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Abstract. We introduce a new family of refined Sobolev-Malliavin spaces

that capture the integrability in time of the Malliavin derivative. We consider

duality in these spaces and derive a Burkholder type inequality in a dual norm.

The theory we develop allows us to prove weak convergence with essentially

optimal rate for numerical approximations in space and time of semilinear

parabolic stochastic evolution equations driven by Gaussian additive noise.

In particular, we combine a standard Galerkin finite element method with

backward Euler timestepping. The method of proof does not rely on the use

of the Kolmogorov equation or the Itō formula and is therefore non-Markovian

in nature. Test functions satisfying polynomial growth and mild smoothness

assumptions are allowed, meaning in particular that we prove convergence of

arbitrary moments with essentially optimal rate.

1. Introduction

The classical Sobolev-Malliavin spaces capture the integrability in the chance

parameter of a random variable and its Malliavin derivatives. In many situations,

where Malliavin calculus is used, in particular, for stochastic evolution equations,

the Malliavin derivative is a stochastic process. One purpose of this paper is to

introduce a refined family of Sobolev-Malliavin spaces that capture the integrability

properties of the Malliavin derivative with respect to its time parameter. It turns

out that the Malliavin derivative of the solution to a parabolic stochastic evolution

equation has, depending on the regularity of the noise, good integrability properties

in time and, in the case of trace class noise, it is even bounded. However, the main

purpose of the new feature is not to measure regularity in a refined way, but to

exploit that the corresponding dual norms are weaker with respect to integrability

in time.

Let (H, ‖ · ‖, 〈·, ·〉) be a separable Hilbert space and Q ∈ L(H) be a selfadjoint

positive semidefinite linear operator on H. We define the space H0 = Q
1
2 (H) and

let L0
2 = L2(H0, H) be the space of Hilbert-Schmidt operators from H0 to H. We

consider a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) on which an L2([0, T ], H0)-

isonormal process is defined. For a differentiable random variable X the Malliavin

derivative DX = (DtX)t∈[0,T ] with respect to the isonormal process, is an L0
2-

valued stochastic process. We introduce, for p, q ≥ 2, the refined Sobolev-Malliavin
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spaces M1,p,q(H) of random variables X ∈ L2(Ω, H) such that

‖X‖M1,p,q(H) =
(

‖X‖pLp(Ω,H) + ‖DX‖p
Lp(Ω,Lq([0,T ],L0

2))

)
1
p

< ∞.

The classical Sobolev-Malliavin spaces are obtained for q = 2. We use the refined

spaces in a duality argument based on the Gelfand triple

M1,p,q(H) ⊂ L2(Ω, H) ⊂ M1,p,q(H)∗.

A key ingredient is the following inequality for the H-valued stochastic Itō-integral
∫ T

0
ΦdW in the dual norm of M1,p,q(H), whereW is a cylindrical Q-Wiener process

and Φ ∈ Lp(Ω, L2([0, T ],L0
2)) is a predictable stochastic process. In Theorem 3.5

we show
∥

∥

∥

∫ T

0

Φ(t) dW (t)
∥

∥

∥

M1,p,q(H)∗
≤

∥

∥Φ
∥

∥

Lp′ (Ω,Lq′ ([0,T ],L0
2))

,(1.1)

where p′, q′ are the conjugate exponents to p, q ≥ 2. We apply this inequality in

situations, where one usually relies on the Burkholder-Davis-Gundy inequality, see

Lemma 2.2. There the L2(Ω, H)-norm of the stochastic integral is bounded in terms

of the Lp(Ω, L2([0, T ],L0
2))-norm of Φ, whereas here the dual norm of the integral is

bounded by the Lp′

(Ω, Lq′([0, T ],L0
2))-norm of Φ. Since q′ ≤ 2, this allows stronger

singularities with respect to t.

In defining the spaces M1,p,q(H) some care needs to be taken. For q ≥ 2 we

define the Malliavin derivative on a non-standard core Sq(H), see (3.2), (3.3), of

smooth and cylindrical random variables, more regular than in the classical theory

in which q = 2. By proving that the operator D : Sq(H) → Lp(Ω, Lq([0, T ],L0
2)) is

well defined and closable, we show that M1,p,q(H) are Banach spaces. The proofs

are rather elementary and rely to a large extent on existing results for the case q = 2.

The spaces are new to the best of our knowledge, although there are similarities

with the Hida and Kondratiev spaces, see, e.g., [4] or [23].

The motivation for introducing the spaces described above is found in our aim to

develop new methods for the analysis of the weak error of numerical approximations

of semilinear parabolic stochastic partial differential equations of the form

dX(t) +AX(t) dt = F (X(t)) dt+ dW (t), t ∈ (0, T ]; X(0) = X0.(1.2)

Both space-time white noise and trace class noise are considered and the nonlinear-

ity F is allowed to be a Nemytskii operator. See Assumption 2.3 below for precise

conditions on A, F , W , X0. We treat discretizations in space and time, allowing for

any spatial discretization scheme that satisfies the abstract Assumption 2.4 below.

We verify this assumption for piecewise linear finite element approximations of the

heat equation. Discretization in time is performed by the semi-implicit backward

Euler method. Our main result, weak convergence of essentially optimal rate, is

stated in Theorem 4.4.

Weak convergence for linear stochastic evolution equations was studied in [14],

[16], [19], [28], [29], [31], [35] and the works [5], [6], [7], [21], [22], [27, Chapt. 5], [44],

[45], [46] treat semilinear equations with additive noise. Of these [27, Chapt. 5] is

unique in that it treats a nonglobal Lipschitz drift term. In [8], [9] the authors study



DUALITY IN REFINED SOBOLEV-MALLIAVIN SPACES 3

weak convergence for stochastic ordinary delay differential equations. Most of these

works are based on Itō’s formula and Kolmogorov’s equation. It becomes apparent

while reading the literature that proving weak convergence of optimal order is a

challenging task. Semilinear equations with multiplicative noise was treated in [2],

[12], [15] but only [12] covers noise more general than linear. No results are known

for multiplicative noise in the form of a nonlinear Nemytskii operator. As in [5],

[7], [22], [27, Chapt. 5], [44], [45] we allow F to be a nonlinear Nemytskii operator.

Let X,Y ∈ L2(Ω, H) and ϕ : H → R have two continuous Fréchet derivatives of

polynomial growth. Our technique relies on the following linearization of the weak

error

E
[

ϕ(X)− ϕ(Y )
]

= E
[〈

ϕ̃,X − Y
〉]

, where ϕ̃ =

∫ 1

0

ϕ′(̺X + (1− ̺)Y ) d̺,

introduced in [10] and [31] independently. The paper [10] then proceeds by using an

adjoint problem. Our method is the following: If V ⊂ L2(Ω, H) ⊂ V ∗ is a Gelfand

triple such that ϕ̃ ∈ V , then we obtain by duality
∣

∣E
[

ϕ(X)− ϕ(Y )
]
∣

∣ ≤
∥

∥ϕ̃
∥

∥

V

∥

∥X − Y
∥

∥

V ∗
.

With a good choice of V , the error converges in the V ∗-norm with twice the rate of

convergence in the L2(Ω, H)-norm, which is the expected rate of weak convergence.

For linear equations we prove that V = M1,p,p(H) is a good choice for some p > 2.

The main part of the errorX−Y is then a stochastic convolution
∫ T

0
E(T−t) dW (t).

Bounding the error operator E(T − t) in the apropriate norm yields convergence at

the price of a singularity at t = T . By using the inequality (1.1) on this integral

with sufficiently large p = q > 2, we may integrate a stronger singularity and obtain

a higher rate of convergence. For semilinear equations the main difference is that

a term involving F (X)−F (Y ) appears. We then use V = G1,p(H) = M1,p,p(H)∩

L2p(Ω, H). In Lemma 3.9 we show that F : V ∗ → V ∗ is locally Lipschitz with a

constant depending on ‖X‖M1,2p,p(H), ‖Y ‖M1,2p,p(H). The choice of a stronger V -

norm is necessary in order to control the nonlinearity in this way. After bounding

these norms, we may use a standard Gronwall argument to bound ‖X − Y ‖V ∗ .

As our method does not rely on the use of Kolmogorov’s equation or Itō’s formula,

it extends to non-Markovian equations. In the work [1] our method is used to prove

weak convergence for semilinear stochastic Volterra equations driven by additive

noise. Such equations suffer from the lack of a Kolmogorov equation and therefore

the classical proof is not feasible. We hope that our method will enable weak error

analysis for other non-Markovian equations such as for instance random evolution

PDEs. In this context we mention the work [8] in which non-Markovian stochastic

ordinary delay equations with delay in the diffusion is treated with a completely

different method, relying on the tame Itō formula from the anticipating stochastic

calculus. For a discussion of the difficulties that arise in connection with a possible

extension to multiplicative noise, see Subsection 4.3 below.

An additional advantage of the present work is that we only require the test

function ϕ to have two continuous Fréchet derivatives of polynomial growth. This

means, in particular, that we prove convergence of arbitrary moments with the
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higher rate. Except in [31] for the case of linear equations, the test function in the

previous weak error analysis is assumed to have bounded derivatives and conver-

gence of moments is treated separately, for example, in [11]. In addition, our weak

error estimate in Theorem 4.4 is uniform with respect to the time partition unlike

earlier results in the literature.

The paper is organized as follows. In Section 2 we present preliminary material

and our basic assumptions on the stochastic partial differential equation and the

numerical scheme. The core of the paper is Section 3, which contains our extensions

of the Malliavin calculus. In 3.1 we introduce the refined Sobolev-Malliavin spaces

and prove that they are well defined. Duality of our new spaces is treated in 3.2,

with the inequality (1.1) and a local Lipschitz bound as the main results. In 3.3 and

3.4 regularity in terms of the new spaces is proved for the solution to the stochastic

evolution equation and its approximation, respectively. Section 4 contains the weak

convergence analysis. In 4.1 we restrict the discussion to approximations of the

stochastic convolution and in 4.2 we treat semilinear equations. Finally, in Section 5

we verify our assumption on the numerical method for a standard finite element

approximation of the heat equation.

2. Setting and preliminaries

2.1. Analytic preliminaries. Let (U, ‖ · ‖U , 〈·, ·〉U ) and (V, ‖ · ‖V , 〈·, ·〉V ) be sep-

arable Hilbert spaces and let L(U, V ) be the Banach space of all bounded linear

operators U → V . If U = V , then we write L(U) = L(U,U) and if U = H,

we abbreviate L = L(H). We denote by L2(U, V ) ⊂ L(U, V ) the subspace of all

Hilbert-Schmidt operators endowed with the standard norm and inner product

‖T‖L2(U,V ) =
(

∑

j∈N

‖Tuj‖
2
V

)
1
2

, 〈S, T 〉L2(U,V ) =
∑

j∈N

〈Suj , Tuj〉V ,

where both are independent of the particular choice of ON-basis (uj)j∈N ⊂ U .

For separable Hilbert spaces U1, . . . , Um, m ∈ N, we denote by L[m](U1 × · · · ×

Um, V ) the space of multi-linear operators b : U1 × · · · × Um → V . We use the

notation b · (u1, . . . , um) = b(u1, . . . , um) for ui ∈ Ui, i = 1, . . . ,m, to emphasize

that b is multi-linear. If U = U1 = . . . = Um we abbreviate L[m](U × · · · × U, V ) =

L[m](U, V ). The norm ‖b‖L[m](U1×···×Um,V ) is the smallest constant C such that

‖b · (u1, . . . , um)‖V ≤ C‖u1‖U1
· · · ‖um‖Um

, ∀ui ∈ Ui, i = 1, . . . ,m.(2.1)

By Cm(U, V ) we denote the space of all mappings φ : U → V with continuous

Fréchet derivatives of order m, Cm
b (U, V ) is the subspace with m ≥ 1 bounded

derivatives φ′, . . . , φ(m) (note that φ needs not be bounded), and Cm
p (U, V ) denotes

the analogous space with derivatives of polynomial growth. On Cm
b (U, V ) we use

the natural seminorm |φ|Cm
b

= supx∈U ‖φ(m)(x)‖L[m](U,V ). We define C0
b(U, V ) to

be all bounded continuous mappings U → V , endowed with the uniform norm.

The first derivative of φ ∈ C1(U, V ) is an operator φ′(x) ∈ L(U, V ) = L[1](U, V )

for every x ∈ U . When V = R we may identify φ′(x) ∈ L(U,R) = U∗ with its

gradient φ′(x) ∈ U via φ′(x) · u = 〈φ′(x), u〉U by the Riesz representation theorem.



DUALITY IN REFINED SOBOLEV-MALLIAVIN SPACES 5

Similarly, for φ ∈ C2(U,R) we will sometimes identify φ′′(x) ∈ L[2](U,R) with an

operator φ′′(x) ∈ L(U) via φ′′(x) · (u1, u2) = 〈φ′′(x)u1, u2〉U . By the mean value

theorem we have, for φ ∈ C1(U, V ),

φ(x) = φ(y) +

∫ 1

0

φ′(y + ρ(x− y)) · (x− y) dρ, x, y ∈ U.(2.2)

We will use the following version of Gronwall’s Lemma, for a proof see [17,

Lemma 7.1].

Lemma 2.1. Let T > 0, N ∈ N, k = T
N , and tn = nk for 0 ≤ n ≤ N . If (ϕj)

N
j=1

are nonnegative real numbers with

ϕn ≤ C1 (1 + t−1+µ
n ) + C2 k

n−1
∑

j=0

t−1+ν
n−j ϕj , 1 ≤ n ≤ N,

for some constants C1, C2 ≥ 0 and µ, ν > 0, then there exists a constant C =

C(µ, ν, C2, T ) such that

ϕn ≤ C C1 (1 + t−1+µ
n ), 1 ≤ n ≤ N.

We sometimes write a . b to denote a ≤ Cb for some constant C > 0. Constants

arising from the estimates (2.3), (2.4), (2.10) and (2.12), as well as trivial numerical

constants, will be suppressed with this symbol.

2.2. Stochastic preliminaries. Let (H, ‖ · ‖, 〈·, ·〉) be a separable Hilbert space

and let Q ∈ L = L(H) be a selfadjoint, positive semidefinite operator on H and

Q
1
2 its unique positive square root. The space H0 = Q

1
2 (H) is a Hilbert space

with scalar product 〈u, v〉H0
= 〈Q− 1

2u,Q− 1
2 v〉. We denote by L0

2 = L2(H0, H)

the space of Hilbert-Schmidt operators H0 → H. We consider a filtered probabil-

ity space (Ω,F , (Ft)t∈[0,T ],P) and the corresponding Bochner spaces Lp(Ω, V ) =

Lp((Ω,F ,P), V ), p ∈ [1,∞], V a Banach space. We abbreviate L2(Ω) = L2(Ω,R).

We assume that (W (t))t∈[0,T ] is a cylindrical Q-Wiener process, meaning that

W ∈ C([0, T ],L(H0, L
2(Ω))) is such that t 7→ W (t)u is an Ft-predictable real-valued

Brownian motion for every u ∈ H0 and

E
[

W (s)uW (t)v
]

= min(s, t)〈u, v〉H0
, u, v ∈ H0, s, t ∈ [0, T ].

For predictable Φ ∈ L2([0, T ]× Ω,L0
2) the H-valued stochastic Itō-integral

∫ T

0

Φ(t) dW (t) ∈ L2(Ω, H),

is a well defined random variable. For details on the construction of cylindrical

Wiener processes and the corresponding stochastic integral we refer to [13, 39, 42].

For technical reasons we assume that the σ-field F is generated by (W (t))t∈[0,T ]

and the filtration (Ft)t∈[0,T ] is the natural filtration associated with (W (t))t∈[0,T ].

We cite the following special case of Burkholder’s inequality [13, Lemma 7.2].



6 A. ANDERSSON, R. KRUSE, AND S. LARSSON

Lemma 2.2. Let (Φ(t))t∈[0,T ] be a predictable and L0
2-valued process such that

‖Φ‖Lp(Ω,L2([0,T ],L0
2))

< ∞ for some p ≥ 2. Then there exists a constant Cp, such

that
∥

∥

∥

∫ T

0

Φ(s) dW (s)
∥

∥

∥

Lp(Ω,H)
≤ Cp‖Φ‖Lp(Ω,L2([0,T ],L0

2))
.

2.3. The stochastic equation. We study equation (1.2) under the following as-

sumption and recall that the solution X takes values in H.

Assumption 2.3. (i) Let (A,D(A)) be a linear operator on H such that A−1 ∈

L(H) exists and −A is the generator of an analytic semigroup (S(t))t≥0 of

bounded linear operators S(t) = e−tA on H.

(ii) The initial value X0 is deterministic and satisfies X0 ∈ Ḣ2β, for some β ∈

(0, 1], where Ḣα ⊂ H denotes the domain of A
α
2 .

(iii) The covariance operator Q satisfies ‖A
β−1
2 ‖L0

2
= ‖A

β−1
2 Q

1
2 ‖L2

< ∞, for the

same β as in (ii).

(iv) The drift F : H → H is assumed to be twice differentiable in the sense F ∈

C1
b(H,H) ∩ C2

b(H, Ḣ−1), where Ḣ−1 is defined below.

Under Assumption 2.3 (i) the fractional powers A
r
2 for r ∈ R are well defined,

see [38, Section 2.6]. We define the norms ‖v‖r = ‖A
r
2 v‖ and let Ḣr = D(A

r
2 ) for

r ≥ 0. For r < 0 we define Ḣr as the closure of H under the norm ‖v‖r. The spaces

Ḣr ⊂ H ⊂ Ḣ−r form a Gelfand triple for r > 0.

The analytic semigroup (S(t))t≥0 generated by −A satisfies, see [38, Section 2.6],

‖A̺S(t)‖L ≤ C̺t
−̺, t > 0, ̺ ≥ 0,(2.3)

‖(S(t)− I)A−̺‖L ≤ C̺t
̺, t ≥ 0, 0 < ̺ ≤ 1.(2.4)

Under Assumption 2.3, the stochastic equation (1.2) has a mild solution X ∈

C([0, T ], Lp(Ω, H)), for every p ≥ 2, in the sense that it satisfies the integral equation

(2.5) X(t) = S(t)X0 +

∫ t

0

S(t− s)F (X(s)) ds+

∫ t

0

S(t− s) dW (s), t ∈ [0, T ],

and

sup
t∈[0,T ]

‖X(t)‖Lp(Ω,H) ≤ C(1 + ‖X0‖).(2.6)

For every γ ∈ [0, β) the solution satisfies X(t) ∈ Ḣγ , P-a.s., for all t ∈ [0, T ]. For

more details we refer to [13], [25], [32], and the references therein.

In [2] and [15] the authors assume F ∈ C2
b(H,H), which works well for the

analysis but has the following disadvantage: If D ⊂ Rd, d = 1, 2, 3, H = L2(D)

and F : H → H is a Nemytskii operator, i.e., a mapping in the form g 7→ F (g) =

f(g(·)), where f ∈ C2
b(R,R), then F ∈ C1

b(H,H) but in general F /∈ C2
b(H,H).

This disqualifies the most interesting examples of nonlinearities F . On the other

hand by the Sobolev embedding theorem F ∈ C2
b(H, Ḣ− d

2+ǫ) for ǫ > 0 and hence

Assumption 2.3 admits Nemytskii operators for d = 1. See [44, Example 5.1] for a

verification. For d = 2, 3 one needs to assume F ∈ C2
b(H, Ḣ−s) with s > 1, which

works for spectral Galerkin approximations but not for the finite element method
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due to the restriction on ̺ in (2.11) below. In [1] this restriction is removed, allowing

for finite element discretization also for d = 2, 3. Papers that include Nemytskii

operators are [5], [7], [22], [44], [45] and our Assumption 2.3 (iv) is a reformulation

of [44, Assumption 5.1].

2.4. Approximation of the solution. We approximate equation (1.2) in finite-

dimensional approximation spaces Vh ⊆ H, h ∈ (0, 1]. The parameter h ∈ (0, 1] is

a refinement parameter. We denote by Ph : H → Vh the orthogonal projector onto

Vh and by (Ah)h∈(0,1] a family of operators Ah : Vh → Vh approximating A. The

assumptions on (Vh)h∈(0,1], and (Ah)h∈(0,1] are given in Assumption 2.4 below.

For the time discretization let k ∈ (0, 1) be the constant step size. We define the

discrete time points by tn = nk, n = 0, . . . , N , where N = N(k) ∈ N is determined

by tN ≤ T < tN +k. We define the operator Sh,k = (I+kAh)
−1Ph and notice that

Sh,kQ
1
2 ∈ L2(H), since Sh,k is a finite rank operator. Hence, it is a valid integrand

for the stochastic integral. Our completely discrete scheme is to find the recursive

sequence (Xn
h,k)

N
n=0 ⊂ Vh given by the semi-implicit Euler-Maruyama method:

Xn+1
h,k = Sh,kX

n
h,k + kSh,kF (Xn

h,k) +

∫ tn+1

tn

Sh,k dW (s), n = 0, . . . , N − 1;

X0
h,k = PhX0.

(2.7)

By iterating (2.7) we obtain the discrete analog of (2.5)

Xn
h,k = Sn

h,kPhX0 + k

n−1
∑

j=0

Sn−j
h,k F (Xj

h,k)

+

n−1
∑

j=0

∫ tj+1

tj

Sn−j
h,k dW (t), n = 0, . . . , N.

(2.8)

Further, we define the error operators En
h,k, h, k ∈ (0, 1], by

En
h,k := S(nk)− Sn

h,k.(2.9)

We now state our assumption on the numerical discretization.

Assumption 2.4. The linear operators Ah : Vh → Vh and the orthogonal projectors

Ph : H → Vh, h ∈ (0, 1], satisfy

‖A̺
hS

n
h,k‖L ≤ Ct−̺

n , n = 1, . . . , N, ̺ ≥ 0,(2.10)

‖A−̺
h PhA

̺‖L ≤ C, 0 ≤ ̺ ≤ 1
2 ,(2.11)

uniformly in h, k ∈ (0, 1], and, for 0 ≤ θ ≤ 2, −θ ≤ ̺ ≤ min(1, 2− θ),

‖En
h,kA

̺
2 ‖L ≤ C

(

hθ + k
θ
2

)

t
− θ+̺

2
n , n = 1, . . . , N.(2.12)

We emphasize that the restriction ̺ ≤ 1
2 in (2.11) is dictated by our desire to

include standard finite element spaces, for which Vh ⊂ Ḣ1, and no better. We

remark that the error estimate (2.12) is non-standard, due to the low regularity

regime we consider. In fact, when ̺ ≥ 0, it corresponds to an error estimate for

the deterministic linear equation with rough initial data, i.e., S(t)X0 = S(t)A
̺
2 x
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with x ∈ H, so that X0 = A
̺
2 x ∈ Ḣ−̺. We verify (2.12) in Section 5 for the finite

element method and the heat equation by means of interpolation techniques, using

already established results from [30, 31]. By [30, Example 3.4], spectral Galerkin

approximations also fit under our Assumption 2.4.

Finally, for future reference, we formulate an important consequence of the

smoothing properties (2.3) and (2.10), (2.11), respectively, in conjunction with the

assumption on the covariance operator in Assumption 2.3 (iii).

Lemma 2.5. Let Assumptions 2.3 and 2.4 hold with β ∈ [0, 1]. Let q ∈ [2, 2
1−β )

with q = ∞ allowed if β = 1. Then

‖S‖Lq([0,T ],L0
2)

≤ C‖A
β−1
2 ‖L0

2

and

(

k
N
∑

j=1

‖Sj
h,k‖

q
L0

2

)1/q

≤ C‖A
β−1
2 ‖L0

2
.

Proof. Let first q < ∞. By (2.3) with ̺ = 1−β
2 we get

‖S‖q
Lq([0,T ],L0

2)
=

∫ T

0

‖S(t)‖q
L0

2
dt ≤

∫ T

0

‖A
1−β
2 S(t)‖qL dt ‖A

β−1
2 ‖q

L0
2

≤ C

∫ T

0

t−q 1−β
2 dt ‖A

β−1
2 ‖q

L0
2
≤ C‖A

β−1
2 ‖q

L0
2
.

For the second inequality we use instead (2.10), (2.11) with ̺ = 1−β
2 to get

‖Sj
h,k‖L0

2
≤ ‖A

1−β
2

h Sj
h,k‖L‖A

β−1
2

h Ph‖L0
2

≤ ‖A
1−β
2

h Sj
h,k‖L‖A

β−1
2

h PhA
1−β
2 ‖L‖A

β−1
2 ‖L0

2

≤ Ct
− 1−β

2
j ‖A

β−1
2 ‖L0

2
,

which can be summed as desired. The case when q = ∞, β = 1 is now obvious. �

3. Malliavin calculus

The papers [20] and [34] are the earliest works to treat Malliavin calculus for

stochastic evolution equations in the Hilbert space framework. Later it was used in

several papers related to optimal control of stochastic partial differential equations,

in particular, in connection with backward stochastic differential equations [18] and

backward stochastic Volterra integral equations in Hilbert spaces [3]. Malliavin dif-

ferentiability of solutions to stochastic evolution equations is proved in [18]. There

are also works using the Malliavin calculus for specific equations outside the setting

of the present paper and it is more extensively developed for equations studied in

the framework of [43], see the book [40]. We mention also the papers [2], [5], [6],

[8], [10], [15], [21], [22], [26], [27, Chapt. 5], [46], where the Malliavin calculus is

applied to the problem of proving weak convergence. Below we take a new direction

and introduce in Subsection 4.1 a family of refined Sobolev-Malliavin spaces. We

show in Subsection 4.2 that these spaces are particularly useful in connection with

duality.
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3.1. Refined Sobolev-Malliavin spaces. Let I : L2([0, T ], H0) → L2(Ω) be the

mapping given by

I(φ) =

∫ T

0

φ(t) dW (t), φ ∈ L2([0, T ], H0),

where we identify L2([0, T ], H0) ∼= L2([0, T ],L2(H0,R)). This identification is im-

portant since an R-valued stochastic integral has an L2([0, T ],L2(H0,R))-valued

integrand. Fix an ON-basis (φj)j∈N ⊂ L2([0, T ], H0), let Pn be the set of random

variables given by n:th order polynomials of the random variables (I(φj))j∈N. The

set P = ∪n∈NPn is independent of the choice of basis, see [24], and

P ⊂ Lp(Ω) is dense for 1 ≤ p < ∞.(3.1)

Let 2 ≤ q ≤ ∞ and let the mapping i : Lq([0, T ], H0) → L2([0, T ], H0) denote

the canonical embedding. Let Sq be the set of random variables F of the form

F = f(I(i(φ1)), . . . , I(i(φn))),

f ∈ C1
p(R

n,R), (φj)
n
j=1 ⊂ Lq([0, T ], H0), n ∈ N.

(3.2)

The class S2 is standard in Malliavin calculus and is usually denoted by S. Our

definition coincides with that in [31] but in the standard work [36] and many other

works C∞
p (Rn,R) is used instead of C1

p(R
n,R). The classes Sq for q > 2 are new

to our knowledge.

Lemma 3.1. For 1 ≤ p < ∞ and 2 ≤ q ≤ ∞, Sq ⊂ Lp(Ω) is dense.

Proof. Without causing confusion we also let i denote the canonical embedding

from Lq([0, T ],R) to L2([0, T ],R). We notice the isomorphism L2([0, T ], H0) ∼=

L2([0, T ],R)⊗H0.

Since there even exists a bounded ON-basis of the space L2([0, T ],R) we clearly

find a sequence (fn)n∈N ⊂ Lq([0, T ],R) such that (i(fn))n∈N is an ON-basis for

L2([0, T ],R). If (hn)n∈N is an ON-basis for H0, then (i(fm)⊗hn)m,n∈N is an ON-

basis for L2([0, T ],R)⊗H0. In particular, we have that i(fm ⊗ hn) = i(fm)⊗ hn.

Since the result (3.1) is independent of the choice of the basis, we conclude our

assertion by using the sequence (I(i(fm ⊗ hn)))m,n∈N. �

For 1 ≤ p < ∞ and 2 ≤ q ≤ ∞ we define the action of the Malliavin derivative

D : Sq → Lp(Ω, Lq([0, T ], H0)) on a random variable F of the form (3.2) by

Dt F =

n
∑

j=1

∂jf(I(i(φ1)), . . . , I(i(φn)))⊗ φj(t), t ∈ [0, T ].

This is well defined because φ1, . . . , φn ∈ Lq([0, T ], H0), the random variables

I(φ1), . . . , I(φn) are Gaussian with all existing moments and since f has poly-

nomial growth. By a direct modification of [31, Proposition 4.2] it does not depend

on the specific representation of F .

We remark that for q = 2 the linear operator D : S2 → Lp(Ω, L2([0, T ], H0)) is

the standard Malliavin derivative. Technically speaking, we have restricted the do-

main of the Malliavin derivative to Sq ⊂ S2 for 2 < q ≤ ∞. By this we have ensured

that D|Sq maps into the smaller space Lp(Ω, Lq([0, T ], H0)) ⊂ Lp(Ω, L2([0, T ], H0)).
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We define the Malliavin derivative for H-valued random variables as in [31,

Chapt. 4], [36, Chapt. 1]. For this we denote by Sq(H) the collection of all H-

valued smooth random variables of the form

X =
n
∑

j=1

hj ⊗ Fj , h1, . . . , hn ∈ H, F1, . . . , Fn ∈ Sq, n ∈ N.(3.3)

Since H is separable and by Lemma 3.1 it follows that Sq(H) is dense in Lp(Ω, H)

for all 1 ≤ p < ∞. The Malliavin derivative D : Sq(H) → Lp(Ω, Lq([0, T ],L0
2)) acts

in the following way:

DtX = Dt

n
∑

j=1

hj ⊗ Fj =

n
∑

j=1

hj ⊗DtFj , t ∈ [0, T ].

Here we did the identifications

H ⊗ Lp(Ω, Lq([0, T ], H0)) ∼= Lp(Ω, H ⊗ Lq([0, T ], H0)) ∼= Lp(Ω, Lq([0, T ],L0
2)).

We write Du
t X = DtXu ∈ L2(Ω, H) for the derivative in the direction u ∈ H0.

In the final step of its construction we extend the domain of the Malliavin de-

rivative to its closure with respect to the graph norm. For this we recall that an

unbounded operator A : U → V is closable if and only if for every (un)n∈N ⊂ U

such that limn→∞ un = 0 and limn→∞ Aun = v, we have v = 0.

Lemma 3.2. The Malliavin derivative D : Sq(H) → Lp(Ω, Lq([0, T ],L0
2)) is clos-

able for 1 < p < ∞ and 2 ≤ q ≤ ∞.

Proof. We will use the fact that D : S2(H) → Lp(Ω, L2([0, T ],L0
2)) is closable

for p > 1, [31, Proposition 4.4]. Let (Xn)n∈N ⊂ Sq(H) ⊂ S2(H) be a se-

quence satisfying limn→∞ Xn = 0 in Lp(Ω, H) such that limn→∞ DXn = Z in

Lp(Ω, Lq([0, T ],L0
2)) and hence also in Lp(Ω, L2([0, T ],L0

2)). By the closability we

have Z = 0 in Lp(Ω, L2([0, T ],L0
2)) and hence also in Lp(Ω, Lq([0, T ],L0

2)). �

For 1 < p < ∞ and 2 ≤ q ≤ ∞ we can therefore consider the closure M1,p,q(H)

of Sq(H) with respect to the norm

‖X‖M1,p,q(H) =
(

‖X‖pLp(Ω,H) + ‖DX‖p
Lp(Ω,Lq([0,T ],L0

2))

)
1
p

.

Clearly, the spaces M1,p,2(H), p > 1, coincide with the classical Sobolev-Malliavin

spaces of the Malliavin calculus, which are usually denoted by D1,p(H). The stan-

dard Malliavin derivative is uniquely extended to an operator from M1,p,2(H)

to Lp(Ω, L2([0, T ],L0
2)). In addition it holds M1,p,q1(H) ⊂ M1,p,q2(H) for all

∞ ≥ q1 ≥ q2 ≥ 2 and from Lemma 3.2 it follows that the restriction of the stan-

dard Malliavin derivative D|M1,p,q(H) is a well-defined operator from M1,p,q(H) to

Lp(Ω, Lq([0, T ],L0
2)). If p = q, we abbreviate M1,p(H) = M1,p,p(H).

The space M1,2(H) is a Hilbert space and it has a well developed theory of Malli-

avin calculus. The adjoint of the Malliavin derivative D : M1,2(H) ⊂ L2(Ω, H) →

L2([0, T ] × Ω,L0
2) is called the divergence operator or the Skorohod integral and
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denoted by δ : L2([0, T ]×Ω,L0
2) → L2(Ω, H) with domain D(δ). The duality reads

〈

X, δΦ
〉

L2(Ω,H)
=

〈

DX,Φ
〉

L2([0,T ]×Ω,L0
2)
, X ∈ M1,2(H), Φ ∈ D(δ).(3.4)

We refer to this as the Malliavin integration by parts formula. It is well known

that for predictable Φ ∈ D(δ) the action of δ coincides with that of the H-valued

Itō integral, i.e., δΦ =
∫ T

0
Φ(t) dW (t), [31, Proposition 4.12].

In the remainder of this subsection we state a modification of the chain rule from

[31, Lemma 4.7] and a product rule for the Malliavin derivative.

Lemma 3.3. Let U, V be two separable Hilbert spaces and let γ ∈ C1(U, V ), be such

that there exist constants C and r ≥ 0 with

‖γ(u)‖V ≤ C
(

1 + ‖u‖1+r
U

)

, ‖γ′(u)‖L(U,V ) ≤ C
(

1 + ‖u‖rU
)

,

for all u ∈ U . Then, for 1 < p < ∞, 2 ≤ q ≤ ∞ and X ∈ M1,(1+r)p,q(U), it follows

that γ(X) ∈ M1,p,q(V ) with ‖γ(X)‖M1,p,q(V ) . (1 + ‖X‖1+r
M1,(1+r)p,q(U)

) and

Dt(γ(X)) = γ′(X) ·DtX, t ∈ [0, T ].(3.5)

Proof. Let p > 1 be arbitrary. For q = 2 the result follows directly from [31, Lemma

4.7]. Therefore, it suffices to show that ‖γ(X)‖M1,p,q(V ) < ∞ if X ∈ M1,(1+r)p,q(U)

for q > 2. Indeed, from the polynomial growth condition it follows that
∥

∥γ(X)
∥

∥

Lp(Ω,V )
≤ C

(

1 + ‖X‖1+r
L(1+r)p(Ω,U)

)

≤ C
(

1 + ‖X‖1+r
M1,(1+r)p,q(U)

)

.

Moreover, it holds
∥

∥Dγ(X)
∥

∥

Lp(Ω,Lq([0,T ],L2(H0,V )))

=
(

E
[∥

∥γ′(X) ·DX
∥

∥

p

Lq([0,T ],L2(H0,V ))

])
1
p

.
(

E
[(

1 +
∥

∥X
∥

∥

r

U

)p
‖DX‖pLq([0,T ],L2(H0,U))

])
1
p

≤
(

1 + ‖X‖rL(1+r)p(Ω,U)

)
∥

∥DX
∥

∥

L(1+r)p(Ω,Lq([0,T ],L2(H0,U)))

.
(

1 + ‖X‖1+r
M1,(1+r)p,q(U)

)

,

where we applied the polynomial growth condition on γ′ and Hölder’s inequality

with exponents (r + 1)/r and r + 1. This completes the proof. �

Lemma 3.4. Let U1, U2, V be separable Hilbert spaces and 1 < p < ∞, 2 ≤ q ≤ ∞.

For σ ∈ C0
b(U1,L(U2, V )) ∩ C1

b(U1,L(U2, V )) it holds σ(X) · Y ∈ M1,p,q(V ) for all

X ∈ M1,2p,q(U1) and Y ∈ M1,2p,q(U2). In addition, we have

Dt(σ(X) · Y ) = σ′(X) · (DtX,Y ) + σ(X) ·DtY, t ∈ [0, T ].(3.6)

Proof. The proof is done by an application of the chain rule. For this define the

mapping γ : U1 × U2 → V given by γ(x, y) = σ(x) · y. Certainly, it holds γ ∈

C1(U1 × U2, V ) and we have ‖γ(x, y)‖V = ‖σ(x) · y‖V ≤ |σ|C0
b(U1,L(U2,V ))‖y‖U2

for

all (x, y) ∈ U1 × U2. Further, it holds

γ′(x, y) · (z1, z2) = σ′(x) · (z1, y) + σ(x) · z2,



12 A. ANDERSSON, R. KRUSE, AND S. LARSSON

for all (x, y), (z1, z2) ∈ U1 × U2. Therefore,
∥

∥γ′(x, y) · (z1, z2)
∥

∥

V
≤ |σ|C1

b(U1,L(U2,V ))‖z1‖U1
‖y‖U2

+ |σ|C0
b(U1,L(U2,V ))‖z2‖U2

≤ max{|σ|C0
b(U1,L(U2,V )), |σ|C1

b(U1,L(U2,V ))}

×
(

1 + ‖y‖U2

)(

‖z1‖U1
+ ‖z2‖U2

)

.

Hence, γ satisfies the assumption of Lemma 3.3 with r = 1. Thus, the result follows

from an application of Lemma 3.3. �

3.2. Duality. For any 2 ≤ p < ∞, 2 ≤ q ≤ ∞ the inclusion M1,p,q(H) ⊂ L2(Ω, H)

is dense and continuous and hence the spaces

M1,p,q(H) ⊂ L2(Ω, H) ⊂ M1,p,q(H)∗,

define a Gelfand triple, where we identify L2(Ω, H) ∼= L2(Ω, H)∗ by the Riesz Rep-

resentation Theorem. We denote the dual pairing of M1,p,q(H)∗ and M1,p,q(H) by

[Z, Y ] for Z ∈ M1,p,q(H)∗, Y ∈ M1,p,q(H). The inclusion L2(Ω, H) ⊂ M1,p,q(H)∗

is realized through the definition [Z, Y ] = 〈Z, Y 〉L2(Ω,H) for all Z ∈ L2(Ω, H),

Y ∈ M1,p,q(H), with the norm

‖Z‖M1,p,q(H)∗ = sup
Y ∈M1,p,q(H)

〈Y,Z〉L2(Ω,H)

‖Y ‖M1,p,q(H)
, Z ∈ L2(Ω, H).(3.7)

The Burkholder type inequality in Lemma 2.2 gives an estimate of the norm of

a stochastic integral that is L2 in time. We will now prove a similar inequality with

respect to the M1,p,q(H)∗-norm, which is Lq′ in time, where q′ is the conjugate

exponent to q given by 1
q + 1

q′ = 1 if q < ∞ and q′ = 1 otherwise. Since q ∈ [2,∞],

and hence q′ ∈ [1, 2], this admits worse singularities than in Lemma 2.2.

Theorem 3.5. Let p ∈ [2,∞), q ∈ [2,∞] and p′, q′ denote the conjugate exponents.

If Φ ∈ L2([0, T ]× Ω,L0
2) is predictable, then

∥

∥

∥

∫ T

0

Φ(t) dW (t)
∥

∥

∥

M1,p,q(H)∗
≤ ‖Φ‖Lp′ (Ω,Lq′ ([0,T ],L0

2))
.

Proof. We use the fact that the stochastic integral of Φ equals δΦ. By (3.7), (3.4),

and Hölder’s inequality, we get

∥

∥δΦ
∥

∥

M1,p,q(H)∗
= sup

Y ∈M1,p,q(H)

〈

Y, δΦ
〉

L2(Ω,H)

‖Y ‖M1,p,q(H)
= sup

Y ∈M1,p,q(H)

〈

DY,Φ
〉

L2([0,T ]×Ω,L0
2)

‖Y ‖M1,p,q(H)

≤ sup
Y ∈M1,p,q(H)

‖DY ‖Lp(Ω,Lq([0,T ],L0
2))

∥

∥Φ
∥

∥

Lp′ (Ω,Lq′ ([0,T ],L0
2))

‖Y ‖M1,p,q(H)

≤ ‖Φ‖Lp′ (Ω,Lq′ ([0,T ],L0
2))

,

which finishes the proof. �

Remark 3.6. Since the inequality in Lemma 2.2 is actually double-sided, one

may ask whether this is true also for Theorem 3.5. In fact we can prove the

reverse inequality for deterministic Φ ∈ L2([0, T ],L0
2). Since Hq

1(H) := {δΨ : Ψ ∈
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Lq([0, T ],L0
2)} ⊂ M1,p,q(H) we get an inequality in (3.7) by taking the supremum

over Hq
1(H) instead of M1,p,q(H):

∥

∥δΦ
∥

∥

M1,p,q(H)∗
= sup

Y ∈M1,p,q(H)

〈

Y, δΦ
〉

L2([0,T ]×Ω,L0
2)

‖Y ‖M1,p,q(H)

≥ sup
Y ∈Hq

1(H)

〈

DY,Φ
〉

L2([0,T ]×Ω,L0
2)

‖Y ‖M1,p,q(H)

= sup
Ψ∈Lq([0,T ],L0

2)

〈

DδΨ,Φ
〉

L2([0,T ]×Ω,L0
2)

(

‖δΨ‖pLp(Ω,H) + ‖DδΨ‖p
Lp(Ω,Lq([0,T ],L0

2))

)
1
p

.

We next use the fact that DδΨ = Ψ+δDΨ = Ψ for deterministic Ψ ∈ Lq([0, T ],L0
2).

By Burkholder’s inequality Lemma 2.2 and Hölder’s inequality we get

∥

∥δΦ
∥

∥

M1,p,q(H)∗
≥ sup

Ψ∈Lq([0,T ],L0
2)

〈

Ψ,Φ
〉

L2([0,T ],L0
2)

(

Cp
p‖Ψ‖p

L2([0,T ],L0
2)
+ ‖Ψ‖p

Lq([0,T ],L0
2)

)
1
p

≥
1

(

Cp
pT

q
q−2 + 1

)
1
p

sup
Ψ∈Lq([0,T ],L0

2)

〈

Ψ,Φ
〉

L2([0,T ],L0
2)

‖Ψ‖Lq([0,T ],L0
2)

=
1

(

Cp
pT

q
q−2 + 1

)
1
p

‖Φ‖Lq′ ([0,T ],L0
2)
.

The proof relies on the fact that DΨ = 0. For random Φ one needs random

Ψ ∈ Lp(Ω, Lq([0, T ],L0
2)) and, since δDΨ 6= 0 in this case, this proof does not work.

Remark 3.7. One consequence of Theorem 3.5 is that the stochastic integral can

be extended in M1,p,q(H)∗ to integrands in Lp′

(Ω, Lq′([0, T ],L0
2)). The elements

of M1,p,q(H)∗ are distributions defined by their action on random variables in

M1,p,q(H). One can show that the solution of the linear stochastic heat equation

driven by space-time white noise in two space dimensions is a stochastic process

X ∈ C([0, T ],M1,p,q(H)∗) for every p ≥ 2 and q > 2. In three space dimensions the

same is valid for every p ≥ 2 and q > 4. In higher space dimensions than three the

solution is not M1,p,q(H)∗-valued since this would force q′ < 1. Hölder continuity

in time in the M1,p,q(H)∗-norms can be shown for the solution in two and three

space dimensions for the p, q for which the solution is defined. See Lemma 3.9 below

for the regular case. Solutions defined in a distributional sense with respect to Ω

is not a new concept. This is the heart of the white noise approach to SPDE, see,

e.g., [4], [23].

Theorem 3.5 is a key result in the present work. But to be able to perform error

estimates for semilinear equations we also need an intermediate space between

M1,p,p(H) and M1,2p,p(H). For 2 ≤ p < ∞ we define

G1,p(H) = M1,p,p(H) ∩ L2p(Ω, H).
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It is a Banach space equipped with the norm

‖Y ‖G1,p(H) = max
(

‖Y ‖M1,p,p(H), ‖Y ‖L2p(Ω,H)

)

.

We have M1,2p,p(H) ⊂ G1,p(H) ⊂ M1,p,p(H) and we obtain a new Gelfand triple

G1,p(H) ⊂ L2(Ω, H) ⊂ G1,p(H)∗.

The next lemma is a slightly modified version of Lemma 3.4, which is necessary to

prove the local Lipschitz bound in Lemma 3.9.

Lemma 3.8. Let U1, U2, V be separable Hilbert spaces. For σ ∈ C0
b(U1,L(U2, V ))∩

C1
b(U1,L(U2, V )), X ∈ M1,2p,p(U1), Y ∈ G1,p(U2), 2 < p < ∞, it holds σ(X) · Y ∈

G1,p(V ). In addition, we have

‖σ(X) · Y ‖G1,p(V )

≤ max
(

|σ|C0
b(U1,L(U2,V )), |σ|C1

b(U1,L(U2,V ))

)

(

1 + ‖X‖M1,2p,p(U1)

)

‖Y ‖G1,p(U2).

Proof. It particularly holds X ∈ M1,p,p(U1), Y ∈ M1,p,p(U2), p > 2, and, hence,

we directly obtain from Lemma 3.4 that σ(X) ·Y ∈ M1, p2 ,p(V ). In addition, we get

‖σ(X) · Y ‖L2p(Ω,V ) ≤ |σ|C0
b(U1,L(U2,V ))‖Y ‖L2p(Ω,U) ≤ |σ|C0

b(U1,L(U2,V ))‖Y ‖G1,p(U).

Further, by (3.6) we have
∥

∥D(σ(X) · Y )
∥

∥

Lp(Ω,Lp([0,T ],L2(H0,V )))

=
∥

∥σ′(X) ·
(

DX,Y
)

+ σ(X) ·DY
∥

∥

Lp(Ω,Lp([0,T ],L2(H0,V )))

≤ |σ|C1
b(U1,L(U2,V ))

(

E
[

‖DX‖pLp([0,T ],L2(H0,U1))
‖Y ‖pU2

])
1
p

+ |σ|C0
b(U1,L(U2,V ))‖DY ‖Lp(Ω,Lp([0,T ],L2(H0,U2)))

≤ |σ|C1
b(U1,L(U2,V ))‖DX‖L2p(Ω,Lp([0,T ],L2(H0,U1)))‖Y ‖L2p(Ω,U2)

+ |σ|C0
b(U1,L(U2,V ))‖DY ‖Lp(Ω,Lp([0,T ],L2(H0,U2)))

≤ max
(

|σ|C1
b(U1,L(U2,V )), ‖σ‖C0

b(U1,L(U2,V ))

)

(

1 + ‖X‖M1,2p,p(U1)

)

‖Y ‖G1,p(U2).

These bounds show that σ′(X) · Y ∈ G1,p(V ) as well as the desired bound. �

Our next key result is stated in Lemma 3.9 below. It establishes a local Lipschitz

bound in the G1,p(H)∗-norm. This allows us to perform a Gronwall argument in

this norm in Section 4.2.

Lemma 3.9. Let U, V be separable Hilbert spaces, η ∈ C2
b(U, V ), and 2 < p < ∞.

Then, for all X1, X2 ∈ M1,2p,p(U),
∥

∥η(X1)− η(X2)
∥

∥

G1,p(V )∗

≤ max
(

|η|C1
b(U,V ), |η|C2

b(U,V )

)

(

1 +

2
∑

i=1

‖Xi‖M1,2p,p(U)

)

∥

∥X1 −X2

∥

∥

G1,p(U)∗
.
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Proof. In view of (2.2) it suffices to show

‖η′(X) · Y ‖G1,p(V )∗

≤ max
(

|η|C1
b(U,V ), |η|C2

b(U,V )

)

(

1 + ‖X‖M1,2p,p(U)

)

‖Y ‖G1,p(U)∗ ,

for all X,Y ∈ M1,2p,p(U). We have

‖η′(X) · Y
∥

∥

G1,p(V )∗
≤

∥

∥η′(X)
∥

∥

L(G1,p(U)∗,G1,p(V )∗)

∥

∥Y
∥

∥

G1,p(U)∗
.

Since ‖η′(X)‖L(G1,p(U)∗,G1,p(V )∗) = ‖η′(X)∗‖L(G1,p(V ),G1,p(U)), it suffices to give a

bound of the latter term. For this we define σ : U → L(V,U) by

σ(x) := η′(x)∗.

Then σ ∈ C0
b(U,L(V,U)) ∩ C1

b(U,L(V,U)) with |σ|C0
b(U,L(V,U)) = |η|C1

b(U,V ) and

|σ|C1
b(U,L(V,U)) = |η|C2

b(U,V ). Hence, the assertion follows directly from an application

of Lemma 3.8. �

3.3. Regularity of the solution. Here we prove regularity in terms of the Malli-

avin derivative, as well as Hölder continuity in the M1,p,q(H)∗-norm, of the solution

X to (2.5) under Assumption 2.3. For suitably chosen p and q the Hölder exponent

turns out to be twice as high as in the L2(Ω, H)-norm. By combining these results

with a duality argument we show Hölder continuity of the Markov semigroup. The

Hölder exponent is later, in Theorem 4.4, shown to coincide with the rate of weak

convergence, which is natural.

The Malliavin derivative DrX(t) of X(t) at time r ∈ [0, T ] satisfies the equation,

see [18, Proposition 3.5 (ii)],

(3.8) DrX(t) =











S(t− r) +

∫ t

r

S(t− s)F ′(X(s))DrX(s) ds, t ∈ (r, T ],

0, t ∈ [0, r].

The next result can be verified by using (3.11) of [18, Proposition 3.5 (ii)] and holds

for multiplicative noise, as well. For completeness we present a proof in the simpler

case of additive noise that we consider here.

Proposition 3.10. Let Assumption 2.3 hold and let X be the solution of (2.5). If

β ∈ (0, 1), then

sup
t∈[0,T ]

∥

∥X(t)
∥

∥

M1,p,q(H)
< ∞,

for 2 ≤ p < ∞ and 2 ≤ q < 2
1−β . If β = 1, then the same holds for 2 ≤ p < ∞ and

2 ≤ q ≤ ∞.

Proof. We remark that the case p = q = 2 was already proved in [18]. The moment

estimate (2.6) implies that supt∈[0,T ] ‖X(t)‖Lp(Ω,H) < ∞ for 2 ≤ p < ∞. Next

we take norms in (3.8) and use Minkowski’s inequality on the convolution term.
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We note that DrX(s) = 0 for s ≤ r because X(s) is Fr-measurable, so that the

convolution term can be written
∫ t

0
. . . ds. We get

∥

∥DX(t)
∥

∥

Lp(Ω,Lq([0,T ],L0
2))

=
∥

∥DX(t)
∥

∥

Lp(Ω,Lq([0,t],L0
2))

≤
∥

∥S(t− ·)
∥

∥

Lq([0,t],L0
2)
+

∥

∥

∥

∫ t

0

S(t− s)F ′(X(s))DX(s) ds
∥

∥

∥

Lp(Ω,Lq([0,t],L0
2))

≤
∥

∥S
∥

∥

Lq([0,t],L0
2)
+

∫ t

0

∥

∥S(t− s)F ′(X(s))DX(s)
∥

∥

Lp(Ω,Lq([0,t],L0
2))

ds

≤
∥

∥S
∥

∥

Lq([0,T ],L0
2)
+ ‖S‖L∞([0,T ],L)|F |C1

b

∫ t

0

∥

∥DX(s)
∥

∥

Lp(Ω,Lq([0,T ],L0
2))

ds.

We conclude by using Lemma 2.5 and the standard Gronwall lemma. �

We next consider Hölder continutity in the M1,p,q(H)∗-norm. For comparison

we recall that the Hölder exponent in the L2(Ω, H)-norm is γ < β/2 under As-

sumption 2.3. Here we have γ < β, if q is sufficiently large.

Proposition 3.11. Let Assumption 2.3 hold with β ∈ (0, 1] and denote by X the

solution to (2.5). Let 2 ≤ p < ∞, γ ∈ [0, β), and set q = 2
1−γ . Then there exists a

constant C = Cγ such that

∥

∥X(t2)−X(t1)
∥

∥

M1,p,q(H)∗
≤ C

(

1 +
∥

∥X0

∥

∥

Ḣ2β

)

∣

∣t2 − t1
∣

∣

γ
, t1, t2 ∈ [0, T ].

Proof. Without loss of generality we assume t2 > t1 > 0. From (2.5) we then get

X(t2)−X(t1) =
(

S(t2 − t1)− I
)

S(t1)X0

+
(

S(t2 − t1)− I
)

∫ t1

0

S(t1 − s)F (X(s)) ds

+
(

S(t2 − t1)− I
)

∫ t1

0

S(t1 − s) dW (s)

+

∫ t2

t1

S(t2 − s)F (X(s)) ds+

∫ t2

t1

S(t2 − s) dW (s).

In the following we study the M1,p,q(H)∗-norms of these five summands. For the

first, second, and fourth terms we use the fact that ‖Z‖M1,p,q(H)∗ ≤ ‖Z‖L2(Ω,H).

For the first summand, we use (2.4) with ̺ = γ and (2.3) with ̺ = 0 as well as

Assumption 2.3 (ii). This yields

∥

∥

(

S(t2 − t1)− I
)

S(t1)X0

∥

∥

M1,p,q(H)∗
≤

∥

∥

(

S(t2 − t1)− I
)

A−γS(t1)A
γX0

∥

∥

L2(Ω,H)

.
∣

∣t2 − t1
∣

∣

γ
‖AγX0‖ .

∣

∣t2 − t1
∣

∣

γ
‖X0‖Ḣ2β .

The estimate of the second summand is done by applying Assumption 2.3 (iv)

and the same arguments as for the first term. More precisely, we use that F ∈



DUALITY IN REFINED SOBOLEV-MALLIAVIN SPACES 17

C1
b(H,H) implies linear growth, to get

∥

∥

∥

(

S(t2 − t1)− I
)

∫ t1

0

S(t1 − s)F (X(s)) ds
∥

∥

∥

M1,p,q(H)∗

≤
∥

∥

(

S(t2 − t1)− I
)

A−γ
∥

∥

L

∫ t1

0

∥

∥AγS(t1 − s)
∥

∥

L

∥

∥F (X(s))
∥

∥

L2(Ω,H)
ds

.
∣

∣t2 − t1
∣

∣

γ
∫ t1

0

(t1 − s)−γ ds
(

1 + sup
s∈[0,T ]

‖X(s)‖L2(Ω,H)

)

.
∣

∣t2 − t1
∣

∣

γ
,

where we also used (2.6) and that γ < β ≤ 1.

We now turn to the third term. We recall that q = 2/(1− γ) and q′ = 2/(1+ γ).

Since γ < β, we have

q′
2γ + 1− β

2
=

2γ + 1− β

1 + γ
= 1−

β − γ

1 + γ
< 1.(3.9)

We apply Theorem 3.5 to the third summand. Then by (2.3), (2.4), Assumption 2.3

(iii), and (3.9), we obtain

∥

∥

∥

(

S(t2 − t1)− I
)

∫ t1

0

S(t1 − s) dW (s)
∥

∥

∥

M1,p,q(H)∗

≤
∥

∥

(

S(t2 − t1)− I
)

S(t1 − ·)
∥

∥

Lp′ (Ω,Lq′ ([0,t1],L0
2))

≤
∥

∥

(

S(t2 − t1)− I
)

A−γ
∥

∥

L

(

∫ t1

0

∥

∥AγA
1−β
2 S(t1 − s)A

β−1
2

∥

∥

q′

L0
2
ds

)
1
q′

.
∣

∣t2 − t1
∣

∣

γ
(

∫ t1

0

(t1 − s)−q′ 2γ+1−β
2 ds

∥

∥A
β−1
2

∥

∥

q′

L0
2

)
1
q′

.
∣

∣t2 − t1
∣

∣

γ
.

Next we turn to the fourth term. By applying the same arguments as for the

second summand, we derive the bound

∥

∥

∥

∫ t2

t1

S(t2 − s)F (X(s)) ds
∥

∥

∥

M1,p,q(H)∗
≤

∫ t2

t1

∥

∥S(t2 − s)F (X(s))
∥

∥

L2(Ω,H)
ds

. |t2 − t1|
(

1 + sup
s∈[0,T ]

∥

∥X(s)
∥

∥

L2(Ω,H)

)

.

Finally, a further application of Theorem 3.5 and (2.3) with ̺ = 1−β
2 yields for

the fifth summand

∥

∥

∥

∫ t2

t1

S(t2 − s) dW (s)
∥

∥

∥

M1,p,q(H)∗
≤

(

∫ t2

t1

∥

∥S(t2 − s)A
1−β
2

∥

∥

q′

L

∥

∥A
β−1
2

∥

∥

q′

L0
2
ds

)
1
q′

.
(

∫ t2

t1

(t2 − s)−
1−β
2 ds

)
1
q′

. |t2 − t1|
1
q′

− 1−β
2 .

By inserting q′ = 2/(1 + γ) and β > γ, we see that the exponent is

1

q′
−

1− β

2
=

1 + γ

2
−

1− β

2
=

γ + β

2
> γ.

This completes the proof. �
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As a consequence of Propositions 3.10 and 3.11 we now show Hölder continuity of

the Markov semigroup (P (t))t∈[0,T ] related to X. This will not be used in the sequel

but it is a neat application of the duality argument. Define for (t, x) ∈ [0, T ]×H,

(P (t)ϕ)(x) = E[ϕ(X(t, x))], where X(t, x) denotes the solution to equation (2.5)

with initial value X0 = x ∈ Ḣ2β .

Corollary 3.12. Let Assumption 2.3 hold with β ∈ (0, 1] and let ϕ ∈ C2
p(H,R).

For every γ ∈ [0, β) there is a constant C such that
∣

∣(P (t2)ϕ)(x)− (P (t1)ϕ)(x)
∣

∣ ≤ C
(

1 + ‖x‖Ḣ2β

)∣

∣t2 − t1
∣

∣

γ
, t1, t2 ∈ [0, T ], x ∈ Ḣ2β .

Proof. We fix x and suppress it from the notation. Applying (2.2) yields
∣

∣(P (t2)ϕ)(x)− (P (t1)ϕ)(x)
∣

∣ =
∣

∣E
[

ϕ(X(t2))− ϕ(X(t1))
]
∣

∣

=
∣

∣

∣

〈

∫ 1

0

ϕ′
(

̺X(t2) + (1− ̺)X(t1)
)

d̺,X(t2)−X(t1)
〉

L2(Ω,H)

∣

∣

∣
.

For arbitrary p ∈ [2,∞) we obtain by duality
∣

∣(P (t2)ϕ)(x)− (P (t1)ϕ)(x)
∣

∣

≤
∥

∥

∥

∫ 1

0

ϕ′
(

̺X(t2) + (1− ̺)X(t1)
)

d̺
∥

∥

∥

M1,p,p(H)

∥

∥X(t2)−X(t1)
∥

∥

M1,p,p(H)∗
.

Now take p = 2
1−γ . The first factor is finite by Proposition 3.10 and the chain rule;

for details see the proof of Lemma 4.2 below. Proposition 3.11 applies to the second

factor and this completes the proof. �

Remark 3.13. Proposition 3.11 can be proved without additional difficulties in

the case of multiplicative noise and so can Proposition 3.10, due to the comment

right before its statement. Therefore, Corollary 3.12 holds for multiplicative noise.

Remark 3.14. We end this section with a comment on implications to stochastic

ordinary differential equations. This corresponds to the case A = 0, β = 1, and

multiplicative noise with diffusion coefficient G ∈ C2
b(H,L0

2), i.e., we consider the

equation

dX(t) = F (X(t)) dt+G(X(t)) dW (t), t ∈ (0, T ]; X(0) = X0.(3.10)

In this case one can prove Proposition 3.11 with p ≥ 2, q = ∞, and γ = 1, meaning

that the solution is Lipschitz continuous in time in the M1,p,∞(H)∗-norm for every

p ≥ 2. For β = 1 the covariance operator Q is of trace class and the cylindrical

Wiener process W is well defined as an H-valued Brownian motion. We see that

also W is Lipschitz continuous in M1,p,∞(H)∗ by Proposition 3.5. Indeed,

∥

∥W (t2)−W (t1)
∥

∥

M1,p,∞(H)∗
=

∥

∥

∥

∫ t2

t1

dW (t)
∥

∥

∥

M1,p,∞(H)∗

≤
∥

∥χ[t1,t2]

∥

∥

Lp′ (Ω,L1([0,T ],L0
2))

= Tr(Q)
∣

∣t2 − t1
∣

∣, t1, t2 ∈ [0, T ].

This suggests that dX(t) = Ẋ(t) dt and dW (t) = Ẇ (t) dt, where Ẋ and Ẇ are

M1,p,∞(H)∗-valued functions on [0, T ]. This further suggests that (3.10) might be



DUALITY IN REFINED SOBOLEV-MALLIAVIN SPACES 19

written in the form

Ẋ(t) = F (X(t)) +G(X(t))Ẇ (t).

If this formulation is useful or fully makes sense is an open question. There seems

to be a connection to the functional white noise approach of stochastic differential

equations, see [37], that remains to be understood. In this approach the time

derivative of Brownian motion is well defined in the space of Hida distributions and

the corresponding product of G and Ẇ is the Wick product.

3.4. Regularity of the numerical solution. Here we first show a bound on the

p:th-moment of the discrete solutions Xh,k to (2.7), uniformly in h, k ∈ (0, 1], and

then we prove a discrete analog of Proposition 3.10.

Proposition 3.15. Let Assumptions 2.3 and 2.4 hold with β ∈ (0, 1] and let 2 ≤

p < ∞. Then

max
n∈{0,...,N}

sup
h,k∈(0,1]

∥

∥Xn
h,k

∥

∥

Lp(Ω,H)
≤ C.

Proof. For n ∈ {1, . . . , N} we recall the representation (2.8) of Xn
h,k. Hence, it

follows that

∥

∥Xn
h,k

∥

∥

Lp(Ω,H)
≤

∥

∥Sn
h,kPhX0

∥

∥+ k
n−1
∑

j=0

∥

∥Sn−j
h,k F (Xj

h,k)
∥

∥

Lp(Ω,H)

+
∥

∥

∥

∫ T

0

(

n−1
∑

j=0

χ[tj ,tj+1)(t)S
n−j
h,k

)

dW (t)
∥

∥

∥

Lp(Ω,H)
.

By (2.10) with ̺ = 0 we have

sup
n∈{1,...,N}

∥

∥Sn
h,k

∥

∥

L
. 1,(3.11)

so that ‖Sn
h,kPhX0‖ . 1. Therefore, by applying also Lemma 2.2,

∥

∥Xn
h,k

∥

∥

Lp(Ω,H)
. 1 + k

n−1
∑

j=0

∥

∥F (Xj
h,k)

∥

∥

Lp(Ω,H)
+

∥

∥

∥

n−1
∑

j=0

χ[tj ,tj+1)S
n−j
h,k

∥

∥

∥

L2([0,T ],L0
2)
.

By referring to Lemma 2.5 with q = 2, we have

∥

∥

∥

n−1
∑

j=0

χ[tj ,tj+1)S
n−j
h,k

∥

∥

∥

2

L2([0,T ],L0
2)

= k

n−1
∑

j=0

∥

∥Sn−j
h,k

∥

∥

2

L0
2
≤ k

N
∑

j=1

∥

∥Sj
h,k

∥

∥

2

L0
2
. 1.

Further, since the drift F : H → H satisfies a linear growth bound under Assump-

tion 2.3 (iv), it follows that

∥

∥Xn
h,k

∥

∥

Lp(Ω,H)
. 1 + k

n−1
∑

j=0

∥

∥Xj
h,k

∥

∥

Lp(Ω,H)

and the proof is completed by an application of Gronwall’s Lemma 2.1. �
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Proposition 3.16. Let Assumptions 2.3 and 2.4 hold with β ∈ (0, 1]. If β ∈ (0, 1),

then

max
n∈{1,...,N}

sup
h,k∈(0,1]

∥

∥Xn
h,k

∥

∥

M1,p,q(H)
< ∞,

for 2 ≤ p < ∞ and 2 ≤ q < 2
1−β . If β = 1, then the same holds for 2 ≤ p < ∞ and

2 ≤ q ≤ ∞.

Proof. We mimic the proof of Proposition 3.10. The Lp(Ω, H)-norm of Xh,k is

treated in Proposition 3.15 and it remains to bound DXh,k.

By using the chain rule (3.5) and Dr

∫ tj+1

tj
Sn−j
h,k dW (s) = χ[tj ,tj+1)(r)S

n−j
h,k , we

apply the Malliavin derivative termwise to equation (2.8) and obtain

(3.12) DrX
n
h,k = k

n−1
∑

j=0

Sn−j
h,k F ′(Xj

h,k)DrX
j
h,k +

n−1
∑

j=0

χ[tj ,tj+1)(r)S
n−j
h,k .

Here we note that DrX
j
h,k = 0 for tj ≤ r, since Xj

h,k is Fr-measurable. Therefore,

DrX
n
h,k =

n−1
∑

i=0

χ[ti,ti+1)(r)
(

k

n−1
∑

j=i+1

Sn−j
h,k F ′(Xj

h,k)DrX
j
h,k + Sn−i

h,k

)

in full analogy with (3.8). However, as in the proof of Proposition 3.10, it is

more convenient to take norms in (3.12) and use Minkowski’s inequality on the

convolution term:
∥

∥DXn
h,k

∥

∥

Lp(Ω,Lq([0,T ],L0
2))

=
∥

∥DXn
h,k

∥

∥

Lp(Ω,Lq([0,tn],L0
2))

≤
∥

∥

∥

n−1
∑

j=0

χ[tj ,tj+1)S
n−j
h,k

∥

∥

∥

Lq([0,tn],L0
2)

+
∥

∥

∥
k

n−1
∑

j=0

Sn−j
h,k F ′(Xj

h,k)DrX
j
h,k

∥

∥

∥

Lp(Ω,Lq([0,tn],L0
2))

≤
(

k

N
∑

j=1

‖Sj
h,k‖

q
L0

2

)1/q

+ sup
1≤j≤N

∥

∥Sj
h,k

∥

∥

L
|F |C1

b
k

n−1
∑

j=0

∥

∥DXj
h,k

∥

∥

Lp(Ω,Lq([0,T ],L0
2))

.

We conclude by using Lemma 2.5, (3.11), and the discrete Gronwall Lemma 2.1. �

4. Weak convergence by duality

Let X be the solution to equation (2.5) and Xh,k be the discretization given

by the semi-implicit scheme (2.7) and take ϕ ∈ C1(H,R). Our approach to weak

convergence begins with an application of (2.2) to get

E
[

ϕ(X(tn))− ϕ(Xn
h,k)

]

=
〈

Φn
h,k, X(tn)−Xn

h,k

〉

L2(Ω,H)
,

where

Φn
h,k =

∫ 1

0

ϕ′(Θn
h,k(̺)) d̺ and Θn

h,k(̺) = ̺X(tn) + (1− ̺)Xn
h,k,(4.1)
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for n ∈ {1, . . . , N}. This linearization was first proposed in [10] for nonlinear

stochastic ordinary differential equations. They proceed by a duality argument

based on an adjoint equation.

This linearization was independently used in [31] for linear stochastic partial

differential equations. Extending the idea of [31], we proceed as follows: choose a

Gelfand triple V ⊂ L2(Ω, H) ⊂ V ∗ such that Φn
h,k ∈ V . By duality we have

∣

∣E
[

ϕ(X(tn))− ϕ(Xn
h,k)

]∣

∣ ≤
(

sup
h,k∈(0,1]

∥

∥Φn
h,k

∥

∥

V

)

∥

∥X(tn)−Xn
h,k

∥

∥

V ∗
.(4.2)

The proof of our weak convergence result in Theorem 4.4 then amounts to showing

that we can find a suitable space V such that, for γ ∈ (0, β),

max
n∈{1,...,N}

sup
h,k∈(0,1]

∥

∥Φn
h,k

∥

∥

V
≤ C,

max
n∈{1,...,N}

∥

∥X(tn)−Xn
h,k

∥

∥

V ∗
≤ C

(

h2γ + kγ
)

, h, k ∈ (0, 1].
(4.3)

In comparison, the strong error converges with half this rate, i.e., for γ ∈ (0, β)

there exists C such that

max
n∈{1,...,N}

‖X(tn)−Xn
h,k‖L2(Ω,H) ≤ C(hγ + k

γ
2 ), h, k ∈ (0, 1].

In Corollary 4.7 we deduce this from (4.3) by an interpolation argument.

We explain our method by gradually choosing more sophisticated spaces V . We

begin in the next subsection with the simpler problem of the weak approximation of

the stochastic convolution. This problem is treated in [16], [19] [28], [29], [31], and to

some extent in [48]. We show that in this case V = L2(Ω, Ḣγ) and V = M1,p,p(H)

with p = 2
1−γ suffice with different degrees of success. The proofs are simpler

than in the mentioned papers, except for [31] to which the present paper is an

extension. We continue with a subsection containing our main result Theorem 4.4,

which is concerned with semilinear equations with additive noise. Here we use the

space V = G1,p(H), whose dual norm allows for a Gronwall argument based on

Lemma 3.9. Finally, we discuss multiplicative noise in Subsection 4.3 and illustrate

why our approach is not yet sufficient for this generality.

We assume that test functions are taken from C2
p(H,R) with a precise definition

in the following assumption. Recall the norm defined in (2.1).

Assumption 4.1. The test function ϕ ∈ C2
p(H,R), i.e., ϕ : H → R is twice

continuously Fréchet differentiable and there exists an integer m ≥ 2 and a constant

C such that

‖ϕ(j)(x)‖L[j](H,R) ≤ C
(

1 + ‖x‖m−j
)

, x ∈ H, j = 1, 2.

4.1. The stochastic convolution. We consider the stochastic convolution WA

and its approximation WAh

h,k ,

WA(tn) =

∫ tn

0

S(tn − s) dW (s) and WAh,n
h,k =

n−1
∑

j=0

∫ tj+1

tj

Sn−j
h,k dW (s)
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for n ∈ {1, . . . , N}. For γ ∈ (0, β), we consider first the Gelfand triple

L2
(

Ω, Ḣγ
)

⊂ L2(Ω, H) ⊂ L2
(

Ω, Ḣ−γ
)

.

In order to have Φn
h,k ∈ L2(Ω, Ḣγ) we need to impose an extra assumption on ϕ,

namely that, for some m ≥ 1 and every γ ∈ (0, β), it holds
∥

∥ϕ′(x)
∥

∥

Ḣγ ≤ C
(

1 + ‖x‖m−1

Ḣγ

)

, x ∈ Ḣγ .(4.4)

Then we first get by the Sobolev regularity of WA and WAh

h,k

∥

∥Φn
h,k

∥

∥

L2(Ω,Ḣγ)
.

∥

∥WA(tn)
∥

∥

m−1

L2(m−1)(Ω,Ḣγ)
+
∥

∥WAh,n
h,k

∥

∥

m−1

L2(m−1)(Ω,Ḣγ)
. 1,

uniformly in h, k ∈ (0, 1]. To prove convergence in L2(Ω, Ḣ−γ) we write the differ-

ence of the stochastic convolution and its numerical discretization in the form

WA(tn)−WAh,n
h,k =

∫ tn

0

Ẽh,k(tn − t) dW (t),(4.5)

where Ẽh,k : (0, T ) → L0
2 is given by

Ẽh,k(t) := S(t)− Sj+1
h,k , for t ∈ (tj , tj+1), j = 0, . . . , N − 1.(4.6)

Provided that this error operator satisfies
∥

∥A− γ
2 Ẽh,k(t)A

1−β
2

∥

∥

L
.

(

h2γ + kγ
)

t
−1+β−γ

2 , t > 0,(4.7)

then we obtain by the Itō isometry and Assumption 2.3 (iii)

∥

∥WA(tn)−WAh,n
h,k

∥

∥

L2(Ω,Ḣ−γ)
=

(

∫ tn

0

∥

∥A− γ
2 Ẽh,k(tn − t)

∥

∥

2

L0
2
dt
)

1
2

≤
(

∫ tn

0

∥

∥A− γ
2 Ẽh,k(tn − t)A

1−β
2

∥

∥

2

L

∥

∥A
β−1
2

∥

∥

2

L0
2
dt
)

1
2

.
(

h2γ + kγ
)

(

∫ tn

0

(tn − t)−1+β−γ dt
)

1
2

. h2γ + kγ .

The error estimate (4.7) is verified for Galerkin finite element approximations in

Section 5 for γ = 0, see Lemma 5.1 with θ = γ, ̺ = 1−β, but the case γ > 0 is not

to be found in the literature, so for this particular choice of Gelfand triple we do

not work in full rigor. An integrated version of (4.7) is found in [48], details in [47],

and we find no reason to doubt the validity of (4.7). In view of (4.2), by assuming

(4.4) and (4.7), we can prove weak convergence with the desired rate.

Actually, [48, Theorem 1.2] shows convergence of orderO(h2β+kβ) in L2(Ω, Ḣ−1)

(except for a logarithmic factor). However, the fact that L2(Ω, Ḣ−1)-convergence

implies weak convergence for other than linear test functions was not realized in

the early work [48]. Subsequent works except [31] rely on the use of Kolmogorov’s

equation. In the paper [19] this was done for test functions satisfying (4.4), while

[16] only assumed ϕ ∈ C2
b(H,R). We also remark that the only technical ingredi-

ent used in the present proof is the Itō isometry. Therefore this proof carries over

without additional difficulties to the case when the cylindrical Q-Wiener process W

is replaced by a square integrable martingale M , by just introducing the suitable

notation. This gives a partial extension of the results in [35], in which impulsive
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noise was considered. In that paper the additional assumption (4.4) was not used

but instead the test functions were assumed to be in C2
b(H,R).

Fix γ ∈ (0, β) and let p = 2
1−γ . We next consider the Gelfand triple

M1,p,p(H) ⊂ L2(Ω, H) ⊂ M1,p,p(H)∗.

With these spaces we need no assumption on the test function other than Assump-

tion 4.1. We state the two parts of (4.3) as two separate lemmas. Notice that the

first lemma is not restricted to the stochastic convolution.

Lemma 4.2. Let Assumptions 2.3, 2.4, and 4.1 hold with β ∈ (0, 1]. For γ ∈ (0, β),

set p = 2
1−γ . Then it holds

max
n∈{1,...,N}

sup
h,k∈(0,1]

∥

∥Φn
h,k

∥

∥

M1,p,p(H)
< ∞,

where Φn
h,k is defined in (4.1).

Proof. First note that ϕ′ satisfies the condition of the chain rule in Lemma 3.3 with

r = m− 2 by Assumption 4.1. Thus, it holds

Φn
h,k =

∫ 1

0

ϕ′(Θn
h,k(̺)) d̺ ∈ M1,p,p(H),

since Θn
h,k(̺) = ̺X(tn) + (1 − ̺)Xn

h,k ∈ M1,(m−1)p,p(H) by Propositions 3.10 and

3.16. Further, from Lemma 3.3 we also get
∥

∥Φn
h,k

∥

∥

M1,p,p(H)
.

(

1 + sup
̺∈[0,1]

∥

∥Θn
h,k

∥

∥

m−1

M1,(m−1)p,p(H)

)

.
(

1 +
∥

∥X(tn)
∥

∥

m−1

M1,(m−1)p,p(H)
+

∥

∥Xn
h,k

∥

∥

m−1

M1,(m−1)p,p(H)

)

.

By Propositions 3.10 and 3.16, these are bounded independently of h, k ∈ (0, 1]. �

Lemma 4.3. Let Assumptions 2.3 and 2.4 hold with β ∈ (0, 1]. For γ ∈ (0, β), set

p = 2
1−γ . It holds

max
n∈{1,...,N}

∥

∥WA(tn)−WAh,n
h,k

∥

∥

M1,p,p(H)∗
≤ C

(

h2γ + kγ
)

, h, k ∈ (0, 1].

Proof. By (4.5), Theorem 3.5, and Assumption 2.3 (iii), we get

∥

∥WA(tn)−WAh,n
h,k

∥

∥

M1,p,p(H)∗
≤

(

∫ tn

0

∥

∥Ẽh,k(tn − t)
∥

∥

p′

L0
2
dt
)

1
p′

≤
(

∫ tn

0

∥

∥Ẽh,k(tn − t)A
1−β
2

∥

∥

p′

L

∥

∥A
β−1
2

∥

∥

p′

L0
2
dt
)

1
p′

.

Recalling the error operator (2.9) we obtain for t ∈ (tj , tj+1), j = 0, . . . , n− 1,
∥

∥Ẽh,k(tn − t)A
1−β
2

∥

∥

L

≤
∥

∥

(

S(tn − t)− S(tn − tj)
)

A
1−β
2

∥

∥

L
+
∥

∥En−j
h,k A

1−β
2

∥

∥

L

≤
∥

∥

(

I − S(t− tj)
)

A−γ
∥

∥

L

∥

∥S(tn − t)A
2γ+1−β

2

∥

∥

L
+

∥

∥En−j
h,k A

1−β
2

∥

∥

L

. (t− tj)
γ(tn − t)−

2γ+1−β
2 +

(

h2γ + kγ
)

(tn − tj)
− 2γ+1−β

2

.
(

h2γ + kγ
)

(tn − t)−
2γ+1−β

2 ,

(4.8)
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where we applied (2.3) with ̺ = γ and (2.4), (2.12) with θ = 2γ, ̺ = 1 − β. By

recalling (3.9), we conclude

∥

∥WA(tn)−WAh,n
h,k

∥

∥

M1,p,p(H)∗
.

(

h2γ + kγ
)

(

∫ tn

0

(tn − t)−p′ 2γ+1−β
2 dt

)
1
p′

. h2γ + kγ ,

which is the desired result. �

4.2. Semilinear equation with additive noise. Above we demonstrated that

V = M1,p,p(H) with p large is suitable for the weak error analysis for the stochastic

convolution. In order to treat semilinear equations we need a smaller space. Here

we work with the Gelfand triple

G1,p(H) ⊂ L2(Ω, H) ⊂ G1,p(H)∗.

The line of proof is the same as above only that the convergence in the dual norm

is more involved and relies on the local Lipschitz condition stated in Lemma 3.9,

the Burkholder type inequality Lemma 3.5 and a classical Gronwall argument.

Theorem 4.4. Let Assumptions 2.3 and 2.4 hold with β ∈ (0, 1]. Let X and

Xh,k be the solutions to equations (2.5) and (2.7), respectively. For every function

ϕ : H → H that satisfies Assumption 4.1 and every γ ∈ [0, β), we have for h, k ∈

(0, 1] the weak convergence

max
n∈{1,...,N}

∣

∣E
[

ϕ(X(tn))− ϕ(Xn
h,k)

]∣

∣ ≤ C
(

h2γ + kγ
)

.

Proof. This is a direct consequence of (4.3) and Lemmas 4.5 and 4.6 below. �

Lemma 4.5. Let the assumptions of Theorem 4.4 hold. For γ ∈ (0, β), set p = 2
1−γ .

It holds

max
n∈{1,...,N}

sup
h,k∈(0,1]

∥

∥Φn
h,k

∥

∥

G1,p(H)
≤ C.

Proof. By Lemma 4.2 we have ‖Φn
h,k‖M1,p,p(H) ≤ C uniformly in n and h, k. In

addition, by (2.6), Proposition 3.15, and Assumption 4.1, it holds ‖Φn
h,k‖L2p(Ω,H) ≤

C uniformly in n and h, k. �

Lemma 4.6. Let the assumptions of Theorem 4.4 hold. For γ ∈ (0, β), set p = 2
1−γ .

Then there exists a constant C independent of h, k ∈ (0, 1] such that

max
n∈{1,...,N}

∥

∥X(tn)−Xn
h,k

∥

∥

G1,p(H)∗
≤ C

(

h2γ + kγ
)

, h, k ∈ (0, 1].

Proof. Let n ∈ {1, . . . , N} be arbitrary. By (2.5) and (2.8), we can write

X(tn)−Xn
h,k =

(

S(tn)− Sn
h,k

)

X0

+
n−1
∑

j=0

∫ tj+1

tj

(

S(tn − t)− Sn−j
h,k

)

F (X(t)) dt

+
n−1
∑

j=0

∫ tj+1

tj

Sn−j
h,k

(

F (X(t))− F (Xj
h,k)

)

dt+WA(tn)−WAh,n
h,k .



DUALITY IN REFINED SOBOLEV-MALLIAVIN SPACES 25

By recalling the error operators En
h,k from (2.9) and Ẽh,k(t) from (4.6), we obtain

∥

∥X(tn)−Xn
h,k

∥

∥

G1,p(H)∗
≤

∥

∥En
h,kX0

∥

∥

+
∥

∥

∥

∫ tn

0

Ẽh,k(tn − t)F (X(t)) dt
∥

∥

∥

G1,p(H)∗

+
∥

∥

∥

n−1
∑

j=0

∫ tj+1

tj

Sn−j
h,k

(

F (X(t))− F (Xj
h,k)

)

dt
∥

∥

∥

G1,p(H)∗

+
∥

∥WA(tn)−WAh,n
h,k

∥

∥

G1,p(H)∗
.

(4.9)

By (2.12) with ̺ = −θ = −2γ and Assumption 2.3 (ii) we get

∥

∥En
h,kX0

∥

∥ ≤
∥

∥En
h,kA

−γ
∥

∥

L

∥

∥AγX0

∥

∥ .
(

h2γ + kγ
)∥

∥AγX0

∥

∥.

For the second term in (4.9) we first use that ‖Z‖G1,p(H)∗ ≤ ‖Z‖L2(Ω,H) for all

Z ∈ L2(Ω, H). Then by (4.8) with β = 1, the linear growth of F , and (2.6) we have

∥

∥

∥

∫ tn

0

Ẽh,k(tn − t)F (X(t)) dt
∥

∥

∥

G1,p(H)∗
≤

∫ tn

0

∥

∥Ẽh,k(tn − t)
∥

∥

L

∥

∥F (X(t))
∥

∥

L2(Ω,H)
dt

.
(

h2γ + kγ
)

∫ tn

0

(tn − t)−γ dt
(

1 + sup
t∈[0,T ]

∥

∥X(t)
∥

∥

L2(Ω,H)

)

. h2γ + kγ .

For the third summand we first notice that Propositions 3.10 and 3.16 justify the

use of Lemma 3.9 with η = F , U = H, V = Ḣ−1, X1 = X(t) and X2 = Xj
h,k with

t ∈ (tj , tj+1]. We get

∥

∥F (X(t))− F (Xj
h,k)

∥

∥

G1,p(Ḣ−1)∗
≤ max

i∈{1,2}
|F |Ci

b(H,Ḣ−1)

×
(

1 + ‖X(t)‖M1,2p,p(H) + ‖Xj
h,k‖M1,2p,p(H)

)

‖X(t)−Xj
h,k‖G1,p(H)∗

. ‖X(t)−Xj
h,k‖G1,p(H)∗ .

By (2.10), (2.11) with ρ = 1
2 , we get for the third term

∥

∥

∥

n−1
∑

j=0

∫ tj+1

tj

Sn−j
h,k A

1
2

hA
− 1

2

h PhA
1
2A− 1

2

(

F (X(t))− F (Xj
h,k)

)

dt
∥

∥

∥

G1,p(H)∗

≤
n−1
∑

j=0

∫ tj+1

tj

∥

∥Sn−j
h,k A

1
2

h

∥

∥

L
‖A

− 1
2

h PhA
1
2 ‖L

∥

∥F (X(t))− F (Xj
h,k)

∥

∥

G1,p(Ḣ−1)∗
dt

.

n−1
∑

j=0

∫ tj+1

tj

t
− 1

2
n−j

(∥

∥X(t)−X(tj)
∥

∥

G1,p(H)∗
+
∥

∥X(tj)−Xj
h,k

∥

∥

G1,p(H)∗

)

dt.

(4.10)
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By Proposition 3.11, it holds ‖X(t)−X(tj)‖G1,p(H)∗ . kγ and therefore

∥

∥

∥

n−1
∑

j=0

∫ tj+1

tj

Sn−j
h,k

(

F (X(t))− F (Xj
h,k)

)

dt
∥

∥

∥

G1,p(H)∗

. k1+γ
n−1
∑

j=0

t
− 1

2
n−j + k

n−1
∑

j=0

t
− 1

2
n−j

∥

∥X(tj)−Xj
h,k

∥

∥

G1,p(H)∗
.

The fourth summand is estimated in Lemma 4.3. Altogether we conclude that

∥

∥X(tn)−Xn
h,k

∥

∥

G1,p(H)∗
.

(

h2γ + kγ
)

+ k

n−1
∑

j=0

t
− 1

2
n−j

∥

∥X(tj)−Xj
h,k

∥

∥

G1,p(H)∗
.

By the discrete Gronwall Lemma 2.1 the assertion follows. �

Weak approximation concerns the approximation of the Markov semigroup. In

view of Theorem 4.4 and Corollary 3.12, we see that the rate of weak convergence in

time coincides with the Hölder regularity in time for the Markov semigroup, which

is intuitively to be expected for an Euler approximation. A similar connection to

the discretization in space seems to be a more subtle issue.

The relationship between the strong and weak rate of convergence can also be

seen in the view of duality. The following corollary deduces a strong convergence

result from Lemma 4.6 and Propositions 3.10 and 3.16. It indicates why one often

encounters the rule of thumb that the order of weak convergence is twice the order

of strong convergence.

Corollary 4.7. Let the assumptions of Theorem 4.4 hold. Let X and Xh,k denote

the solutions to equations (2.5) and (2.7), respectively. Then for every γ ∈ (0, β)

there exists a constant C such that

max
n∈{1,...,N}

‖X(tn)−Xn
h,k‖L2(Ω,H) ≤ C(hγ + k

γ
2 ), h, k ∈ (0, 1].

Proof. For arbitrary n ∈ {1, . . . , N} we have by the duality argument with p = 2
1−γ

‖X(tn)−Xn
h,k‖

2
L2(Ω,H) =

〈

X(tn)−Xn
h,k, X(tn)−Xn

h,k

〉

L2(Ω,H)

≤
(

‖X(tn)‖G1,p(H) + ‖Xn
h,k‖G1,p(H)

)

‖X(tn)−Xn
h,k‖G1,p(H)∗ .

The first factor is bounded independently of n ∈ {1, . . . , N} by Propositions 3.10

and 3.16. For the second factor we apply Lemma 4.6 and since (h2γ + kγ)
1
2 ≤

(hγ + k
γ
2 ) for all h, k ∈ (0, 1] the result follows. �

4.3. Multiplicative noise. The choice V = G1,p(H) of Subsection 4.2 works only

for equations with additive noise. We demonstrate this here by considering the

following equation with linear multiplicative noise

dX(t) +AX(t) dt = BX(t) dW (t), t ∈ (0, T ]; X(0) = X0.
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Here B ∈ L(H,L2(H0, Ḣ
β−1)). In order to perform the Gronwall argument in the

G1,p(H)∗-norm for this equation, one would need a bound

∥

∥

∥

n−1
∑

j=0

∫ tj+1

tj

Sn−j
h,k B

(

X(t)−Xj
h,k

)

dW (t)
∥

∥

∥

G1,p(H)∗

.

n−1
∑

j=0

∫ tj+1

tj

∥

∥X(t)−Xj
h,k

∥

∥

G1,p(H)∗
dt,

(4.11)

cf. (4.10). Attempting to prove this, we integrate by parts and move the supremum

inside the integral to get

∥

∥

∥

n−1
∑

j=0

∫ tj+1

tj

Sn−j
h,k B

(

X(t)−Xj
h,k

)

dW (t)
∥

∥

∥

G1,p(H)∗

= sup
Z∈G1,p(H)

1

‖Z‖G1,p(H)

〈

Z,

n−1
∑

j=0

∫ tj+1

tj

Sn−j
h,k B

(

X(t)−Xj
h,k

)

dW (t)
〉

L2(Ω,H)

≤

n−1
∑

j=0

∫ tj+1

tj

sup
Z∈G1,p(H)

1

‖Z‖G1,p(H)

〈

B∗Sn−j
h,k DtZ,X(t)−Xj

h,k

〉

L2(Ω,H)
dt.

If it would hold B∗Sn−j
h,k Dt ∈ L(G1,p(H)), then the bound (4.11) would follow, but

this is not the case as only Dt : G
1,p(H) → Lp(Ω,L0

2) for a.e. t ∈ [0, T ]. We see no

other natural choice of the space V but it might be that the estimate (4.2) is too

crude in order to treat multiplicative noise.

5. Approximation by the finite element method

In this section we describe an explicit example for the linear operator A and its

corresponding numerical discretization by the finite element method.

For this we consider the Hilbert space H = L2(D), where D ⊂ Rd, d = 1, 2, 3,

is a bounded, convex, and polygonal domain. The linear operator (A,D(A)) is

defined to be Au = −∇ · (a∇u) + cu with Dirichlet boundary conditions, where

a, c : D → R are sufficiently smooth with c(ξ) ≥ 0 and a(ξ) ≥ a0 > 0 for ξ ∈ D.

Then A is an elliptic, selfadjoint, second order differential operator with compact

inverse, see for instance [33, Chap. 6.1]. In particular, A satisfies Assumption 2.3

(i).

We measure spatial regularity in terms of the abstract spaces Ḣθ, θ ∈ R, which

now are related to the classical Sobolev spaces, for example Ḣ1 = H1
0 (D) and

Ḣ2 = H1
0 (D)∩H2(D). For more details we refer to [31, App. B.2] and the references

therein.

Let (Th)h∈(0,1] be a regular family of triangulations of D with maximal mesh

size h ∈ (0, 1]. We define a family of subspaces (Vh)h∈(0,1] of Ḣ1, consisting of

continuous piecewise linear functions corresponding to (Th)h∈(0,1]. By equipping

the space Ḣ1 with the inner product 〈·, ·〉1 := 〈A
1
2 ·, A

1
2 ·〉, we define Ah : Vh → Vh,

h ∈ (0, 1], to be the linear operators given by

〈Ahvh, uh〉 = 〈vh, uh〉1, ∀vh, uh ∈ Vh.
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Now, from [31, (3.15)] we get ‖A−1
h Phx‖ ≤ ‖x‖−1 for all x ∈ Ḣ−1. Hence, it holds

‖A
− 1

2

h PhA
1
2 ‖L ≤ 1.

An interpolation between this and ‖Ph‖L ≤ 1 yields (2.11) for ̺ ∈ [0, 1].

As in Subsection 2.3 we denote by (S(t))t≥0 the semigroup generated by −A

and Sh,k := (I+kAh)
−1Ph. The standard literature on finite element methods, for

instance [41], provides error estimates for the approximation of the semigroup with

smooth and nonsmooth initial data. More precisely, it holds for the error operator

(4.6) that

‖Ẽh,k(t)x‖ ≤ C
(

h2 + k
)

t−
2−q
2 ‖x‖Ḣq , x ∈ Ḣq, q = 0, 2.

By interpolation this covers the smooth data case −θ ≤ ̺ ≤ 0 of (2.12). For the

purpose of the present work we need to extend this to less regular initial data. This

is done by the next lemma, which is a consequence of [31, Lemma 3.12].

Lemma 5.1. Under the above assumptions and for 0 ≤ θ ≤ 2 and −θ ≤ ̺ ≤

min(1, 2− θ), the following estimate holds true

‖Ẽh,k(t)x‖ ≤ C
(

hθ + k
θ
2

)

t−
θ+̺
2 ‖x‖−̺, x ∈ Ḣ−̺, t > 0, h, k ∈ (0, 1].

Proof. As noted above it remains to treat the case when 0 ≤ ̺ ≤ min(1, 2− θ). By

[31, Lemma 3.12 (i)] the estimate

‖Ẽh,k(t)x‖ ≤ C
(

hθ + k
θ
2

)

t−
θ
2 ‖x‖, t > 0, 0 ≤ θ ≤ 2,(5.1)

holds for all h, k ∈ (0, 1]. By [31, Lemma 3.12 (iii)] the error operator Ẽh,k also

satisfies, for 1 ≤ θ ≤ 2,

‖Ẽh,k(t)x‖ ≤ C
(

hθ + k
θ
2

)

t−1‖x‖−(2−θ), t > 0.(5.2)

Interpolation of (5.1) and (5.2) with fixed θ ∈ [1, 2] gives that, for λ ∈ [0, 1],

‖Ẽh,k(t)x‖ ≤ C
(

hθ + k
θ
2

)

t−(1−λ) θ
2 t−λ‖x‖−λ(2−θ)

= C
(

hθ + k
θ
2

)

t−
θ
2−

λ(2−θ)
2 ‖x‖−λ(2−θ), t > 0.

If we let ̺ = λ(2 − θ), then we get the following estimate: for 1 ≤ θ ≤ 2 and

0 ≤ ̺ ≤ 2− θ,

‖Ẽh,k(t)x‖ ≤ C
(

hθ + k
θ
2

)

t−
θ+̺
2 ‖x‖−̺, t ≥ 0.(5.3)

By [31, Lemma 3.12 (ii)] it holds

‖Ẽh,k(t)x‖ ≤ Ct−
̺
2 ‖x‖−̺, t > 0, 0 ≤ ̺ ≤ 1,(5.4)

and using (5.3) with θ = 1 and (5.4), both with the same 0 ≤ ̺ ≤ 1, yields

‖Ẽh,k(t)x‖ = ‖Ẽh,k(t)x‖
λ‖Ẽh,k(t)x‖

1−λ ≤ C
(

h+ k
1
2

)λ
t−

λ+̺
2 ‖x‖−̺

≤ C
(

hλ + k
λ
2

)

t−
λ+̺
2 ‖x‖−̺, t > 0, 0 ≤ λ ≤ 1.

(5.5)

Combining (5.3) and (5.5) concludes the proof. �
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Writing the statement of the lemma in operator form yields

‖Ẽh,k(t)A
̺
2 ‖L ≤ C

(

hθ + k
θ
2

)

t−
θ+̺
2 , t > 0, 0 ≤ θ ≤ 2, −θ ≤ ̺ ≤ min(1, 2− θ).

This is (2.12) for the finite element method. To verify Assumption 2.4 it remains

to show (2.10). By [31, (3.42)]

‖Sn
h,kx‖ ≤ Ct−

1
2 ‖x‖−1.

Interpolating between this and ‖Sn
h,kx‖ ≤ C‖x‖ yields (2.10).
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[5] C.-É. Bréhier, Approximation of the invariant measure with an Euler scheme for stochastic

PDE’s driven by space-time white noise, ArXiv Preprint, arXiv:1202.2707 (2012).

[6] , Strong and weak order in averaging for SPDEs, Stoch. Proc. Appl. 122 (2012), no. 7,

2553–2593.

[7] C.-É. Bréhier and M. Kopec, Approximation of the invariant law of SPDEs: error analysis

using a Poisson equation for a full-discretization scheme, ArXiv Preprint, arXiv:1311.7030

(2013).

[8] E. Buckwar, R. Kuske, S.-E. Mohammed, and T. Shardlow, Weak convergence of the Euler

scheme for stochastic differential delay equations, LMS J. Comput. Math. 11 (2008), 60–99.

[9] E. Buckwar and T. Shardlow, Weak approximation of stochastic differential delay equations,

IMA J. Numer. Anal. 25 (2005), no. 1, 57–86.

[10] E. Clément, A. Kohatsu-Higa, and D. Lamberton, A duality approach for the weak approxi-

mation of stochastic differential equations, Ann. Appl. Probab. 16 (2006), no. 3, 1124–1154.

[11] D. Cohen and M. Sigg, Convergence analysis of trigonometric methods for stiff second-order

stochastic differential equations, Numer. Math. 121 (2012), no. 1, 1–29.

[12] D. Conus, A. Jentzen, and R. Kurniawan,Weak convergence rates of spectral Galerkin approx-

imations for SPDEs with nonlinear diffusion coefficients, ArXiv Preprint, arXiv:1408.1108

(2014).

[13] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of

Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992.

[14] A. de Bouard and A. Debussche, Weak and strong order of convergence of a semidiscrete

scheme for the stochastic nonlinear Schrödinger equation, Appl. Math. Optim. 54 (2006),

369–399.



30 A. ANDERSSON, R. KRUSE, AND S. LARSSON

[15] A. Debussche, Weak approximation of stochastic partial differential equations: the nonlinear

case, Math. Comp. 80 (2011), no. 273, 89–117.

[16] A. Debussche and J. Printems, Weak order for the discretization of the stochastic heat equa-

tion, Math. Comp. 78 (2009), no. 266, 845–863.

[17] C. M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a finite

element method for the Cahn-Hilliard equation, Math. Comp. 58 (1992), no. 198, 603–630,

S33–S36.

[18] M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional

spaces: the backward stochastic differential equations approach and applications to optimal

control, Ann. Probab. 30 (2002), 1397–1465.
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