u] (x) = e Pu(x—1), forall (1,0) € G,ucX.

As above choose the Banach spce L%(R,C) and the modul& = C{ (R, R),
which acts onX by multiplication, i.e.(¢ e u)(x) = ¢ (X)u(x) for all x e R and all
$p €E,ueX.

The groupG acts on the modulk via the actiomn : G — GL(E) given by

[a(1,0)9] (x) = ¢p(x—1), forall (,0) € G, ¢ cE.
In this case, (147) follows from

[a(r,6) (9 0u) | (9 = p(x—T)e Pux—1), WxeR,
forall ¢ € CO.4(R),ue L2(R,C), T €R, 6 € [0,2m).

In the abstract framework, the idea of the decompositioB)is8generalized as
follows

N

ut) = 3 a(g;()v(v), (149)
whereg; : [0,0) — G denotes the time dependent location in the gréigs the j-th
profilev; : [0,00) =Y.

Assume an elementt € E such that the inverse of a(gj)¢ € E with respect
to the multiplication inE exists for allgy,...,gn € G. We denote this inverse

(Zj a(g,—)qﬁ) by —F—=+ S a0 . Then a calculation, similar to (140) and (72) yields
N
3 a9) Vit +a(g) tda(gj)vilgj] = u =F(u)
=

N N
1[F<a<gj>vj>+zkii7'f( (kzla ) SF <<gk>vk>)]
N
:,: a(gj>[F(vJ> S ag 909 1a9, P <F<Z (g gV )

N
z g] gk Vk

Il
z TMz

(150)
As in the derivation of the decompose and freeze method fdti-4puises and multi-
fronts in Sect. 5.2, we now require that for egck 1,...,N the summand on the
left hand side and on the right hand side of (150) coincidéss Vields the fol-
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lowing nonlinear coupled system for the unknownse Y, y;j € <7, andg; € G,
ji=1,...,N:

Vjr = F(vj) —d[a(1)vj]y; ﬁ (F <Za(gjlgk)vk)

" k0 (g5 o
_ -1
ZF(a(gj gk)Vk)) ) (151)
vj(0) =V,
gjt =dlg (D)y;, gj(0)=df,
0= (vj —Vj,d[a(1)Vj]A), VA € T, G.

For the second summand in the first line we used the ideattiy) ~d[a(g;)vj]gj =
dfa(1)v]u;, wherep; = dLg;(9j)~*gj1 € Ty G.

As in Sect. 5.2 we obtain that a solution of (151) with initjatav?, g?, satisfying
Up = z'j\':la(g?)v‘j’, yields a solution to the original Cauchy problem (146) hyisg

P4

u(t) =) a(gj(t))vj(t) forallt>0. (152)
=1

Example 22 (Freezing pulse and front simultaneously in irg-Landau equa-
tion). As an example in [ we consider the quintic-cubic Ginzburg-Landau equation
in 1D from Example 21 again

U = Qugx+ (8 + Blu+yluf)u, xeR, t>0

with u(x;t) € C. The parameter values ace=1, 6 = —0.1, 3 = 3+1i, andy =
—2.75+1i. In this case one finds a multi-structure, consisting of aditay rotating
pulsev; and a rotating front, that travels to the right. In Figure 42 we show the
result obtained by the decompose and freeze method forriidgm. One observes
that the individual structures are well captured in thespective frames and the
single speed correctly reproduced for the single waves peoenExample 5. Note
that this is a case of weak interaction. However, for strartgractions, such as the
collision of a rotating and a traveling pulse, the decompstfreeze method did
not work properly.

5.5 Multisolitons: I nteraction of spinning solitons

We finish with numerical results of the method where we try dptare simulta-
neously two and more solitons in th® 2juintic-cubic complex Ginzburg-Landau
equation from Example 13.
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Fig. 42 Result of the decompose and freeze method for a multi-streigh the quintic-cubic
Ginzburg-Landau equation, weak interaction of a standitgratating pulse and a traveling front.
Profile of the standing and rotating pulege (a), profile of the rotating and right traveling front
v, (b) , simulation of the nonfrozen equation (c), time-demaae of the derivatives of the group
variables (d).

Example 23 (Quintic-cubic Ginzburg-Landau equation in 2D)
W = aAu+ou+Bluu+ylutu, (xy) € R% u(xyt)eC. (153)

The parameter values are the same as in (115) for which sapih@ing solitons
are known to exist. As initial data we take the sum of two suglitans, shifted
a certain distance apart. If this distance is large enoughhave weak interaction
and a multi-structure consisting of two (or more) spinniotitsns stabilizes. The
result of such a simulation is shown in Figure 43. The first stws the superpo-
sition of the profiles obtained from the decompose and freezihod at different
time instances. The next row contains the single profile&l) andv, (e) and the
trace{t;(t) : t > 0} of the two group orbitg;(t) = (6;(t), 1j(t)),] = 1,2 from the
reconstruction equation in (151). Figure 43 (g)-(i) digsl#he time-dependence of
all 6 velocities. The translational velocitiga#, ujz converge to zero and the angular
velocities to their limiting values. However, the convarge is oscillatory and very
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slow (oscillations become invisible aitz 1000). Therefore, we show details in the
interval 0<t < 100.

Figure 44 shows a case of strong interaction of two spinndaigpsis with pic-
tures selected as in Figure 43. The solution converges gitessioliton (c), which is
represented by the decompose and freeze method as theasipenof two single
but deformed solitons (d),(e). The two group orbits appidyerace a circle, and ve-
locities slowly decay as in the case of weak interact{bh.(Strong interaction of 2
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Fig. 43 Weak interaction of two spinning solitons. Initial locatiof the profiles att-(4,0), real
part of superposition at time= 0, 30, 150 (a)-(c), real parts of profiles andv, at timet = 150
(d),(e), position of the centers of the profiles v, fromt = 0 tot = 500 calculated by solving
the reconstruction equation (f), time evolution of tratisizal velocitiesyll/ %(t) and yzl/ 2(t) in
x-direction (g) and iny-direction (h), evolution of angular velocities (i). Thelaar is scaled to
[—1.65,1.65]. Solution by Comsol Multiphysics with piecewise linear finelements, Neumann

boundary conditionsAx = 0.5, At = 0.1, BDF of order 2.
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spinning solitons) Finally, we consider the strong intécacof 3 spinning solitons,
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Fig. 44 Strong interaction of two spinning solitons. Initial loiat of profiles at+(3.75,0), real
part of superposition at time= 0, 7.2, 36 (a)-(c), real part of profileg andv, at timet = 150
(d),(e), position of centers for the profiles, v, for 0 <t < 500 (f), evolution of translational

velocitiesull/ 2(t) and

1/2
2

data are as in Figure 43

(t) in x-direction (g) andy-direction (h), angular velocities (i), further

see Figure 45. Initially, the solitons are put on the vegtigtan equilateral triangle.
The behavior is quite similar to the two-solitons case. $tational velocities oscil-
late rapidly for a long time before tending to zero, and theds of the group orbits,
after a sharp turn, seem to follow a common circle with défegrphases.
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5.6 Summary

A summary of this section is the following:

Excitable reaction diffusion systems iIlshow multi-structures composed of
fronts and pulses.

The freezing method is extended to a '"decompose and freeztiad to capture
solutions consisting of multi-structures.

Numerical solution of a system of nonlinear and nonlocalpted systems of
partial differential algebraic equations.

Proof of stability for the decomposition method in case ohidg interacting
fronts and pulses.

The method generalizes to equivariant evolution equations

Numerical computations with freezing multi-structureslimensions> 2 are in
initial state, no theory available.
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Fig. 45 Strong interaction of three spinning solitons. Centerspareinitially on an equilateral
triangle with radius of circumcircle.35, real part of superposition at times= 0, 7.2, 36 (a)-
(c), real parts of profiless, vo andvs at timet = 150 (d)-(f), evolution of translational velocities

w2(0),

1/2
2

(t) and

1/2
3

(t) in x-direction (g),y-direction (h) and evolution of angular velocities

(i), reconstruction of the group orbits for the profilas v, andvs for 0 <t < 500 (j). The colorbar
is scaled td—1.8,1.8] while further data are as in Figure 43.



