
Stability and Computation
of Dynamic Patterns in PDEs

Wolf-Jürgen Beyn and Denny Otten and Jens Rottmann-Matthes

Abstract Nonlinear waves are a common feature in many applications such as the
spread of epidemics, electric signaling in nerve cells, andexcitable chemical re-
actions. Mathematical models of such systems lead to time-dependent PDEs of
parabolic, hyperbolic or mixed type. Common types of such waves are fronts and
pulses in one, rotating and spiral waves in two, and scroll waves in three space
dimensions. These patterns may be viewed as relative equilibria of an equivariant
evolution equation where equivariance is caused by the action of a Lie group. Typ-
ical examples of such actions are rotations, translations or gauge transformations.
The aim of the lectures is to give an overview of problems related to the theoretical
and numerical analysis of such dynamic patterns. One major theoretical topic is to
prove nonlinear stability and relate it to linearized stability determined by the spec-
tral behavior of linearized operators. The numerical part focusses on the freezing
method which uses equivariance to transform the given PDE into a partial differen-
tial algebraic equation (PDAE). Solving these PDAEs generates moving coordinate
systems in which the above-mentioned patterns become stationary.
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1 Dynamics of patterns and equivariance:
traveling waves in one space dimension

The first lecture is of introductory character and serves to introduce basic notions
and properties. We use the well known topic of traveling wavesolutions in order
to illustrate the topics of this course such as equivariance, stability with asymptotic
phase, spectral properties, and the associated computational problems. There are by
now quite a few monographs and survey articles that treat this topic and we refer to
[29],[39],[69],[60].

1.1 Traveling fronts and pulses

Consider a parabolic system in one space variable

ut(x, t) = uxx(x, t)+ f (u(x, t)), x∈R, t > 0, (1)

where f : Rm → Rm is assumed to be sufficiently smooth and we look for smooth
solutionsu(x, t) ∈ Rm, x∈ R, t > 0. In the following we omit arguments in (1) and
simply write

ut = uxx+ f (u), x∈ R, t ≥ 0. (2)

Definition 1. A special solution of (2), which is of the form

u(x, t) = v̄(x− µ̄t), x∈ R, t ∈ R (3)

for someµ̄ ∈ R and some ¯v : R→ Rm, is called atraveling wave if the limits

lim
ξ→∞

v̄(ξ ) = u+, lim
ξ→−∞

v̄(ξ ) = u− (4)

exist and satisfyf (u±) = 0. The function ¯v : R → Rm is called theprofile of the
wave and the valuēµ ∈ R is called its velocity. In caseu+ 6= u− one speaks of a
front solution and in caseu+ = u− of apulse solution.

Note that the wave moves to the right ifµ̄ > 0 and to the left ifµ̄ < 0. In caseµ̄ = 0
we have a standing wave.

Example 1 (Nagumo equation).This well known example withm= 1 is given by
the equation

ut = uxx+u(1−u)(u−α), (5)

where 0< α < 1 is a parameter. For this equation there is a simple explicitformula
of a traveling front due to Huxley
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v̄(ξ ) =
1

1+exp
(
− ξ√

2

) , ξ ∈R, µ̄ =
√

2

(
α − 1

2

)
, (6)

with u+ = 1 andu− = 0. The wave travels to the right ifα > 1
2 and to the left if

α < 1
2. The following Figure 1 shows the profile and the time-dependent solution

(3) for the special caseα = 1
4:
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Fig. 1 Profile of the Nagumo front (left) and space-time diagram (right) for α = 1
4

1.2 Traveling waves and ODEs

Usually, both the profile and the velocity of a traveling waveare unknown. Hence
the task is to find a functionv and a parameterµ such thatu(x, t) = v(x−µt) solves
(2). This leads to solving a second order ordinary differential equation forv with
boundary conditions given at infinity

0= vxx+ µvx+ f (v), lim
x→±∞

v(x) = u±, f (u±) = 0. (7)

IntroducingV =

(
v1

v2

)
=

(
v
vx

)
, this can be rewritten as a first order system of

dimension 2m
(

v1

v2

)

x
=Vx = F(V,µ) =

(
v2

−µv2− f (v1)

)
, lim

x→±∞
V(x) =V± =

(
u±
0

)
. (8)

Traveling pulses and fronts therefore correspond tohomoclinic andheteroclinic
orbits that connect two steady statesV− to V+ of the dynamical system (8) for a
specific value of the parameterµ .
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Example 2 (Nagumo equation).For an illustration we return to the Nagumo equa-
tion (6), where the first order system (8) reads

(
v1

v2

)

x
=

(
v2

−µv2− v1(1− v1)(v1−α)

)
, (9)

lim
x→−∞

(
v1(x)
v2(x)

)
=

(
0
0

)
, lim

x→∞

(
v1(x)
v2(x)

)
=

(
1
0

)
. (10)

Figure 2 shows the phase diagrams of the two-dimensional system (9) for values
µ < µ̄ , µ = µ̄ , andµ > µ̄ , whereµ̄ = −

√
2

4 ,α = 1
4. At the valueµ = µ̄ we have a

heteroclinic orbit connecting the two saddles(0,0) and(1,0).
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Fig. 2 Phase diagrams of (9) forα = 1
4 andµ-values close tōµ =−

√
2

4

We briefly discuss how to compute the profilev(x) ∈ R
m andµ ∈ R from

Vx = F(V,µ), lim
x→±∞

V(x) =V±, F(V±,µ) = 0. (11)

Note that such connecting orbits always come in families. If(V,µ) solves (11) then
so does(V(· − γ),µ) for any γ ∈ R. In order to eliminate this ambiguity one in-
troduces aphase conditionand solves the following boundary value problem for
(V,µ)

Vx = F(V,µ), x∈ R, Ψ(V) := (V̂x,V − V̂)L2 = 0. (12)

Here the phase condition uses an initial approximation or template function̂V which
we require to have the correct limits limx→±∞ V̂(x) = V± and such that the inner
product in (12) exists. In Section 2 we will motivate this condition and discuss al-
ternatives.

For numerical computations one chooses a bounded intervalJ = [x−,x+] and
then solves the following boundary value problem forV ∈C1(J,Rm), µ ∈ R,
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Vx = F(V,µ), x∈ J, (V̂x
∣∣
J , V − V̂

∣∣
J)L2(J) = 0 (13)

P+(µ)(V(x+)−V+) = 0, P−(µ)(V(x−)−V−) = 0. (14)

The most common choice for the boundary operatorsP± areprojection boundary
conditions which require the endpointV(x−) to lie in the linear approximation of
the unstable manifold atV− andV(x+) to lie in the linear approximation of the
stable manifold atV+, see Figure 3. Concretely, one choosesP+ = P+(µ) ∈ R

mu×m

of maximal rank such thatP+(µ)DF(V+,µ) =Λ+P+(µ) and such that the spectrum
of Λ+ ∈ Rmu×mu coincides with the spectrum ofDF(V+,µ) with positive real part.
The rows ofP+ then span the left unstable eigenvectors ofDF(V+,µ) which are
orthogonal to the right stable eigenvectors. Similarly, one choosesP−(µ) ∈ Rms×m

such that the rows ofP− span the left stable eigenvectors ofDF(V−,µ). Note that in
general the projection matrices depend onµ so that the boundary value problem (13)
becomes nonlinear both inV andµ . We refer to [8],[23],[30] for various methods
that allow to compute such projection matrices depending smoothly on a parameter.
Finally, note that the boundary value problem (13) has the same number of equations
and boundary conditions providedms+mu = m, which is obviously satisfied in the
homoclinic case but an assumption in the heteroclinic case.There is also a well
established theory that studies the errors when passing from the infinite problem
(12) to the finite problem (13), (14), see [8].

V

Vx

WuWs

P+(V(x+)−V+) = 0
(V,Vx)(x)

V+

Fig. 3 Linear approximation of the stable manifold by projection boundary conditions.

1.3 Dynamics of PDE and shift equivariance

Let us return to the time-dependent equation (2) in a slightly more general form

ut = Auxx+ f (u,ux), x∈ R, t > 0, u(x, t) ∈ R
m, (15)

whereA∈Rm×m is assumed to be positive definite andf :R2m→Rm is smooth. For
a fixedµ ∈R we transform into a moving coordinate frame viau(x, t) = v(x−µt, t).
This leads to
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vt = Avxx+ µvx+ f (v,vx). (16)

This is a parabolic system for which a traveling waveu(x, t)= v̄(x− µ̄t) now appears
as a steady state(v̄, µ̄). In fact, we have a family of steady states(v̄(·−γ), µ̄),γ ∈R.

In Section 3 we will deal with the classical Hodgkin-Huxley system for which
m= 4. Then the matrixA is only positive semidefinite since there is no diffusion
in 3 of 4 variables. The system (15) is then of mixed hyperbolic-parabolic type and
this creates extra difficulties, both theoretically as wellas numerically, see section
3.

In the following it will be useful to phrase (15) in a more abstract way as

ut = F(u), F(u) = Auxx+ f (u,ux), (17)

where we considerF as an operator

F : Y = w+H2(R,Rm)→ L2(R,Rm) = X. (18)

HereL2, H2 are standard Lebesgue and Sobolev spaces, the functionw∈C2(R,Rm)
satisfies for someε > 0

|w(x)−u±|+ |wx(x)|+ |wxx(x)|6Ce−ε|x|, x∈ R,

and we assumef (u±,0) = 0. We have carefully chosenY as an affine space in order
to incorporate traveling fronts with different limits at±∞. Under these assumptions,
using Sobolev embedding one can show thatF mapsY into X.

Now consider the shift operator as an action of the groupG= R onY

a : G×Y →Y ,(γ,u) 7→ a(γ,u), [a(γ,u)] (x) = u(x− γ), x∈ R. (19)

Obviously,a(γ,u) has the following properties foru,v∈Y, γ,γ1,γ2 ∈ G, λ ∈ R,

a(γ1+ γ2,u) =a(γ1,a(γ2,u)), homomorphism,

a(γ,λu+(1−λ )v) =λa(γ,u)+ (1−λ )a(γ,v) affine linearity w.r.t. u.

Moreover, the action immediately extends toX = L2(R,Rm) with the same prop-
erties. We often writea(γ)u instead ofa(γ,u), in particular whena(γ) is a linear
operator onX.

The most important property of the operatorF is equivariance under the action
of the group, i.e.

a(γ)F(u) = F(a(γ)u), u∈Y, γ ∈ G. (20)

This follows from

(Fu)(·− γ) = Auxx(·− γ)+ f (u(·− γ),ux(·− γ)) = F(u(·− γ)), γ ∈ R.

Thus, we have recast (15) as an abstractequivariant evolution equation(17), (20).
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Some further notations are useful. For a given elementv∈Y the set

OG(v) = {a(γ)v : γ ∈ G}

is called itsgroup orbit . For the shift action (19) the group orbit of a function
consists of all its translates. Arelative equilibrium of (17) is a solution ¯u(t), t ∈ R

that lies in a single group orbit, i.e.

ū(t) = a(γ(t))v̄, for some ¯v∈Y, γ(·) ∈C1(R,G). (21)

In this sense, traveling waves ¯u(x, t) = v̄(x− µ̄t) are relative equilibria w.r.t. shift
equivariance where in this special caseγ(t) = µ̄t.

1.4 Stability with asymptotic phase

In the previous section we saw that traveling waves, and relative equilibria in gen-
eral, always appear in families. In order to take this into account the classical notion
of Lyapunov stability is modified as follows.

Definition 2. A traveling wave solutionu(x, t) = v̄(x− µ̄t) of the system (15) is
calledasymptotically stable with asymptotic phasewith respect to given norms
‖·‖1 and‖·‖2 onY, if for any ε > 0 there exists aδ > 0 such that for any initial data
u0 ∈Y with ‖u0− v̄‖1 6 δ there exists someγ∞ ∈R with the following property. The
Cauchy problemut = Auxx+ f (u,ux),u(·,0) = u0 has a unique solutionu(·, t) ∈Y,
t > 0 and

‖u(·, t)− v̄(·− µ̄t − γ∞)‖2

{
6 ε for all t > 0,

→ 0 ast → ∞.
(22)

In general, the valueγ∞ depends on the initial functionu0 and is called theasymp-
totic phase. The definition is not completely rigorous since it leaves open the precise
notion of solution and of the associated function spaces. These depend on the par-
ticular type of application. Note that our formulation allows an affine space forY as
in (18). For PDEs with hyperbolic parts it is important to usetwo different norms
in the definition, see Section 3. Then initial perturbationsoften must be measured
in stronger norms than perturbations of solutions. On the other hand, for parabolic
systems it is often possible to use the same Sobolev norm‖·‖H1 for both norms. For
various stability theorems we refer to the monographs [39],[69] and to the survey
article [60].

An essential feature of all stability results are the spectral properties of the lin-
earized differential operator

Λ = A∂xx+(µ̄ I +D2 f (v̄, v̄x))∂x+D1 f (v̄, v̄x). (23)

We introduce coefficient matrices in (23) by writing
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Λ = A∂xx+B(x)∂x+C(x) (24)

and note that, due to our assumption, the following limits exist

B± = lim
x→±∞

B(x) = µ̄ I +D2 f (u±,0), C± = lim
x→±∞

C(x) = D1 f (u±,0). (25)

1.5 Spectral properties of second order operators

In this section we recall basic facts about spectra of secondorder linear differential
operators as they arise from linearizations at traveling waves. Since these opera-
tors are defined on the whole line they typically have essential as well as isolated
spectrum. The essential spectrum is determined by the limitoperators

Λ± = A∂xx+B±∂x+C± (26)

obtained from the coefficients in (25). The spectrum ofΛ± can be computed by
evaluating the so-calleddispersion relation, see (30) below. On the contrary, it is
not so easy to determine the remaining isolated eigenvalues, except for the fact that
zero is always an eigenvalue due to shift equivariance.

Let us first look at the real scalar case of (26), i.e.

Λ0v= avxx+bvx+ cv, a,b,c∈R. (27)

We look for eigenvaluess∈ C with eigenfunctions of the form

v(x) = eiωx, x∈R, ω ∈ R. (28)

This leads us to the dispersion relation

s=−aω2+ ibω + c, ω ∈ R. (29)

Any values∈ S= {s= −aω2+ ibω + c | ω ∈ R} is an eigenvalue ofΛ0 with a
bounded eigenfunctioneiωx. Standard function spaces such asL2 or H1 will not
contain these eigenfunctions, but their presence leads to unbounded resolvents. For
the scalar case witha> 0,b 6= 0 the algebraic setS is a left open parabola with the
vertex atc, see Figure 4.

For the general operator (26) one has to consider two algebraic sets

S± = {s∈ C : det(−ω2A+ iωB±+C±− sI) = 0 for someω ∈ R}. (30)

If, for instance,A is positive definite andB± is the identity then the curves inS±
asymptotically attain a parabolic shapes∼ iω−ω2λ j , whereλ j , j = 1, . . . ,mare the
eigenvalues ofA. Let us first recall some standard definitions from spectral theory.
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c

C

Fig. 4 Spectrum ofΛ0 = a∂ 2
x +b∂x+c

Definition 3. Let X be a Banach space and letΛ : D(Λ) ⊂ X → X be a densely
defined closed operator. IfsI−Λ is one-to-one forλ ∈C then the operatorRs(Λ) =

(sI−Λ)−1 is defined onD(Rs(Λ)) = Range(sI−Λ) and called theresolvent ofΛ .
Then one defines theresolvent set

ρ(Λ) = {s∈ C : Rs(Λ) exists,D(Rs(Λ)) is dense,Rs(Λ) bounded} , (31)

thespectrum σ(Λ) = C\ρ(Λ), thepoint spectrum

σpoint(Λ) = {s∈C is an isolated eigenvalue of finite multiplicity} , (32)

and theessential spectrumσess(Λ) = σ(Λ)\σpoint(Λ).

In the following we introduce the crucial
Spectral Condition (SC):
There existβ ,λmin > 0 such that|Reλ | ≥ λmin for all λ ∈ C which satisfy

det(λ 2A+λB±+C− sI) = 0, for some Res>−β . (33)

If A is positive definite then a continuation argument shows thatthe algebraic
setsS± lie in the half plane{z : Re(z) < −β} and hence are bounded away from
the imaginary axis. More generally, the following theorem from [39] shows that the
spectral condition is also sufficient to guarantee that the essential spectrum of the
variable coefficient operatorΛ from (24) lies in this half plane.

Theorem 1.(Essential spectrum ofΛ , [39]) Let the variable coefficient operator
Λ from (24) have continuous coefficients such that B± = limx→±∞ B(x) and C± =
limx→±∞ C(x) exist and A is positive definite.

Then the spectrum of the operatorΛ considered in L2(R,Rm) satisfies

S−∪S+ ⊂ σess(Λ) ⊂ Mc, (34)

where the algebraic sets S± are defined in(30) and M is the unique connected
component ofC\ (S−∪S+) that contains a right half plane{z : Rez> ζ} for some
ζ ∈ R. Moreover, if the spectral conditionSC holds thenReσess(Λ)6−β .

Since the proof is quite involved, we only describe the main idea, see [39]. De-
composeΛ = L+K, whereL has constant coefficients on bothR− = (−∞,0] and



10 Wolf-Jürgen Beyn and Denny Otten and Jens Rottmann-Matthes

R∗
+ = (0,∞) andK is of lower order and has decaying coefficients

L =

{
Λ− onR−,

Λ+ onR∗
+,

K =

{
(B(x)−B−)∂x+(C(x)−C−), x∈ R−,

(B(x)−B+)∂x+(C(x)−C+), x∈ R∗
+.

(35)

Then, one applies the following theorem on invariance of theessential spectrum
[36].

Theorem 2.Let X be a Banach space, L: D(L) ⊂ X → X be a closed linear op-
erator and K: D(K) ⊃ D(L) → X be a linear operator such that K(λ0I − L)−1

is compact for someλ0 ∈ ρ(L). Let U ⊂ C be open and connected such that
U ⊂ ρ(L)∪σpoint(L). Then either U⊂ ρ(L+K)∪σpoint(L+K) or U contains only
eigenvalues of L+K.

A perturbationK of an operatorL for which K(λ0I − L)−1 is compact, is called
relatively compact. In the special case (35) one shows that(λ0I −L)−1 is bounded
from L2(R,Rm) into H1(R,Rm). Then, using the fact that the coefficients ofK van-
ish asx→±∞ one shows compactness of the operatorK(λ0I −L)−1 as an operator
in L2(R,Rm) by invoking the Riesz-Fréchet compactness criterion inL2(R,Rm×m),
see [3].

We close this subsection with some remarks on the point spectrum σpoint(Λ).
Differentiating the equation 0= v̄xx+ µ v̄x+ f (v̄, v̄x) with respect tox leads to

0= (v̄x)xx+ µ (v̄x)x+D2 f (v̄, v̄x)v̄xx+D1 f (v̄, v̄x)v̄x = Λ v̄x. (36)

Hence, we always have 0∈ σpoint(Λ) with eigenfunction ¯vx =− d
dγ v(·− γ)

∣∣∣
γ=0

pro-

vided this function is in the appropriate function space. The problem of detecting
further eigenvalues in the domainM (see Theorem 2) can be reduced to studying
zeros of the so-calledEvans function, see [2],[52]. Several approaches have been
developed for this purpose. However, if the analysis cannotbe done explicitly one
has to resort to numerical computations for detecting the point spectrum, compare
[60],[17], [18],[43],[42],[48],[47],[59]. In Figure 5 wesketch the typical appearance
of the spectrum, where we used that the operatorΛ is sectorial inL2(R,Rm).

C

σpoint(Λ)

σess(Λ)

Fig. 5 Schematic picture of spectrum for a second order linear operatorΛ .
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For the stability results in the next subsection we will needthe following
Eigenvalue condition (EC):
There are no isolated eigenvalues of finite multiplicity forΛ in Res>−β except 0,
and the eigenvalue 0 is algebraically simple.

1.6 Nonlinear stability of traveling waves and applications

With the preparation about the spectra of linear operators we may now formulate
the main nonlinear stability theorem.

Theorem 3.(Stability of traveling waves in H1)
Consider a parabolic system(15)with a smooth nonlinearity f that satisfies

f (v,vx) = f1(v)vx+ f2(v), (37)

f1, f2, f ′1, f ′2 ∈C1 globally Lipschitz. (38)

Let u(x, t) = v̄(x− µ̄t) be a traveling wave of(15) such that the spectral condition
(SC) and the eigenvalue condition (EC) are satisfied for the linearized operatorΛ
in (23). Then the traveling wave(v̄, µ̄) is stable with asymptotic phase in the space
H1(R,Rm).

Remark 1.Stability in H1(R,Rm) means that the statement of Definition 2 holds
with both norms taken to be‖ ·‖H1. We refer to [39] for a proof of this result in case
f depends only onu, but satisfies weaker assumptions than Lipschitz boundedness.
For the version above see [66]. Note that (37) includes the important example of the
viscous Burgers equation wheref (v) = vvx.

Proof (general idea from [39]): Nonlinear change of coordinates

v→ (γ, ṽ) where v= v̄(·− γ)+ ṽ, (ψ , ṽ)L2 = 0, (39)

whereΛ∗ψ = 0 (left eigenfunction),(ψ , v̄x)L2 = 1.
The transformed system is

ṽt = QF(ṽ+ v̄(·− γ)), v(·,0) = u0 (PDE1)

γt = R(γ, ṽ), γ(0) = 0, (ODE2)

whereQu= u− v̄x (ψ ,u)L2 is the projector onto the orthogonal complementψ⊤.
The next steps are:

1. Show that the linearizationQΛ of (PDE1) has spectrum Re6−β < 0,
2. prove asymptotic stability of (PDE1) inH1 uniformly in γ,

3. show|γt |6Ce−
β t
2 using (ODE2),

4. determine the asymptotic phase fromγ∞(ṽ) = γ(0, ṽ)+
∫ ∞
0 γτ(τ, ṽ)dτ. ⊓⊔
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Example 3.Nagumo equation
As a first application we study the Nagumo wave from (5),(6). For this equation we
haveu− = 0, u+ = 1, f (u±) = 0, f ′(u−) = −α, f ′(u+) = α −1. The dispersion
relation (29) leads to the two parabolas

S± =
{

s=−ω2+ µ̄ω + f ′(u±) : ω ∈R
}
, (40)

which have their vertices at−α andα −1. Both lie in the negative half plane since
0< α < 1, see the following Figure 6.

−αα −1

S+

S−

M

C

Fig. 6 Essential spectrum for the Nagumo front

Thus the spectral condition(SC) is satisfied. Moreover, one can show that 0 is
indeed a simple eigenvalue and there are no further eigenvaluesλ with Reλ > 0
(see [39]).

Example 4 (FitzHugh-Nagumo system).As another example we mention the well
studied FitzHugh-Nagumo system ([32])

ut =

(
u1

u2

)

t
=

(
1 0
0 ε

)
uxx+ f (u) (41)

f

(
u1

u2

)
=

(
u1− 1

3u3
1−u2

φ (u1+a−bu2)

)
, φ ,a,b> 0, ε > 0. (42)

For an extensive study of the stability of traveling waves for this system we refer
to Evans 1972–1975. We first choose parameter valuesε = 0.1, φ = 0.08,a= 0.7,
b= 3 for which f has three zeros so that a traveling front occurs. For a parameter
setting which leads to the classical FitzHugh Nagumo pulses, we refer to Example
7 below. Figure 7 shows the profile of both components for the traveling front (left)
and a space-time plot of the first component of a solution for (41),(42) (right). In
this case, we have

u− =

(
1.1877
0.6292

)
, u+ =

(
−1.5644
−0.2881

)
,

B− = D f (u−) =

(
−0.4106 −1

0.08 −0.24

)
, B+ = D f (u+) =

(
−1.4474 −1

0.08 −0.24

)
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Fig. 7 Profile of the traveling wave for the FitzHugh-Nagumo system(left) and space-time dia-
gram ofu1 (right) for ε = 0.1, φ = 0.08,a= 0.7, b= 3.

and the dispersion relation (30) yields the two algebraic sets (cf. [10] for a drawing)

S± =

{
s∈C : det

(
−ω2

(
1 0
0 ε

)
+ iωB±− sI

)
= 0 for someω ∈ R

}
, ε > 0.

1.7 Equivariant evolution equations

In Section 1.3 we already mentioned that traveling waves maybe viewed as relative
equilibria of an abstract evolution equation that has an equivariance property. In this
section we will extend this abstract point of view and discuss an application to a
wave which is traveling and rotating simultaneously. For some general theory of
equivariant evolution equations we refer to [20],[31],[37].

As in (17) we consider the Cauchy problem for a general evolution equation

ut = F(u), u(0) = u0, (43)

where we assumeF : Y ⊂ X → X with X a Banach space andY a dense subspace.
The whole approach can be written in terms of Banach manifolds rather than Ba-
nach spaces. But, for the sake of simplicity, we avoid such a generalization. Note,
however, that the treatment of traveling fronts already requires to use affine spaces
for Y andX, compare Section 1.3.

Let G be aLie group, i.e. a finite dimensional manifold with a smooth invertible
group operation. By1 we denote the unit element inG. The group operation◦
induces the operators of left and right multiplication via

◦ :

{
G×G→ G,

(γ,g)→ γ ◦g= Lγ g= Rgγ. (44)

The Lie algebraA is the tangent space ofG at1, i.e.T
1

G= A and the derivative
of the left multiplicationLγ : G→ G is denoted bydLγ(g) : TgG→ Tγ◦gG.
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We further assume that the groupG acts onX via

a :
G→ GL[X], a(1) = I ,
γ → a(γ), a(γ1◦ γ2) = a(γ1)a(γ2).

(45)

The evolution equation (43) is calledequivariant under the action of the group
if for all γ ∈ G,

F(a(γ)u) = a(γ)F(u) for all u∈Y, (46)

a(γ)Y ⊂Y. (47)

It is important to be careful with smoothness assumptions onthe action. As our
examples will show, it is reasonable to assume that the mapa(·)v : γ → a(γ)v is
continuous for everyv∈ X and continuously differentiable for everyv∈Y. We will
denote the derivative with respect toγ ∈ G at1 by

d [a(1)v] = d [a(γ)v]γ=1 : A = T
1

G→ X. (48)

Our second example is an equation that is equivariant with respect to a two-
dimensional Lie group.

Example 5 (Quintic-cubic Ginzburg Landau equation (QCGL)).

ut = αuxx+ f (|u|2)u, u(x, t) ∈C, α ∈ C,

f (|u|2) = γ |u|4+β |u|2+ δ , β ,γ,δ ∈ C.
(49)

Note thatu(x, t) is complex-valued in this case. But we can rewrite (49) as a real
system of dimension 2 which turns out to be parabolic in case Reα > 0. Suitable
function spaces for this case areX = Cunif(R,C), Y = C2

unif(R,C). Now the Lie
group isG= R×S1 ∋ (τ,θ ) with the action given by

a(τ,θ )v(x) = e−iθ v(x− τ), v∈ X,

d [a(0,0)v](µτ ,µθ ) =−µτvx− iµθ v, (µτ ,µθ ) ∈ A = R
2.

(50)

Relative equilibria are of the formu(x, t) = e−iµθ t v̄(x−µτ t) whereµτ andµθ denote
translational and rotational velocities, respectively. If both velocities are different
from zero then we have a wave that rotates and travels simultaneously. In fact, for
the parameter setting

α =
1+ i

2
, δ =−1

2
, β =

5
2
+ i, γ =−1− i

10
,

the QCGL exhibits a rotating pulse (µθ 6= 0, µτ = 0) as well as a rotating and travel-
ing wave (µθ 6= 0, µτ 6= 0). The real and imaginary parts of both types of solutions
are shown in Figure 8 and 9. When hitting the boundary with Neumann boundary
conditions, the pulse stops traveling but keeps rotating. Finally, recall that a relative
equilibriumv̄, µ̄ = (µτ ,µθ ) of the QCGL satisfies
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Fig. 8 Profile of the rotating wave of the QCGL (left) and space-timediagram of Reu (right) for
α = 1+i
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Fig. 9 Profile of the rotating and traveling wave of the QCGL (left) and space-time diagram of
Reu (right) for α = 1+i

2 , δ =− 1
2 , β = 5

2 + i, γ =−1− i
10

0= αvxx+ f (|v|2)v+ µτvx+ iµθ v. (51)

We also point out that the stability theory outlined in Section 1.6 applies only to
pulses for which limx→±∞ v̄(x) = 0.

1.8 Summary

Let us summarize the results of this section:

• Traveling pulses and fronts can be computed from heteroclinic resp. homoclinic
orbits of dynamical systems,

• Traveling fronts and pulses may be viewed as relative equilibria with respect to
shift equivariance, this is a special case of abstract equivariant evolution equa-
tions,

• Nonlinear stability of traveling waves in Sobolev spaces can be derived from
linear stability via a nonlinear change of coordinates,

• Linearized differential operators may have essential as well as point spectrum,
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• The essential spectrum can be handled theoretically via thedispersion relation,
while determining point spectrum often needs numerical computations,

• Nonlinear stability theory does not directly apply to wavesthat travel and rotate
simultaneously.

2 Stability of traveling waves and the freezing method

In the previous lecture we already studied the stability of traveling waves with
asymptotic phase. Our main assumptions are concerned with spectral properties of
the differential operator that arises by linearizing aboutthe profile of the wave. The
basic idea is to transform into a coordinate system that moves with the velocity of
the wave and then to perform a nonlinear transformation which allows to study the
exponential decay towards the profile and the dynamics of thephase separately. All
these transformations assume the knowledge of the exact wave and hence are not
suitable for numerical calculations. In this section we study a numerical method
that allows to circumvent this problem: thefreezing method. The method was in-
dependently proposed in [58], [13]. Meanwhile, it has been extended to a variety
of time-dependent partial differential equations, see [14], [15], and applied to con-
trol problems, for example [1]. There is also a parallel development by Cvitanović
and co-workers (see [33] for a recent review and an application to a 5-dimensional
Lorenz system), where the term ’method of sclices’ is used for essentially the same
approach.

The method introduces new time-dependent coordinates bothin the underlying
Lie group and in the function space. The extra degrees of freedom in the group is
compensated by a corresponding number of phase conditions that try to keep the
current profile as constant as possible. Altogether, one hasto solve a partial differ-
ential algebraic equation (PDAE). For solutions of Cauchy problems that are close
to relative equilibria this allows to adaptively compute moving coordinate systems
within which the wave isfrozen. Simultaneously, the flow on the group provides
information about the speed and location of the original profile. The method can be
formulated for equivariant evolution equations in generaland thus has a wide range
of applications. In this section we emphasize stability issues of the freezing method.
In particular, we show that stability with asymptotic phasefor a traveling wave turns
into classical Lyapunov stability for the PDAE formulation.

2.1 Moving frames: the freezing method and phase conditions

Consider the Cauchy problem associated with (15),

ut = Auxx+ f (u,ux), u(x,0) = u0(x), x∈R, t > 0. (52)
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The idea of the freezing method is to introduce new unknownsv(x, t)∈Rm, γ(t)∈R,
such that the solution of (52) is of the form

u(x, t) = v(x− γ(t), t), x∈R, t > 0. (53)

Inserting the ansatz into (52) and introducingµ(t) = γt(t) leads to a Cauchy problem
for the positionγ(t) and the profilev(·, t),

vt = Avxx+ f (v,vx)+ µ(t)vx, v(·,0) = u0,

γt = µ(t), γ(0) = 0.
(54)

We note the similarity to equations (PDE1),(ODE2), but now we have not reduced
the function space forv. Therefore, the system is not yet well posed. We compensate
the extra variableµ(t) by an extra condition which is called aphase conditionas in
(12). There, the phase condition was used to remove the ambiguity in the traveling
wave profile. Here, we use it to keep the time-dependent solution as constant as
possible. We consider two possible choices for the phase condition, both based on a
minimization principle.

1. Fixed phase condition
Choose a template function ˆv ∈ X whereX is the underlying function space for
solutionsu(·, t),v(·, t). As an example take the affine spaceX = w+H1(R,Rm)
wherew : R → Rm is smooth and bounded and has the desired limit behavior
limx→±∞ w(x) = u±, cf. (7). In this case one may choose ˆv = w or v̂ = u0 ∈ X.
The phase condition requires ˆv to be the closest point tov(·, t) on the group orbit
{v̂(·−g) : g∈ R}, i.e.

min
g∈R

‖v(·, t)− v̂(·−g)‖L2 = ‖v(·, t)− v̂(·)‖L2. (55)

The necessary condition is (cf. (12))

0=
d
dg

‖v(·, t)− v̂(·−g)‖2
L2|g=0 = 2(v(·, t)− v̂, v̂x)L2. (56)

Thus, instead of (52) the freezing method solved the following partial differential
algebraic equation (PDAE)

vt = Avxx+ f (v,vx)+ µ(t)vx, v(·,0) = u0,

0= (v− v̂, v̂x)L2

γt = µ(t), γ(0) = 0.

(57)

This is a PDAE of index 2. Differentiating the constraint with respect tot and
inserting the PDE leads to
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vt = Avxx+ f (v,vx)+ µvx, v(·,0) = u0,

0= µ(vx, v̂x)L2 +(Avxx+ f (v,vx), v̂x)L2 = ψfix(v,µ)
γt = µ(t), γ(0) = 0.

(58)

If (vx, v̂x)L2 6= 0 the constraint can be solved forµ and hence (58) is a PDAE of
index 1.

2. Orthogonality phase condition
Here we select the phase shift such that‖vt(·, t)‖L2 is minimal at each time in-
stancet, i.e.

0=
d

dµ
‖vt(·, t)‖2

L2|µ=µ(t) =
d

dµ
‖Avxx+ f (v,vx)+ µvx‖2

L2|µ=µ(t)

= 2[µ(t)(vx,vx)L2 +(Avxx+ f (v,vx),vx)L2] . (59)

Therefore, instead of (52) we solve the PDAE

vt = Avxx+ f (v,vx)+ µvx, v(·,0) = u0,

0= µ(vx,vx)L2 +(Avxx+ f (v,vx),vx)L2 = ψorth(v,µ),
γt = µ(t), γ(0) = 0.

(60)

This PDAE is of index 1 provided(vx,vx)L2 6= 0, i.e. ifv is nonconstant. Note that
ψorth differs fromψfix only in replacing the template function ˆv by v. Since (60)
requires no previous knowledge of a template it is easier to apply far away from
any traveling wave. However, close to a traveling wave, the system (58) turns out
to be more robust, in particular when fixing ˆv= v(·,T) at some later timeT and
leaving it constant from then on.

To summarize, we replace (52) by a PDAE of the general form

vt = Avxx+ f (v,vx)+ µvx, v(·,0) = u0,

0= ψ(v,µ)
γt = µ(t), γ(0) = 0,

(61)

whereψ : X ×R → R. Using a proper notion of solutions, one can show that any
solution of (61) leads to a solution of (52) via (53), cf. [13],[53]. Conversely, ifu(·, t)
solves (52) then we obtain a solution of (61), provided the implicit ODE

ψ(u(·+ γ(t), t),γt(t)) = 0, γ(0) = 0

has a unique solutionγ(t) on the interval under consideration.
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2.2 Numerical experiments with traveling fronts and pulses

For numerical computations we solve the PDAE (61) on a large intervalJ= [x−,x+],
and we use two-point boundary conditions given by a mapB : R4m →R2m,

vt = Avxx+ f (v,vx)+ µvx in J× [0,∞), v(·,0) = u0|J ,
0= ψJ(v,µ), B ((v,vx)(x−),(v,vx)(x+)) = 0,

γt = µ(t), γ(0) = 0.
(62)

Examples forB are Neumann boundary conditionsB ((v,vx)(x−),(v,vx)(x+)) =
(vx(x−),vx(x+)) and projection boundary conditions (cf. (14), note thatµ(t) enters
into the projection matrices).

Example 6 (Nagumo equation).Our first example is the Nagumo equation (5),

vt = vxx+ v(1− v)(v−α)+ µvx, v(·,0) = u0|J ,
0= ψJ(v,µ)
γt = µ(t), γ(0) = 0,

(63)

with parameterα = 1
4, solved onJ = [−50,50], with △x = 0.1, △t = 0.1 For the

nonfrozen system onJ = [x−,x+], the front forms and travels to the left as we ex-
pect, see Figure 10(a). When it reaches the boundary it dies out due to Neumann

(a) (b)
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−0.65

−0.6

−0.55

−0.5

−0.45
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−0.35

−0.3

(c)

Fig. 10 Traveling frontu(x, t) of the original Nagumo equation (a), solutionv(x, t) of the frozen
Nagumo equation (b), time dependence of velocityµ(t) (c). Piecewise linear initial function, Neu-
mann boundary conditions, fixed phase condition with reference function ˆv = u0 and parameter
valueα = 1

4 .

boundary conditions. On the contrary, the front stabilizesfor the frozen system, see

Figure 10(b), the variableµ(t) approaches the final speed̄µ =−
√

2
4 of the front, see

Figure 10(c), while the value ofγ(t) still indicates the position of the front on the
real line.

Our conclusion is that the longtime behavior of the initial boundary value prob-
lem on the finite interval (62) can be completely different from the behavior of the
original system (52) when truncated to the same interval, although on the infinite
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line both systems are equivalent. The freezing method aims at a moving coordinate
system in which a pattern close to the initial data becomes stationary, and this be-
havior is stable under truncation to a bounded domain. In thefollowing subsections
we will provide theorems which make this observation rigorous.

Example 7 (FitzHugh-Nagumo system).Our second example is the FitzHugh-Nagumo
system, which in the frozen form reads

vt = Avxx+ f (v)+ µvx, v(·,0) = v0,

0= ψJ(v,µ), B ((v,vx)(x−),(v,vx)(x+)) = 0,

γt = µ(t), γ(0) = 0.

(64)

with v= (v1,v2)
T ,

A=

(
1 0
0 ε

)
, f (v) =

(
v1− 1

3v3
1− v2

φ (v1+a−bv2)

)
,

parametersε = 0.1,a= 0.7,b= 0.8, φ = 0.08, solved onJ = [−60,60], with △x=
0.1, △t = 0.1. For these parameter values, the functionf admits only one zero at
(v1,v2)

T = (−1.1994,−0.6243)T and pulses occur. Note that (64) is a parabolic
system due toε > 0. The caseε = 0 leads to a coupled hyperbolic-parabolic system
with principal term beingµv2,x in the second equation. We consider such mixed
systems later in Section 3. Starting with a ramp-like function for the voltagev1,

(a) (b)
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Fig. 11 u1 component of traveling pulse (a) of the nonfrozen andv1 component of frozen pulse
(b) with velocity µ(t) (c) of the frozen FitzHugh-Nagumo system with piecewise linear initial
function, Neumann boundary conditions, fixed phase condition with reference function ˆv= u0 and
parameter valuesε = 0.1, a= 0.7, b= 0.8, φ = 0.08.

the pulse forms as expected and travels to the left until it dies out at the boundary,
see Figure 11(a). On the contrary, as above the freezing method captures the shape
of the pulse and makes it stationary, see Figure 11(b). Simultaneously, the correct
speed of the pulse is attained by the variableµ(t), which tends tōµ =−0.7892, see
Figure 11(c).

An interesting phenomenon happens when the system is started with a pulse-like
initial function. Then two pulses develop, one traveling tothe left, the other traveling
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to the right, see Figure 12(a). Which of these two traveling pulses is captured by the
freezing system, is unpredictable and can be affected, for instance, by the solver
tolerances. In this example, the fixed phase condition happens to freeze the left
going pulse while the right going one dies out at the boundary, see Figure 12(b).
The velocityµ(t) of the left frozen pulse nears̄µ =−0.7892, see Figure 12(d). On
the contrary, the orthogonal phase condition freezes the right going pulse and the
left going one dies out, see Figure 12(c). The velocityµ(t) of the right frozen pulse
tends toµ̄ = 0.7892, see Figure 12(e) as expected.
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Fig. 12 u1-component of traveling wave of the nonfrozen system (a) fora pulse-like initial function
in the FitzHugh-Nagumo system.v1-component of frozen pulse with fixed phase condition (b) and
orthogonal phase condition (c). Figures (d) and (e) show thetime dependence of the velocityµ(t)
for cases (b) and (c), respectively. For all plots Neumann boundary conditions and the reference
function v̂= u0 are used, parameter values areε = 0.1, a= 0.7, b= 0.8, φ = 0.08.

The experiments from Example 7 show two new problems that will be dealt with
in the following lectures.

1. For parabolic systems coupled to ODEs, the freezing method leads to mixed
hyperbolic-parabolic systems with the newly introduced convection term enter-
ing the principal part of the equation. The stability theoryfor such systems is
much more subtle than for parabolic systems (cf. Section 1.6) and will be topic
of Section 3.

2. When the solutions exhibit multiple fronts and pulses, there is no longer a com-
mon moving frame in which the patterns become stationary. The freezing method
then tends to capture one of the patterns and let the others travel towards the
boundary. In Section 5 we discuss an extension of the freezing method that al-
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lows to handle multiple coordinate frames and to deal with weak and strong
interactions of patterns.

2.3 Error analysis of numerical approximations

The experiments of the previous subsection suggest that thePDAE formulation (61)
is robust with respect to numerical approximations such as truncation to a bounded
interval with two-point boundary conditions and subsequent discretization of time
and space. Such expectations have been made rigorous in the work of V. Thümmler
[66],[68],[67]. It is shown in [68] in which sense relative equilibria of parabolic
systems are inherited by numerical discretizations, and in[67] conditions are set
up that guarantee asymptotic stability of these discretized equilibria. Moreover, the
exponential rate of convergence is proved to be independentof the truncated interval
and of the step-size used. Below we will only consider the case of traveling waves
and indicate the main results. We also mention the paper [5] where the nonlocal
equations obtained by eliminatingµ from the phase condition in (61), have been
treated directly by truncation to a finite interval.

We consider a finite difference approximation of the PDAE (57) on an equidis-
tant grid Jh = {xn = nh : n = n−, . . . ,n+} with step-sizeh > 0. For functions
vn = v(xn),xn = nh, defined on an extended gridJe

h = {nh : n= n−−1, . . . ,n++1},
we use standard difference quotients as follows,

δ+vn =
1
h
(vn+1− vn), n= n−−1, . . . ,n+,

δ−vn =
1
h
(vn− vn−1), n= n−, . . . ,n++1,

δ+δ−vn =
1
h2 (vn−1−2vn+ vn+1), n= n−, . . . ,n+,

δ0vn =
1
2
(δ+vn+ δ−vn), n= n−, . . . ,n+.

Leaving time continuous, a spatial discretizaton of (57) leads to the following DAE:

vn,t =Aδ+δ−vn+ f (vn,δ0vn)+ µδ0vn, n= n−, . . . ,n+,

0=(δ0v̂,v− v̂)L2(Jh)

η =P−vn− +Q−δ0vn− +P+vn+ +Q+δ0vn+ ,

(65)

whereP±,Q± ∈R2m,m are given boundary matrices andη =P−u−+P+u+ (see Sec-
tion 1.3 foru±). Here and in the following we use discrete analogsL2(Jh), H1(Jh),
H2(Jh) of the Sobolev spacesL2(J,Rm),H1(J,Rm),H2(J,Rm). The following con-
ditions are imposed on the continuous problem.
Cont1: The function ¯v∈w+H2(R,Rm) (cf. (18)) is a traveling wave of speed̄µ ∈R

for equation (15) such thatu± = limx→±∞ v̄(x).
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Cont2: The nonlinearityf satisfies the condition (37) from Theorem 3.
Cont3: 0 is a simple eigenvalue of the linearized operatorΛ from (23), and 0 lies in
the setM defined in Theorem 1.

Note that the condition 0∈ M is weaker than the spectral conditionSC (cf. (33))
which requires{Rez≥−β}⊂ M. It implies that the quadratic eigenvalue problems
(λ 2A+λB±+C±)y= 0 havem eigenvalues with real part positive andm with real
part negative. More precisely, there are matricesYs

±,Λs
± ∈ Rm,m which solve the

quadratic invariant subspace equation,

AYs
±(Λ

s
±)

2+B±Ys
±Λs

±+C±Ys
± = 0, Re(σ(Λs

±))< 0. (66)

such that rank

(
Ys
±

Ys
±Λs

±

)
= m. Similarly, there existYu

±,Λu
± ∈ R

m,m satisfying the

same conditions except Re(σ(Λu
±))> 0. The next two conditions impose a coupling

between boundary matrices and data of the continuous problem.
Discrete 1:η = P−u−+P+u+ (consistency of boundary values)

Discrete 2:det

((
P− Q−

)( Ys
−

Ys
−Λs

−

)∣∣∣∣
(
P+ Q+

)( Yu
+

Yu
+Λu

+

))
6= 0

ConditionDiscrete 2ensures that modes increasing at±∞ can be controlled by

the boundary conditions, see [10]. Note that the columns of

(
Ys
−

Ys
−Λs

−

)
determine

growing solutions of (the first order version of)Λ at−∞ while those of

(
Yu
+

Yu
+Λu

+

)

determine growing solutions at+∞.

Theorem 4.([68]) AssumeCont1-3, let v̂∈ w+H2(R,Rm) be a template function
such that(v̄x, v̂x)L2 6= 0 and let the boundary matrices satisfyDiscrete1,2. Then
there exist C,ρ ,T,h0,α > 0 such that the DAE(65) has a steady state(vh,µh) for
all 0< h≤ h0, T ≤ min(n+,−n−)h which is unique in the ball

∥∥∥v̄|Jh − vh
∥∥∥

H2(Jh)
+ |µ̄ − µh| ≤ ρ .

Moreover the following error estimate holds
∥∥∥v̄|Jh − vh

∥∥∥
H2(Jh)

+ |µ̄ − µh| ≤C
[
h2+exp(−αhmin(n+,−n−))

]
. (67)

The estimate (67) shows, that the errors due to finite difference approximation
and truncation to a bounded interval simply add up. Under theextra conditions
that v̂ decays exponentially asx → ±∞, one can show (see [68, Th.2.6]) that the
linearization of the right hand side of (65) at(vh,µh) has an eigenvalue close to 0
and an eigenfunction close to ¯vx|Jh with the same estimate as in (67).

For a stronger statement on the asymptotic stability of the ’discrete traveling
wave’(vh,µh), more conditions are needed (see [67]). In particular, the assumptions
of the Stability theorem 3 are assumed to hold. Further, condition Discrete 2now is
strengthened to
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det

((
P− Q−

)( Ys
−(s)

Ys
−(s)Λs

−(s)

)∣∣∣∣
(
P+ Q+

)( Yu
+(s)

Yu
+(s)Λu

+(s)

))
6= 0, Re(s)≥−β ,

(68)
whereYs

± =Ys
±(s), Λs

± = Λs
±(s) solve thes-dependent equation

AYs
±(Λ

s
±)

2+B±Ys
±Λs

±+(C±− sI)Ys
± = 0, Re(σ(Λs

±))< 0, (69)

cf. (66). Under a final condition on the Dirichlet and Neumannparts of the boundary
matrices (see [67, Hypothesis 2.6]), the following estimate holds for the solutions
vn(t),µ(t) of the time-dependent DAE (65),

‖v(t)− vh‖H1(Jh)
+ |µ(t)− µh| ≤Ce−αt , t ≥ 0, h≤ h0, ±n±h> T, (70)

provided‖v(0)− vh‖H1(Jh)
≤ ρ and v0,µ0 are consistent initial values (cf. [67,

Sec.2.1]). It is worth noting that all constantsC,ρ ,α,T in this result do neither
depend on the step-sizeh nor on the values ofn−,n+. While the extra condition
[67, Hypothesis 2.6] is satisfied for all standard choices such as Dirichlet, Neumann
or periodic boundary conditons, condition (68) is essential for the stability of the
discretized traveling wave. As shown in [67, Sec.5.2] by a counterexample, violat-
ing (68) at one value ofs can destabilize the discrete wave by spurious oscillations
while the continuous wave is perfectly stable.

2.4 The freezing method in an abstract setting

The freezing method of the previous section can be generalized to equivariant evo-
lution systems on Banach manifolds, see [14],[68]. For simplicity, we consider here
the setting of Banach spaces as in Section 1.7. Generalizing(53), the solution of
(43) is written as

u(t) = a(γ(t))v(t), γ(t) ∈ G,v(t) ∈Y. (71)

Then,a(γ)F(v) = F(a(γ)v) = F(u) = ut = a(γ)vt +d[a(γ)v]γt holds and hence

vt = F(v)−a(γ)−1d[a(γ)v]γt . (72)

It is convenient to introduceµ(t)∈A =T
1

G via γt(t) = dLγ(t)µ(t). Then differenti-
atinga(γ)a(g)v= a(Lγ g)v with respect tog∈ G atg= 1 leads toa(γ)d[a(1)v]µ =
d[a(γ)v]dLγ(1)µ . Therefore, (72) can be rewritten asvt = F(v)− d[a(1)v]µ . Fi-
nally, we add dimG phase conditionsψ(v,µ) = 0 defined by a functionalψ :
Y ×A → A ∗. This leads to the abstract formulation of the freezing method as
differential algebraic evolution equation (DAEV)
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vt = F(v)−d[a(1)]v]µ , v(0) = u0,

0= ψ(v,µ),
γt = dLγ µ , γ(0) = 1.

(73)

The last equation of this system is called thereconstruction equation in [58]. It is
decoupled from the first two equations and can be solved in a post-processing step
in order to obtain the orbit within the group. If a continuousinner product(·, ·)X on
X is given, the two phase conditions discussed in Section 2.1,generalize to

(d[a(1)v̂]λ ,v− v̂)X = 0 for all λ ∈ A , (74)

(d[a(1)v]λ ,vt)X = 0 for all λ ∈ A , (75)

see Figure 13. Differentiating (74) with respect tot and inserting the differential

v

v̂

(a)

vt

v

(b)

Fig. 13 Illustration of fixed phase conditionv− v̂ ⊥ Tv̂O(v̂) = R(d[a(1)v̂]) with group orbit
O(v̂) = {a(γ)v̂ : γ ∈ G} (a), illustration of orthogonal phase conditionvt ⊥ TvO(v) =R(d[a(1)v])
with group orbitO(v) (b).

equation from (73) into both, leads to the phase fixing operators (cf. (58),(60))

ψfix(v,µ)λ = (d[a(1)v̂]λ ,F(v))X − (d[a(1)v̂]λ ,d[a(1)v]µ)X, λ ∈ A , (76)

ψorth(v,µ)λ = (d[a(1)v]λ ,F(v))X − (d[a(1)v]λ ,d[a(1)v]µ)X, λ ∈ A . (77)

If the mapd[a(1)v] : A → X is one to one, then the linear systemψorth(v,µ) = 0
has a unique solutionµ ∈ A and hence (73) is a DAEV of index 1.

2.5 A numerical experiment with a two-dimensional group

Example 8 (Quintic-cubic Ginzburg Landau equation (QCGL)). As an example we
treat the quintic-cubic Ginzburg Landau equation from example 2. With the group
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operations from (50) the DAEV (73) withψ = ψfix yields the following PDAE to
be solved

vt = αvxx+ f (|v|2)v+ µ1vx+ µ2iv, v(0) = u0,

0= (v̂x,v− v̂)L2 = (iv,v− v̂)L2 = 0,

τt = µ1, θt = µ2, τ(0) = θ (0) = 0.

(78)

For the parameter values

α = 1, β = 3+ i, γ = 3+ i, δ =−2.75+ i, (79)

one finds a rotating pulse with translational velocityµ̄1 = 0 and rotational velocity
µ̄2 =, see Figure 14(a)-(c), and a pulse that rotates and travels simultaneously with

(a) (b)
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Fig. 14 Real part of the rotating pulseu(x, t) of the nonfrozen system (a) and of the frozen pulse
v(x, t) (b), with velocities(µ1,µ2) (c) for the frozen QCGL. Solution by COMSOL Multiphysics
with piecewise linear finite elements, Neumann boundary conditions, fixed phase condition with
template function ˆv= u0 and parameter values from (79).

translational velocityµ̄1 = 1.18 andµ̄2 = −2.801, see Figure 15(a)-(c). In both
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(c) µ1, µ2

Fig. 15 Real part of the traveling and rotating pulseu(x, t) for the nonfrozen system (a) andv(x, t)
for the frozen system (b), time-dependence of velocities(µ1,µ2) (c). Further data are as in Figure
14.

cases, freezing of patterns is successful. Note, however, that the stability analysis of
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[67] applies only to the first case, since the profilev(x) keeps rotating asx→ ∞ and
only its absolute value converges.

2.6 Summary

Let us summarize the main results of this section.

• The freezing method allows to automatically generate moving frames in which
traveling waves become asymptotically constant.

• For the discretized PDAE formulation, one can prove existence of a ’discrete
traveling wave’ as well as their asymptotic stability with rates independent of the
discretization parameters. For such a result one needs the original wave to satisfy
the standard stability conditions and the boundary matrices to control unstable
modes at±∞.

• The freezing method generalizes to abstract equivariant evolution equations
posed on a Banach manifold.

• The method successfully freezes waves in the quintic-cubicGinzburg Landau
equation that rotate and travel simultaneously.

3 Patterns in hyperbolic and hyperbolic-parabolic systems

The freezing method discussed in lecture 2, leads to challenging problems, both
numerically and theoretically, when applied to hyperbolicor hyperbolic-parabolic
systems.

A famous example of this type are the Hodgkin-Huxley equations for the prop-
agation of signals in nerve axons. We will use them, both for illustrating the ana-
lytical difficulties and for showing numerical applications. In this section we sur-
vey results due to J. Rottmann-Matthes [56] on the stabilityof the freezing method
for hyperbolic-parabolic mixed systems of rather general type. The main difficulty
arises from the fact that such mixed systems generate onlyC0- semigroups so that
the techniques for analytic semigroups do no longer apply. Moreover, as in the
Hodgkin-Huxley example, nonstrictly hyperbolic parts occur which make the sta-
bility analysis even more delicate. The essential tool in resolving these problems is
the vector valued Laplace transform applied directly to thePDAE formulation and
combined with rather sophisticated resolvent estimates.

We also show an application of the freezing method to Burgersequation for
which equivariance includes scalings of the variables. It is then possible to freeze
similarity solutions such asN-waves. However the stability of the method for this
case, and for conservation laws in general, is largely unsolved.
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3.1 Mixed systems and the Hodgkin-Huxley example

The spatially extended version of the Hodgkin-Huxley modelfrom 1952 [41] serves
as our standard example,

Vt =
a

2R
Vxx− ḡKn4(V −VK)− ḡNam

3h(V −VNa)− ḡl(V −Vl)

nt = αn(V)(1−n)−βn(V)n

mt = αm(V)(1−m)−βm(V)m

ht = αh(V)(1−h)−βh(V)h,

(80)

The system models electric signalling in nerve cells and we refer to [41, 44]) for
details of the modelling, in particular for the special formof the nonlinearities
αn,αm,αh,βn,βm,βh. We note that the system consists of a parabolic PDE that is
coupled nonlinearly to a system of three nonlinear ODEs. It is well-known that
there exists a traveling wave solution (see for example [38]), a plot of the traveling
pulse is given in Figure 16.

In a co-moving frame, see (16), a termµVx is added to the first equation, a term
µnx to the second equation and so forth. The resulting system is thenparabolic-
hyperbolic, with a hyperbolic part that is not strictly hyperbolic because of the
common factorµ in the convection terms.
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Fig. 16 Traveling pulse of the Hodgkin-Huxley equations.
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In the following we analyze the asymptotic stability of traveling waves for mixed
systems of the general form

ut = Auxx+g(u,v)x+ f1(u,v), u(x,0) = u0(x),

vt = Bvx+ f2(u,v), v(x,0) = v0(x),
(81)

whereu(x, t) ∈ Rn, v(x, t) ∈ Rm. Note that (81) includes the Hodgkin-Huxley sys-
tem. The following conditions are imposed on (81).
Basic Assumptions

(i) g, f1 ∈C3(Rn+m,Rn) f2 ∈C3(Rn+m,Rm),
(ii) the u–equation is parabolic, i.e.A∈Rn,n satisfiesA+A⊤ ≥α > 0 in the sense

of inner products,
(iii) the v–equation is hyperbolic, i.e.B∈ R

m,m is diagonal,
(iv) there exists a traveling wave solution(u,v)(x, t) = (u,v)(x− µt) of the PDE

(81) with profile(u,v) ∈C1
b(R,R

n+m) andux,vx ∈ H2(R,Rn+m).

Remark 2.(a) In general, hyperbolicity of the second equation in (81)means that
the matrixB is real diagonalizable. By a similarity transformation we can putB into
diagonal form and hence assume (iii) without loss of generality.
(b) Note that assumption (iv) allows for pulse as well as front solutions.

Before proving stability of traveling waves for (81), we need existence and
uniqueness of solutions to the Cauchy problem, when the initial data belong to a
proper neighborhood of the traveling wave.

Theorem 5 ([56, Thm. 2.5]).Let theBasic Assumptions (i)-(iv) hold. Then for all
u0 ∈ u+H1,v0 ∈ v+H1 there exists a unique maximal solution of(81). More pre-
cisely, there exists T∗ ∈ (0,∞] and (u∗,v∗) such that u= u∗|[0,T] and v= v∗|[0,T]
satisfy(81) in L2×L2 for a.e. t∈ [0,T], 0< T < T∗, and

u∈C([0,T];u+H1)∩L2(0,T;u+H2)∩H1(0,T;u+H1),

v∈C([0,T];v+H1)∩H1(0,T;v+H1).
(82)

Conversely, any pair(u,v) for which(82)holds and which solves(81) in L2×L2 for
a.e. t∈ [0,T], satisfies u= u∗|[0,T] and v= v∗|[0,T]. Moreover,

either T∗ = ∞ or 0< T∗< ∞ and lim
tրT∗

‖u∗(t)−u‖H1 + ‖v∗(t)− v‖H1 = ∞.

Due to its importance, nonlinear stability of traveling waves in systems of the
form (81) has been considered by many authors. We just mention a few: In a series
of papers [24, 25, 26, 27] J.W. Evans presented a full analysis of Hodgkin-Huxley
type equations. By a dynamical systems approach Bates and Jones [7] were able to
discuss the stability of systems of the general form (81) without theg(u,v)x term.
But due to a compactness argument, their result does not include the case of fronts.
In [46] Kreiss et al. proved stability of traveling waves in systems of the form (81)
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but they assumed strict hyperbolicity which is not satisfiedfor the Hodgkin-Huxley
model in a co-moving frame. Finally, we mention [35], where parabolic-hyperbolic
systems are considered. There the authors allow the spectrum to touch the imaginary
axis, but they assumeg(u,v)x = ãux for a constant matrix̃a and thev-equation is
simply an ODE.

We consider (81) in a moving coordinate frame, see (16). The traveling wave
then becomes a steady state of

ut = Auxx+
(
g(u,v)+ µu

)
x+ f1(u,v),

vt =
(
B+ µ)vx+ f2(u,v).

(83)

As in Sect. 1.4, we expect stability with asymptotic phase. For notational conve-
nience we denote(u,v)⊤ =U and(u,v)⊤ =U and write (83) in the short form

Ut = F(U).

We aim at a result in the spirit of Theorem. 3. The linearization of (83) about the
profile reads

ut = Auxx+(∂1g+ µ)ux+ ∂2gvx+(∂1gx+ ∂1 f 1)u+(∂2gx+ ∂2 f 1)v,

vt = (B+ µ)vx+ ∂1 f 2u+ ∂2 f 2v,
(84)

where we abbreviateg(x) = g(u(x),v(x)), ∂1g(x) = gu(u(x),v(x)), etc.. The linear
operatorΛ on the right hand side of (84) has the following block structure

Λ
(

u
v

)
=

(
A 0
0 0

)(
u
v

)

xx
+

(
B11 B12

0 B22

)(
u
v

)

x
+

(
C11 C12

C21 C22

)(
u
v

)
. (85)

For simplicity we abbreviate

Ã :=

(
A 0
0 0

)
, B̃ :=

(
B11 B12

0 B22

)
, C̃ :=

(
C11 C12

C21 C22

)
.

As we already saw in Sect. 1.5 shift equivariance implies(ux,vx)
⊤ ∈ N (Λ).

3.2 The stability theorem

Similar to Section 1 we impose the following conditions on the operatorΛ .
Linear Assumptions:

(i) A∈ Rn,n satisfiesA+A⊤ > 0,
(ii) B22 = B+ µI ∈ Rm,m is invertible,
(iii) B̃,C̃ are continuously differentiable with bounded derivatives,
(iv) the limits limx→±∞ B̃= B̃± and limx→±∞ C̃= C̃± exist,
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(v) if s∈ C satisfies det
(
−ω2Ã+ iωB̃± + C̃± − sI

)
= 0 for someω ∈ R, then

Res<−δ < 0,
(vi) σpoint(Λ)∩{Res≥−δ}= {0} and 0 is a simple eigenvalue ofΛ .

Note that assumptions (i), (iii), (iv) are already implied by ourBasic Assumptions,
assumption (v) is related to the spectral conditionSC, and (vi) is just the eigen-
value conditionEC from Sect. 1.5. The stability of traveling waves in parabolic-

Fig. 17 Sketch of the spectrum ofΛ satisfying theLinear Assumptions.

hyperbolic systems is the main result of the following theorem.

Theorem 6 (Stability with asymptotic phase [56, Thm. 6.1]).Assume that the
Basic Assumptions hold for (81) and the linearizationΛ about the traveling wave
(see(84), (85)) satisfies theLinear Assumptions.
Then, for all0< δ0 < δ there existsρ = ρ(δ0)> 0 such that for all initial data with
‖u0−u‖2

H2 +‖v0−v‖2
H2 ≤ ρ there is a unique global solution(u∗,v∗) with T∗ = ∞

for the system(81).
Moreover, there are C=C(δ0),γ∞ = γ∞(u0,v0) ∈ R with

|γ∞|2 ≤C
(
‖u0−u‖2

H2 + ‖v0− v‖2
H2

)

so that for all t≥ 0 the following estimate holds:

‖u∗(t)−u(·− µt − γ∞)‖2
H1+‖v∗(t)− v(·− µt − γ∞)‖2

H1

≤C
(
‖u0−u‖2

H2 + ‖v0− v‖2
H2

)
e−2δ0t .

(86)

As is typical for hyperbolic equations, the initial data aremeasured in a stronger
norm than the solution ast → ∞.

3.3 Central ideas of the stability proof

The proof of Thm. 6 is quite involved and proceeds in four major steps. We only
describe the main ideas and refer to [55, 56] for the details.Without loss of general-
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ity we assume that the problem is posed in a co-moving frame sothat the traveling
wave is a steady state.

Step 1 [Nonlinear coordinates]:Use a nonlinear change of coordinates, in the
spirit of Henry [39]: Choose a linear functionalψ : H−1(R,Cn+m)→R that satisfies
thenondegeneracy assumptionψ(Ux) 6= 0 and write the solution in the form

U(t) = Ũ(t)+U
(
·− γ(t)

)
, where Ũ(t) ∈ N (ψ).

This leads to apartial differential algebraic equation (PDAE) forŨ :

Ũt = F
(
Ũ +U(·− γ)

)
+ γtUx(·− γ),

0= ψ(Ũ).
(87)

This change of coordinates is justified because the originalPDE problem (83) and
the PDAE reformulation (87) are equivalent forU close toU and(Ũ ,γ) close to
zero, see [56, Thm. 3.5]. Therefore, it suffices to show that the solution of (87) with
transformed initial datãU(0) = Ũ0, γ(0) = γ0 converges exponentially fast.

Step 2 [Linearization]: We introduceµ = γt as a new variable. Then the PDAE
(87) can be written in the form

γt = µ , γ(0) = γ0,

Ũt = F(Ũ +U(·− γ))+ γtUx(·− γ)

= ΛŨ +Uxµ +Q(Ũ ,γ,µ), Ũ(0) = Ũ0,

0= ψ(Ũ).

(88)

Note that in (88) the initial value forµ0 is given by hidden constraints. The remain-
der termQ(Ũ ,γ,µ) in (88) is of the form

Q=

(
(G1+G2)x+F11+F12+R1

F21+F21+R2

)
,

and has estimates which are quadratic in its arguments. For example, we have

G1 =−
∫ 1

0
D2g(U(·− sγ))

[
Ux(·− sγ),γŨ

]
ds,

G2 =

∫ 1

0
(1− s)D2g(U(·− γ)+ sŨ)

[
Ũ ,Ũ

]
ds,

and similar expressions forFi j . TheRi are quadratic terms inµ andγ.
To prove stability for the nonlinear PDAE problem (88) we treat the higher order

terms as inhomogeneities for the linear problem which then reads
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γt = µ ,

Ũt = ΛŨ +Uxµ +

(
F1+Gx

F2

)
,

0= ψ(Ũ).

(89)

In (89) the first equation decouples from the other two equations and can be solved
in an additional step. Therefore, we consider only the linear, inhomogeneous PDAE

Ũt = ΛŨ +Uxµ +

(
F1+Gx

F2

)

0= ψ(Ũ),

(90)

subject to consistent initial datãU(0) = (ũ(0), ṽ(0)) ∈ H2×H2, µ(0) ∈ R.
The following linear stability result is the key to nonlinear stability.

Theorem 7 (Linear PDAE stability ([56, Thm. 5.1])). Let the assumptions be as
above and assume F1 ∈ C([0,∞);L2), G,F2 ∈ C([0,∞);H1). Then there exists a
unique solution(u,v,µ) of (90), and it satisfies

‖u(t)‖2
H1 + ‖v(t)‖2

H1 +e−2δ0t
∫ t

0
e2δ0τ{‖u‖2

H1 + ‖v‖2
H1 + |µ |2

}
dτ

≤Ce−2δ0t
[
‖ũ0‖2

H2 + ‖ṽ0‖2
H2 +

∫ t

0
e2δ0τ{‖G‖2

H1 + ‖F1‖2+ ‖F2‖2
H1

}
dτ
]
. (91)

The proof of this theorem will be indicated inStep 4below.
Step 3 [From linear to nonlinear stability]: Nonlinear stability of the PDAE

(87) can be obtained from Theorem 7 by the following steps:

• Show local existence and uniqueness for (88) for small initial dataŨ0, γ(0).
• ConsiderQ(Ũ ,γ,µ) in (88) as inhomogeneity in (90) and use the linear result,

Theorem 7, to obtain a priori estimates for the local solution.
• Use the a priori estimate in a bootstrapping argument to showthat the solution

can be extended to all positive times and decays exponentially.

Since the PDAE problem (87) and the PDE problem (83) are locally equivalent, this
proves Theorem 6.

Step 4 [Proof of linear stability via Laplace-technique]:We indicate the main
steps in the proof of Theorem 7. A crucial step is to use the Laplace-technique
which, in simple terms, translates resolvent estimates viathe Theorem of Plancherel
into decay estimates. Using Laplace-transform for stability proofs is standard, but
applying the technique in the context of PDAEs such as (90) isa novel approach,
see [54].

By homogenizing the initial data, we may assume without lossof general-
ity ũ(0) = 0, ṽ(0) = 0 in (90). More precisely, one writes the equations in terms
of the new functions̃u− e−2δ t ũ0 and ṽ− e−2δ t ṽ0. This adds a term of the form
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e−2δ tΛ(ũ0, ṽ0)
⊤ to the inhomogeneity (see [54, Thm. 5.3]). The linear inhomoge-

neous problem is exponentially well-posed so that Laplace transformation of (90) is
justified for spectral valuesswith Res≥ α for some sufficiently largeα (see [56]).
This leads to the following resolvent equation which we write in operator matrix
form:

A (s)




û
v̂
µ̂


=



(
sI−Λ

)
−
(

ux

vx

)

ψ 0






û
v̂
µ̂


 =




F̂1+ Ĝx

F̂2

0


 . (92)

HereA (s) is an operator onL2×L2×C with domainH2×H1×C.
We first show how resolvent estimates, i.e. solution estimates for (92) lead to

stability. By Plancherel’s Theorem we have forη ≥ α,

∫ ∞

0
e−2ητ‖(ũ, ṽ,µ)⊤(τ)‖2

H1dτ =
1

2π

∫ ∞

−∞
‖(û, v̂, µ̂)⊤(η + iξ )‖2

H1dξ , (93)

where‖(û, v̂, µ̂)⊤‖2
H1 = ‖û‖2

H1 + ‖v̂‖2
H1 + |µ |2. In Step 6below, we show estimates

for solutions of (92) which hold uniformly in{Res≥−δ0} for a fixedδ0 < δ ,

‖(û(s), v̂(s), µ̂(s))⊤‖2
H1 ≤C‖(F̂1(s),Ĝ(s), F̂2(s))

⊤‖2
L2,H1. (94)

Here we used the norm‖(F̂1,Ĝ, F̂2)
⊤‖2

L2,H1 = ‖F̂1‖2
L2 + ‖Ĝ‖2

H1 + ‖F̂2‖2
H1. Note that

û, v̂, µ̂ in equation (92) are analytic functions, given as the Laplace transforms of
ũ, ṽ,µ , which is only justified in{Res≥ α}. But the resolvent equation (92) is in
fact uniquely solvable in the larger domain{Res> −δ} and the solution depends
analytically ons in this region. Therefore,̂u, v̂, µ̂ in (94) coincide with the analytic
continuations of the Laplace transforms. By [4, Thm. 4.4.13] this implies that the
Laplace transforms of̃u, ṽ,µ even exist in the larger domain{Res>−δ}. Then the
Payley-Wiener and Plancherel Theorem [4, Sect. 1.8] show that (93) even holds for
η ≥ −δ0 > −δ . This crucial step of shifting contours in the Laplace transform to
the left is illustrated in Figure 18.

We use (93) forη =−δ0, insert estimate (94) into the right hand side and finally
use Plancherel’s Theorem for the inhomogeneities to obtain

∫ ∞

0
e−2ητ‖(ũ, ṽ,µ)⊤(τ)‖2

H1 dτ ≤ 1
2π

∫ ∞

−∞
C‖(F̂1,Ĝ, F̂2)

⊤(η + iξ )‖2
L2,H1 dξ

=C
∫ ∞

0
e−2ητ‖(F1,G,F2)

⊤(τ)‖2
L2,H1 dτ. (95)

This estimate proves the linear stability result and leads to the estimate (91).
Step 5 [Fredholm-properties]: It remains to analyze (92) and show (94). We

begin with Fredholm properties ofA (s). For this rewrite the second order operator
sI−Λ : H2×H1 → L2×L2 as a first order operator by introducingz= (u,Aux,v)⊤.
This leads to an operatorL(s) : H2×H1×H1 → H1×L2×L2 given by

L(s)z= zx−M(x,s)z,
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Fig. 18 Initially, equality (93) only holds for a path of integration to the right ofα . Then it is
justified in a much larger region, and the line of integrationis shifted from the right ofα to the left
of iR.

where the matrix valued functionM(x,s) ∈ C
2n+m reads

M(x,s) =




0 A−1 0
sI+B12B

−1
22C21−C11 −B11A−1 −B12B

−1
22 (sI−C22)−C12

−B−1
22C21 0 B−1

22 (sI−C22)


 .

We employ the following Lemma from [11].

Lemma 1. The second order operator sI−Λ on L2 ×L2 with domain H2×H1 is
Fredholm if and only if the first order operator L(s) on H1×L2×L2 with domain
H2×H1×H1 is Fredholm. In this case the Fredholm indices as well as the dimen-
sions of the nullspaces of the two operators coincide.

It is not difficult to show that the assumptions on the coefficients of the linear op-
erator, in particularLinear Assumptions parts (iv) and (v), imply that the limit
matrices limx→±∞ M(x,s) = M±(s) exist and are hyperbolic matrices. Moreover, the
dimensions of the generalized eigenspaces for eigenvalueswith real part less than
zero is the same forM−(s) andM+(s), see [56, App. A]. By classical results of
Coppel [21], the linear first order operatorL(s) has exponential dichotomies onR±,
and a result of Palmer [50] shows the following,

Lemma 2. For Res>−δ the operator L(s) is Fredholm of index0 anddimN (L(0))=
codimR(L(0)) = 1.

Using the bordering lemma, e.g. [8], this proves that the original operatorA (s) is
Fredholm of index zero for all Res>−δ .
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Step 6 [Resolvent estimates]:After these preliminaries, the resolvent estimates
are shown separately in the following three regions of the complex plane:
Region I: {s∈C : Res≥−δ0, |s| ≫ 0},

here the parabolic-hyperbolic structure
dominates, thedispersion relation is cru-
cial for the estimates (this is different from
the purely parabolic case!).

Region II: Ω ⊂ ρ(Λ)∩{Res>−δ0} com-
pact.

Region III: {s∈ C : |s| ≪ 1},
here the PDAE formulation removes 0
from the spectrum and leads to appropriate
estimates. −δ

−δ0

R

iR
I

II

III

Since Region II is compact in the resolvent sent, the estimates are obvious. In
Region I we assume|s| to be large. TheLinear Assumption (v) then states that

s∈ σ
(
−ω2A+ iωB11+C11 iωB12+C12

C21 iωB22+C22

)
,

for someω ∈ R implies Res<−δ . Here and in the following we drop the index±
for simplicity. By a matrix perturbation result, e.g. from [65], there isω0 > 0 so that
the matrix is similar to

(
−ω2A+iωB11+C11+O(|ω |−1) iωB12+C12

0 iωB22+C22+O(|ω |−1)

)
.

for all |ω | ≥ ω0. Together with thedispersion relation this shows

Lemma 3. For every0< δ ′ < δ there isω1 so that for allω ∈ R, |ω | > ω1 holds
thehyperbolic dispersion relation

s∈ σ(iωB22+C22)⇒ Res<−δ ′. (96)

For the hyperbolic part we have the following result from [54]:

Proposition 1. For everyδ0 < δ there exist constantsρ0,K > 0 such that the equa-
tion

(sI−B22∂x−C22(x))v= F in L2(R,Cm),

has a unique solution v∈ H1 for all F ∈ H1 and for all s withRes≥−δ0, |s|> ρ0.
The solution satisfies the estimate

‖v‖2
L2 ≤ K‖F‖2

L2, ‖v‖2
H1 ≤ K‖F‖2

H1.

A corresponding result for the parabolic part is proved in [46]:

Proposition 2. There are constants c1,K,ε > 0 so that for all s= re2iθ , r ≥ c1,
|θ | ≤ π/4+ ε there exists a unique solution u∈ H2 of
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su−Auxx−B11ux−C11u= f +gx in L2

for all f ∈ L2, g∈ H1. The solution satisfies the estimate

|s|2‖u‖2+ |s|‖ux‖2 ≤ K
(
‖ f‖2+ |s|‖g‖2

)
.

By applying Propositions 1 and 2 to the coupled system

su−Auxx−B11ux−C11u=
(
F1+C12v−B12,xv

)
+
(
G+B12v

)
x,

sv−B22vx−C22v= F2+C21u,

one obtains unique solvability and solution estimates in Region I.
In Region III we benefit from the formulation as a partial differential algebraic

equation. First considers= 0 and assume that(W,λ ) is in the nullspace ofA (0),
i.e.

A (0)

(
W
λ

)
=


−Λ −

(
ux

vx

)

ψ 0



(

W
λ

)
=

(
0
0

)
.

But our assumptions, 0 is a simple eigenvalue and, therefore, (ux,vx)
⊤ is not in the

range ofΛ , which enforcesλ = 0. ThenW must belong to the kernel ofΛ which
is the one-dimensional space spanned by(ux,vx)

⊤. The nondegeneracy assumption
onψ then implies that alsoW vanishes, so thatA (0) : H2×H1×C→ L2×L2×C

is a linear homeomorphism due to Fredholm index zero. A perturbation argument
then allows to deal with smalls-values.

Lemma 4. There exist c0,K > 0 so that for all s∈ C |s| < c0 there is a unique

solution(û, v̂, λ̂ ) ∈ H2×H1×C of



(
sI−Λ

)
−
(

ux

vx

)

ψ 0






û
v̂

λ̂


 =




F̂1+ Ĝx

F̂2

0


 ,

and the solution satisfies

‖û‖H2 + ‖v̂‖H1 + |λ̂ | ≤ K
(
‖F̂1‖+ ‖Ĝ‖H1 + ‖F̂2‖

)
.

This finishes the proof of Theorem 7.

3.4 Freezing waves in hyperbolic-parabolic systems

In this section we consider the freezing method when solvinghyperbolic-parabolic
systems in the neighborhood of traveling waves. Recall the general form (61) of the
freezing method for a shift-equivariant evolution equationUt = F(U),
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Vt = F(V)+ µVx, (Fr1)

0= ψ(V,µ), (Fr2)

where (Fr2) is the phase condition. Further recall the two standard choices for phase
conditions from Section 2.1:

Fixed phase condition: Given a template functionV̂, force the solution of (Fr1)
to align best under all shifts of̂V with the unshifted template function̂V, i.e.

0= argminγ∈R‖V − V̂(·− γ)‖.

If the norm is given by some inner product(·, ·) andV̂ is sufficiently smooth, the
condition above implies 0= (V̂x,V − V̂).

Orthogonal phase condition: Force the time evolution of thesolutionV of (Fr1)
to be orthogonal to the orbit of the spatial shifts ofV in the Hilbert spaceL2:

0= (Vx,Vt) = (Vx,F(V)+ µVx).

For a sketch of these conditions see Figure 19.

d
dγ V(·− γ , t)

Vt (·, t)

V

V(·− γ , t)

τγ (shift)

V̂

V

Fig. 19 Geometric interpretation of the orthogonal phase condition (left) and of the fixed phase
condition (right).

Example 9 (FitzHugh-Nagumo system).Recall the FitzHugh-Nagumo equation from
Example 4 with parametersa= 0.7, b= 3, φ = 0.08. We setε = 0, so that we have
the hyperbolic-parabolic mixed case as in [57]. The system reads

ut = uxx+u− 1
3u3− v, u(x,0) = u0(x),

vt = φ(u+a−bv), v(x,0) = v0(x),
(97)

Figure 20 shows a colorplot of the time-evolution ofuandv for the frozen system.
The initial data are chosen as a jump function, which equals the rest state at−∞ for
x≤ 0 and the rest state at+∞ for x> 0. A plot of the asymptotic profile, calculated
by the solution of a boundary value problem, is given in the left frame of Figure 21.
We indicate the rate at which the solution to the freezing method converges to the
asymptotic profile by plotting theL2-norm of the time-derivative in the right frame
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of Figure 21. In [57] this behavior is related to the spectralgap of the linearized
operator.
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Fig. 20 Plot of frozen FitzHugh-Nagumo solutionsu(x, t) (left) and v(x, t) (right). Note thatu
appears to be smooth immediately, whilev exhibits a discontinuity that decays with time.
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Fig. 21 Space dependence of FitzHugh Nagumo solutionsu(x, t) v(x, t) (left) and temporal decay
of ‖(ut ,vt)‖L2 with time (right)

Example 10 (Hodgkin-Huxley system).As a second example we use the freezing
method for a long-time simulation of the Hodgkin-Huxley system (80). For suit-
able initial data, which are chosen as a simple jump in the voltage, the long-time
simulation approximates the traveling pulse. The result ofone such long-time sim-
ulation was used as initial guess to calculate the travelingpulse shown in Figure 16
from a boundary value problem (cf. (12)). We sketch the numerical spectrum of the
linearization about the traveling pulse in Figure 22.

3.5 Stability theorem for the freezing method

An obvious question is, whether stability with asymptotic phase for traveling waves
in hyperbolic-parabolic problems translates into stability of equilibria for the freez-
ing method. This is in fact true, as the following result willshow.
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Fig. 22 Numerical approximation of the spectrum near zero for the linearization of the co-moved
Hodgkin-Huxley equations about the traveling pulse.

Consider a hyperbolic-parabolic partial differential equation of the general form
(81). The freezing method for this system is

ut = Auxx+g(u,v)x+ f1(u,v)+ µux,

vt = Bvx+ f2(u,v)+ µvx,

0= ψ(û−u, v̂− v).

(98)

We impose theBasic Assumptionfrom Sect. 3.1 for and theLinear Assumptions
from Sect. 3.2. In addition, we require for the phase condition:

(i) û−u, v̂− v∈ H1,
(ii) ψ(û−u, v̂− v) = 0,
(iii) ψ(ux,vx) 6= 0. (non-degeneracy condition)

Condition (ii) implies that(u,v,µ) is a steady state of (98). With these assumptions
the following result holds.

Theorem 8 ([55], [57]).For all 0 < δ0 < δ there existsρ0 > 0 such that for all
consistent initial data of(98) with ‖u0−u‖2

H2 + ‖v0− v‖2
H2 ≤ ρ0 there is a unique

global solution(u,v,µ) of the freezing equation(98). The solution satisfies

u−u∈C([0,T];H1)∩L2(0,T;H2)∩H1(0,T;L2),

v− v∈C([0,T];H1)∩H1(0,T;L2), µ ∈C([0,T];R),
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and converges exponentially fast to the asymptotic profile and to the speed of the
traveling pulse. More precisely, there is C=C(δ0) such that for all t≥ 0,

‖u(t)−u‖2
H1 + ‖v(t)− v‖2

H1 + |µ(t)− µ|2

≤C
(
‖u0−u‖2

H2 + ‖v0− v‖2
H2

)
e−2δ0t .

It is worth noting, that the result also applies to viscous conservation laws with a
source term. The following numerical experiment shows an example of this type.

Example 11 (Burgers’ equation).Consider Burgers’ equation with a source term,

ut +
(1

2u2)
x = 0.1uxx+u(1−u)(u− 1

4). (99)

The following results are taken from [53]. Figure 23 shows the result of a numerical
simulation of (99) with the freezing method. The left plot inFigure 24 shows the
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Fig. 23 Numerical simulation of (99) with the freezing method. The bold line indicates the initial
data (cf. [53]).

dispersion curves and the right plot shows a numerical approximation of the spec-
trum for the operator linearized about the traveling wave. In numerical experiments
one observes an approximate rate of convergencee−0.2t ast → ∞.

Example 12.We present results for hyperbolic systems without a parabolic part.
This was first analyzed in [54] and [55]. A large number of examples of such sys-
tems are obtained by using the so-called Cattaneo-Maxwell flux instead of the usual
Fickian law:

Consider a system of reaction diffusion equations
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Fig. 24 Dispersion relation for Burgers’ equation with a source term (left), plot of a numerical
approximation for the spectrum of the linearized operator (right).

vt +qx = r(v),

wherev denotes the concentrations of the substrates,q stands for the fluxes of the
substrates, andr contains reactions terms for the substrates. Usually the fluxes are
given by the Fickian law (q= −Dvx), but this leads to the unphysical phenomenon
of infinite speed of propagation of the substrates. Cattaneo[19] proposed a different
flux law for the case of heat transfer. He added a damping term to the Fickian law
which reads

Tqt +q=−vx.

This leads to the following semilinear hyperbolic problem
(

v
q

)

t
+

(
q
1
T v

)

x
=

(
r(v)
− 1

T q

)
.

As is well-known, solutions to hyperbolic problems have a finite speed of propa-
gation. This removes the apparent paradox of infinite speed of propagation for the
substrates. Moreover, the Fickian law appears as a singularly perturbed limit if the
parameterT becomes large.

In [55] we consider a hyperbolic variant of the Hodgkin-Huxley equations (80)
by using the Cattaneo-Maxwell flux. The system then becomes

Vt =
a

2R
qx− ḡKn4(V −VK)− ḡNam

3h(V −VNa)− ḡl(V −Vl),

qt =−Vx−q,

nt = αn(V)(1−n)−βn(V)n,

mt = αm(V)(1−m)−βm(V)m,

ht = αh(V)(1−h)−βh(V)h,

(100)

where the nonlinearitiesαn, βn, etc. are the same as in the original equation (80).
The freezing method works for this example just as well as forthe original Hodgkin-
Huxley system. After a first long-time simulation, one can again use the final state
of the initial value problem as initial guess for the boundary value problem and then
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do the standard subsequent analysis for the traveling wave such as computing the
spectrum, performing parameter continuation, etc..

We plot in Figure 25 the dispersion relation of the steady state problem, i.e. of
the problem in a co-moving frame with the correct velocityµ of the traveling wave.
Due to the hyperbolic character of the equations, all curvesapproach vertical lines,
for more details we refer to [55, Sect. 8] and [53].

iR

R

-5

0

5

0-1-2-3-4

Fig. 25 Dispersion relation for the steady state of the hyperbolic version of the Hodgkin-Huxley
equation (cf. [55]).

3.6 Numerical experiments for more general symmetries

Note that equivariance of an evolution equation (43) completely avoids transfor-
mation of the time variable. So far we just used equivariancein the form (46) and
kept the time variable in the ansatz (71). But it is possible to include more general
symmetries that involve the time variable, and this has already been proposed in
[58].

As an example we consider the viscous Burgers’ equation

ut =−(1
2u2)x+νuxx =: F(u), x∈ R, t ≥ 0, (101)

and take the Lie group
G= R

∗
+⋉R,

with multiplication forγ,η ∈ G given by:

(γ1,γ2)◦ (η1,η2) = (γ1η1,γ2+ γ1η2), 1= (1,0).
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We use the group actionsa andm, given by

[a(γ)u](x) =
1
γ1

u(
x− γ2

γ1
), m(γ) =

1

γ2
1

.

A simple computation shows that for sufficiently smooth functionsu,

F(a(γ)u) = m(γ)a(γ)F(u). (102)

Note that, instead of commutingF anda(γ) as in (46), we have an additional factor
m(γ). This factor leads to a time scaling as we will see in the following discussion.

We replace (71) by the followingansatz:

u(t) = a(γ(τ))v(τ), (103)

whereγ is a smooth curve inG, v is a smooth curve in the domain ofF andτ = τ(t)
is a smooth real valued function oft.

Using the symmetry property (102) in the evolution equation(101), we arrive at
the following:

ut = F(u) = F
(
a(γ(τ))v(τ)

)
= m(γ)a(γ)F(v), and also

ut = a(γ)d[a(1)v]dLγ−1(γ)γτ τt +a(γ)vττt .
(104)

If we chooseτ to satisfy the ordinary differential equationτt = m(γ(τ)), then (104)
leads to the system

vτ = F(v)−d[aγ(1)v]µ , (105)

τt = m(γ(τ)), (106)

γτ = dLγ (1)µ . (107)

Note that it is not necessary to solve (105)–(107) simultaneously. In fact, equations
(106) and (107) are only needed for reconstruction, i.e. to obtain the solution in the
original coordinates. The relative equilibrium is completely described by a steady
solution of (105). For the simulation of (105) the same ideasas in Section 2 apply.
We only present the results of one simulation in Figure 26. Looking at the scales
in Figure 26 it is nice to observe that the solution decays to zero in the original
variables and spreads to infinity. In the transformed variables however, the solution
becomes a steady state. Moreover, using the freezing method, one is able to directly
observe a transient behavior: For a very long time (in the original time variable) the
solution is close to what is called anN-wave in the theory of hyperbolic conservation
laws, before it finally approaches the correct viscosity wave. This behavior has been
observed already in [45], but there the authors used that theasymptotic values for
µ and, therefore, a correct asymptotic scaling of space and time are known. Our
method applies also to systems where the asymptotic scalings are not easily found
and, moreover, the method yields these asymptotic scalingsas part of its solution.
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Fig. 26 Result of the freezing method for the viscous Burgers’ equation at four different times. In
each of the four plots the scale on top is for the original space variablex, the bottom scale is in the
transformed variableξ = x−γ2(τ)

γ1(τ)
, the scale on the left is for the transformed dependent variable

v(ξ ,τ) and the scale on the right is for the original dependent variable u(x, t). In each plot we also
give the actual original timet and the transformed timeτ(t) (see [53]).

3.7 Summary

A summary of the results of this section is the following:

• Stability with asymptotic phase for general coupled parabolic-hyperbolic sys-
tems can be proved under the assumption that the spectrum of the linearization
lies strictly to the left of the imaginary axis except for a simple zero eigenvalue,

• The idea of the proof is to use Laplace-transform and derive uniform resolvent
estimates for the transformed equation,

• For large spectral values, resolvent estimates are obtained from the parabolic-
hyperbolic structure and the dispersion relation,

• For small spectral values, the zero-eigenvalue is removed from the spectrum by
the phase condition which appears in the PDAE formulation,

• Numerical experiments confirm the predicted exponential rates,
• The freezing method applies to the computation of similarity solutions.
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4 Rotating patterns in two and three space dimensions

While the previous lectures were restricted to patterns in one space dimension, we
will progress in this section to nonlinear waves in two and three space dimensions.
Since the freezing method is formulated in abstract terms itis rather straightfor-
ward to make it work for equivariant parabolic systems ind ≥ 2 dimensions, where
the Lie group is now thed-dimensional Euclidean group or consists of products or
subgroups thereof. It is much harder, however, to prove nonlinear stability of such
patterns under reasonable assumptions on the associated spectra. In this section we
discuss the stability result from [9] which applies to two-dimensional rotating pat-
terns that are localized, i.e. which decay at infinity. Again, as in Section 3 a major
difficulty results from the fact that, due to the angular modes, the linearized opera-
tors only lead toC0-semigroups. Moreover, due to equivariance with respect tothe
two-dimensional Euclidean group, three eigenvalues now appear on the imaginary
axis. We show how to obtain exponential decay of the semigroup in a subspace com-
plementary to the eigenvectors that belong to these three eigenvalues. Then stability
with asymptotic phase follows in a suitable Sobolev space. We also show some sim-
ulations of the freezing method for cases where the theory does currently not apply:
two-dimensional rotating spirals for Barkley’s excitablesystem (see [6]) and three
dimensional spinning solitons for the quintic-cubic Ginzburg-Landau equation.

4.1 Reaction diffusion systems in R2 and the freezing method

We apply the abstract freezing approach from Section 2.4 to reaction diffusion sys-
tems in two dimensions

ut = A∆u+ f (u), t ≥ 0, x∈R
2, u(·,0) = u0, (108)

whereu(x, t)∈Rm andA∈Rm,m is positive definite. The system (108) is equivariant
with respect to the Euclidean groupG = SE(2) under the actiona(γ), given for
γ = (θ ,τ) ∈ S1⋉R2 by

a(γ)v(x) = v(R−θ (x− τ)), x∈ R
2, Rθ =

(
cos(θ −sin(θ )
sin(θ ) cos(θ )

)
. (109)

Here we used the representation ofSE(2) as a semi-direct product ofS1 andR2 with
the group operation defined through

(θ1,τ1)◦ (θ2,τ2) = (θ1+θ2,Rθ2τ2+ τ1). (110)

The derivative ofa(γ)v with respect toγ ∈ G turns out to be

d[a(1)v]µ = µ1Dθ v+ µ2D1v+ µ3D2v, µ = (µ1,µ2,µ3) ∈ A = se(2), (111)
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whereDθ v(x) = x2D1v(x)− x1D2v(x) is the angular derivative andv : R2 → Rm is
assumed to be sufficiently smooth.

Therefore, the freezing system (73) associated with (108) reads as follows

vt = A∆v+ f (v)+ µ1Dθ v+ µ2D1v+ µ3D2v, v(·,0) = u0

0= (Dθ v̂,v− v̂)L2 = (D1v̂,v− v̂)L2 = (D2v̂,v− v̂)L2,

γt =

(
θ
τ

)

t
=

(
1 0
0 Rθ

)
µ , γ(0) =

(
0
0

)
.

(112)

A rotating wave solution of (108) is of the form

u(x, t) = u∗(R−ctx), x∈ R
2, t ∈ R, (113)

whereu∗ denotes the profile andc denotes the angular velocity of the wave. In
terms of the group action we may write such a solution asu(t) = a(ct,0)u∗, t ∈
R which is a relative equilibrium of (108). For anyθ ∈ S1,τ ∈ R2 the function
a((θ ,τ) ◦ (ct,0))u∗(x) = u∗(R−ct−θ (x− τ)) is then also a rotating wave, but with
phase shiftθ and with center of rotation atτ. These solutions are equilibria of the
first equation in (112) and solve the reconstruction equation in (112) with initial data
γ(0) = (θ ,τ).

Example 13 (Quintic-cubic Ginzburg-Landau equation (QCGL)). Consider the QCGL
in two space dimensions (compare Example 5):

ut = α∆u+(δ +β |u|2+ γ|u|4)u, x∈R
2, u(x, t) ∈C, (114)

with parametersα,β ,γ,δ ∈C,Reα > 0. In real coordinatesu= u1+ iu2 this leads
to a parabolic system of the type (108). According to [22] thesystem (114) has so
called spinning soliton solutions for parameter values

α =
1
2
(1+ i), β =

5
2
+ i, γ =−1− i

10
, δ =−1

2
. (115)

Figure 27 shows the result of the numerical computation for these parameter values,
both for the given system (108) and for the frozen system (112). The computations
were done with COMSOL MultiphysicsTM on a ball of radius 20 and with Neumann
boundary conditions. Figure 27(c) shows the final profile of the spinning soliton. In
Figure 27 we plot the time dependence of Reu(·,0, t) at the cross-sectionx2 = 0 both
for the nonfrozen system 27(a) and the frozen system 27(b). The time evolution of
the velocitiesµ(t) = (µ1(t),µ2(t),µ3(t)) are shown in Figure 27(d).

The system (114) is in fact equivariant with respect to the 4-dimensional group
G = S1 ×SE(2) where (109) is replaced by the actiona(γ)v(x) = eiϕv(R−θ (x−
τ)),x ∈ R

2 for γ = (ϕ ,θ ,τ) ∈ G. It turns out that the spinning solitonsu(x, t) con-
sidered here are symmetric in the following sense:eiϕu∗(x) = u∗(Rϕx). Then there
is a nontrivial isotropy subgroupG(u∗) = {g∈ G : a(g)u∗ = u∗} and the linear map
d[a(1)u∗] : A → Y is no longer one-to-one. This causes problems with the phase
conditions (76),(77) which become ill-posed with respect to the parameterµ . In the
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Fig. 27 Spinning solitons in the quintic-cubic Ginzburg-Landau equation. Cross-section atx2 = 0
for the real part of solutions to the nonfrozen system (114) (a) and to the frozen system (112)
(b). Profile v̄ of the spinning soliton (c) and time-dependence of velocities (µ1,µ2,µ3) (d). All
solutions obtained by Comsol Multiphysics with piecewise linear finite elements and Neumann
boundary conditions. A fixed phase condition as in (112) was used with template function ˆv taken
from the solution of the nonfrozen system at timet = 50. Parameter-values are given by (115).

current example we avoided such complications by considering equivariance only
with respect to the three-dimensional groupSE(2). In this smaller group the isotropy
subgroup becomes trivial.

4.2 Spectra of 2D rotating waves: essential and point spectrum

In the following we discuss the behavior of the spectrum of the linear differential
operator obtained by linearizing about a rotating wave of the parabolic system (108).
We consider a localized rotating wave (113). By this we mean that the profile con-
verges to a zerov∞ of f as|x| → ∞ and that all derivatives up to order 2 converge to
zero. By shiftingv∞ into the origin we may assumef (0) = 0 and hence

sup
|x|>r

|Dαu∗(x)| → 0 as r → ∞ for |α|6 2. (116)
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We transform (108) into rotating coordinates viau(x, t) = v(R−ctx, t) and obtain

vt = A△v+ cDφv+ f (v), with Dφ v=−x2D1v+ x1D2v. (117)

Linearizing at the steady statev= u∗ of (117) yields the operator

L u= A△u+ cDφu+B(x)u, B(x) = f ′(u∗(x)), x∈R
2. (118)

Applying D1,D2,Dφ to A△u∗+cDφ u∗+ f (u∗) = 0 and using the commutator rela-
tions[D1,Dφ ] = D2, [D2,Dφ ] =−D1, [Dφ ,△] = 0 leads to the equations

0= L Dφ u∗ = L (D1u∗)+ cD2u∗ = L (D2u∗)− cD1u∗, (119)

in particular,L (D1u∗± iD2u∗) = ±ic(D1u∗± iD2u∗). Therefore, the operatorL
has at least the three eigenvalues 0,±ic in its spectrum (see Figure 28(a)) provided
the functionsD1u∗,D2u∗,Dθ lie in the function space under consideration. Next we

ic

−ic

(a)

ic

−ic

(b)

ic

−ic

isolated eigenvalues
essential spectrum

(c)

Fig. 28 Critical eigenvalues 0,±ic for a linearized rotating wave (a), essential spectrum for QCGL
from Example 13:s= inc+δ −κ2(α1± iα2), κ ∈R, n∈ Z with parameter values from (115) (b),
Schematic picture of essential spectrum, critical eigenvalues, and further isolated eigenvalues for
the QCGL from Example 13 (d).

discuss the essential spectrum ofL . In polar coordinates the operator reads

L = A

(
D2

r +
1
r

Dr +
1
r2 D2

θ

)
+ cDθ + f ′(u∗(r,θ )). (120)

As r → ∞ we find the constant coefficient operator

L∞ = AD2
r + cDθ + f ′(0) (121)

With u(r,θ ) = einθ eiκru∞ we obtains∈ σ(L∞), if s satisfies for someκ ∈ R and
n∈ Z thedispersion relation

det(−κ2A+ inc+ f ′(0)− s) = 0. (122)
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For the quintic-cubic Ginzburg-Landau equation from Example 13 the curves from
(122) turn out to be infinitely many copies of two half lines shifted along the imag-
inary axis, see Figure 28(b),

s=−κ2α + inc+ δ , s=−κ2ᾱ + inc+ δ̄ , κ ∈ R, n∈ Z. (123)

We indicate why these curves belong to the essential spectrum of the variable coef-
ficient operatorL , i.e.σ(L∞)⊂ σess(L ). With the eigenfunctions above let

uR(r,θ ) = ψR(r)
(

einθ eiκru∞

)

whereψR is a smooth cut-off function such that

ψR(r) =

{
1 , R6 r 6 2R,

0 , 06 r 6 R−1, 2R+16 r.

By a straightforward computation one shows

‖uR‖2
L2 >CR2, ‖(L − s)uR‖2

L2 6C
(
R+R2ε2

R

)
,

whereεR = supr>R,θ | f ′(u∗(r,θ ))− f ′(0)| → 0 asR→ ∞. This contradicts the con-
tinuity of (L − s)−1 with respect to‖ · ‖L2, i.e.‖uR‖L2 6C‖(L − s)uR‖L2. For the
QCGL from Example 13 we expect further isolated eigenvaluesto the right of the
essential spectrum, see Figure 28(c) for a schematic drawing.

Clearly, since the spectrum ofL is not contained in a sector, we expect the
semigroupetL to be continuous but not analytic. This has serious implications for
the nonlinear stability theory to be discussed in the next subsection.

Figure 29 shows details of the numerical spectrum that is found for a numerical
discretization ofL of size 104. The detail shows about 400 eigenvalues lying in a
ball centered at 3. It turns out that, in addition to the threeeigenvalues 0,±ic on the
imaginary axis, there are clusters of eigenvalues which approximate the essential
spectrum from Figure 28(b), and there is a total of 8 pairs of complex conjugate
eigenvalues (indicated by crosses in Figure 29) between theimaginary axis and
the essential spectrum. The contour plots of the associatedeigenfunctions (see [9,
Figure 3]) show that these eigenfunctions are actually localized, i.e. we assume
their continuous counterparts to lie inL2(R2,C). On the contrary, the numerical
eigenfunctions found for eigenvalues within the clusters,are easily recognized as
being non-localized (cf. [9, Figure 3]).

4.3 A nonlinear stability theorem

In this section we outline the nonlinear stability theory for rotating patterns follow-
ing [9]. We mention the alternative approach of [62] which uses center manifold
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Fig. 29 Plot of numerical spectrum for the QCGL from Example 13 with parameter values from
(115). In addition to 3 eigenvalues on the imaginary axis andthe clusters approximating the essen-
tial spectrum from Figure 28(b), one finds additional pairs of isolated eigenvalues indicated by the
blue crosses.

reductions. Recall the Sobolev spacesH j = H j(R2,Rm), j = 0,1,2 and the Sobolev
embeddingH2(R2)⊂ L∞(R2)∩C(R2) and introduce the subspace

H2
Eucl = H2

Eucl(R
2,Rm) = {u∈ H2 : Dθ u∈ L2(R2,Rm)}.

As above we assume the existence of a rotating wave (113) for the system (108)
with nonvanishing velocityc 6= 0, and we impose the following
Wave conditions

(i) f ∈C4(Rm,Rm) and f (0) = 0,
(ii) sup|x|>r,|α |62|Dαu∗(x)| → 0 asr → ∞.
(iii) f ′(0)6−2β I for someβ > 0.
(iv) The eigenvalues 0,±ic have eigenfunctionsDθ u∗,D1u∗± iD2u∗ in H2

Eucl, and
they are algebraically simple for the operatorL = A△+ cDθ + f ′(u∗) in H2

Eucl.
(v) There are no further eigenvaluess∈C for L with Re(s)>−2β .

Theorem 9.([9]) Under the wave conditions (i)-(v) above, there existsan ε > 0
such that for any solution of(108) satisfying‖u(0)−u∗‖H2 6 ε there is a C1-
function γ(t) = (θ (t),τ(t)) ∈ SE(2), t ≥ 0 and some(θ∞,τ∞) ∈ SE(2) such that
for t ≥ 0,

‖u(·, t)−a(γ(t))u∗‖H2 6Ce−β t ‖u(0)−u∗‖H2 ,

|θ (t)+ ct−θ∞|+ |τ(t)− τ∞|6Ce−β t ‖u(0)−u∗‖H2 .
(124)

Note that this theorem statesstability with asymptotic phase, as we know it for
traveling waves from Theorems 3 and 6.

In the following we provide some ingredients from the proof.First we transform
into rotating coordinates (117).
Step 1 [Nonlinear coordinates]:
Decompose the solution of (117) and the initial valuev(0) = u0 in a way analogous
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to (87) (see Figure 4.3 for an illustration):

v(t) = a(γ(t))u∗+w(t), γ(t) = (θ (t),τ(t)) ∈ S1
⋉R

2,

u0 = a(γ0)u∗+w0, γ(0) = (θ0,τ0),
(125)

wherew(t),w0 lie in the subspaceW = {ψ1,ψ2,ψ3}⊥ of H2. Here, orthogonality
holds with respect to(·, ·)L2, and the functionsψ1± iψ2,ψ3 ∈ H2

Eucl are eigenfunc-
tions of the adjoint operatorL ∗ corresponding to the eigenvalues±ic,0 (cf. wave
condition (iv)).

W

v(0)

u∗

v(t) = a(γ(t))u∗+w(t)

a(γ(t))u∗
O(u∗) = {a(γ)u∗ : γ ∈ SE(2)}

Fig. 30 Decomposition of dynamics near a two-dimensional group orbit

Step 2 [The decomposed system]:Inserting (125) into (117), expanding the non-
linearities and inverting the linear parts leads to the following system of coupled
integral equations for the new variablesw(t),γ(t):

w(t) = etL w0+

∫ t

0
e(t−τ)L ρ [w](w(τ),γ(τ))dτ,

γ(t) = etEcγ0+

∫ t

0
e(t−τ)Ecρ [γ](w(τ),γ(τ))dτ,

(126)

whereEc has the matrix representationEc =




0 c 0
−c 0 0
0 0 0


 andρ [γ],ρ [w] are quadratic

remainder terms.
Step 3 [From linear to nonlinear decay estimates]:
The crucial step in the proof is the linear decay estimate

‖etL w‖H2 6Ce−β t‖w‖H2 for w∈W, (127)

which will be discussed in more detail in Step 4 below. The nonlinear estimate
(124) is obtained by using Gagliardo Nirenberg type estimates for the remainders
ρ [w] resp.ρ [γ] and combining them with the linear estimate (127).
Step 4 [Exponential decay of aC0-semigroup]:
We collect the available information for the variable coefficient operatorL from
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(119) and the constant coefficient operator (121). The wave condition (ii) guaran-
tees Re(σ(L∞)) 6 −β . Using condition (iii) one can also prove thatL = L∞ +
( f ′(u∗)− f ′(0)) : H2

Eucl → L2 is a relatively compact perturbation ofL∞, which by

Theorem 2 shows Reσess(L )≤− β
2 < 0. But now the problem arises that the spec-

tral mapping theorem forC0-semigroups holds for the point spectrum, but in gen-
eral not for the essential spectrum, see [51],[28]. That is,exp(σ(L )) = σ(exp(L ))
holds forσ = σpoint (up to the number 0) but not forσess.

However, it turns out that, instead of Theorem 2 one can use the following The-
orem on relatively compact perturbation of the semigroup itself.

Theorem 10.Let A: D(A)⊂ X → X denote the generator of a C0-semigroup etA of
type

ω(A) = inf
t>0

t−1 log
∥∥etA

∥∥= lim
t→∞

t−1 log
∥∥etA

∥∥ ,

and let B∈ L[X] be linear, bounded such that

BetA is compact for all t> 0.

Then A+B : D(A)→ X generates a C0-semigroup et(A+B) with

∣∣σess(e
A+B)

∣∣6 eω(A). (128)

Moreover,Re
[
σpoint(A+B)

]
6 ω+ impliesω(A+B)6 max{ω(A),ω+}.

For a proof of the theorem we refer to [9, Appendix], and we note that it can also
be derived by combining several results from [28]. In our situation we can apply the
theorem to the operatorsA= L∞, A+B= L , B = f ′(u∗)− f ′(0) since( f ′(u∗)−
f ′(0))etL∞ is compact inH2. Equation (128) then leads to an exponential estimate
for σess(etL ), in particular|σess(eL )| < 1. Now one restrictsL to the subspace
W which is invariant under expL (but not undereL∞ !) and applies the spectral
mapping theorem to find|σpoint(e

L|W)| < 1 from wave condition (v). Combining
both results, finally proves the estimate (127).

4.4 Further experiments with waves in 2D and 3D

We finish this section with numerical experiments in two and three space dimen-
sions. We note that for these non-localized waves, there is currently no rigorous
nonlinear stability analysis available.

Example 14 (Barkley model).The frozen version (112) of the well-known Barkley
spiral system [6] reads
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ut =△u+
1
ε

u(1−u)(u− v+b
a

)+ µ1(x2ux1 − x1ux2)+ µ2ux1 + µ3ux2,

vt = u− v+ µ1(x2vx1 − x1vx2)+ µ2vx1 + µ3vx2,

0= (x2u0,x1 − x1u0,x2,u−u0)L2 +
(
x2v0

x1
− x1v

0
x2
,v− v0)

L2 ,

0= (u0,x1,u−u0)L2 +
(
v0

x1
,v− v0)

L2 = (u0,x2,u−u0)L2 +
(
v0

x2
,v− v0)

L2 .

For parameter values

ε =
1
50

, a= 0.75, b= 0.01, (129)

Figure 31(d) shows the behavior of the 3 group velocities of afrozen spiral.
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Fig. 31 Cross-section atx2 = 0 for the first component of the Barkley spiralu(x, t) of the nonfrozen
system (a) and of the frozen system (b). First component of the profilev̄of the Barkley spiral (c) and
time-dependence of velocities(µ1,µ2,µ3) (d). Solution by Comsol Multiphysics with piecewise
linear finite elements, Neumann boundary conditions, fixed phase condition with template function
v̂ taken from the solution of the nonfrozen system at timet = 150 and parameter values from (129).

Let us compute the motionγ(t) = (θ (t),τ(t)) in the group when the solution has
reached its relative equilibrium, i.e. we determineγ(t) = exp(t µ̄) ∈ G for a given
µ̄ ∈ A from the reconstruction equation
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γ̇ = dLγ(1)µ̄ =

(
1 0
0 Rθ

)
µ̄ , γ(0) = 0. (130)

The solution is

γ̄(t) =
(

θ (t)
τ(t)

)
=

(
µ̄1t

(I −Rµ̄1t)xc

)
, where xc =

1
µ̄1

(
−µ̄3

µ̄2

)
. (131)

Note thatτ(t) moves on a circle of radius‖xc‖ centered atxc. Inserting this into the
profileu∗ we obtain the solution

ū(x, t) = u∗(R−µ̄1t(x+(Rµ̄1t − I)xc)) = u∗(R−µ̄1t(x− xc)+ xc). (132)

If a specific point ¯x of the profileu∗ is of interest, e.g. the tip of a spiral, then this
point will be visible at positionx(t) with x̄= R−µ̄1t(x(t)−xc)+xc, i.e. on the circle
given byx(t) = Rµ̄1t(x̄− xc)+ xc. Our conclusion is that the freezing method gives
the information about the centerxc and the speed of rotation̄µ1 for free. There
is no need to use ad-hoc definitions for locating the tip of a spiral, for example. A
comparison of this method with traditional ways of following the tip of a spiral from
a direct simulation of the given system is provided in [14]. However, we note that
it can be useful to impose such spiral tip conditions if one aims at phase conditions
that lead to global sections. In [34] such an approach is usedfor freezing not only
rigidly rotating spirals (relative equilibria) but also torecognize meandering spirals
(relative periodic orbits). The work [40] contains anotherinteresting application of
the freezing methodology, namely to follow the large core limit of spiral waves, i.e.
to observe the behaviorµ1 → 0 or xc → ∞ under parametric perturbations, without
solving the equations on extremely large domains.

Example 15 (Quintic-cubic Ginzburg-Landau equation).We continue the QCGL
equations from Example 13 in three space dimensions

ut = α∆u+(δ +β |u|2+ γ|u|4)u, x∈R
3, u(x, t) ∈C, (133)

and look for 3D spinning solitons. The system is equivariant with respect to the
action of the 6-dimensional Euclidean groupG= SE(3) = SO(3)⋉R3, given by

[a(γ)v](x) = v(R−1(x− τ)), γ = (R,τ) ∈ SE(3). (134)

Recall that the group operation in this representation isγ ◦ γ̃ = (RR̃,τ +Rτ̃). The
freezing method leads to the PDE

vt = α∆v+(δ +β |u|2+ γ|u|4)u+ µ4vx1 + µ5vx2 + µ6vx3

+ µ1(vx2x3− vx3x2)+ µ2(vx3x1− vx1x3)+ µ3(vx1x2− vx2x1),
(135)

complemented by 6 phase conditions. In Figure 32 we show the results of a sim-
ulation of this system for the same parameter values as in (115). Figure 32(a)-(c)
shows the spinning solitons for 3 different time instances of the original equation,
while Figure 32(d) displays the profile of the frozen solution by showing two iso-
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Fig. 32 Isosurfaces Reu(x1,x2,x3, t) =±0.5 at timest = 0, 3.2, 6.5 (a)-(c), isosurfaces of the real
part of the profile ¯v and time-dependence of velocitiesµ(t) for the three-dimensional QCGL (133)

surfaces of the real part. The behavior of the six algebraic variablesµ1, . . . ,µ6 is
shown in Figure 32(e). The resulting relative equilibria seem to be localized and
stable with asymptotic phase, but we are not aware of any rigorous result in this
direction comparable to Theorem 9.

4.5 Summary

Let us summarize the results of this section:

• The freezing method applies to 2D and 3D rotating patterns and automatically
generates information about angular velocities and centers of rotation.

• For rotating localized 2D waves one can prove nonlinear stability with asymp-
totic phase in the Sobolev spaceH2 from linear stability.

• Differential operators obtained by linearizing about rotating two-dimensional
patterns generate onlyC0-semigroups.

• Numerical approximations and convergence of the freezing method are not yet
analyzed theoretically. There are also no rigorous theorems on nonlinear stability
of nonlocalized rotating patterns such as spiral waves.
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5 Decomposition and freezing of multi-structures

Many excitable systems discussed in the first sections admitspecial solutions that
are composed of several waves and thus cannot be frozen in a single coordinate
frame. Often such patterns travel at different speeds and either move towards each
other (the case ofstrong interaction) or repel each other (the case ofweak inter-
action). As long as the patterns do not interact strongly they seem to behave like
linear superpositions, though this cannot be true in the strict sense for a nonlinear
system. In this section we discuss an extension of the freezing method to handle
multiple coordinate frames in which the single profiles can stabilize independently
while still capturing their nonlinear interaction. The basic idea is to use dynamic
partitions of unity in order to decompose the system into a larger system of PDAEs,
the dimension of which is determined by the maximal number ofpatterns. The basic
idea is taken from [12] while we follow here the improvement from [64]. In partic-
ular, we explain a highly sophisticated stability result from the thesis [64] which
applies to weakly interacting fronts and pulses. We also mention that this numerical
approach is closely related to an analytical method developed in [63], [70] where
so-called exit and shooting manifolds are constructed which are followed by the
multi-structures for a certain time.

5.1 Multi-pulses and multi-fronts

Consider the Cauchy problem for a parabolic (or mixed hyperbolic-parabolic) sys-
tem in one space variable

ut = Auxx+ f (u), x∈ R, t ≥ 0,

u(·,0) = u0,
(136)

for a functionu(x, t)∈Rm on the real line, whereA∈Rm,m is assumed to be positive
semidefinite andf : Rm → Rm is assumed to be sufficiently smooth. Multi-pulses
and multi-fronts generically appear in a large variety of systems of the form (136)
and we mention two standard examples:

Example 16.FitzHugh-Nagumo system
Recall the FitzHugh-Nagumo system

ut =

(
u1

u2

)

t
=

(
1 0
0 ε

)
uxx+ f (u)

f

(
u1

u2

)
=

(
u1− 1

3u3
1−u2

φ (u1+a−bu2)

)
, φ ,a,b> 0, ε > 0.

In Example 7 we observed for pulse like initial data the generation of adouble
pulse solution, see Figure 12. More precisely, the solution to theCauchy problem
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develops two pulses, traveling in opposite directions. SeeExample 7 for the details
of the numerical simulation.

We have seen that the numerical method of freezing captures one of the two
evolving pulses, while the other leaves the computational domain. In fact, in the
numerical experiments the phase condition determined which of the two traveling
pulses is captured and which is lost.

Example 17 (Nagumo equation).As an example that generatesdouble fronts we
consider again the Nagumo equation, compare Example 6,

ut = uxx+u(1−u)(u−a), x∈ R, t ≥ 0, u(·,0) = u0,

with parametera = 1
4. As initial condition for the Cauchy problem we choose the

piecewise linear function

u0(x) = 1(−50,0](x) ·
x+50

50
+1(0,50)(x) ·

50− x
50

, (137)

where1M(x) = 1 for x∈ M and1M(x) = 0 for x 6∈ M is the indicator function of a
setM. The solution to this problem consists of two fronts traveling with the same
speed in opposite directions. A numerical solution is shownin Figure 33.

Fig. 33 Space-time diagram of a double front solution to the Nagumo equation for parameter value
α = 1

4 on the domainΩ = [−100,100]. Solution by Comsol Multiphysics with piecewise linear
finite elements, Neumann boundary conditions,△x= 0.1, △t = 0.1, BDF of order 2 and initial
datau0 from (137).

The above examples show that it is important to be able to capture multi-pulses
and multi-fronts. Obviously, this cannot be done by using a single moving frame.
For patterns sufficiently far apart, the individual parts ofthe pattern seem not to in-
fluence each other and the multi-structures look like linearsuperpositions, but due
to nonlinearities they cannot be linear superpositions. Nevertheless, in the case of
weak interaction, i.e. when the patterns are far apart for large times, linearsuperpo-
sition is a good model. Currently, there is no theory available in the case ofstrong
interaction, i.e. when the individual parts of the multi-structure get close to each
other.
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5.2 Decompose and freeze multi-structures

Now consider the Cauchy problem (136) and assume that the solution u consists
of N single profiles. To generalize the freezing ansatz to this situation we write the
solution as the superposition ofN profiles in the following form

u(x, t) =
N

∑
j=1

v j(x−g j(t), t). (138)

Here the functiong j : [0,∞[→ R denotes the time dependent position of thej-th
profile v j : R× [0,∞[→ Rm, (x, t) 7→ v j(x, t). Of course, due to nonlinearity, the
solutionu is not just the superposition ofN separate profiles as pretended in (138).

To overcome this difficulty and to make use of the fact that well separated profiles
basically behave like linear superpositions, we use the idea of partition of unity: Let
ϕ ∈C∞(R,R) be a positive bump function such that the main mass is locatednear
zero and 0< ϕ(x)6 1 for everyx∈R. A suitable choice forϕ is ϕ(x) = sech(βx) =

1
cosh(β x) with β > 0. Then forg= (g1, . . . ,gN) : [0,∞)→RN andx∈R the functions

Q j(g(t),x) =
ϕ(x−g j(t))

∑N
k=1 ϕ(x−gk(t))

, j = 1, . . . ,N (139)

have non-vanishing denominators and form a time-dependentpartition of unity, i.e.

1=
∑N

j=1 ϕ(x−g j)

∑N
k=1 ϕ(x−gk)

=
N

∑
j=1

Q j(g,x).

We are interested in solutions of (136) of the form (138). In order to investigate
such solutions we insert the ansatz (138) into (136) and use the partition of unity
(139). Abbreviatingvk(∗) = vk(·−gk(t), t) this leads to

N

∑
j=1

[v j ,t(∗)− v j ,x(∗)g j ,t ] = ut = Auxx+ f (u)

=
N

∑
j=1

[
Avj ,xx(∗)+Q j(g, ·) f

(
N

∑
k=1

vk(∗)
)]

=
N

∑
j=1

[
Avj ,xx(∗)+ f (v j(∗))+Q j(g, ·)

{
f

(
N

∑
k=1

vk(∗)
)
−

N

∑
k=1

f (vk(∗))
}]

.

(140)

Now, we require that the summands on the left and on the right hand side of (140)
coincide for everyj = 1, . . . ,N. The idea is to consider each of the summands in its
own co-moving frame and apply the freezing ansatz: We substitute ξ = x− g j(t),
µ j = g j ,t and∗k j = ξ −gk(t)+g j(t), add initial and phase condition for eachv j ,
j = 1, . . . ,N and obtain the following coupled system forj = 1, . . . ,N, ξ ∈R, t ≥ 0
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v j ,t(ξ , t) = Avj ,ξ ξ (ξ , t)+ v j ,ξ (ξ , t)µ j(t)+ f (v j(ξ , t))

+
ϕ(ξ )

∑N
k=1 ϕ(∗k j)

[
f

(
N

∑
k=1

vk(∗k j, t)

)
−

N

∑
k=1

f (vk(∗k j, t))

]
,

0= (v j(·, t)− v̂ j , v̂ j ,x)L2 , v j(·,0) = v0
j ,

g j ,t = µ j , g j(0) = g0
j .

(141)

To enforce that also the initial condition in (136) is satisfied, we additionally require
u0 = ∑N

j=1v0
j (· − g0

j ). It is easy to see that if(v j ,g j) solves (141) and satisfies the

assumption on the initial condition, thenu(·, t) = ∑N
j=1v j(· − g j(t), t) solves the

Cauchy problem (136). Note that the decomposition is not unique.
In the case of multi-fronts one has different limits at±∞ and it is, even in the

linear case, not possible to simply add the single profiles aswe did in (138). In
order to employ the above procedure also in this case, we define

u−j =

{
0 , j = 1,

limx→−∞ wj(x) , j ≥ 2,
(142)

wherewj is the expectedj-th wave. The situation is depicted in Figure 34, where a
double front is considered. Writing thej-th wave asv j(ξ , t)+u−j and following the

w1 = v1
1 1

−1

w2

w2−u−2 = v2

w1(·−c1t)+w2(·−c2t)−u−2

Fig. 34 The sum of two fronts forming a multi-front.

recipe from (140), we obtain the coupled PDAE system forj = 1, . . . ,N:

v j ,t(ξ , t) = Avj ,ξ ξ (ξ , t)+ v j ,ξ (ξ , t)µ j(t)+ f (v j(ξ , t)+u−j )

+
ϕ(ξ )

∑N
k=1 ϕ(∗k j)

[
f

(
N

∑
k=1

vk(∗k j, t)

)
−

N

∑
k=1

f (vk(∗k j, t)+u−k )

]
,

0= (v j(·, t)− v̂ j , v̂ j ,x)L2 , v j(·,0) = v0
j ,

g j ,t = µ j , g j(0) = g0
j .

(143)

Again we requireu0 = ∑N
j=1v0

j (· − g0
j ), so that a solution(v j ,g j) to (143) yields

a solution of (136) via (138). Note that allowingu−j = 0, (143) includes the case
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of pulses (141) and also the cases of solutions that consist of both, pulse and front
solutions.

We just mention, that the PDAE systems (141) and (143) contain nonlinear and
nonlocal coupling terms. For solving the PDAE on a bounded domainJ = [x−,x+],
we have to interpolate by the left and the right limit, respectively, whenever∗k j =
ξ −gk(t)+g j(t) /∈ [x−,x+]. Namely, we extend the functionv j to be constant equal
to its boundary values.

Example 18 (Nagumo equation).Consider the Nagumo equation from Example 6
with parametera= 1

4,

ut = uxx+u(1−u)(u−a), x∈ R, t ≥ 0, u(·,0) = u0.

(a) First consider the case of two repelling fronts. This situation occurs, for
example, when the initial data form a hat function as in (137). We use the PDAE
system (143) withN = 2 andu−2 = 1. As initial data we choose

v0
1(x) = 1(−25,25)(x) ·

x+25
50

+1[25,∞)(x), x∈R,

v0
2(x) =−1(−25,25)(x) ·

x+25
50

−1[25,∞)(x), x∈ R

for the two profiles andg0
1 = −25, g0

2 = 25 for the initial shifts. The simulation is
performed on the finite intervalJ= [−50,50]with ϕ(x) = sech

(
x
2

)
and the solutions

v1 andv2 are assumed to equal their asymptotic values outside the computational
domain. The results of a simulation are plotted in Figure 35.The performance of
the decompose and freeze method can be demonstrated by plotting the difference
of the superposition (138) from the result obtained by a direct simulation of the full
system (see [12] for such a comparison).

(b) As a second example we consider the case of two colliding fronts. For this
we take initial conditions

u0(x) = 1−1(−100,0](x) ·
x+100

100
+1(0,100)(x) ·

x−100
100

, x∈ R,

which we split as followsu0 = v0
1(·−g0

1)+ v0
2(·−g0

2), with

v0
1(x) = 1(−∞,50)(x)−1(−50,50)(x) ·

x+50
100

, x∈R,

v0
2(x) = 1(−50,50)(x) ·

x+50
100

+1[50,∞)(x), x∈ R.

The initial shifts areg0
1 =−50,g0

2 = 50. Note that in this case we haveu−2 = 0 and
ϕ(x) = sech

(
x
2

)
. A result of the method is shown in Figure 36. Note that the de-

compose and freeze method successfully handles the strong interaction. The single
waves assume a common velocity and asymptotically convergeto two steady pro-
files which sum up to the final profile (which is identically 1 inthis case). So far, we
have no theory which proves this behavior for the case of strong interaction.
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Fig. 35 The decompose and freeze method for a repelling double frontin the Nagumo equation.
Thev1 component (a) and thev2 component (b), plot of the superpositionu(·, t) = v1(∗, t)+v2(∗, t)
with supports of single fronts indicated by dark shading (c), evolution of the individual speeds
converging toµ̄1 = −µ̄2 = 0.3536 (d). Solution of (143) by Comsol Multiphysics with piecewise
linear finite elements, Neumann boundary conditions,△x= 0.1,△t = 0.1, BDF of order 2.

Example 19 (Quintic Nagumo equation).As an example supporting multi-structures
with more than two patterns, we consider the quintic Nagumo equation

ut = uxx−
5

∏
i=1

(u−ai), x∈ R, t ≥ 0, (144)

with parameters 0= a1 < a2 < a3 < a4 < a5 = 1. Depending on the choices of
a2,a3,a4 one observes different patterns which can be captured by thedecompose
and freeze method. We present the results for a selection of parameter values. In all
cases we solve (143) with Neumann boundary conditions, choose the bump function
ϕ(x) = sech

(
x
20

)
and use spatial step-size∆x= 0.4.

(a) Parameters:a2 = 0.03125,a3 = 0.4,a4 = 0.73,∆ t = 0.8, initial data:g1(0) =

g2(0) = 0, ,u−2 = a3, v0
1(x) =

u−2
2

(
tanh

(
x
5

)
+1
)
, v0

2(x) =
(1−u−2 )

2

(
tanh

(
x
5

)
+1
)
. The

solutions are shown in Figure 37. We start with the superposition of two front-like
functions located at the same position. Then two fronts develop, a fast one traveling
traveling at speed̄µ1 = −0.159 and a slow one with speed̄µ2 = −0.02131. The
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Fig. 36 Freezing two colliding fronts in the Nagumo equation. Plot of v1 component (a),v2 com-
ponent (b), superpositionu(·, t) = v1(∗, t) + v2(∗, t) with supports of single fronts indicated by
dark shading (c), evolution of speedsµa,µ2 of the componentsv1 ,v2, both converging ultimately
to µ̄1 = µ̄2 = 0. Solution of (143) by Comsol Multiphysics with piecewise linear finite elements,
Neumann boundary conditions,△x= 0.1,△t = 0.1, BDF of order 2.

single frontsv1 in (a) andv2 in (b) converge, Figure 37 shows their superposition
according to (138) with the supports ofv1,v2 indicated by dark shading. This is a
case of weak interaction.

(b) Parameters:a2 = 0.125,a3 = 0.4, a4 = 0.58,∆ t = 0.3, initial data:g1(0) =

−50,g2(0)= 50,u−2 = a3, v0
1(x)=

u−2
2

(
tanh

(
x
5

)
+1
)
, v0

2(x)=
(1−u−2 )

2

(
tanh

(
x
5

)
+1
)
.

The results are shown in Figure 38. Starting with a staircasefunction, two fronts
of different speed develop, with the faster one overtaking the slower one. Then
strong interaction takes place and both fronts merge to a single front of speed
µ̄1 = µ̄2 = −0.08312, cf. Figure 38 (d). The componentsv1,v2 stabilize at profiles
with little kinks that add up to the merged travelling front.The decompose and
freeze method is able to handle this case of strong interaction.

(c) Parameters:a2 = 0.0625,a3 = 0.4, a4 = 0.7, ∆ t = 0.8, initial data:g1(0) =

−50,g2(0) = 0, g3(0) = 50,u−2 = a3, u−3 = a5, v0
1(x) =

u−2
2

(
tanh

(
x
5

)
+1
)
, v0

2(x) =
(1−u−2 )

2

(
tanh

(
x
5

)
+1
)
, v0

3(x) =
(u−2 −u−3 )

2

(
tanh

(
x
5

)
+1
)
. Results are shown in Figure

39. We start with a multi-front consisting of three stairs. Three fronts develop, one
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Fig. 37 Two fronts of different speed developing out of a single front in the quintic Nagumo
equation (144): convergence of the decompose and freeze method for single frontsv1 (a) andv2 (b),
plot of superposition (138) with supports ofv1,v2 indicated by dark shading (c), time-dependence
of single speeds (d).

traveling to the right with speed̄µ3 = 0.05088. and two traveling to the left with
speeds̄µ1 = −0.1172,µ̄2 = −0.05088. This is a case of weak interaction since the
initial locations of fronts are in the same order as the corresponding velocities. The
system (143) is now solved withN = 3.

Example 20 (FitzHugh-Nagumo system).Our final example are repelling and collid-
ing pulses in the FitzHugh-Nagumo system from Example 7. We take the parameter
values

ε = 0.1, φ = 0.08, a= 0.7, b= 0.8,

for which we know traveling pulses to exist (see also [49]). The spatial domain is
J = [x−,x+] = [−100,100] and we impose Neumann boundary conditions.

(a) In our simulation for two repelling pulses we use the following initial data

v0
1(x) = u−2 +

(
2.5

1+( x
3)

2 ·flc2hs(−x,5)

0

)
, v0

2(x) =

(
2.5

1+( x
3)

2 ·flc2hs(x,5)

0

)
,
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Fig. 38 Strong interaction in the quintic Nagumo equation (144): a fast wave overtaking a slow
wave and merging into a single travelling front. Single fronts v1 (a),v2 (b), superposition (138) of
both functions with their supports indicated by dark shading (c), time-dependence of speedsµ1,µ2
during strong interaction (d).

with initial positionsg0
1 = g0

2 = 0, whereu−2 denotes the unique zero off from Ex-
ample 7 and flc2hs(x,scale) is a smoothed Heaviside function provided by Comsol
Multiphysics. Note that the superposition ofv0

1 andv0
2 coincides with the initial value

u0 from Example 7, see also Figure 12. For the computation we choose the fixed
phase condition in both frames with template functions ˆv j(x) = v0

j (x) for j = 1,2
and the bump functionϕ(x) = sech(bx) with b= 0.5. We discretize with continu-
ous piecewise linear finite elements in space with stepsize△x = 0.5 and with the
BDF method of order 2 in time with stepsize△t = 0.1. The results for the case of
two repelling pulses are shown in Figure 40. One clearly observes the evolution of
two pulses traveling in opposite directions with velocities µ̄1 = −µ̄2 = −0.7966,
both being nicely captured by the method.

(b) A situation with two colliding pulses occurs for the initialconditions

v0
1(x) = u−2 +

(
w(x)

0

)
, v0

2(x) =

(
w(−x)

0

)
,

wherew is a ramp function given by
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Fig. 39 Weak interaction of three traveling fronts in the quintic Nagumo equation (144). The initial
function develops into the superposition of three single fronts (d), the functionsv1,v2,v3 converge
to their limiting profiles (a)-(c), and the speedsµ1,µ2, µ3 attain their limiting values (e).

w(x) =





1 , x∈ [−100,−10],
1
20(10− x) , x∈ [−10,10],

0 , x∈ [10,100].

The initial positions areg0
1 = −100 andg0

2 = 100. Thus, for the decompose and
freeze method with spatial domain[−100,100], these are completely separated at
t = 0 and only influence each other through interpolated data. Incontrast to all
previous experiments, we choose the orthogonal phase condition in both frames.
The bump function isϕ(x) = sech(bx) with b= 0.01. We discretize in space with
continuous piecewise linear finite elements with stepsize△x = 0.5 and with the
BDF method of order 5 with stepsize△t = 0.1. First the two pulses are generated
from the opposite ramps, then they travel towards each otheruntil their domains
begin to overlap. Then the two pulses collide and finally cancel each other. A result
of the simulation is shown in Figure 41. When both pulses are extinguished to their
stationary values, the PDAE system (141) becomes ill-posed, since the derivatives
v j ,ξ vanish and the velocities can no longer be determined from the phase condition.
As shown in Figure 41(d), the two velocities start to become singular after collision.
This phenomenon happens already at collision for the fixed phase condition, which
is the reason for taking the orthogonal phase conditions.



Dynamic Patterns in PDEs 67

(a) (b)

(c)

0 50 100 150
−1.5

−1

−0.5

0

0.5

1

1.5

µ

t

 

 

µ
1

µ
2

(d)

Fig. 40 Two repelling pulses in the FitzHugh-Nagumo system. (a)-(b): First components of the
profilesv1 andv2, (c): first component of the superposition ofv1 andv2, (d): time evolution of the
velocitiesµ1 andµ2

5.3 Stability of the decomposition system

In this subsection we present the main stability result for the decomposition sys-
tem (143). We sketch only the main ideas in the rather technical and involved proof
which can be found in the PhD thesis of S. Selle [64]. The result is related to the
work of J.D. Wright [63, 70], who constructs manifolds for the (PDE) that are in-
variant for certain time intervals during which they attract the multi-structures.

We impose the following conditions.

(A1) Let f ∈C2(Rm,Rm) and letA∈Rm,m be positive definite.
(A2) The systemut = Auxx+ f (u) hasN traveling wave solutions

u j(x, t) = wj(x− c jt), j = 1, . . . ,N,

such thatc1 < c2 < · · · < cN and the limitsw±
j = limx→±∞ wj(x) satisfy

w+
j = w−

j+1, j = 1, . . . ,N−1.
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Fig. 41 Simulation of two colliding pulses in the FitzHugh-Nagumo system with the decompose
and freeze method. (a)-(b): First components of the profilesv1 andv2, (c): first component of the
superposition ofv1 andv2, (d): time evolution of the velocitiesµ1 andµ2

(A3) For someβ >0, the constant coefficient operatorsΛ j ,± :=A∂xx+c j∂x+Cj ,±
with Cj ,± = D f (w±

j ) for j = 1, . . . ,N satisfiy theSpectral Condition SC
from Sect. 1.5 for the givenβ , cf. (33).

(A4) The variable coefficient operatorsΛ j = A∂xx+ c j∂x+D f (wj ) j = 1, . . . ,N,
have the simple eigenvalue 0 and no further eigenvalues withRes>−β and
eigenfunctions inL2(R,Rm).

(A5) There existC1,C2,C3 > 0 such thatϕ ∈C∞(R,R) satisfies for allx∈R

C1e−β |x|
6 ϕ(x)≤C2e−β |x|,

∣∣ϕ ′(x)
∣∣ 6C3e−β |x|.

(A6) The template functions ˆv j , j = 1, . . . ,N, satisfyv̂ j +u−j −wj ∈ H2(R,Rm),

(
v̂ j +u−j −wj , v̂ j ,x

)
L2

= 0 and (wj ,x, v̂ j ,x)L2 6= 0.

Note that the same constantβ appears in all conditions (A3)-(A5). In essence,β > 0
should be chosen such that−β is an upper bound for the spectrum of allΛ j ’s except
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zero. Then one can take a bump function with the asymptotic behavior ofe−β |x|, for
exampleϕ(x) = sech(βx),x∈ R.

Under these assumptions one can prove what is calledjoint asymptotic stability
in [64], i.e. stability of the system (143) for initial data that lead to weak interaction,
see Theorem 11 below. The result holds in weightedL2 andH1 spaces given by

L2
b(R,R

m) = {u : cosh(b·)u∈ L2(R,Rm)} with norm‖u‖L2
b
= ‖cosh(b·)u‖L2

and

H1
b(R,R

m) = {u : cosh(b·)u∈ H1(R,Rm)} with norm‖u‖H1
b
= ‖cosh(b·)u‖H1,

whereb> 0 must be chosen positive and sufficiently small.

Theorem 11 (Stability Theorem, [64]).Assume (A1)–(A6). Then there exists b0 >
0 so that for every b0 ≥ b> 0 there existδ > 0, gmin> 0 such that for all initial data
v0

j , g0
j , satisfying

∥∥∥v0
j +u−j −wj

∥∥∥
H1,b

6 δ ,
(
v̂ j ,x,v

0
j − v̂ j

)
L2 = 0,

g0
1 < g0

2 < · · ·< g0
N, gmin 6

∣∣g0
j+1−g0

j

∣∣ , for all j = 1, . . . ,N,

the PDAE (143) has a unique global solution v(t) = (v1(t), . . . ,vN(t)), µ(t) =
(µ1(t), . . . ,µN(t)), g(t) = (g1(t), . . . ,gN(t)) for all t ≥ 0.

Moreover, there exist asymptotic phasesτ∞
j ∈ R, j = 1, . . . ,N such that the solu-

tion converges exponentially fast with some rate0< ε < β ,
∥∥∥v j +u−j −wj

∥∥∥
H1,b

+
∣∣g j(t)− c jt −g0

j − τ∞
j

∣∣+
∣∣µ j(t)− c j

∣∣≤Ce−εt , ∀ j = 1, . . . ,N.

Consider the original PDE (136) with initial conditionu0(x) = ∑N
j=1v0

j (x−g0
j ),

wherev0
j andg0

j satisfy the assumptions from Theorem 11. Then the theorem im-
plies exponential convergence of the solutionu to a (linear) superposition of the
individual traveling waves with individual asymptotic phases:

∥∥∥u(·, t)−∑
j

wj (·− c jt −g0
j − τ∞

j )
∥∥∥

H1,b
6Ce−εt .

In [70] results of this type are proved directly for the original system (136) by using
analytic information about the single waves. On the contrary, Theorem 11 states a
result about the ’blown-up’ system (143) which is accessible to numerical compu-
tation.

Proof (A sketch of ideas, for details see [64, pp. 37–98]).
Step 1: First linearize the system (141) at the shifted exact waveswj −u−j (see

(142)) and their speedsc j for eachj = 1, . . . ,N. This yields a system of the form
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u j ,t = Λ ju j +λ j(t)wj ,x+E j(t)u+Tj(t)+Nj(t,u, r,λ ),
r j ,t = λ j(t),

0= (v̂ j ,x,u j)L2 ,

for the unknownsu j = v j −
(

wj −u−j

)
, r j(t) = g j(t)−c j t−g0

j , λ j = µ j −c j . When

omitting the coupling termsE j , Tj , andNj , the system decouples with linear differ-
ential operators known from the analysis of single traveling waves in Sects. 1 and
2.

Step 2: All coupling termsE j , Tj andNj turn out to be nonlocal. The termTj(t)
collects the nonlocal termsf

(
∑N

k=1vk(∗)
)
−∑N

k=1 f (vk(∗)) from (140) obtained by
inserting the exact traveling waveswj shifted to the initial and well separated posi-
tionsg0

j , j = 1, . . . ,N. Due to assumption (A2), the individual waveswj , j = 1, . . . ,N
are exponentially converging towards their limits. Therefore, the influence of one
wave on the other decays exponentially in time. This statement still holds in the
weighted spaceH1

b , if the weightb is taken sufficiently small (which is the reason
for the smallness assumption onb in the theorem). In a sense this property expresses
the well-known phenomenon ofconvective (in)stability, see [61].

The operatorE j(t) is the linearization of the nonlinear coupling terms above,
when applied to the different patternsu1, . . . ,uN , located at the positionsc j t + g0

j
of the individual traveling waves. Here the use of the weighted spaces withb > 0
implies that theu j are exponentially located. An interplay with the separation of the
positions as time increases, then shows exponential decay of the operatorE j in the
weighted space.

Combining these considerations yields an estimate in the weighted spaceL2
b of

the form
∥∥Tj(t)

∥∥
L2

b
+
∥∥E j(t)

∥∥
L2

b→L2
b
≤CL exp

(
−C′

Lgmin
)

exp
(
−C′′

Lt
)

for all t ≥ 0,

with positive constantsCL,C′
L,C

′′
L . Therefore, these terms decay exponentially in

time and exponentially with respect to the initial separation of patterns.
Step 3: The termsNj contain the nonlinear and nonlocal terms in all variables

that are at least of second order. Using the weighted norm onecan show an estimate

‖Nj(t,u, r,λ )‖L2
b
≤CN‖u‖H1

b

(
‖u‖H1

b
+ |λ j |+exp

(
C′

N‖r‖
)
‖r‖
)

+CN exp
(
C′

N‖r‖
)
‖r‖
(

1+ ‖u‖H1
b

)
exp(−γNt − γNgmin) for all t ≥ 0.

Step 4: Consider the linear PDAE withTj andNj replaced by an inhomogeneity,
i.e. the following coupled system (j = 1, . . . ,N),

u j ,t =Λ ju j +λ j(t)wj ,x+E j(t)u+ k j(t),

r j ,t = λ j(t),

0= (v̂ j ,x,u j)L2 .

(145)
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This can be reduced to a PDAE of index 1 with the algebraic variablesλ eliminated.
For this inhomogeneous system one shows a variation of constants formula by first
proving that the systems yield sectorial operators. The variation of constants formula
is then used to prove an estimate of the form

sup
0≤s≤t

eεs‖u(s)‖H1
b
≤C

(
‖u0‖H1

b
+ sup

0≤s≤t
‖k(s)‖L2

b

)

with a suitableε > 0 for the solutionu= (u1, . . . ,uN) of the coupled linear problem
(145).

Step 5: Finally, the estimates from Steps 2–4 are combined and yield global
existence as well as the asserted exponential decay.⊓⊔

5.4 Generalization to an abstract framework

The idea to decompose and freeze multi-structures can be combined with the general
idea of freezing solutions in equivariant evolution equations. For this we consider
the setting from Sect. 1.7, i.e.

ut = F(u), u(0) = u0, (146)

whereF : Y ⊂ X → X with X is a Banach space andY a dense subspace. The
evolution equation (146) is assumed to be equivariant underthe action of a Lie
groupG so that

a : G→ GL(X), F(a(γ)u) = a(γ)F(u)

holds. To generalize the idea of a time-dependent partitionof unity from Sect. 5.2,
we use the abstract concept of a moduleE (a vector space with abelian multiplica-
tion) that acts on the state spaceX

• : E×X → X, (ϕ ,u)→ ϕ •u.

As a standard example considerE =C1
unif(R

d) andX = H1(Rd,Rm) with the action
of E onX given by multiplication.

We assum that the Lie groupG also acts onE, denoting the action by

a : G→ GL(E), γ 7→ a(γ).

We require that both actionsa anda satisfy the identities:

a(γ)(ϕψ) = (a(γ)ϕ)• (a(γ)ψ),

a(γ)(ϕ •u) = (a(γ)ϕ)• (a(γ)u) (147)

for all γ ∈ G, ϕ ,ψ ∈ E andu∈ X.

Example 21 (Ginzburg-Landau equation in1D). Reconsider Example 5, i.e.
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ut = αuxx+ δu+β |u|2u+ γ|u|4u, x∈ R, t ≥ 0, (148)

whereu(x, t) ∈ C. Recall that (148) is equivariant under the actiona : G→ GL(X)
of the Lie groupG= R×S1 ∋ (τ,θ ) onX given by

[a(τ,θ )u] (x) = e−iθ u(x− τ), for all (τ,θ ) ∈ G, u∈ X.

As above choose the Banach spaceX = L2(R,C) and the moduleE =C0
unif(R,R),

which acts onX by multiplication, i.e.(ϕ •u)(x) = ϕ(x)u(x) for all x ∈ R and all
ϕ ∈ E, u∈ X.

The groupG acts on the moduleE via the actiona : G→ GL(E) given by

[a(τ,θ )ϕ ] (x) = ϕ(x− τ), for all (τ,θ ) ∈ G, ϕ ∈ E.

In this case, (147) follows from
[
a(τ,θ )

(
ϕ •u

)]
(x) = ϕ(x− τ)e−iθ u(x− τ), ∀x∈ R,

for all ϕ ∈C0
unif(R), u∈ L2(R,C), τ ∈R, θ ∈ [0,2π).

In the abstract framework, the idea of the decomposition (138) is generalized as
follows

u(t) =
N

∑
j=1

a(g j(t))v j(t), (149)

whereg j : [0,∞)→G denotes the time dependent location in the groupG of the j-th
profilev j : [0,∞)→Y.

Assume an elementϕ ∈ E such that the inverse of∑ j a(g j)ϕ ∈ E with respect
to the multiplication inE exists for all g1, . . . ,gN ∈ G. We denote this inverse(
∑ j a(g j)ϕ

)−1
by 1

∑ j a(g j )ϕ
. Then a calculation, similar to (140) and (72) yields

N

∑
j=1

a(g j)
[
v j ,t +a(g j)

−1d[a(g j)v j ]g j ,t
]
= ut = F(u)

=
N

∑
j=1

[
F(a(g j)v j)+

a(g j)ϕ
∑N

k=1a(gk)ϕ

(
F

(
N

∑
k=1

a(gk)vk

)
−

N

∑
k=1

F(a(gk)vk)

)]

=
N

∑
j=1

a(g j)

[
F(v j)+

ϕ
∑N

k=1a(g
−1
j gk)ϕ

(
F

(
N

∑
k=1

a(g−1
j gk)vk

)

−
N

∑
k=1

F(a(g−1
j gk)vk)

)]
.

(150)
As in the derivation of the decompose and freeze method for multi-pulses and multi-
fronts in Sect. 5.2, we now require that for eachj = 1, . . . ,N the summand on the
left hand side and on the right hand side of (150) coincides. This yields the fol-
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lowing nonlinear coupled system for the unknownsv j ∈ Y, µ j ∈ A , andg j ∈ G,
j = 1, . . . ,N:

v j ,t = F(v j)−d[a(1)v j ]µ j +
ϕ

∑k α(g−1
j gk)ϕ

(
F

(

∑
k

a(g−1
j gk)vk

)

−∑
k

F(a(g−1
j gk)vk)

)
,

v j(0) = v0
j ,

g j ,t = dLg j (1)µ j , g j(0) = g0
j ,

0= (v j − v̂ j ,d[a(1)v̂ j ]λ )H ∀λ ∈ T
1

G.

(151)

For the second summand in the first line we used the identitya(g j)
−1d[a(g j)v j ]g j ,t =

d[a(1)v j ]µ j , whereµ j = dLg j (g j)
−1g j ,t ∈ T

1

G.
As in Sect. 5.2 we obtain that a solution of (151) with initialdatav0

j , g0
j , satisfying

u0 =∑N
j=1a(g0

j )v
0
j , yields a solution to the original Cauchy problem (146) by setting

u(t) =
N

∑
j=1

a(g j(t))v j(t) for all t ≥ 0. (152)

Example 22 (Freezing pulse and front simultaneously in Ginzburg-Landau equa-
tion).As an example in 1D we consider the quintic-cubic Ginzburg-Landauequation
in 1D from Example 21 again

ut = αuxx+
(
δ +β |u|2+ γ|u|4

)
u, x∈ R, t ≥ 0

with u(x, t) ∈ C. The parameter values areα = 1, δ = −0.1, β = 3+ i, andγ =
−2.75+ i. In this case one finds a multi-structure, consisting of a standing rotating
pulsev1 and a rotating frontv2 that travels to the right. In Figure 42 we show the
result obtained by the decompose and freeze method for this problem. One observes
that the individual structures are well captured in their respective frames and the
single speed correctly reproduced for the single waves, compare Example 5. Note
that this is a case of weak interaction. However, for strong interactions, such as the
collision of a rotating and a traveling pulse, the decomposeand freeze method did
not work properly.

5.5 Multisolitons: Interaction of spinning solitons

We finish with numerical results of the method where we try to capture simulta-
neously two and more solitons in the 2D quintic-cubic complex Ginzburg-Landau
equation from Example 13.
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Fig. 42 Result of the decompose and freeze method for a multi-structure in the quintic-cubic
Ginzburg-Landau equation, weak interaction of a standing and rotating pulse and a traveling front.
Profile of the standing and rotating pulsev1 (a), profile of the rotating and right traveling front
v2 (b) , simulation of the nonfrozen equation (c), time-dependence of the derivatives of the group
variables (d).

Example 23 (Quintic-cubic Ginzburg-Landau equation in 2D).

ut = α△u+ δu+β |u|2u+ γ|u|4u, (x,y) ∈ R
2, u(x,y, t) ∈C. (153)

The parameter values are the same as in (115) for which singlespinning solitons
are known to exist. As initial data we take the sum of two such solitons, shifted
a certain distance apart. If this distance is large enough, we have weak interaction
and a multi-structure consisting of two (or more) spinning solitons stabilizes. The
result of such a simulation is shown in Figure 43. The first rowshows the superpo-
sition of the profiles obtained from the decompose and freezemethod at different
time instances. The next row contains the single profilesv1 (d) andv2 (e) and the
trace{τ j(t) : t ≥ 0} of the two group orbitsg j(t) = (θ j(t),τ j (t)), j = 1,2 from the
reconstruction equation in (151). Figure 43 (g)-(i) displays the time-dependence of
all 6 velocities. The translational velocitiesµ1

j ,µ2
j converge to zero and the angular

velocities to their limiting values. However, the convergence is oscillatory and very
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slow (oscillations become invisible att ≈ 1000). Therefore, we show details in the
interval 0≤ t ≤ 100.

Figure 44 shows a case of strong interaction of two spinning solitons with pic-
tures selected as in Figure 43. The solution converges to single soliton (c), which is
represented by the decompose and freeze method as the superposition of two single
but deformed solitons (d),(e). The two group orbits apparently trace a circle, and ve-
locities slowly decay as in the case of weak interaction.(b) (Strong interaction of 2
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Fig. 43 Weak interaction of two spinning solitons. Initial location of the profiles at±(4,0), real
part of superposition at timet = 0, 30, 150 (a)-(c), real parts of profilesv1 andv2 at timet = 150
(d),(e), position of the centers of the profilesv1, v2 from t = 0 to t = 500 calculated by solving

the reconstruction equation (f), time evolution of translational velocitiesµ1/2
1 (t) and µ1/2

2 (t) in
x-direction (g) and iny-direction (h), evolution of angular velocities (i). The colorbar is scaled to
[−1.65,1.65]. Solution by Comsol Multiphysics with piecewise linear finite elements, Neumann
boundary conditions,∆x= 0.5, ∆t = 0.1, BDF of order 2.
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spinning solitons) Finally, we consider the strong interaction of 3 spinning solitons,

(a) (b) (c)
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Fig. 44 Strong interaction of two spinning solitons. Initial location of profiles at±(3.75,0), real
part of superposition at timet = 0, 7.2, 36 (a)-(c), real part of profilesv1 andv2 at timet = 150
(d),(e), position of centers for the profilesv1, v2 for 0 ≤ t ≤ 500 (f), evolution of translational

velocitiesµ1/2
1 (t) andµ1/2

2 (t) in x-direction (g) andy-direction (h), angular velocities (i), further
data are as in Figure 43

see Figure 45. Initially, the solitons are put on the vertices of an equilateral triangle.
The behavior is quite similar to the two-solitons case. Translational velocities oscil-
late rapidly for a long time before tending to zero, and the traces of the group orbits,
after a sharp turn, seem to follow a common circle with different phases.
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5.6 Summary

A summary of this section is the following:

• Excitable reaction diffusion systems in 1D show multi-structures composed of
fronts and pulses.

• The freezing method is extended to a ’decompose and freeze’ method to capture
solutions consisting of multi-structures.

• Numerical solution of a system of nonlinear and nonlocal coupled systems of
partial differential algebraic equations.

• Proof of stability for the decomposition method in case of weakly interacting
fronts and pulses.

• The method generalizes to equivariant evolution equations.
• Numerical computations with freezing multi-structures indimensions≥ 2 are in

initial state, no theory available.
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Fig. 45 Strong interaction of three spinning solitons. Centers areput initially on an equilateral
triangle with radius of circumcircle 3.75, real part of superposition at timest = 0, 7.2, 36 (a)-
(c), real parts of profilesv1, v2 andv3 at timet = 150 (d)-(f), evolution of translational velocities

µ1/2
1 (t), µ1/2

2 (t) andµ1/2
3 (t) in x-direction (g),y-direction (h) and evolution of angular velocities

(i), reconstruction of the group orbits for the profilesv1, v2 andv3 for 0≤ t ≤ 500 (j). The colorbar
is scaled to[−1.8,1.8] while further data are as in Figure 43.


