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Abstract. We present an abstract concept for the error analysis of numerical

schemes for semilinear stochastic partial differential equations (SPDEs) and

demonstrate its usefulness by proving the strong convergence of a Milstein-

Galerkin finite element scheme. By a suitable generalization of the notion of

bistability from Beyn & Kruse (DCDS B, 2010) to the semigroup framework

in Hilbert spaces, our main result includes a two-sided error estimate of the

spatio-temporal discretization. In an additional section we derive an analogous

result for a Milstein-Galerkin finite element scheme with truncated noise.

1. Introduction

The computational approximation of stochastic partial differential equations

(SPDEs) often turns out to be a very expensive and demanding task. One usually

has to combine numerical schemes for the temporal discretization of the interval

[0, T ] with Galerkin finite element methods for the spatial discretization as well as

truncation methods for the infinite dimensional noise. By the combination of such

schemes one then generates a sample path of the numerical solution. If we are

interested in the approximation of expected values of functionals of the solution,

we have to repeat this procedure several times in order to compute a decent Monte

Carlo approximation.

For instance, let X : [0, T ]×Ω→ H be a Hilbert-space valued stochastic process,

which denotes the solution to the given SPDE. Then our computational goal may

be a good approximation of the real number

E[ϕ(X(T ))],(1)

where ϕ : H → R is a sufficiently smooth mapping.

Before the upcoming of the multilevel Monte Carlo algorithm (MLMC) [10, 15],

it was common to purely focus on weakly convergent schemes for the problem (1).

These schemes guarantee a good approximation of the distribution of X and are

then combined with a standard Monte Carlo estimator to compute an approxima-

tion of (1).

In [10] M. Giles pointed out that the computational complexity of problem (1)

can drastically be reduced by the MLMC algorithm, which distributes the most

costly work of the Monte Carlo estimator to coarser time grids, while relatively

few samples need to be simulated of the smallest and hence most costly temporal

step size. But for this idea to work one also needs to take the order of strong
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convergence into account. In addition to an approximation of the distribution, a

strongly convergent scheme generates good pathwise approximations of the solution

X. For more details on strong and weak convergence we refer to [16].

Additionally, M. Giles showed in [11] that the usage of higher order strongly

convergent schemes, such as the Milstein method [24], further reduces the compu-

tational complexity, although the order of weak convergence remains unchanged.

While [10, 11, 15] are purely concerned with the finite dimensional SODE problem,

similar results also hold for solutions to SPDEs [2, 4].

Consequently, this observation has spurred the study of an infinite dimensional

analogue of the Milstein scheme and first results have been achieved for a temporal

semidiscretization of linear SPDEs in [21, 22]. Afterwards, the Milstein scheme has

been combined with Galerkin finite element methods and extended to more general

types of driving noises in [1, 3], while it was applied to semilinear SPDEs in [13],

but only with spectral Galerkin methods.

In this paper we apply the more general Milstein-Galerkin finite element methods

to the class of semilinear SPDEs studied in [13]. Under mildly relaxed assumptions

on the nonlinearities we obtain slightly sharper estimates of the error of strong

convergence. For this we embed the scheme into a more abstract framework and

analyze the strong error with respect to the notion of bistability and consistency,

which originated from [29] and has been applied to SODEs for the first time in

[5, 17]. A key role is played by the choice of the so-called Spijker norm (24) (see

also [12, p. 438] and [27, 28]), which is used to measure the local truncation error

and results into two-sided estimates of the error as shown in Theorem 1.1 below.

In forthcoming publications we show that the abstract concept is not only useful

for the analysis of the error of strong convergence for a broader class of numerical

schemes, but also has its merits in the weak error analysis as well as in the analysis

of an improved MLMC algorithm for SPDEs.

In order to give a more detailed outline of the paper we first fix some notation.

Let [0, T ] be a finite time interval and (H, (·, ·)H , ‖ · ‖H) and (U, (·, ·)U , ‖ · ‖U ) be

two separable real Hilbert spaces. We denote by (Ω,F ,P) a probability space

which is combined with a normal filtration (Ft)t∈[0,T ] ⊂ F satisfying the usual

conditions. Then, let (W (t))t∈[0,T ] be a cylindrical Q-Wiener process in U with

respect to (Ft)t∈[0,T ]. Here, the given covariance operator Q : U → U is assumed

to be bounded, symmetric and positive semidefinite, but not necessarily of finite

trace. For the definition of cylindrical Q-Wiener processes in U we refer to [26,

Ch. 2.5].

Next, we introduce the semilinear SPDE, whose solution we want to approximate.

Let X : [0, T ]×Ω→ H denote the mild solution [8, Ch. 7] to the semilinear SPDE

dX(t) +
[
AX(t) + f(X(t))

]
dt = g(X(t)) dW (t), for 0 ≤ t ≤ T,

X(0) = X0.
(2)

Here, −A : dom(A) ⊂ H → H is the generator of an analytic semigroup (S(t))t≥0

on H and f and g denote nonlinear mappings which are Lipschitz continuous and

smooth in an appropriate sense. In Section 2.1 we give a precise formulation of

our conditions on A, f , g and X0, which are also sufficient for the existence and

uniqueness of mild solutions X (see also Section 2.2).
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By definition [8, Ch. 7] the mild solution satisfies

X(t) = S(t)X0 −
∫ t

0

S(t− σ)f(X(σ)) dσ +

∫ t

0

S(t− σ)g(X(σ)) dW (σ)(3)

P-a.s. for all 0 ≤ t ≤ T .

As our main example we have the following situation in mind: H is the space

L2(D;R) of square integrable functions, where D ⊂ Rd is a bounded domain with

smooth boundary ∂D or a convex domain with polygonal boundary. Then, for

example, let −A be the Laplacian with homogeneous Dirichlet boundary conditions.

Much more extensive lists of examples are given in [13, 14] and [19, Ch. 2.3].

In order to introduce the Milstein-Galerkin finite element scheme we denote

by k ∈ (0, T ] a given equidistant time step size with grid points tn = nk, n =

1, . . . , Nk, and by h ∈ (0, 1] a parameter for the spatial discretization. Then the

Milstein scheme for the spatio-temporal discretization of the SPDE (2) is given by

the recursion

Xk,h(t0) = PhX0,

Xk,h(tn) = Xk,h(tn−1)− k
[
AhXk,h(tn) + Phf(Xk,h(tn−1))

]
+ Phg(Xk,h(tn−1))∆kW (tn)

+

∫ tn

tn−1

Phg
′(Xk,h(tn−1))

[ ∫ σ1

tn−1

g(Xk,h(tn−1)) dW (σ2)
]

dW (σ1)

(4)

for n ∈ {1, . . . , Nk}, where ∆kW (tn) := W (tn) −W (tn−1). Here, Ph, h ∈ (0, 1],

denotes the orthogonal projector onto the Galerkin finite element space Vh ⊂ H

and Ah is a discrete version of the generator A. Together with some useful error

estimates the operators of the spatial approximation are explained in more detail

in Section 2.4.

In Section 3 we introduce a class of abstract numerical one-step schemes in

Hilbert spaces and we develop our stability and consistency analysis within this

framework. We end up with a set of sufficient conditions for the so-called bistability

(see Definition 3.1) and a decomposition of the local truncation error.

In Sections 4 and 5 we verify that the scheme (4) is indeed bistable and consistent

(see Theorems 4.1 and 5.1). These two properties together yield our main result

(compare with Theorem 3.4):

Theorem 1.1. Suppose the spatial discretization fulfills Assumptions 2.7 and 2.9.

If Assumptions 2.2 to 2.4 are satisfied with p ∈ [2,∞) and r ∈ [0, 1), then there

exists a constant C such that

1

C

∥∥Rk[X|Tk ]
∥∥
−1,p

≤ max
0≤n≤Nk

∥∥Xk,h(tn)−X(tn)
∥∥
Lp(Ω;H)

≤ C
∥∥Rk[X|Tk ]

∥∥
−1,p

.(5)

In particular, from the estimate of the local truncation error it follows that

max
0≤n≤Nk

∥∥Xk,h(tn)−X(tn)
∥∥
Lp(Ω;H)

≤ C
(
h1+r + k

1+r
2

)
(6)

for all h ∈ (0, 1] and k ∈ (0, T ], where Xk,h denotes the grid function generated by

the scheme (4) and X is the mild solution to (2).

At this point, for a better understanding of Theorem 1.1, let us explain the

different objects appearing in its formulation. First, Assumptions 2.7 and 2.9 are

concerned with the spatial discretization. In our main example above, they are

usually satisfied for the standard piecewise linear finite element method.
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Roughly speaking, the other assumptions determine the spatial regularity of the

solution, which is measured by the parameter r ∈ [0, 1) in terms of fractional powers

of the operator A. This parameter also mainly controls the order of convergence.

Then, in (5) the residual operator Rk of the numerical scheme (4) appears. It

characterizes (4) in the sense that Rk[Z] = 0 if and only if the H-valued grid

function Z coincides with Xk,h. We therefore use the residual operator in order to

determine how far the exact solution X (restricted to the time grid) differs from

the numerical solution Xk,h. This residual is called local truncation error and, if

measured in terms of the stochastic Spijker norm (24), it can be used to estimate

the strong error from above and below (compare further with Section 3).

In [17] two-sided error estimates of the form (5) have been used to prove the

maximal order of convergence of all Itô-Taylor schemes. However, this question is

not discussed in this paper and it is subject to future research if a similar result

can be derived for the Milstein-Galerkin finite element scheme.

Further, we note that the order of convergence in (6) is slightly sharper than in

[13], where the corresponding result contains a small order reduction of the form

1 + r − ε for arbitrary ε > 0. As in [18] this order reduction is avoided by the

application of Lemma 2.10, which contains sharp integral versions of estimates for

the Galerkin finite element error operator.

In practice, the scheme (4) can seldomly be implemented directly on a computer

due to the fact that the space U and thus also the noise W is probably of high or

infinite dimension. In our final Section 6 we discuss the stability and consistency of

a variant of (4), which incorporates a spectral approximation of the Wiener process.

This approach has already been studied by several authors in the context of Milstein

schemes for SPDEs, for instance in [1, 3, 13]. With Theorem 6.5 we obtain an

extended version of Theorem 1.1, which also takes the noise approximation into

account.

2. Preliminaries

2.1. Main Assumptions. In this subsection we give a precise formulation of our

assumptions on the SPDE (2). The first one is concerned with the linear operator.

Assumption 2.1. The linear operator A : dom(A) ⊂ H → H is densely defined,

self-adjoint and positive definite with compact inverse.

As in [25, Ch. 2.5] it follows from Assumption 2.1 that the operator −A is

the generator of an analytic semigroup (S(t))t∈[0,T ] on H. There also exists an

increasing, real-valued sequence (λi)i∈N with λi > 0, i ∈ N, and limi∈N λi =∞ and

an orthonormal basis (ei)i∈N of H such that Aei = λiei for every i ∈ N.

Further, we recall the definition of fractional powers of A from [19, Ch. B.2]. For

any r ≥ 0 the operator A
r
2 : dom(A

r
2 ) ⊂ H → H is defined by

A
r
2 x :=

∞∑
j=1

λ
r
2
j (x, ej)ej

for all

x ∈ dom(A
r
2 ) =

{
x ∈ H :

∞∑
j=1

λrj(x, ej)
2 <∞

}
.
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Endowed with the inner product (·, ·)r := (A
r
2 ·, A r

2 ·) and norm ‖ · ‖r := ‖A r
2 · ‖ the

spaces Ḣr := dom(A
r
2 ) become separable Hilbert spaces.

In addition, we define the spaces Ḣ−r with negative exponents as the dual spaces

of Ḣr, r > 0. In this case it follows from [19, Th. B.8] that the elements of Ḣ−r

can be characterized by

Ḣ−r =
{
x =

∞∑
j=1

xjej : (xj)j∈N ⊂ R, with

∞∑
j=1

λ−rj x2
j <∞

}
,

where the equality is understood to be isometrically isomorphic and the norm in

Ḣ−r can be computed by ‖x‖−r = ‖A− r2 x‖. Here, we set

A−
r
2 x =

∞∑
j=1

λ
− r2
j xjej , for all x =

∞∑
j=1

xjej ∈ Ḣ−r.

For the formulation of the remaining assumptions let parameter values p ∈ [2,∞)

and r ∈ [0, 1) be given.

Assumption 2.2. The random variable X0 : Ω → Ḣ1+r is F0/B(Ḣ1+r)-measur-

able. In addition, it holds

E
[
‖X0‖2p1+r

]
<∞.

The next assumption is concerned with the nonlinear mapping f : H → Ḣ−1+r

in (2).

Assumption 2.3. The mapping f : H → Ḣ−1+r is continuously Fréchet differen-

tiable. In addition, there exists a constant Cf such that ‖f(0)‖−1+r ≤ Cf and

sup
x∈H
‖f ′(x)‖L(H;Ḣ−1+r) ≤ Cf ,

as well as

‖f(x1)− f(x2)‖−1+r ≤ Cf‖x1 − x2‖,
‖f ′(x1)− f ′(x2)‖L(H,Ḣ−1+r) ≤ Cf‖x1 − x2‖,

(7)

for all x1, x2 ∈ H.

The last assumption deals with the nonlinear mapping g in the stochastic integral

part of (2). As in [8, 26] we denote the so-called Cameron-Martin space by U0 :=

Q
1
2 (U), which together with the inner product (u0, v0)U0 := (Q−

1
2u0, Q

− 1
2 v0)U for

u0, v0 ∈ U0 becomes an Hilbert space. Here Q−
1
2 denotes the pseudoinverse [26,

App. C] of Q
1
2 .

Then, by L2(H1, H2) ⊂ L(H1, H2) we denote the space of all Hilbert-Schmidt

operators L : H1 → H2 between two separable Hilbert spaces H1 and H2. Together

with the inner product

(L1, L2)L2(H1,H2) =

∞∑
j=1

(
L1ψj , L2ψj

)
H2
,

where (ψj)j∈N is an arbitrary orthonormal basis of H1, the set L2(H1, H2) be-

comes an Hilbert space. We recall the abbreviations L0
2 := L2(U0, H) and L0

2,r :=

L2(U0, Ḣ
r) from [18] and refer to [26, App. B] for a short review on Hilbert-Schmidt

operators.
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Assumption 2.4. Let the mapping g : H → L0
2 be continuously Fréchet differen-

tiable. In addition, there exists a constant Cg such that ‖g(0)‖L0
2
≤ Cg and

sup
x∈H
‖g′(x)‖L(H;L0

2) ≤ Cg,

as well as

‖g(x1)− g(x2)‖L0
2
≤ Cg‖x1 − x2‖,

‖g′(x1)− g′(x2)‖L(H,L0
2) ≤ Cg‖x1 − x2‖,

‖g′(x1)g(x1)− g′(x2)g(x2)‖L2(U0,L0
2) ≤ Cg‖x1 − x2‖,

(8)

for all x1, x2 ∈ H.

Further, the mapping g : H → L0
2 satisfies g(x) ∈ L0

2,r and

‖g(x)‖L0
2,r
≤ Cg

(
1 + ‖x‖r

)
(9)

for all x ∈ Ḣr.

Remark 2.5. It is straightforward to generalize most of the results and techniques,

which we develop in this paper, to the case when f and g are allowed to also depend

on t ∈ [0, T ] and ω ∈ Ω. For example, this has been done for the linearly implicit

Euler-Maruyama method in [19].

2.2. Existence, uniqueness and regularity of the mild solution. Under the

assumptions of Subsection 2.1, there exists a unique (up to modification) mild

solution X : [0, T ] × Ω → H to (2) of the form (3). A proof for this is found, for

instance, in [19, Ch. 2.4] (based on the methods from [14, Th. 1]).

Furthermore, it holds true that for all s ∈ [0, r+1], where r ∈ [0, 1) and p ∈ [2,∞)

are given by Assumptions 2.2 to 2.4, we have

sup
t∈[0,T ]

E
[
‖X(t)‖2ps

]
<∞(10)

and there exists a constant C such that(
E
[
‖X(t1)−X(t2)‖2ps

]) 1
2p ≤ C|t1 − t2|min( 1

2 ,
r+1−s

2 )(11)

for all t1, t2 ∈ [0, T ]. These regularity results have been proved in [14, Th. 1] and

[20].

2.3. A Burkholder-Davis-Gundy type inequality. Burkholder-Davis-Gundy-

type inequalities are frequently used to estimate higher moments of stochastic in-

tegrals. The version in Proposition 2.6 is a special case of [8, Lem. 7.2].

Proposition 2.6. For any p ∈ [2,∞), 0 ≤ τ1 < τ2 ≤ T , and for any predictable

stochastic process Ψ: [0, T ]× Ω→ L0
2, which satisfies(∫ τ2

τ1

∥∥Ψ(σ)
∥∥2

Lp(Ω;L0
2)

dσ
) 1

2

<∞,

we have ∥∥∥ ∫ τ2

τ1

Ψ(σ) dW (σ)
∥∥∥
Lp(Ω;H)

≤ C(p)
(
E
[( ∫ τ2

τ1

∥∥Ψ(σ)
∥∥2

L0
2

dσ
) p

2
]) 1

p

≤ C(p)
(∫ τ2

τ1

∥∥Ψ(σ)
∥∥2

Lp(Ω;L0
2)

dσ
) 1

2

.
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Here the constant can be chosen to be

C(p) =
(p

2
(p− 1)

) 1
2

(
p

p− 1

)( p2−1)

.

Proof. Under the given assumptions on Ψ it follows that(
E
[( ∫ τ2

τ1

∥∥Ψ(σ)
∥∥2

L0
2

dσ
) p

2
]) 1

p

=
∥∥∥∫ τ2

τ1

∥∥Ψ(σ)
∥∥2

L0
2

dσ
∥∥∥ 1

2

Lp/2(Ω;R)

≤
(∫ τ2

τ1

∥∥Ψ(σ)
∥∥2

Lp(Ω;L0
2)

dσ
) 1

2

<∞.

Therefore, the stochastic integral is well-defined and [8, Lem. 7.2] yields∥∥∥ ∫ τ2

τ1

Ψ(σ) dW (σ)
∥∥∥
Lp(Ω;H)

≤ C(p)
(
E
[( ∫ τ2

τ1

∥∥Ψ(σ)
∥∥2

L0
2

dσ
) p

2
]) 1

p

≤ C(p)
(∫ τ2

τ1

∥∥Ψ(σ)
∥∥2

Lp(Ω;L0
2)

dσ
) 1

2

,

which are the asserted inequalities. �

2.4. Galerkin finite element methods. In this subsection we recall the most

important elements of Galerkin finite element methods. For a more detailed review

we refer to [18, 19], which in turn are based on [30, Ch. 2, 3 and 7].

Our starting point is a sequence (Vh)h∈(0,1] of finite dimensional subspaces of

Ḣ1. Here, the parameter h ∈ (0, 1] controls the dimension of Vh, which usually

increases as h decreases. For smaller values of h we therefore expect to find better

approximations of smooth elements of H within Vh.

Then, for every h ∈ (0, 1] the Ritz projector Rh : Ḣ1 → Vh is the orthogonal

projector onto Vh with respect to the inner product (·, ·)1 and given by(
Rhx, yh

)
1

=
(
x, yh

)
1

for all x ∈ Ḣ1, yh ∈ Vh.

The following assumption ensures that the spaces (Vh)h∈(0,1] contain good approx-

imations of all elements in Ḣ1 and Ḣ2, respectively. It is formulated in terms of

the Ritz projector and closely related to the spatial approximation of the elliptic

problem Au = f as noted in [19, Rem. 3.4]. Compare also with [30, (ii) on p. 31

and (2.25)]).

Assumption 2.7. Let a sequence (Vh)h∈(0,1] of finite dimensional subspaces of Ḣ1

be given such that there exists a constant C with∥∥Rhx− x∥∥ ≤ Chs‖x‖s for all x ∈ Ḣs, s ∈ {1, 2}, h ∈ (0, 1].(12)

Another important operator is the linear mapping Ah : Vh → Vh, which denotes a

discrete version ofA. For a given xh ∈ Vh we defineAhxh ∈ Vh by the representation

theorem through the relationship

(xh, yh)1 = (Ahxh, yh) for all yh ∈ Vh.

It directly follows that Ah is self-adjoint and positive definite on Vh.

Finally, we denote by Ph : Ḣ−1 → Vh the (generalized) orthogonal projector onto

Vh with respect to the inner product in H. As in [7] the projector Ph is defined by

(Phx, yh) = (A−
1
2x,A

1
2 yh) for all x ∈ Ḣ−1, yh ∈ Vh.
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After having introduced all operators for the spatial approximation we recall the

following discrete negative norm estimate from [23, (3.7)]

‖A−
1
2

h Phx‖ = sup
zh∈Vh

∣∣(A− 1
2

h Phx, zh)
∣∣

‖zh‖
= sup
zh∈Vh

∣∣(Phx,A− 1
2

h zh)
∣∣

‖zh‖

= sup
z′h∈Vh

∣∣〈x, z′h〉∣∣
‖A

1
2

h z
′
h‖
≤ sup
z′h∈Vh

‖x‖−1‖z′h‖1
‖A

1
2

h z
′
h‖

= ‖x‖−1

(13)

for all x ∈ Ḣ−1.

The remainder of this subsection lists some error estimates for spatio-temporal

Galerkin finite element approximations of the linear Cauchy problem

d

dt
u(t) +Au(t) = 0, t ∈ [0, T ], u(0) = x ∈ H.(14)

In terms of the semigroup (S(t))t∈[0,T ] generated by −A, the solution to (14) is

given by u(t) = S(t)x for all t ∈ [0, T ].

Let k ∈ (0, T ] be a given equidistant time step size. We define Nk ∈ N by

kNk ≤ T < k(Nk + 1) and denote the set of all temporal grid points by Tk :=

{tn : n = 0, 1, . . . , Nk } with tn = kn. Then, we combine the spatially discrete

operators with a backward Euler scheme and obtain the spatio-temporal Galerkin

finite element approximation uk,h : Tk → Vh of (14), which is given by the recursion

uk,h(t0) = Phx,

uk,h(tn) + kAhuk,h(tn) = uk,h(tn−1), n = 1, . . . , Nk,
(15)

for h ∈ (0, 1] and k ∈ (0, T ]. Equivalently, we may write uk,h(tn) = Snk,hPhu0 with

Sk,h = (I + kAh)−1 for all n ∈ {0, . . . , Nk}.
Similar to the analytic semigroup (S(t))t∈[0,T ], the discrete operator Sk,h has the

following smoothing property∥∥AρhS−jk,hxh∥∥ =
∥∥Aρh(IdH + kAh)−jxh

∥∥ ≤ Ct−ρj ‖xh‖(16)

for all j ∈ {1, . . . , Nk}, xh ∈ Vh, k ∈ (0, T ] and h ∈ (0, 1]. Here the constant

C = C(ρ) is independent of h, k and j. For a proof of (16) we refer to [30, Lem. 7.3].

For the error analysis in Section 4 it will be convenient to introduce the contin-

uous time error operator between (14) and (15)

Fk,h(t) := Sk,h(t)Ph − S(t), t ∈ [0, T ),(17)

where

Sk,h(t) := (IdH + kAh)−j , if t ∈ [tj−1, tj) for j ∈ {1, 2, . . . Nk}.(18)

The mapping t 7→ Sk,h(t), and hence t 7→ Fk,h(t), is right continuous with left

limits. A simple consequence of (16) and (13) are the inequalities∥∥Sk,h(t)Phx
∥∥ ≤ C∥∥x∥∥ for all x ∈ H,(19)

and ∥∥Sk,h(t)Phx
∥∥ =

∥∥A 1
2

h (IdH + kAh)−jA
− 1

2

h Phx
∥∥ ≤ Ct− 1

2
j

∥∥x∥∥−1
≤ Ct− 1

2

∥∥x∥∥−1
,(20)

which hold for all x ∈ Ḣ−1, h ∈ (0, 1], k ∈ (0, T ] and t > 0 with t ∈ [tj−1, tj),

j = 1, 2, . . .. For both inequalities the constant C can be chosen to be independent

of h ∈ (0, 1] and k ∈ (0, T ].
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The next lemma provides several estimates for the error operator Fk,h with non-

smooth initial data. Most of the results are well-known and are found in [30, Ch. 7].

The missing cases have been proved in [19, Lem. 3.12].

Lemma 2.8. Under Assumption 2.7 the following estimates hold true:

(i) Let 0 ≤ ν ≤ µ ≤ 2. Then there exists a constant C such that∥∥Fk,h(t)x
∥∥ ≤ C(hµ + k

µ
2

)
t−

µ−ν
2

∥∥x∥∥
ν

for all x ∈ Ḣν , t ∈ (0, T ), h, k ∈ (0, 1].

(ii) Let 0 ≤ ρ ≤ 1. Then there exists a constant C such that∥∥Fk,h(t)x
∥∥ ≤ Ct− ρ2 ∥∥x∥∥−ρ for all x ∈ Ḣ−ρ, t ∈ (0, T ), h, k ∈ (0, 1].

(iii) Let 0 ≤ ρ ≤ 1. Then there exists a constant C such that∥∥Fk,h(t)x
∥∥ ≤ C(h2−ρ + k

2−ρ
2

)
t−1
∥∥x∥∥−ρ for all x ∈ Ḣ−ρ, t ∈ (0, T ), h, k ∈ (0, 1].

The next assumption is concerned with the stability of the orthogonal projector

Ph with respect to the norm ‖ · ‖1. It only appears in the proof of Lemma 2.10 as

shown in [19, Lem. 3.13].

Assumption 2.9. Let a family (Vh)h∈(0,1] of finite dimensional subspaces of Ḣ1

be given such that there exists a constant C with

‖Phx‖1 ≤ C‖x‖1 for all x ∈ Ḣ1, h ∈ (0, 1].(21)

The last lemma of this section is concerned with sharper integral versions of the

error estimate in Lemma 2.8 (i) and (iii). A proof is given in [19, Lem. 3.13].

Lemma 2.10. Let 0 ≤ ρ ≤ 1. Under Assumption 2.7 the operator Fk,h satisfies

the following estimates.

(i) There exists a constant C such that∥∥∥∫ t

0

Fk,h(σ)xdσ
∥∥∥ ≤ C(h2−ρ + k

2−ρ
2

)∥∥x∥∥−ρ
for all x ∈ Ḣ−ρ, t > 0, and h, k ∈ (0, 1].

(ii) Under the additional Assumption 2.9 there exists a constant C such that(∫ t

0

∥∥Fk,h(σ)x
∥∥2

dσ
) 1

2 ≤ C
(
h1+ρ + k

1+ρ
2

)∥∥x∥∥
ρ

for all x ∈ Ḣρ, t > 0, and h, k ∈ (0, 1].

3. Stability and consistency of numerical one-step schemes

This section contains the somewhat more abstract framework of the convergence

analysis. We generalize the notion of stability and consistency from [5, 17] to

Hilbert spaces and we derive a set of sufficient conditions for the so-called bistability.

Finally, a decomposition of the local truncation error gives a blueprint for the proof

of consistency of the Milstein-Galerkin finite element scheme in Section 5.
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3.1. Definition of the abstract one-step scheme. As above, let Tk := {tn :

n = 0, 1, . . . , Nk} be the set of temporal grid points for a given equidistant time

step size k ∈ (0, T ] and recall that Nk ∈ N is given by Nkk ≤ T < (Nk + 1)k.

The first important ingredient, which determines the numerical scheme, is a

family of bounded linear operators Sk : H → H, k ∈ (0, T ], which are supposed to

approximate the semigroup S(t), t ∈ [0, T ], in a suitable sense.

Further, for the definition of the second ingredient, let us introduce the set

T ⊂ [0, T )× (0, T ], which is given by

T := {(t, k) ∈ [0, T )× (0, T ] : t+ k ≤ T}.

The so-called increment function is a mapping Φ: H×T×Ω→ H with the property

that for every (t, k) ∈ T the mapping (x, ω) 7→ Φ(x, t, k)(ω) is measurable with

respect to B(H)⊗Ft+k/B(H).

Then, for every k ∈ (0, T ] the discrete time stochastic process Xk : Tk ×Ω→ H,

is given by the recursion

Xk(t0) := ξ,

Xk(tn) := SkXk(tn−1) + Φ
(
Xk(tn−1), tn−1, k

)(22)

for every n ∈ {1, . . . , Nk}, where ξ : Ω → H, is an Ft0/B(H)-measurable random

variable representing the initial value of the numerical scheme. It follows directly

that Xk(tn) is Ftn/B(H)-measurable for all n ∈ {1, . . . , Nk}.
In Section 4 we show how the Milstein Galerkin finite element scheme fits into

the framework of (22).

After having introduced the abstract numerical scheme, we recall the corner-

stones of the stability and consistency concept for one-step methods from [5, 17].

First, let us introduce the family of linear spaces of adapted, p-integrable grid

functions

Gp(Tk) :=
{
Z : Tk × Ω→ H : Z(tn) ∈ Lp(Ω,Ftn ,P;H) for all n ∈ {0, 1, . . . , Nk}

}
for all p ∈ [2,∞) and k ∈ (0, T ]. The spaces Gp(Tk) are endowed with the two

norms

‖Z‖0,p := max
n∈{0,...,Nk}

∥∥Z(tn)
∥∥
Lp(Ω;H)

(23)

and

‖Z‖−1,p := ‖Z(t0)‖Lp(Ω;H) + max
n∈{1,...,Nk}

∥∥∥ n∑
j=1

Sn−jk Z(tj)
∥∥∥
Lp(Ω;H)

(24)

for all Z ∈ Gp(Tk). The norm ‖ · ‖−1,p is called (stochastic) Spijker norm and

known to result into sharp and two-sided estimates of the error of convergence, see

for example [12, p. 438] as well as [5, 27, 28, 29].

Next, for p ∈ [2,∞), let us define the family of nonlinear operatorsRk : Gp(Tk)→
Gp(Tk), which for k ∈ (0, T ] are given by

Rk[Z](t0) = Z(t0)− ξ,
Rk[Z](tn) = Z(tn)− SkZ(tn−1)− Φ(Z(tn−1), tn−1, k), n ∈ {1, . . . , Nk}.

(25)

Below we show that the operators Rk are well-defined under Assumptions 3.5 and

3.7 for all k ∈ (0, T ]. Further, under these conditions it holds that Rk[Xk] = 0 ∈
Gp(Tk) for all k ∈ (0, T ], where Xk ∈ Gp(Tk) is the discrete time stochastic process
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generated by the numerical scheme (22). The mappings Rk are therefore called

residual operators associated to the numerical scheme (22).

The following definition contains our notion of stability.

Definition 3.1. Let p ∈ [2,∞). The numerical scheme (22) is called bistable (with

respect to the norms ‖ · ‖0,p and ‖ · ‖−1,p) if the residual operators Rk : Gp(Tk) →
Gp(Tk) are well-defined and bijective for all k ∈ (0, T ] and if there exists a constant

CStab independent of k ∈ (0, T ] such that

1

CStab

∥∥Rk[Y ]−Rk[Z]
∥∥
−1,p

≤ ‖Y − Z‖0,p ≤ CStab

∥∥Rk[Y ]−Rk[Z]
∥∥
−1,p

(26)

for all k ∈ (0, T ] and Y,Z ∈ Gp(Tk).

Therefore, for a bistable numerical scheme, the distance between two arbitrary

adapted grid functions can be estimated by the distance of their residuals measured

with respect to the stochastic Spijker norm and vice versa. In Section 3.3 we

show that Assumptions 3.5 to 3.7 are sufficient conditions for the stability of the

numerical scheme (22).

The counterpart of the notion of stability is the so-called consistency of the

numerical scheme, which we define in the same way as in [5, 17]. For this we denote

by Z|Tk ∈ Gp(Tk) the restriction of a p-fold integrable, adapted and continuous

stochastic process Z : [0, T ]× Ω→ H to the set Gp(Tk), that is

Z|Tk(tn) := Z(tn), n ∈ {0, . . . , Nk}.

Definition 3.2. Let p ∈ [2,∞). We say that the numerical scheme (22) is consis-

tent of order γ > 0 with respect to the SPDE (2) if there exists a constant CCons

independent of k ∈ (0, T ] such that∥∥Rk[X|Tk ]
∥∥
−1,p

≤ CConsk
γ

for all k ∈ (0, T ], where X is the mild solution to (2).

The term ‖Rk[X|Tk ]‖−1,p is called local truncation error or consistency error.

Finally, we introduce the notion of strong convergence.

Definition 3.3. Let p ∈ [2,∞). We say that the numerical scheme (22) is strongly

convergent of order γ > 0, if there exists a constant C independent of k ∈ (0, T ]

such that ∥∥Xk −X|Tk
∥∥

0,p
≤ Ckγ

for all k ∈ (0, T ], where Xk ∈ Gp(Tk), k ∈ (0, T ] are the grid functions generated by

the numerical scheme (22) and X denotes the mild solution to (2).

Theorem 3.4. A bistable numerical scheme of the form (22) is strongly convergent

of order γ > 0 if and only if it is consistent of order γ > 0. In particular, it holds

1

CStab

∥∥Rk[X|Tk ]
∥∥
−1,p

≤
∥∥Xk −X|Tk

∥∥
0,p
≤ CStab

∥∥Rk[X|Tk ]
∥∥
−1,p

for all k ∈ (0, T ], where Xk ∈ Gp(Tk), k ∈ (0, T ], denotes the family of grid functions

generated by the numerical scheme (22) and X is the mild solution to (2).
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Proof. First, let us recall that the residual operators Rk : Gp(Tk) → Gp(Tk) satisfy

Rk[Xk] = 0 for every k ∈ (0, T ]. Thus, by the bistability of the numerical scheme

and we obtain

1

CStab

∥∥Rk[X|Tk]∥∥−1,p
≤
∥∥Xk −X|Tk

∥∥
0,p
≤ CStab

∥∥Rk[X|Tk]∥∥−1,p
.

Consequently, the assertion follows directly from the definitions of consistency and

strong convergence. �

3.2. Assumptions on the numerical scheme. In this subsection some assump-

tions on the abstract numerical scheme (22) are collected, which assure its stability

as we will show in Section 3.3.

Assumption 3.5 (Initial value). Let p ∈ [2,∞). The initial condition ξ : Ω → H

is a p-fold integrable and F0/B(H)-measurable random variable.

The next two assumptions are concerned with the family of linear operators Sk,

k ∈ (0, T ], and the increment function Φ.

Assumption 3.6 (Linear stability). For the family of bounded linear operators

Sk : H → H, k ∈ (0, T ], there exists a constant CS independent of k ∈ (0, T ] such

that

sup
k∈(0,T ]

sup
n∈{1,...,Nk}

‖Snk ‖L(H) ≤ CS .

Assumption 3.7 (Nonlinear stability). Let p ∈ [2,∞) be the same as in Assump-

tion 3.5. For every (t, k) ∈ T the mapping Φ(·, t, k) : H × Ω → H is measurable

with respect to B(H)⊗Ft+k/B(H). Further, there exists a constant CΦ such that∥∥∥ n∑
j=m

Sn−jk Φ(0, tj−1, k)
∥∥∥
Lp(Ω;H)

≤ CΦ

(
tn − tm−1

) 1
2(27)

for all k ∈ (0, T ] and n,m ∈ {1, . . . , Nk} with n ≥ m. In addition, it holds∥∥∥ n∑
j=1

Sn−jk

(
Φ(Y (tj−1), tj−1, k)− Φ(Z(tj−1), tj−1, k)

)∥∥∥2

Lp(Ω;H)

≤ C2
Φk

n∑
j=1

(
tn − tj−1

)− 1
2
∥∥Y (tj−1)− Z(tj−1)

∥∥2

Lp(Ω;H)

(28)

for all k ∈ (0, T ], n ∈ {1, . . . , Nk} and all Y,Z ∈ Gp(Tk).

Let us remark that from Assumption 3.7 it follows directly that∥∥Φ(Z(tn−1), tn−1, k)
∥∥
Lp(Ω;H)

≤ CΦk
1
4

(
T

1
4 + ‖Z(tn−1)‖Lp(Ω;H)

)
(29)

for all k ∈ (0, T ], n ∈ {1, . . . , Nk} and all Z ∈ Gp(Tk). Indeed, fix k ∈ (0, T ] and

n ∈ {1, . . . , Nk} and define Ẑ ∈ Gp(Tk) by

Ẑ(tj) =

{
Z(tn−1), j = n− 1,

0, j 6= n− 1.
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Then, we get from (28)∥∥Φ
(
Z(tn−1), tn−1, k

)∥∥
Lp(Ω;H)

=
∥∥∥ n∑
j=1

[
Sn−jk

(
Φ
(
Ẑ(tj−1), tj−1, k

)
− Φ

(
0, tj−1, k

))]
+ Φ

(
0, tn−1, k

)∥∥∥
Lp(Ω;H)

≤ CΦk
1
4

∥∥Z(tn−1)
∥∥
Lp(Ω;H)

+
∥∥Φ
(
0, tn−1, k

)∥∥
Lp(Ω;H)

.

Further, (27) applied with n = m yields∥∥Φ
(
0, tn−1, k

)∥∥
Lp(Ω;H)

≤ CΦT
1
4 k

1
4

which completes the proof of (29).

3.3. Bistability of the numerical scheme. In this subsection we demonstrate

that Assumptions 3.5 to 3.7 are sufficient for the bistability of the numerical scheme.

Theorem 3.8. Let Assumptions 3.5 to 3.7 be satisfied with p ∈ [2,∞). Then, the

mappings Rk : Gp(Tk) → Gp(Tk) are well-defined and bijective for all k ∈ (0, T ].

Further, the numerical scheme (22) is bistable.

Proof. Let k ∈ (0, T ] be arbitrary. We first prove that Rk : Gp(Tk) → Gp(Tk) is

indeed well-defined. For all n ∈ {0, . . . , Nk} and Z ∈ Gp(Tk) the random vari-

able Rk[Z](tn) is Ftn -measurable. In addition, by Assumptions 3.5 and 3.6 and

(29) it follows that the Rk[Z](tn) is also p-fold integrable for all n ∈ {0, . . . , Nk}.
Therefore, it holds Rk[Z] ∈ Gp(Tk).

Given Y, Z ∈ Gp(Tk) with Rk[Y ] = Rk[Z], then it particularly holds Rk[Y ](t0) =

Rk[Z](t0) from which we deduce Y (t0) = Z(t0). Further, under the assumption

that for some n ∈ {0, . . . , Nk − 1}, we have shown that Y (tj) = Z(tj) for all

j ∈ {0, . . . , n} then it follows by (25)

0 = Rk[Y ](tn+1)−Rk[Z](tn+1) = Y (tn+1)− Z(tn+1).

Hence, Y (tn+1) = Z(tn+1) which proves that Rk is injective.

Further, for arbitrary V ∈ Gp(Tk) the grid function Z ∈ Gp(Tk) defined by

Z(t0) := V (t0) + ξ,

Z(tn) := SnkZ(t0) +

n∑
j=1

Sn−jk

(
Φ(Z(tj−1), tj−1, k) + V (tj)

)
,

(30)

for all n ∈ {1, . . . , Nk}, satisfies RN [Z] = V , as one directly verifies by an inductive

argument. Consequently, RN is also surjective. In particular, for all Z ∈ Gp(Tk) we

equivalently rewrite the discrete variation of constants formula (30) as

Z(t0) = Rk[Z](t0) + ξ,

Z(tn) = SnkZ(t0) +

n∑
j=1

Sn−jk

(
Φ(Z(tj−1), tj−1, k) +Rk[Z](tj)

)(31)
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for all n ∈ {1, . . . , Nk}. Thus, from Assumption 3.6 and (28) we obtain

‖Y (tn)− Z(tn)‖Lp(Ω;H) ≤
∥∥Snk (Y (t0)− Z(t0))

∥∥
Lp(Ω;H)

+
∥∥∥ n∑
j=1

Sn−jk

(
Φ(Y (tj−1), tj−1, k))− Φ(Z(tj−1), tj−1, k)

)∥∥∥
Lp(Ω;H)

+
∥∥∥ n∑
j=1

Sn−jk

(
Rk[Y ](tj)−Rk[Z](tj)

)∥∥∥
Lp(Ω;H)

≤ CS
∥∥Y (t0)− Z(t0)

∥∥
Lp(Ω;H)

+
∥∥∥ n∑
j=1

Sn−jk

(
Rk[Y ](tj)−Rk[Z](tj)

)∥∥∥
Lp(Ω;H)

+ CΦ

(
k

n∑
j=1

(
tn − tj−1

)− 1
2
∥∥Y (tj−1)− Z(tj−1)

∥∥2

Lp(Ω;H)

) 1
2

for all n ∈ {1, . . . , Nk} and all Y,Z ∈ Gp(Tk). In addition, we have

‖Y (t0)− Z(t0)‖Lp(Ω;H) = ‖Rk[Y ](t0)−Rk[Z](t0)‖Lp(Ω;H).

Now, from the definition of the norm ‖ · ‖−1,p in (24) it directly follows that

‖Y (tn)− Z(tn)‖2Lp(Ω;H) ≤ 2(1 + CS)2
∥∥Rk[Y ]−Rk[Z]

∥∥2

−1,p

+ 2C2
Φk

n∑
j=1

(
tn − tj−1

)− 1
2
∥∥Y (tj−1)− Z(tj−1)

∥∥2

Lp(Ω;H)

and an application of the discrete Gronwall lemma (see Lemma 3.9) completes the

proof of the right hand side inequality in (26).

Similarly, by rearranging (31) and an application of (28) we obtain∥∥∥ n∑
j=1

Sn−jk

(
Rk[Y ](tj)−Rk[Z](tj)

)∥∥∥
Lp(Ω;H)

≤ ‖Y (tn)− Z(tn)‖Lp(Ω;H) + ‖Snk (Y (t0)− Z(t0))‖Lp(Ω;H)

+
∥∥∥ n∑
j=1

Sn−jk

(
Φ(Y (tj−1), tj−1, k))− Φ(Z(tj−1), tj−1, k)

)∥∥∥
Lp(Ω;H)

≤ 2‖Y − Z‖0,p + CΦ

(
k

n∑
j=1

(
tn − tj−1

)− 1
2
∥∥Y (tj−1)− Z(tj−1)

∥∥2

Lp(Ω;H)

) 1
2

≤
(

2 + CΦ

(
k

n∑
j=1

(
tn − tj−1

)− 1
2

) 1
2
)
‖Y − Z‖0,p

for all n ∈ {1, . . . , Nk} and Y,Z ∈ Gp(Tk). Since we have

k

n∑
j=1

(
tn − tj−1

)− 1
2 ≤

∫ tn

0

σ−
1
2 dσ ≤ 2t

1
2
n ≤ 2T

1
2 ,(32)

we have also shown the validity of the inequality on the left-hand side of (26). �

A proof of the following version of Gronwall’s lemma is given in [9, Lemma 7.1].

Lemma 3.9 (Discrete Gronwall lemma). Let T > 0, k ∈ (0, T ], η ∈ (0, 1] and

a real-valued nonnegative sequence xn, n ∈ {0, . . . , Nk}, be given. If there exist
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constants C1, C2 ≥ 0 such that

xn ≤ C1 + C2k

n∑
j=1

(
tn − tj−1

)−1+η
xj−1 for all n = 0, . . . , Nk.

Then, there exists a constant C = C(C2, T, η), independent of k, such that

xn ≤ CC1 for all n = 0, . . . , Nk.

Having this established we directly deduce the following norm estimate for the

numerical scheme (22).

Corollary 3.10. For k ∈ (0, T ] let Xk ∈ Gp(Tk) be the grid function, which is

generated by the numerical scheme (22). Under Assumptions 3.5 to 3.7 with p ∈
[2,∞) it holds that

∥∥Xk

∥∥
0,p
≤ CStab

(∥∥ξ∥∥
Lp(Ω;H)

+ CΦT
1
2

)
,

for all k ∈ (0, T ].

Proof. Under the given assumptions the numerical scheme (22) is stable. Since

Rk[Xk] = 0 ∈ Gp(Tk) it holds∥∥Xk

∥∥
0,p

=
∥∥Xk − 0

∥∥
0,p
≤ CStab

∥∥Rk[Xk]−Rk[0]
∥∥
−1,p

= CStab

∥∥Rk[0]
∥∥
−1,p

.

Further, from (27) it follows that

∥∥Rk[0]
∥∥
−1,p

=
∥∥ξ∥∥

Lp(Ω;H)
+ max
n∈{1,...,Nk}

∥∥∥ n∑
j=1

Sn−jk Φ(0, tj−1, k)
∥∥∥
Lp(Ω;H)

≤
∥∥ξ∥∥

Lp(Ω;H)
+ CΦT

1
2 ,

which completes the proof. �

3.4. Consistency of the numerical scheme. In this section we derive a decom-

position of the local truncation error ‖Rk[X|Tk ]‖−1,p, which turns out to be useful

in the proof of consistency of the Milstein scheme. In Lemma 3.11 it is shown that

the local truncation error is dominated by a sum of five terms.

The first one is concerned with the distance between the initial conditions of the

SPDE (2) and the numerical scheme (22). The next three summands are concerned

with the error originating from replacing the analytic semigroup S(t), t ∈ [0, T ],

by the family of bounded linear operators Sk. Finally, the last term deals with the

error caused by the increment function Φ.
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Lemma 3.11. Let X be the mild solution to (2). Then the local truncation error

satisfies the estimate∥∥Rk[X|Tk ]
∥∥
−1,p

≤
∥∥X(t0)− ξ

∥∥
Lp(Ω;H)

+ max
n∈{1,...,Nk}

∥∥(S(tn)− Snk )X0

∥∥
Lp(Ω;H)

+ max
n∈{1,...,Nk}

∥∥∥ n∑
j=1

∫ tj

tj−1

(
S(tn − σ)− Sn−j+1

k

)
f(X(σ)) dσ

∥∥∥
Lp(Ω;H)

+ max
n∈{1,...,Nk}

∥∥∥ n∑
j=1

∫ tj

tj−1

(
S(tn − σ)− Sn−j+1

k

)
g(X(σ)) dW (σ)

∥∥∥
Lp(Ω;H)

+ max
n∈{1,...,Nk}

∥∥∥ n∑
j=1

Sn−jk

(
−
∫ tj

tj−1

Skf(X(σ)) dσ +

∫ tj

tj−1

Skg(X(σ)) dW (σ)

− Φ(X(tj−1), tj−1, k)
)∥∥∥

Lp(Ω;H)

for all k ∈ (0, T ].

Proof. The stochastic Spijker norm of Rk[X|Tk ] is given by∥∥Rk[X|Tk ]
∥∥
−1,p

=
∥∥Rk[X|Tk ](t0)

∥∥
Lp(Ω;H)

+ max
n∈{1,...,Nk}

∥∥∥ n∑
j=1

Sn−jk Rk[X|Tk ](tj)
∥∥∥
Lp(Ω;H)

=
∥∥X(t0)− ξ

∥∥
Lp(Ω;H)

+ max
n∈{1,...,Nk}

∥∥∥ n∑
j=1

Sn−jk

(
X(tj)− SkX(tj−1)− Φ(X(tj−1), tj−1, k)

)∥∥∥
Lp(Ω;H)

.

First, we insert the following relationship into the second term

X(tj) = S(tj − tj−1)X(tj−1)−
∫ tj

tj−1

S(tj − σ)f(X(σ)) dσ

+

∫ tj

tj−1

S(tj − σ)g(X(σ)) dW (σ), P-a.s.,

which follows from (3). Hence, for every n ∈ {1, . . . , Nk} we get

∥∥∥ n∑
j=1

Sn−jk

(
X(tj)− SkX(tj−1)− Φ(X(tj−1), tj−1, k)

)∥∥∥
Lp(Ω;H)

≤
∥∥∥ n∑
j=1

Sn−jk

((
S(k)− Sk

)
X(tj−1)−

∫ tj

tj−1

(
S(tj − σ)− Sk

)
f(X(σ)) dσ

+

∫ tj

tj−1

(
S(tj − σ)− Sk

)
g(X(σ)) dW (σ)

)∥∥∥
Lp(Ω;H)

+
∥∥∥ n∑
j=1

Sn−jk

(
−
∫ tj

tj−1

Skf(X(σ)) dσ +

∫ tj

tj−1

Skg(X(σ)) dW (σ)

− Φ(X(tj−1), tj−1, k)
)∥∥∥

Lp(Ω;H)
.
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The last summand is already in the desired form. Therefore, it remains to estimate

the first summand

Θn :=
∥∥∥ n∑
j=1

Sn−jk

((
S(k)− Sk

)
X(tj−1)−

∫ tj

tj−1

(
S(tj − σ)− Sk

)
f(X(σ)) dσ

+

∫ tj

tj−1

(
S(tj − σ)− Sk

)
g(X(σ)) dW (σ)

)∥∥∥
Lp(Ω;H)

.

For this, we again insert (3) and obtain

Θn ≤
∥∥∥ n∑
j=1

Sn−jk

(
S(k)− Sk

)
S(tj−1)X0

∥∥∥
Lp(Ω;H)

+
∥∥∥ n∑
j=1

Sn−jk

((
S(k)− Sk

) ∫ tj−1

0

S(tj−1 − σ)f(X(σ)) dσ

+

∫ tj

tj−1

(
S(tj − σ)− Sk

)
f(X(σ)) dσ

)∥∥∥
Lp(Ω;H)

+
∥∥∥ n∑
j=1

Sn−jk

((
S(k)− Sk

) ∫ tj−1

0

S(tj−1 − σ)g(X(σ)) dW (σ)

+

∫ tj

tj−1

(
S(tj − σ)− Sk

)
g(X(σ)) dW (σ)

)∥∥∥
Lp(Ω;H)

=: Θ1
n + Θ2

n + Θ3
n.

Next, we apply the fact that

n∑
j=1

Sn−jk

(
S(k)− Sk

)
S(tj−1) = S(tn)− Snk(33)

for all n ∈ {1, . . . , Nk}. This yields for the term Θ1
n the estimate

Θ1
n =

∥∥∥ n∑
j=1

Sn−jk

(
S(k)− Sk

)
S(tj−1)X0

∥∥∥
Lp(Ω;H)

=
∥∥(S(tn)− Snk )X0

∥∥
Lp(Ω;H)

(34)

for all n ∈ {1, . . . , Nk}. In addition, it holds

Θ2
n =

∥∥∥ n∑
j=1

∫ tj

tj−1

(
S(tn − σ)− Sn−j+1

k

)
f(X(σ)) dσ

∥∥∥
Lp(Ω;H)

,(35)

as well as

Θ3
n =

∥∥∥ n∑
j=1

∫ tj

tj−1

(
S(tn − σ)− Sn−j+1

k

)
g(X(σ)) dW (σ)

∥∥∥
Lp(Ω;H)

(36)

for all n ∈ {1, . . . , Nk}. Indeed, for a given σ ∈ (0, tNk ] let `(σ) ∈ N be determined

by t`(σ)−1 < σ ≤ t`(σ). Then, by interchanging summation and integration we
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obtain
n∑
j=1

Sn−jk

(
S(k)− Sk

) ∫ tj−1

0

S(tj−1 − σ)f(X(σ)) dσ

=

n∑
j=1

∫ tn−1

0

I[0,tj−1](σ)Sn−jk

(
S(k)− Sk

)
S(tj−1 − σ)f(X(σ)) dσ

=

∫ tn−1

0

n∑
j=`(σ)+1

Sn−jk

(
S(k)− Sk

)
S(tj−1 − t`(σ))S(t`(σ) − σ)f(X(σ)) dσ

=

∫ tn−1

0

(
S(tn − t`(σ))− S

n−`(σ)
k

)
S(t`(σ) − σ)f(X(σ)) dσ

=

n−1∑
j=1

∫ tj

tj−1

(
S(tn − tj)− Sn−jk

)
S(tj − σ)f(X(σ)) dσ,

where we applied (33) in the fourth step. Therefore, it holds

n∑
j=1

Sn−jk

((
S(k)− Sk

) ∫ tj−1

0

S(tj−1 − σ)f(X(σ)) dσ

+

∫ tj

tj−1

(
S(tj − σ)− Sk

)
f(X(σ)) dσ

)
=

n−1∑
j=1

∫ tj

tj−1

(
S(tn − tj)− Sn−jk

)
S(tj − σ)f(X(σ)) dσ

+

n∑
j=1

Sn−jk

∫ tj

tj−1

(
S(tj − σ)− Sk

)
f(X(σ)) dσ

=

n∑
j=1

∫ tj

tj−1

(
S(tn − σ)− Sn−j+1

k

)
f(X(σ)) dσ.

This completes the proof of (35) and the same arguments also yield (36). �

Remark 3.12. In the finite dimensional situation with H = Rd, U = Rm, d,m ∈
N and A = 0 the SPDE (2) becomes a stochastic ordinary differential equation

(SODE). In this situation we have S(t) = IdH for all t ∈ [0, T ]. If one applies a

numerical scheme with Sk = IdH , then the error decomposition in Lemma 3.11

actually holds with equality and it coincides with the stochastic Spijker norm from

[5]. Compare also with [17], where the application of the maximum occurs inside

the expectation.

4. Bistability of the Milstein-Galerkin finite element scheme

In this section we embed the Milstein-Galerkin finite element scheme (4) into

the abstract framework of Section 3. Then, we prove that Assumptions 3.5 to 3.7

are satisfied and we consequently conclude the bistability of the scheme.

For the embedding we first set ξh = PhX0 and

Sk,h :=
(
IdH + kAh

)−1
Ph ∈ L(H)

for every h ∈ (0, 1]. Let us note that in contrast to Section 2.4 the operator Sk,h
includes the orthogonal projector Ph and is therefore defined as an operator from

H to H.
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Further, the increment function Φh : H × T× Ω→ H, h ∈ (0, 1], is given by

Φh(x, t, k) = −kSk,hf(x) + Sk,hg(x)
(
W (t+ k)−W (t)

)
+ Sk,h

∫ t+k

t

g′(x)
[ ∫ σ1

t

g(x) dW (σ2)
]

dW (σ1)
(37)

for all (t, k) ∈ T and x ∈ H.

Theorem 4.1. Under Assumptions 2.2 to 2.4 the Milstein-Galerkin finite element

scheme (4) is bistable for every h ∈ (0, 1]. The stability constant CStab can be

chosen to be independent of h ∈ (0, 1].

Proof. First, let h ∈ (0, 1] be an arbitrary but fixed parameter value of the spatial

discretization. By Theorem 3.8 it is sufficient to show that Assumptions 3.5 to 3.7

are satisfied.

Regarding Assumption 3.5 it directly follows from Assumption 2.2 that ξh =

PhX0 is p-fold integrable and F0/B(H)-measurable. Furthermore, it holds

∥∥ξh∥∥Lp(Ω;H)
≤
∥∥X0

∥∥
Lp(Ω;H)

,(38)

that is, the norm of ξh is bounded independently of h ∈ (0, 1] by the norm of X0.

The stability of the family of linear operators Sk,h, k ∈ (0, T ], follows from (16)

with ρ = 0 which yields

∥∥Snk,hx∥∥ =
∥∥((IdH + kAh)−1Ph

)n
x
∥∥ =

∥∥(IdH + kAh)−nPhx
∥∥ ≤ C‖x‖

for all x ∈ H and n ∈ {1, . . . , Nk}. Consequently, Assumption 3.6 is satisfied with

CS = C and the constant is also independent of h ∈ (0, 1] and k ∈ (0, T ].

Hence, it remains to investigate if Assumption 3.7 is also fulfilled. First, for

every p ∈ [2,∞) and for all m,n ∈ {1, . . . , Nk} with n ≥ m it holds

∥∥∥ n∑
j=m

Sn−jk,h Φh(0, tj−1, k)
∥∥∥
Lp(Ω;H)

≤
∥∥∥ n∑
j=m

Sn−j+1
k,h f(0)k

∥∥∥
Lp(Ω;H)

+
∥∥∥ n∑
j=m

Sn−j+1
k,h g(0)

(
W (tj)−W (tj−1)

)∥∥∥
Lp(Ω;H)

+
∥∥∥ n∑
j=m

Sn−j+1
k,h

∫ tj

tj−1

g′(0)
[ ∫ σ1

tj−1

g(0) dW (σ2)
]

dW (σ1)
∥∥∥
Lp(Ω;H)

=: I1 + I2 + I3.

We deal with the three terms separately. By recalling (18) and (20) the determin-

istic term I1 is estimated by

I1 =
∥∥∥ ∫ tn

tm−1

Sk,h(tn − σ)Phf(0) dσ
∥∥∥ ≤ ∫ tn

tm−1

(tn − σ)−
1
2 ‖f(0)‖−1 dσ

= 2(tn − tm−1)
1
2 ‖f(0)‖−1.

(39)
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For the estimate of I2 we first write the sum as a stochastic integral by inserting

(18), then we apply Proposition 2.6 and (19) and obtain

I2 =
∥∥∥∫ tn

tm−1

Sk,h(tn − σ)Phg(0) dW (σ)
∥∥∥
Lp(Ω;H)

≤ C(p)
(∫ tn

tm−1

∥∥Sk,h(tn − σ)Phg(0)
∥∥2

L0
2

dσ
) 1

2

≤ C
(∫ tn

tm−1

‖g(0)‖2L0
2

dσ
) 1

2

= C(tn − tm−1)
1
2 ‖g(0)‖L0

2
,

(40)

where the constant C is again independent of h ∈ (0, 1] and k ∈ (0, T ].

Before we continue with the estimate of the third term I3, it is convenient to

introduce the stochastic process ΓY : [0, T ]×Ω→ H, which for a given Y ∈ Gp(Tk)

is defined by

ΓY (σ) :=

{
0 ∈ H, for σ = 0,∫ σ
tj−1

g(Y (tj−1)) dW (τ), for σ ∈ (tj−1, tj ], j ∈ {1, . . . , Nk}.
(41)

Note that ΓY is left-continuous with existing right limits and therefore predictable.

Further, it holds by Proposition 2.6

sup
σ∈[0,T ]

∥∥ΓY (σ)
∥∥
Lp(Ω;L0

2)
≤ C(p)k

1
2 max
j∈{1,...,Nk}

‖g(Y (tj−1))‖Lp(Ω;L0
2)

for all p ∈ [2,∞).

Together with the same arguments as above and Assumption 2.4, this yields for

I3 that

I3 =
∥∥∥∫ tn

tm−1

Sk,h(tn − σ)Phg
′(0)
[
Γ0(σ)

]
dW (σ)

∥∥∥
Lp(Ω;H)

≤ C(p)
(∫ tn

tm−1

∥∥Sk,h(tn − σ)Phg
′(0)
[
Γ0(σ)

]∥∥2

Lp(Ω;L0
2)

dσ
) 1

2

≤ C
(∫ tn

tm−1

∥∥g′(0)
[
Γ0(σ)

]∥∥2

Lp(Ω;L0
2)

dσ
) 1

2

≤ C (tn − tm−1)
1
2 k

1
2 ‖g′(0)‖L(H;L0

2)‖g(0)‖L0
2
≤ CC2

gT
1
2 (tn − tm−1)

1
2 .

(42)

Hence, a combination of (39), (40) and (42) completes the proof of (27).

Next, we verify that Φh also satisfies (28). For every p ∈ [2,∞), for all Y, Z ∈
Gp(Tk) and n ∈ {1, . . . , Nk} it holds∥∥∥ n∑
j=1

Sn−jk,h

(
Φh(Y (tj−1), tj−1, k)− Φh(Z(tj−1), tj−1, k)

)∥∥∥
Lp(Ω;H)

≤
∥∥∥ n∑
j=1

Sn−j+1
k,h

(
f(Y (tj−1))− f(Z(tj−1))

)
k
∥∥∥
Lp(Ω;H)

+
∥∥∥ n∑
j=1

Sn−j+1
k,h

(
g(Y (tj−1))− g(Z(tj−1))

)(
W (tj)−W (tj−1)

)∥∥∥
Lp(Ω;H)

+
∥∥∥ n∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

g′(Y (tj−1))
[
ΓY (σ)

]
− g′(Z(tj−1))

[
ΓZ(σ)

]
dW (σ)

∥∥∥
Lp(Ω;H)

=: I4 + I5 + I6.
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Again, we bound the three terms separately. For I4 we apply (13) and (16) and

obtain

I4 ≤ k
n∑
j=1

∥∥A 1
2

hS
n−j+1
k,h A

− 1
2

h Ph
(
f(Y (tj−1))− f(Z(tj−1))

)∥∥
Lp(Ω;H)

≤ k
n∑
j=1

(
tn − tj−1

)− 1
2
∥∥f(Y (tj−1))− f(Z(tj−1))

∥∥
Lp(Ω;Ḣ−1)

.

Therefore, by an application of Assumption 2.3 and the Cauchy-Schwarz inequality

we get

I2
4 ≤ C2

fk
2
( n∑
j=1

(
tn − tj−1

)− 1
4
(
tn − tj−1

)− 1
4
∥∥Y (tj−1)− Z(tj−1)

∥∥
Lp(Ω;H)

)2

≤ C2
fk

2
n∑
j=1

(
tn − tj−1

)− 1
2

n∑
j=1

(
tn − tj−1

)− 1
2
∥∥Y (tj−1)− Z(tj−1)

∥∥2

Lp(Ω;H)
.

After applying (32) the estimate of I2
4 is in the desired form of (28), that is

I2
4 ≤ 2C2

fT
1
2 k

n∑
j=1

(
tn − tj−1

)− 1
2
∥∥Y (tj−1)− Z(tj−1)

∥∥2

Lp(Ω;H)
.(43)

In order to apply Proposition 2.6 for the remaining two terms I5 and I6, we

again write the sum as an integral in each term. For this we define

gY (σ) := I(tj−1,tj ](σ)g(Y (tj−1)),

g′Y (σ) := I(tj−1,tj ](σ)g′(Y (tj−1))
[
ΓY (σ)

]
for all Y ∈ Gp(Tk) and σ ∈ [0, T ]. Then, I5 is estimated by applying Proposition

2.6 and (19). Thus we have

I5 =
∥∥∥ ∫ tn

0

Sk,h(tn − σ)Ph
(
gY (σ)− gZ(σ)

)
dW (σ)

∥∥∥
Lp(Ω;H)

≤ C(p)
(∫ tn

0

∥∥Sk,h(tn − σ)Ph
(
gY (σ)− gZ(σ)

)∥∥2

Lp(Ω;L0
2)

dσ
) 1

2

≤ C
(∫ tn

0

∥∥gY (σ)− gZ(σ)
∥∥2

Lp(Ω;L0
2)

dσ
) 1

2

= C
(
k

n∑
j=1

∥∥g(Y (tj−1))− g(Z(tj−1))
∥∥2

Lp(Ω;L0
2)

) 1
2

.

Then Assumption 2.4 yields

I2
5 ≤ C2Cgk

n∑
j=1

∥∥Y (tj−1)− Z(tj−1)
∥∥2

Lp(Ω;H)

≤ C2T
1
2Cgk

n∑
j=1

(
tn − tj−1

)− 1
2
∥∥Y (tj−1)− Z(tj−1)

∥∥2

Lp(Ω;H)
.

(44)
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It remains to prove a similar estimate for I6. As above, Proposition 2.6 and (19)

yield

I6 =
∥∥∥∫ tn

0

Sk,h(tn − σ)Ph
(
g′Y (σ)− g′Z(σ)

)
dW (σ)

∥∥∥
Lp(Ω;H)

≤ C
( n∑
j=1

∫ tj

tj−1

∥∥g′(Y (tj−1))[ΓY (σ)]− g′(Z(tj−1))[ΓZ(σ)]
∥∥2

Lp(Ω;L0
2)

dσ
) 1

2

.

Next, since

g′(Y (tj−1))[ΓY (σ)] =

∫ σ

tj−1

g′(Y (tj−1))g(Y (tj−1)) dW (σ2) ∈ Lp(Ω;L0
2),

we obtain by a further application of Proposition 2.6 and (8)

I2
6 ≤ Ck2

n∑
j=1

∥∥g′(Y (tj−1))g(Y (tj−1))− g′(Z(tj−1))g(Z(tj−1))
∥∥2

Lp(Ω;L2(U0,L0
2))

≤ CT 3
2Cgk

n∑
j=1

(
tn − tj−1

)− 1
2
∥∥Y (tj−1)− Z(tj−1)

∥∥2

Lp(Ω;H)
.

Hence, together with (43) and (44) the proof of (28) is complete, where the constant

CΦ can also be chosen to be independent of h ∈ (0, 1].

Concerning the measurability of Φh it is clear, that for every (x, t, k) ∈ H × T
we have Φh(x, t, k) ∈ Lp(Ω,Ft+k,P;H). In addition, the same arguments, which

have been used for the analysis of the terms I4 to I6, yield the continuity of

x 7→ Φh(x, t, k) as a mapping from H to Lp(Ω;H). From this we directly de-

duce the measurability of the mapping (x, ω) 7→ Φh(x, t, k)(ω) with respect to

B(H)⊗Ft+k/B(H).

Finally, after a short inspection of the proof of Theorem 3.8 we note the following:

Since all constants can be chosen to be independent of h ∈ (0, 1], there also exists a

choice of the stability constant CStab for the Milstein-Galerkin finite element scheme

(4), which is likewise independent of the parameter h ∈ (0, 1]. �

5. Consistency of the Milstein scheme

The aim of this section is to investigate, if the Milstein scheme is consistent. Our

result is summarized in the following theorem. Its proof is based on the decompo-

sition of the local truncation error given in Lemma 3.11 and is split over a series of

lemmas.

Theorem 5.1. Let Assumptions 2.7 and 2.9 be satisfied by the spatial discretiza-

tion. If Assumptions 2.2 to 2.4 are fulfilled, then the local truncation error of the

scheme (4) satisfies ∥∥Rk[X|Tk]∥∥−1,p
≤ C

(
h1+r + k

1+r
2

)
for all h ∈ [0, 1) and k ∈ (0, T ]. In particular, if h and k are coupled by h := ck

1
2

for a positive constant c ∈ R, then the Milstein scheme is consistent of order 1+r
2 .

Lemma 5.2 (Consistency of the initial condition). Let Assumption 2.2 be satisfied

with r ∈ [0, 1]. Under Assumption 2.7 it holds

‖X(0)− ξh‖Lp(Ω;H) ≤ Ch1+r

for ξh = PhX0 and for all h ∈ (0, 1].
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Proof. By the best approximation property of the orthogonal projector Ph : H → Vh
and by Assumption 2.7 it holds

‖X(0)− ξh‖Lp(Ω;H) = ‖(IdH − Ph)X0‖Lp(Ω;H) ≤ ‖(IdH −Rh)X0‖Lp(Ω;H) ≤ Ch1+r

for all h ∈ (0, 1]. �

The next three lemmas are concerned with the consistency of the family of linear

operators Sk,h, k ∈ (0, T ], h ∈ (0, 1].

Lemma 5.3. Let Assumption 2.2 be satisfied for some r ∈ [0, 1]. If the spatial

discretization satisfies Assumption 2.7 it holds

max
n∈{1,...,Nk}

∥∥(S(tn)− Snk,h
)
X0

∥∥
Lp(Ω;H)

≤ C
(
h1+r + k

1+r
2

)∥∥A 1+r
2 X0

∥∥
Lp(Ω;H)

for all h ∈ (0, 1] and k ∈ (0, T ].

Proof. The term on the left hand side of the inequality is the error of the fully

discrete approximation scheme for the linear Cauchy problem ut = Au with the

initial condition being a random variable. By Assumption 2.2 we have that X0(ω) ∈
Ḣ1+r for P-almost all ω ∈ Ω. Thus, the error estimate from Lemma 2.8 (i) (or [30,

Theorem 7.8]) yields∥∥(S(tn)− Snk,h
)
X0

∥∥
Lp(Ω;H)

≤ C
(
h1+r + k

1+r
2

)∥∥A 1+r
2 X0

∥∥
Lp(Ω;H)

,

for all h ∈ (0, 1], k ∈ (0, T ], where the constant C is also independent of n ∈
{1, . . . , Nk}. �

Lemma 5.4. Let Assumptions 2.2 to 2.4 be satisfied for some r ∈ [0, 1]. If the

spatial discretization satisfies Assumption 2.7 it holds

max
n∈{1,...,Nk}

∥∥∥ n∑
j=1

∫ tj

tj−1

(
S(tn − σ)− Sn−j+1

k,h

)
f(X(σ)) dσ

∥∥∥
Lp(Ω;H)

≤ C
(
h1+r + k

1+r
2

)
for all h ∈ (0, 1] and k ∈ (0, T ].

Proof. First, by recalling (17) it is convenient to write

n∑
j=1

∫ tj

tj−1

(
S(tn − σ)− Sn−j+1

k,h

)
f(X(σ)) dσ =

∫ tn

0

Fk,h(tn − σ)f(X(σ)) dσ

for all n ∈ {1, . . . , Nk}. Then, it follows

∥∥∥ n∑
j=1

∫ tj

tj−1

(
S(tn − σ)− Sn−j+1

k,h

)
f(X(σ)) dσ

∥∥∥
Lp(Ω;H)

≤
∥∥∥∫ tn

0

Fk,h(tn − σ)
(
f(X(σ))− f(X(tn))

)
dσ
∥∥∥
Lp(Ω;H)

+
∥∥∥∫ tn

0

Fk,h(tn − σ)f(X(tn)) dσ
∥∥∥
Lp(Ω;H)

=: J1
n + J2

n
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for all n ∈ {1, . . . , Nk}. We estimate the two summands separately. For J1
n we

apply Lemma 2.8 (iii) with ρ = 1− r and obtain

J1
n ≤

∫ tn

0

∥∥Fk,h(tn − σ)
(
f(X(σ))− f(X(tn))

)∥∥
Lp(Ω;H)

dσ

≤ C
(
h1+r + k

1+r
2

) ∫ tn

0

(tn − σ)−1
∥∥f(X(σ))− f(X(tn))

∥∥
Lp(Ω;Ḣ−1+r)

dσ

≤ C
(
h1+r + k

1+r
2

) ∫ tn

0

(tn − σ)−1+ 1
2 dσ ≤ CT 1

2

(
h1+r + k

1+r
2

)
,

where we also applied (7) and (11).

The term J2
n is estimated by an application of Lemma 2.10 (i) with ρ = 1 − r,

Assumption 2.3 and (10), which yield

J2
n ≤ C

(
h1+r + k

1+r
2

)∥∥f(X(tn))
∥∥
Lp(Ω;Ḣ−1+r)

≤ C
(
h1+r + k

1+r
2

)(
1 + sup

σ∈[0,T ]

‖X(σ)‖Lp(Ω;H)

)
,

for all h ∈ (0, 1], k ∈ (0, T ] and n ∈ {1, . . . , Nk}. This completes the proof of

Lemma 5.4. �

Lemma 5.5. Let Assumptions 2.2 to 2.4 be satisfied for some r ∈ [0, 1). If the

spatial discretization satisfies Assumptions 2.7 and 2.9 it holds

max
n∈{1,...,Nk}

∥∥∥ n∑
j=1

∫ tj

tj−1

(
S(tn − σ)− Sn−j+1

k,h

)
g(X(σ)) dW (σ)

∥∥∥
Lp(Ω;H)

≤ C
(
h1+r + k

1+r
2

)
for all h ∈ (0, 1] and k ∈ (0, T ].

Proof. As in the proof of Lemma 5.4, by (17), we first rewrite the sum inside the

norm as
n∑
j=1

∫ tj

tj−1

(
S(tn − σ)− Sn−j+1

k,h

)
g(X(σ)) dW (σ) =

∫ tn

0

Fk,h(tn − σ)g(X(σ)) dW (σ)

for all n ∈ {1, . . . , Nk}. Then, it follows by Proposition 2.6∥∥∥ n∑
j=1

∫ tj

tj−1

(
S(tn − σ)− Sn−j+1

k,h

)
g(X(σ)) dW (σ)

∥∥∥
Lp(Ω;H)

≤ C(p)
(
E
[( ∫ tn

0

∥∥Fk,h(tn − σ)g(X(σ))
∥∥2

L0
2

dσ
) p

2
]) 1

p

≤ C(p)
(
E
[( ∫ tn

0

∥∥Fk,h(tn − σ)
(
g(X(σ))− g(X(tn))

)∥∥2

L0
2

dσ
) p

2
]) 1

p

+ C(p)
(
E
[( ∫ tn

0

∥∥Fk,h(tn − σ)g(X(tn))
∥∥2

L0
2

dσ
) p

2
]) 1

p

=: C(p)
(
J3
n + J4

n

)
for all n ∈ {1, . . . , Nk}. We estimate the two summands separately. For J3

n we

apply Lemma 2.8 (i) with µ = 1 + r and ν = 0 and obtain by (8) and (11)

J3
n ≤ C

(
h1+r + k

1+r
2

)( ∫ tn

0

(tn − σ)−1−r∥∥g(X(σ))− g(X(tn))
∥∥2

Lp(Ω;L0
2)

dσ
) 1

2

≤ C
(
h1+r + k

1+r
2

)( ∫ tn

0

(tn − σ)−r dσ
) 1

2 ≤ CT
1−r
2

(
h1+r + k

1+r
2

)
,
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where we also applied the same technique as in the proof of the second inequality

of Proposition 2.6.

For the estimate of J4
n we first apply Lemma 2.10 (ii) with ρ = r. Then (9) and

(10) yield

J4
n ≤ C

(
h1+r + k

1+r
2

)∥∥g(X(tn))
∥∥
Lp(Ω;L0

2,r)

≤ C
(
h1+r + k

1+r
2

)(
1 + sup

σ∈[0,T ]

‖X(σ)‖Lp(Ω;Ḣr)

)
,

for all h ∈ (0, 1], k ∈ (0, T ] and n ∈ {1, . . . , Nk}. The proof is complete. �

Remark 5.6. Let us stress that the case r = 1 is not included in Lemma 5.5. The

reason for this is found in the estimate of the term J3
n, where a blow up occurs

for r = 1. This problem can be avoided under stronger assumptions on g as, for

example, the existence of an parameter value s ∈ (0, 1] such that

‖g(x1)− g(x2)‖L0
2,s
≤ Cg‖x1 − x2‖s

for all x1, x2 ∈ Ḣs. This is often satisfied for linear g as shown in [1].

By Lemma 3.11 it therefore remains to investigate the order of convergence of

the fifth and final term, which after inserting (37) is dominated by the following

two summands

max
n∈{1,...,Nk}

∥∥∥ n∑
j=1

Sn−jk,h

(
−
∫ tj

tj−1

Skf(X(σ)) dσ +

∫ tj

tj−1

Skg(X(σ)) dW (σ)

− Φh(X(tj−1), tj−1, k)
)∥∥∥

Lp(Ω;H)

≤ max
n∈{1,...,Nk}

∥∥∥ n∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

f(X(σ))− f(X(tj−1)) dσ
∥∥∥
Lp(Ω;H)

+ max
n∈{1,...,Nk}

∥∥∥ n∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

(
g(X(σ))− g(X(tj−1))

− g′(X(tj−1))
[
ΓX|Tk (σ)

])
dW (σ)

∥∥∥
Lp(Ω;H)

,

(45)

where we recall from (41) that

ΓX|Tk (σ) :=

{
0 ∈ H, for σ = 0,∫ σ
tj−1

g(X(tj−1)) dW (τ), for σ ∈ (tj−1, tj ], j ∈ {1, . . . , Nk}.
(46)

The remaining two lemmas in this section are concerned with the estimate of the

two summands in (45).

Lemma 5.7. Let Assumptions 2.2 to 2.4 be satisfied for some r ∈ [0, 1). If the

spatial discretization satisfies Assumption 2.7 it holds

max
n∈{1,...,Nk}

∥∥∥ n∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

f(X(σ))− f(X(tj−1)) dσ
∥∥∥
Lp(Ω;H)

≤ Ck
1+r
2

for all h ∈ (0, 1] and k ∈ (0, T ].
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Proof. For every n ∈ {1, . . . , Nk} we first insert the conditional expectation in the

following way∥∥∥ n∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

f(X(σ))− f(X(tj−1)) dσ
∥∥∥
Lp(Ω;H)

≤
∥∥∥ n∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

f(X(σ))− E
[
f(X(σ))

∣∣Ftj−1

]
dσ
∥∥∥
Lp(Ω;H)

+
∥∥∥ n∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

E
[
f(X(σ))

∣∣Ftj−1

]
− f(X(tj−1)) dσ

∥∥∥
Lp(Ω;H)

.

(47)

Thus, for the summands of the first term it follows

E
[
Sn−j+1
k,h

∫ tj

tj−1

f(X(σ))− E
[
f(X(σ))

∣∣Ftj−1

]
dσ
∣∣∣Ft`] = 0 ∈ H

for every j, ` ∈ {1, . . . , n} with ` < j. Consequently, by setting

Mi :=

i∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

f(X(σ))− E
[
f(X(σ))

∣∣Ftj−1

]
dσ, i ∈ {0, 1, . . . , n},

we obtain a discrete time martingale in Lp(Ω;H). Thus, Burkholder’s inequality

[6, Th. 3.3] is applicable and yields together with (16) and (13)∥∥∥ n∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

f(X(σ))− E
[
f(X(σ))

∣∣Ftj−1

]
dσ
∥∥∥
Lp(Ω;H)

≤ C
(
E
[( n∑

j=1

∥∥∥Sn−j+1
k,h

∫ tj

tj−1

f(X(σ))− E
[
f(X(σ))

∣∣Ftj−1

]
dσ
∥∥∥2) p2 ]) 1

p

≤ C
( n∑
j=1

∥∥∥A 1
2

hS
n−j+1
k,h

∫ tj

tj−1

A
− 1

2

h Ph
(
f(X(σ))− E

[
f(X(σ))

∣∣Ftj−1

])
dσ
∥∥∥2

Lp(Ω;H)

) 1
2

≤ C
( n∑
j=1

t−1
n−j+1k

∫ tj

tj−1

∥∥f(X(σ))− E
[
f(X(σ))

∣∣Ftj−1

]∥∥2

Lp(Ω;Ḣ−1)
dσ
) 1

2

.

In addition, since ‖E[G|Ftj−1
]‖Lp(Ω;Ḣ−1) ≤ ‖G‖Lp(Ω;Ḣ−1) for all G ∈ Lp(Ω; Ḣ−1) it

follows for all σ ∈ [tj−1, tj ]∥∥f(X(σ))− E
[
f(X(σ))

∣∣Ftj−1

]∥∥
Lp(Ω;Ḣ−1)

=
∥∥f(X(σ))− f(X(tj−1)) + E

[
f(X(tj−1))− f(X(σ))

∣∣Ftj−1

]∥∥
Lp(Ω;Ḣ−1)

≤ 2
∥∥f(X(σ))− f(X(tj−1))

∥∥
Lp(Ω;Ḣ−1)

≤ C|σ − tj−1|
1
2 ,

where we also used (7) and (11) in the last step. Therefore, in the same way as in

(32) the estimate of the first summand in (47) is completed by∥∥∥ n∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

f(X(σ))− E
[
f(X(σ))

∣∣Ftj−1

]
dσ
∥∥∥
Lp(Ω;H)

≤ C
( n∑
j=1

t−1
n−j+1k

3
) 1

2 ≤ C
(
k3

n∑
j=1

t−rn−j+1t
−1+r
n−j+1

) 1
2

≤ C
(
k3

n∑
j=1

t−rn−j+1k
−1+r

) 1
2 ≤ Ck

1+r
2 .
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For the second summand in (47) we make use of the mean value theorem for Fréchet

differentiable mappings, which reads

f(X(τ1)) = f(X(τ2)) +

∫ 1

0

f ′(X(τ2) + s(X(τ1)−X(τ2)))
[
X(τ1)−X(τ2)

]
ds

for all τ1, τ2 ∈ [0, T ]. For convenience we introduce the short hand notation

f ′(τ1, τ2; s) := f ′(X(τ2) + s(X(τ1)−X(τ2)))

for all τ1, τ2 ∈ [0, T ] and s ∈ [0, 1]. Then, by inserting (3) we obtain the identity

E
[
f(X(σ))|Ftj−1

]
− f(X(tj−1))

= E
[ ∫ 1

0

f ′(σ, tj−1; s)
[(
S(σ − tj−1)− IdH

)
X(tj−1)

]
ds
∣∣∣Ftj−1

]
− E

[ ∫ 1

0

f ′(σ, tj−1; s)
[ ∫ σ

tj−1

S(σ − τ)f(X(τ)) dτ
]

ds
∣∣∣Ftj−1

]
+ E

[ ∫ 1

0

f ′(σ, tj−1; s)
[ ∫ σ

tj−1

S(σ − τ)g(X(τ)) dW (τ)
]

ds
∣∣∣Ftj−1

]
=: Θ1(σ, tj−1) + Θ2(σ, tj−1) + Θ3(σ, tj−1),

which holds P-almost surely. Hence, the second summand in (47) satisfies

∥∥∥ n∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

E
[
f(X(σ))|Ftj−1

]
− f(X(tj−1)) dσ

∥∥∥
Lp(Ω;H)

=
∥∥∥ n∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

Θ1(σ, tj−1) + Θ2(σ, tj−1) + Θ3(σ, tj−1) dσ
∥∥∥
Lp(Ω;H)

≤ C
n∑
j=1

t
− 1

2
n−j+1

∫ tj

tj−1

∥∥Θ1(σ, tj−1) + Θ2(σ, tj−1) + Θ3(σ, tj−1)
∥∥
Lp(Ω;Ḣ−1)

dσ

(48)

for every n ∈ {1, . . . , Nk}, where we again applied (16) and (13) in the last step.

Below we show that

∥∥Θi(σ, tj−1)
∥∥
Lp(Ω;Ḣ−1)

≤ C|σ − tj−1|
1+r
2 , for i ∈ {1, 2, 3}.(49)

Then this is used to complete the estimate of (48) by

∥∥∥ n∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

E
[
f(X(σ))|Ftj−1

]
− f(X(tj−1)) dσ

∥∥∥
Lp(Ω;H)

≤ C
n∑
j=1

t
− 1

2
n−j+1

∫ tj

tj−1

|σ − tj−1|
1+r
2 dσ ≤ Ck

1+r
2 ,

where we again applied (32). Thus, the assertion is proved if we show (49).
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For the estimation of Θ1 we recall that ‖E[G|Ftj−1
]‖Lp(Ω;Ḣ−1) ≤ ‖G‖Lp(Ω;Ḣ−1)

for all G ∈ Lp(Ω; Ḣ−1) and obtain∥∥Θ1(σ, tj−1)
∥∥
Lp(Ω;Ḣ−1)

≤
∥∥∥∫ 1

0

f ′(σ, tj−1; s)
[(
S(σ − tj−1)− IdH

)
X(tj−1)

]
ds
∥∥∥
Lp(Ω;Ḣ−1)

≤
∫ 1

0

(
E
[∥∥f ′(σ, tj−1; s)

∥∥p
L(H,Ḣ−1)

∥∥(S(σ − tj−1)− IdH
)
X(tj−1)

∥∥p]) 1
p

ds

≤ C sup
x∈H

∥∥f ′(x)
∥∥
L(H,Ḣ1+r)

∥∥(S(σ − tj−1)− IdH
)
X(tj−1)

∥∥
Lp(Ω;H)

.

Further, from [25, Ch. 2.6, Th. 6.13] it follows∥∥(S(σ − tj−1)− IdH
)
X(tj−1)

∥∥
Lp(Ω;H)

≤ C(σ − tj−1)
1+r
2 ‖X(tj−1)

∥∥
Lp(Ω;Ḣ1+r)

≤ C(σ − tj−1)
1+r
2 sup

σ∈[0,T ]

‖X(σ)‖Lp(Ω;Ḣ1+r)

for all σ ∈ [tj−1, tj ]. In the light of (10) this proves (49) with i = 1.

By following the same steps, it holds for Θ2∥∥Θ2(σ, tj−1)
∥∥
Lp(Ω;Ḣ−1)

≤ C sup
x∈H

∥∥f ′(x)
∥∥
L(H,Ḣ−1+r)

∥∥∥∫ σ

tj−1

S(σ − τ)f(X(τ)) dτ
∥∥∥
Lp(Ω;H)

.

Now, by applying the fact that

‖A
1−r
2 S(σ − τ)‖L(H) ≤ C(σ − τ)−

1−r
2 , for all tj−1 ≤ τ < σ ≤ tj ,

we get for every σ ∈ [tj−1, tj ]∥∥∥∫ σ

tj−1

S(σ − τ)f(X(τ)) dτ
∥∥∥
Lp(Ω;H)

≤ C
∫ σ

tj−1

(σ − τ)−
1−r
2 ‖f(X(τ))‖Lp(Ω;Ḣ−1+r) dτ

≤ C
(

1 + sup
σ∈[0,T ]

∥∥X(σ)
∥∥
Lp(Ω;H)

)
k

1+r
2 .

As for Θ1 we therefore conclude∥∥Θ2(σ, tj−1)
∥∥
Lp(Ω;Ḣ−1)

≤ Ck
1+r
2 for all σ ∈ [tj−1, tj ].

For the estimate of Θ3 we first apply the fact that

E
[ ∫ 1

0

f ′(X(tj−1))
[ ∫ σ

tj−1

S(σ − τ)g(X(τ)) dW (τ)
]

ds
∣∣∣Ftj−1

]
= 0.

From this we get∥∥Θ3(σ, tj−1)
∥∥
Lp(Ω;Ḣ−1)

≤
∫ 1

0

∥∥∥(f ′(σ, tj , s)− f ′(X(tj−1))
)[ ∫ σ

tj−1

S(σ − τ)g(X(τ)) dW (τ)
]∥∥∥
Lp(Ω;Ḣ−1)

.ds



CONSISTENCY AND STABILITY OF A MILSTEIN SCHEME FOR SEMILINEAR SPDE 29

Further, for every s ∈ [0, 1] we derive by Hölder’s inequality

∥∥∥(f ′(σ, tj , s)− f ′(X(tj−1))
)[ ∫ σ

tj−1

S(σ − τ)g(X(τ)) dW (τ)
]∥∥∥
Lp(Ω;Ḣ−1)

≤
(
E
[∥∥f ′(σ, tj , s)− f ′(X(tj−1))

∥∥p
L(H,Ḣ−1)

∥∥∥∫ σ

tj−1

S(σ − τ)g(X(τ)) dW (τ)
∥∥∥p]) 1

p

≤
∥∥f ′(X(tj−1) + s(X(σ)−X(tj−1)))− f ′(X(tj−1))

∥∥
L2p(Ω;L(H,Ḣ−1))

×
∥∥∥∫ σ

tj−1

S(σ − τ)g(X(τ)) dW (τ)
∥∥∥
L2p(Ω;H)

.

Now, we have by (7) and (11)∥∥f ′(X(tj−1) + s(X(σ)−X(tj−1)))− f ′(X(tj−1))
∥∥
L2p(Ω;L(H,Ḣ−1))

≤ Cf
∥∥X(σ)−X(tj−1)

∥∥
L2p(Ω;H)

≤ C(σ − tj−1)
1
2

for all s ∈ [0, 1] and σ ∈ [tj−1, tj ]. In addition, by Proposition 2.6 it holds true that

∥∥∥ ∫ σ

tj−1

S(σ − τ)g(X(τ)) dW (τ)
∥∥∥
L2p(Ω;H)

≤ C
(∫ σ

tj−1

∥∥S(σ − τ)g(X(τ))
∥∥2

Lp(Ω;H)
dτ
) 1

2 ≤ C
(

1 + sup
τ∈[0,T ]

∥∥X(τ)
∥∥
Lp(Ω;H)

)
k

1
2

for all σ ∈ [tj−1, tj ]. This completes the estimate of Θ3 and, therefore, also the

proof of the Lemma. �

The last building block in the proof of consistency is the following lemma.

Lemma 5.8. Let Assumptions 2.2 to 2.4 be satisfied for some r ∈ [0, 1). If the

spatial discretization satisfies Assumption 2.7 it holds

max
n∈{1,...,Nk}

∥∥∥ n∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

(
g(X(σ))− g(X(tj−1))

− g′(X(tj−1))
[ ∫ σ

tj−1

g(X(tj−1)) dW (τ)
])

dW (σ)
∥∥∥
Lp(Ω;H)

≤ Ck
1+r
2

for all h ∈ (0, 1] and k ∈ (0, T ].

Proof. The proof mainly applies the same techniques as used in the proof of Lemma

5.8. First let us fix an arbitrary n ∈ {1, . . . , Nk} and recall the notation ΓX in (41).

Then we note that

E
[
Sn−j+1
k,h

∫ tj

tj−1

g(X(σ))− g(X(tj−1))− g′(X(tj−1))
[
ΓX(σ)

]
dW (σ)

∣∣∣Ftj−1

]
= 0

for every j ∈ {1, . . . , n}. Hence, the sum of these terms is a discrete time martingale

in Lp(Ω;H). Hence, we first apply Burkholder’s inequality [6, Th. 3.3] and then
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Proposition 2.6 and obtain∥∥∥ n∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

g(X(σ))− g(X(tj−1))− g′(X(tj−1))
[
ΓX(σ)

]
dW (σ)

∥∥∥
Lp(Ω;H)

≤ C
(
E
[( n∑

j=1

∥∥∥Sn−j+1
k,h

∫ tj

tj−1

(
g(X(σ))− g(X(tj−1))

− g′(X(tj−1))
[
ΓX(σ)

])
dW (σ)

∥∥∥2) p2 ]) 1
p

≤ C
( n∑
j=1

∥∥∥∫ tj

tj−1

(
g(X(σ))− g(X(tj−1))

− g′(X(tj−1))
[
ΓX(σ)

])
dW (σ)

∥∥∥2

Lp(Ω;H)

) 1
2

≤ C
( n∑
j=1

∫ tj

tj−1

∥∥g(X(σ))− g(X(tj−1))− g′(X(tj−1))
[
ΓX(σ)

]∥∥2

Lp(Ω;L0
2)

dσ
) 1

2

.

Consequently, if we show that there exists a constant such that∥∥g(X(σ))− g(X(tj−1))− g′(X(tj−1))
[
ΓX(σ)

]∥∥2

Lp(Ω;L0
2)
≤ Ck1+r(50)

for all σ ∈ [tj−1, tj ], the proof is complete. In order to prove (50) we again apply

the mean value theorem for Fréchet differentiable mappings and obtain

g(X(σ))− g(X(tj−1)) =

∫ 1

0

g′(σ, tj−1, s)
[
X(σ)−X(tj−1)

]
ds,

where we denote

g′(τ1, τ2, s) := g′(X(τ2) + s(X(τ1)−X(τ2))) for all τ1, τ2 ∈ [0, T ], s ∈ [0, 1].

After inserting (3) we get the estimate∥∥g(X(σ))− g(X(tj−1))− g′(X(tj−1))
[
ΓX(σ)

]∥∥
Lp(Ω;L0

2)

≤
∫ 1

0

∥∥g′(σ, tj−1, s)
[(
S(σ − tj−1)− IdH

)
X(tj−1)

]∥∥
Lp(Ω;L0

2)
ds

+

∫ 1

0

∥∥∥g′(σ, tj−1, s)
[ ∫ σ

tj−1

S(σ − τ)f(X(τ)) dτ
]∥∥∥
Lp(Ω;L0

2)
ds

+

∫ 1

0

∥∥∥g′(σ, tj−1, s)
[ ∫ σ

tj−1

S(σ − τ)g(X(τ)) dW (τ)− ΓX(σ)
]∥∥∥
Lp(Ω;L0

2)
ds

+

∫ 1

0

∥∥∥(g′(σ, tj−1, s)− g′(X(tj−1))
)[

ΓX(σ)
]∥∥∥
Lp(Ω;L0

2)
ds

=: J5 + . . .+ J8.

We consider the terms Ji, i ∈ {5, . . . , 8}, one by one. The desired estimated of J5

is obtained in the same way as for the term Θ1 in the proof of Lemma 5.7, namely

J5 ≤
∫ 1

0

(
E
[∥∥g′(σ, tj−1, s)

∥∥p
L(H,L0

2)

∥∥(S(σ − tj−1)− IdH
)
X(tj−1)

∥∥p]) 1
p ds

≤ C sup
x∈H

∥∥g(x)
∥∥
L(H,L0

2)

∥∥(S(σ − tj−1)− IdH
)
X(tj−1)

∥∥
Lp(Ω;H)

≤ C sup
x∈H

∥∥g(x)
∥∥
L(H,L0

2)
sup

τ∈[0,T ]

‖X(τ)‖Lp(Ω;Ḣ1+r)k
1+r
2 .
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Likewise, the estimate of J6 is done by the exact same steps as for the term Θ2 in

the proof of Lemma 5.7. Thus, it holds

J6 ≤ C sup
x∈H

∥∥g(x)
∥∥
L(H,L0

2)

(
1 + sup

σ∈[0,T ]

∥∥X(σ)
∥∥
Lp(Ω;H)

)
k

1+r
2 .

As above, the term J7 is first estimated by

J7 ≤ C sup
x∈H

∥∥g(x)
∥∥
L(H,L0

2)

∥∥∥ ∫ σ

tj−1

S(σ − τ)g(X(τ)) dW (τ)− ΓX(σ)
∥∥∥
Lp(Ω;H)

.

Then, after inserting the definition (41) of ΓX and an application of Proposition

2.6 we arrive at∥∥∥∫ σ

tj−1

S(σ − τ)g(X(τ)) dW (τ)− ΓX(σ)
∥∥∥
Lp(Ω;H)

≤ C
(∫ σ

tj−1

∥∥S(σ − τ)g(X(τ))− g(X(tj−1))
∥∥2

Lp(Ω;L0
2)

dτ
) 1

2

≤ C
(∫ σ

tj−1

∥∥(S(σ − τ)− IdH
)
g(X(τ))

∥∥2

Lp(Ω;L0
2)

dτ
) 1

2

+ C
(∫ σ

tj−1

∥∥g(X(τ))− g(X(tj−1))
∥∥2

Lp(Ω;L0
2)

dτ
) 1

2

.

For the first summand recall by (9) that g yields some additional spatial regularity.

Together with [25, Ch. 2.6, Th. 6.13] we can use this to obtain(∫ σ

tj−1

∥∥(S(σ − τ)− IdH
)
g(X(τ))

∥∥2

Lp(Ω;L0
2)

dτ
) 1

2

≤ C
(∫ σ

tj−1

(σ − τ)r
∥∥g(X(τ))

∥∥2

Lp(Ω;L0
2,r)

dτ
) 1

2

≤ C
(

1 + sup
τ∈[0,T ]

∥∥X(τ)
∥∥
Lp(Ω;Ḣr)

)
k

1+r
2

for all σ ∈ [tj−1, tj ]. A similar estimate follows for the second summand by (8) and

(11), that is(∫ σ

tj−1

∥∥g(X(τ))− g(X(tj−1))
∥∥2

Lp(Ω;L0
2)

dτ
) 1

2 ≤ C
(∫ σ

tj−1

(τ − tj−1) dτ
) 1

2 ≤ Ck
1+r
2 .

This shows the desired estimate for J7 and it remains to consider J8. The estimate

of J8 is very similar to the estimate of Θ3 in the proof of Lemma 5.7. After the

application of Hölder’s inequality we arrive at

J8 ≤
∫ 1

0

∥∥g′(X(tj−1) + s
(
X(σ)−X(tj−1)

))
− g′(X(tj−1))

∥∥
L2p(Ω;L(H,L0

2))
ds

×
∥∥∥∫ σ

tj−1

g(X(tj−1)) dW (τ)
∥∥∥
L2p(Ω;H)

.

Next, by (8) and (11) it follows∥∥g′(X(tj−1) + s
(
X(σ)−X(tj−1)

))
− g′(X(tj−1))

∥∥
L2p(Ω;L(H,L0

2))
≤ C(σ − tj−1)

1
2 ,
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while Proposition 2.6 and Assumption 2.4 yield∥∥∥∫ σ

tj−1

g(X(tj−1)) dW (τ)
∥∥∥
L2p(Ω;H)

≤ C
(∫ σ

tj−1

∥∥g(X(tj−1))
∥∥2

L2p(Ω;L0
2)

dτ
) 1

2

≤ C
(

1 + sup
τ∈[0,T ]

‖X(τ)‖L2p(Ω;H)

)
k

1
2 ,

for all σ ∈ [tj−1, tj ]. Therefore, there exists a constant such that

J8 ≤ Ck

and the assertion of the lemma has been proved. �

6. Noise approximation

Starting point of the spectral noise approximation is the covariance operator

Q ∈ L(U), which is symmetric and nonnegative. Since we do not assume that Q

has finite trace, we need to approximate the stochastic integral with respect to a

cylindrical Q-Wiener process W : [0, T ]× Ω→ U (see [26, Ch. 2.5]).

Throughout this section we work under the assumption that there exists an

orthonormal basis (ϕj)j∈N of the separable Hilbert space U such that

Qϕj = µjϕj , for all j ∈ N,

where µj ≥ 0, j ∈ N, denote the eigenvalues of Q. First let us note that this

assumption is not fulfilled for all symmetric and nonnegative operators Q ∈ L(U).

However, it always holds true for white noise, that is Q = IdU , or if Q is of finite

trace by the spectral theorem for compact, symmetric operators. Further, the

family (
√
µjϕj)j∈N is an orthonormal basis of the Cameron-Martin space U0 =

Q
1
2 (U), which is endowed with the inner product (u, v)U0

:= (Q−
1
2u,Q−

1
2 v)U for

all u, v ∈ U0 (see [26, Ch. 2.3]).

As demonstrated in [26, Rem. 2.5.1, Prop. 2.5.2], in order to define the stochas-

tic integral with respect to a cylindrical Wiener process, one introduces a further

Hilbert space U1 and an Hilbert-Schmidt embedding I : U0 → U1, such that W be-

comes a standard Wiener process on the larger space U1 with covariance operator

Q1 := II∗ and Karhunen-Loève expansion

W (t) =

∞∑
j=1

βj(t)I(
√
µjϕj), t ∈ [0, T ],(51)

where βj : [0, T ] × Ω → R, j ∈ N, is a family of independent, standard real-valued

Brownian motions. Since I : U0 → Q
1
2
1 (U0) is an isometry, the definition of the

stochastic integral with respect to a cylindrical Wiener process is in fact independent

of the choice of the space U1, see [26, Rem. 2.5.3]. Finally note that one can choose

the Hilbert-Schmidt operator I in such a way that (I(
√
µjϕj))j∈N becomes an

orthonormal basis of Q
1
2
1 (U1).

In order to approximate the Wiener process we follow the footprints of [1]. Let

us denote by QJ ∈ L(U), J ∈ N, the operator given by

QJϕj :=

{
µjϕj , if j ∈ {1, . . . , J},
0, else.
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As in [1] we further use the abbreviation QcJ := Q−QJ . Now, since QJ is of finite

rank, the QJ -Wiener process W J : [0, T ]× Ω→ U defined by

W J(t) =

J∑
j=1

√
µjβj(t)ϕj , t ∈ [0, T ],(52)

can be simulated on a computer, provided that the orthonormal basis (ϕj)j∈N of

U is explicitly known. Here βj : [0, T ] × Ω → R, j ∈ N, are the same as in (51)

Further, from [1] we recall the notation W cJ(t) := W (t)−W J(t) for all t ∈ [0, T ].

Then, the Milstein-Galerkin finite element scheme with truncated noise is given

by the recursion

Xk,h,J(t0) = PhX0,

Xk,h,J(tn) = Xk,h,J(tn−1)− k
[
AhXk,h,J(tn) + Phf(Xk,h,J(tn−1))

]
+ Phg(Xk,h,J(tn−1))∆kW

J2

(tn)

+

∫ tn

tn−1

Phg
′(Xk,h,J(tn−1))

[ ∫ σ1

tn−1

g(Xk,h,J(tn−1)) dW J(σ2)
]

dW J(σ1)

(53)

for n ∈ {1, . . . , Nk} and all h ∈ (0, 1], k ∈ (0, T ] and J ∈ N. We stress that

the Euler-Maruyama term incorporates J2 summands of the Wiener noise expan-

sion (52) while the additional iterated integral term of the Milstein scheme only

uses J summands. As discussed in [1] this leads to an optimal balance between

computational cost and order of convergence.

First we embed the scheme (53) into the abstract framework of Section 3. Com-

pared to the scheme (4) the only difference appears in the definition of the increment

function, which is now given by

Φh,J(x, t, k) = −kSk,hf(x) + Sk,hg(x)
(
W J2

(t+ k)−W J2

(t)
)

+ Sk,h

∫ t+k

t

g′(x)
[ ∫ σ1

t

g(x) dW J(σ2)
]

dW J(σ1),
(54)

for (t, k) ∈ T. Our first result is concerned with the stability of the Milstein scheme

with truncated noise.

Theorem 6.1. Under Assumptions 2.2 to 2.4 the Milstein-Galerkin finite element

scheme (53) is bistable for every h ∈ (0, 1] and J ∈ N. The stability constant CStab

can be chosen to be independent of h ∈ (0, 1] and J ∈ N.

Proof. We only need to verify that Assumption 3.7 is also satisfied by Φh,J . This

is done by the exact same steps as in the proof of Theorem 4.1. An important tool

in that proof is Proposition 2.6. Here we have to apply it to stochastic integrals

with respect to W J . For this, let Ψ: [0, T ] × Ω → L0
2 be a predictable stochastic

process satisfying the condition of Proposition 2.6, then it holds∥∥∥∫ τ2

τ1

Ψ(σ) dW J(σ)
∥∥∥
Lp(Ω;H)

≤ C(p)
(
E
[( ∫ τ2

τ1

∥∥Ψ(σ)Q
1
2

J

∥∥2

L2(U,H)
dσ
) p

2
]) 1

p

,

for all 0 ≤ τ1 < τ2 ≤ T and all J ∈ N. Since we have∥∥Ψ(σ)Q
1
2

J

∥∥2

L2(U,H)
=

J∑
j=1

µj
∥∥Ψ(σ)ϕj

∥∥2 ≤
∞∑
j=1

µj
∥∥Ψ(σ)ϕj

∥∥2
=
∥∥Ψ(σ)

∥∥2

L0
2
,
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the Lp-norm of the stochastic integral with respect to W J is therefore bounded by∥∥∥∫ τ2

τ1

Ψ(σ) dW J(σ)
∥∥∥
Lp(Ω;H)

≤ C(p)
(
E
[( ∫ τ2

τ1

∥∥Ψ(σ)
∥∥2

L0
2

dσ
) p

2
]) 1

p

.

In particular, the constant is independent of J ∈ N. Keeping this in mind, all steps

in the proof of Theorem 4.1 remain also valid for (53). �

Having this established it remains to investigate if the scheme (53) is consistent.

For this we introduce the following additional condition, which allows us to control

the order of consistency with respect to the parameter J ∈ N.

Assumption 6.2. There exist constants C and α > 0 such that

( ∞∑
j=1

jαµj
∥∥g(x)ϕj

∥∥2
) 1

2 ≤ C
(
1 + ‖x‖

)
,(55)

( ∞∑
j=1

jαµj
∥∥g′(x)[y]ϕj

∥∥2
) 1

2 ≤ C‖y‖(56)

for all x, y ∈ H, where (ϕj , µj)j∈N are the eigenpairs of the covariance operator Q.

Remarks 6.3. 1) Note that (55) and (56) coincide if g : H → L0
2 is linear.

2) Assumption 2.4 ensures that (55) and (56) are fulfilled with α = 0. Further,

provided that Q is of finite trace and g : H → L0
2 satisfies

‖g(x)‖L(U,H) ≤ C
(
1 + ‖x‖

)
, and ‖g′(x)[y]‖L(U,H) ≤ C‖y‖

for all x, y ∈ H, then (55) and (56) simplify to

( ∞∑
j=1

jαµj

) 1
2

<∞.(57)

Hence, the order of convergence of the truncated noise only depends on the rate of

decay of the eigenvalues of the covariance operator Q.

Theorem 6.4. Let Assumptions 2.7 and 2.9 be fulfilled by the spatial discretization.

If Assumptions 2.2 to 2.4 and Assumption 6.2 are satisfied with p ∈ [2,∞), r ∈ [0, 1)

and α > 0, then there exists a constant C such that the following estimate holds

true for the local truncation error of the Milstein scheme (53), namely∥∥Rk[X|Tk]∥∥−1,p
≤ C

(
h1+r + k

1+r
2 + J−α

)
for all h ∈ [0, 1), k ∈ (0, T ] and J ∈ N. In particular, if h, J and k are coupled

by h := c1k
1
2 and J := dc2k−

1+r
2α e for some positive constants c1, c2 ∈ R, then the

Milstein scheme is consistent of order 1+r
2 .

Proof. The proof relies on slightly generalized techniques from [1, Lem. 4.1 and

Lem. 4.2]. First let us note, that the results of Lemmas 5.2 to 5.7 remain valid for

(53). Therefore, from the decomposition of the local truncation error in Lemma

3.11 and (45) it follows that we only need to show that the following analogue of
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Lemma 5.8 is valid: There exists a constant C such that for all n ∈ {1, . . . , Nk}∥∥∥ n∑
j=1

Sn−j+1
k,h

(∫ tj

tj−1

g(X(σ)) dW (σ)−
∫ tj

tj−1

g(X(tj−1)) dW J2

(σ)

−
∫ tj

tj−1

g′(X(tj−1))
[ ∫ σ

tj−1

g(X(tj−1)) dW J(τ)
]

dW J(σ)
)∥∥∥

Lp(Ω;H)

≤ C
(
k

1+r
2 + J−α

)
for all h ∈ (0, 1], k ∈ (0, T ] and J ∈ N. We begin by fixing an arbitrary n ∈
{1, . . . , Nk} and insert several suitable terms with untruncated noise such that

Lemma 5.8 is applicable. Hence, we obtain∥∥∥ n∑
j=1

Sn−j+1
k,h

(∫ tj

tj−1

g(X(σ)) dW (σ)−
∫ tj

tj−1

g(X(tj−1)) dW J2

(σ)

−
∫ tj

tj−1

g′(X(tj−1))
[ ∫ σ

tj−1

g(X(tj−1)) dW J(τ)
]

dW J(σ)
)∥∥∥

Lp(Ω;H)

≤ Ck
1+r
2 +

∥∥∥ n∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

g(X(tj−1)) dW cJ2

(σ)
∥∥∥
Lp(Ω;H)

+
∥∥∥ n∑
j=1

Sn−j+1
k,h

(∫ tj

tj−1

g′(X(tj−1))
[ ∫ σ

tj−1

g(X(tj−1)) dW (τ)
]

dW (σ)

−
∫ tj

tj−1

g′(X(tj−1))
[ ∫ σ

tj−1

g(X(tj−1)) dW J(τ)
]

dW J(σ)
)∥∥∥

Lp(Ω;H)
.

(58)

First let us note that by Assumption 6.2 it holds

∥∥g(X(tj−1))
∥∥
Lp(Ω;L2(Q

1
2
cJ2 (U),H))

=
(
E
[( ∞∑

j=J2+1

µj
∥∥g(X(tj−1))ϕj

∥∥2
) p

2
]) 1

p

≤
(
E
[( ∞∑

j=J2+1

jα

J2α
µj
∥∥g(X(tj−1))ϕj

∥∥2
) p

2
]) 1

p

≤ CJ−α
(

1 + sup
t∈[0,T ]

∥∥X(t)
∥∥
Lp(Ω;H)

)
.

(59)

This together with Burkholder’s inequality [6, Th. 3.3], (19) and Proposition 2.6

applied to W cJ2

yields for the second term∥∥∥ n∑
j=1

Sn−j+1
k,h

∫ tj

tj−1

g(X(tj−1)) dW cJ2

(σ)
∥∥∥
Lp(Ω;H)

≤ C
(
E
[( n∑

j=1

∥∥∥Sn−j+1
k,h

∫ tj

tj−1

g(X(tj−1)) dW cJ2

(σ)
∥∥∥2) p2 ]) 1

p

≤ C
( n∑
j=1

∥∥∥Sn−j+1
k,h

∫ tj

tj−1

g(X(tj−1)) dW cJ2

(σ)
∥∥∥2

Lp(Ω;H)

) 1
2

≤ C
( n∑
j=1

∫ tj

tj−1

∥∥g(X(tj−1))
∥∥2

Lp(Ω;L2(Q
1
2
cJ2 (U),H))

dσ
) 1

2 ≤ C
√
TJ−α.
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By the same arguments we get for the third summand in (58) that∥∥∥ n∑
j=1

Sn−j+1
k,h

(∫ tj

tj−1

g′(X(tj−1))
[ ∫ σ

tj−1

g(X(tj−1)) dW (τ)
]

dW (σ)

−
∫ tj

tj−1

g′(X(tj−1))
[ ∫ σ

tj−1

g(X(tj−1)) dW J(τ)
]

dW J(σ)
)∥∥∥

Lp(Ω;H)

≤ C
( n∑
j=1

∥∥∥∫ tj

tj−1

g′(X(tj−1))
[ ∫ σ

tj−1

g(X(tj−1)) dW cJ(τ)
]

dW (σ)
∥∥∥2

Lp(Ω;H)

) 1
2

+ C
( n∑
j=1

∥∥∥∫ tj

tj−1

g′(X(tj−1))
[ ∫ σ

tj−1

g(X(tj−1)) dW (τ)
]

dW cJ(σ)
∥∥∥2

Lp(Ω;H)

) 1
2

.

Then, by two applications of Proposition 2.6 and Assumptions 2.4 and (59) it

follows( n∑
j=1

∥∥∥∫ tj

tj−1

g′(X(tj−1))
[ ∫ σ

tj−1

g(X(tj−1)) dW cJ(τ)
]

dW (σ)
∥∥∥2

Lp(Ω;H)

) 1
2

≤ C
( n∑
j=1

∫ tj

tj−1

∥∥∥g′(X(tj−1))
[ ∫ σ

tj−1

g(X(tj−1)) dW cJ(τ)
]∥∥∥2

Lp(Ω;L0
2)

dσ
) 1

2

≤ C sup
x∈H

∥∥g′(x)
∥∥
L(H,L0

2)

( n∑
j=1

∫ tj

tj−1

∫ σ

tj−1

∥∥g(X(tj−1))
∥∥2

Lp(Ω;L2(Q
1
2
cJ ,H))

dτ dσ
) 1

2

≤ CCg
√
Tk

1
2 J−

α
2 ≤ C

(
k + J−α

)
,

where we applied the inequality ab ≤ 1
2 (a2 + b2) in the last step. By using (56) we

obtain the following estimate in the same way as in (59),( n∑
j=1

∥∥∥∫ tj

tj−1

g′(X(tj−1))
[ ∫ σ

tj−1

g(X(tj−1)) dW (τ)
]

dW cJ(σ)
∥∥∥2

Lp(Ω;H)

) 1
2

≤ C
( n∑
j=1

∫ tj

tj−1

∥∥∥g′(X(tj−1))
[ ∫ σ

tj−1

g(X(tj−1)) dW (τ)
]∥∥∥2

Lp(Ω;L2(Q
1
2
cJ (U),H))

dσ
) 1

2

≤ C
( n∑
j=1

∫ tj

tj−1

J−α
∥∥∥∫ σ

tj−1

g(X(tj−1)) dW (τ)
∥∥∥2

Lp(Ω;H)
dσ
) 1

2

≤ CJ−α2
( n∑
j=1

∫ tj

tj−1

(
σ − tj−1

)∥∥g(X(tj−1))
∥∥2

Lp(Ω;L0
2)

dσ
) 1

2

≤ C
√
TCg

(
1 + sup

t∈[0,T ]

∥∥X(t)
∥∥
Lp(Ω;H)

)
k

1
2 J−

α
2 ≤ C

(
k + J−α

)
.

This completes the proof. �

Combining Theorems 6.1 and 6.4 with Theorem 3.4 immediately yields the fol-

lowing convergence result:

Theorem 6.5. Let Assumptions 2.7 and 2.9 be fulfilled by the spatial discretization.

If Assumptions 2.2 to 2.4 and Assumption 6.2 are satisfied with p ∈ [2,∞), r ∈ [0, 1)

and α > 0, then there exists a constant C such that

max
0≤n≤Nk

∥∥Xk,h,J(tn)−X(tn)
∥∥
Lp(Ω;H)

≤ C
(
h1+r + k

1+r
2 + J−α

)
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for all h ∈ (0, 1], k ∈ (0, T ] and J ∈ N, where Xk,h,J denotes the grid function gen-

erated by the Milstein scheme with truncated noise (53) and X is the mild solution

to (2).
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