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Abstract We consider homoclinic orbits in continuous time nonautonomous
dynamical systems. Unlike the autonomous case, stable and unstable fiber bun-
dles that generalize stable and unstable manifolds, typically intersect transver-
sally in isolated points. In the first part, we establish persistence and error es-
timates for one–step discretizations of transversal homoclinic orbits. Secondly,
we extend an algorithm by England, Krauskopf, Osinga to nonautonomous
systems and illustrate transversally intersecting fibers along homoclinic orbits
for three examples. The first one is constructed artificially in order to study
numerical errors, while the second one is a periodically forced model that re-
veals the influence of underlying autonomous dynamics. The third example
originates from mathematical biology.
Keywords: Nonautonomous dynamical systems, homoclinic orbits, fiber bun-
dles, discretization effects, approximation theory, exponential dichotomy.
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1 Introduction

Homoclinic structures in autonomous ODEs are characterized by the cele-
brated Smale–Šil’nikov–Birkhoff–Theorem, cf. [27, 28]. It turns out that they
are a source of rich and even chaotic dynamics. This explains the importance
of extensive studies for detecting these structures. Techniques for computing
them numerically are introduced, for example, in [2, 8].

For autonomous ODEs with a homoclinic orbit w.r.t. an equilibrium, the
corresponding stable and unstable manifolds [12] have the whole homoclinic
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orbit in common. However, Fiedler and Scheurle [7] showed that these man-
ifolds generically split under time discretization (with an exponentially small
splitting angle when the nonlinearities are analytic). More specifically Beyn
and Zou proved in [30] that a one–step discretization of a parameter depen-
dent ODE results in a discrete time system with a closed loop of homoclinic
orbits. At a turning point of this loop, stable and unstable manifolds touch
tangentially, while their intersection is transversal, otherwise, see Figure 1.1.

Fig. 1.1 Homoclinic orbits in autonomous systems: Manifolds before (left) and after dis-
cretization by a one–step method; tangential case (center) and transversal intersections
(right).

Realistic models, for example, from mathematical biology are nonautono-
mous. This may be caused by seasonal fluctuations of the environment that
cannot be handled adequately in autonomous models. Note that in a nonau-
tonomous setup, one can hardly expect to find time independent fixed points.
The only meaningful replacement of a fixed point is a bounded trajectory,
see [21], and the corresponding stable and unstable manifolds also depend on
time and are called stable and unstable fiber bundles, see e.g. [1].

If stable and unstable fiber bundles of a nonautonomous ODE intersect,
then the point of intersection is in general isolated. It is important to mention
that contrary to the autonomous case, stable and unstable fiber bundles typi-
cally do not have the whole orbit in common and consequently, the autonomous
setup is not a special case of the nonautonomous situation. Depending on the
system, one can expect to find a finite or a countable set of intersecting points
between these fibers. In the latter case, Lerman and Šil’nikov [22] proved that
the corresponding homoclinic orbits allow a symbolic coding and in this way
create chaotic dynamics.

The aim of this paper is a deeper understanding of the interplay between
continuous time and discrete time dynamics in a nonautonomous context. As
a prototype, we analyze the fate of homoclinic orbits in nonautonomous ODEs
under discretizations. It turns out that these orbits as well as corresponding
transversal intersections of stable and unstable fiber bundles persist under
one–step methods, see Theorem 4.2 and Figure 1.2.

As a first application, we construct a nonautonomous ODE having an ex-
plicitly known homoclinic orbit. Homoclinic orbits are computed numerically
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Fig. 1.2 Homoclinic orbits in nonautonomous systems: Fiber bundles before (left) and after
(right) discretization by a one–step method.

using a one–step scheme in Section 5, with a subsequent discussion of approx-
imation errors.

For illustrating transversally intersecting fiber bundles in discrete time,
adequate tools for their numerical approximation are needed. Note that the
resulting maps are noninvertible in general. We tackle this problem in Sec-
tion 5.2 by introducing a nonautonomous generalization of an algorithm by
England, Krauskopf and Osinga, see [6]. It computes one–dimensional stable
fiber bundles in a two–dimensional system. The algorithm starts with a linear
approximation of a stable fiber that can be expressed by the subspaces of an
exponential dichotomy, see [15] for an approach that allows their computation.
We then search for pre–images that lie in the previous fiber and avoid in this
way the use of the inverse mapping. Continuing this idea, the approximate
fiber bundles grow.

Using this algorithm, we compute fiber bundles for a discretization of our
first ODE and of a periodically forced version.

Finally, we apply our techniques to a two–dimensional nonautonomous
model from mathematical biology, see [26], that exhibits transversally inter-
secting stable and unstable fiber bundles and thus, homoclinic orbits.

2 Homoclinic orbits in continuous time

We start by introducing basic assumptions and the notion of a transversal
homoclinic orbit for a nonautonomous system in continuous time.

Consider the nonautonomous differential equation

ẋ = f(x, t) for x 2 k

, t 2 (2.1)

and denote by '(x, t, s) its solution operator transferring the solution from
time s to time t. For this system, we impose the following assumptions:

(A1) f 2 C1
(

k⇥ , ) satisfies conditions, assuring existence and uniqueness of
global solutions as well as the following estimates for the solution operator.
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For any compact set K ⇢ k there exist constants C1(K), h1(K) > 0 such
that the inequality

k'
x

(x, t, s)k  C1(K)

holds for all x 2 K and |t� s|  h1(K). For n 2 let '
n

(x, h) := '(x, (n+

1)h, nh) be Cd smooth w.r.t. h, d � 1. Mixed derivatives ('

n

)

(1,`)
x,h

, ` 2
{0, . . . , d} exist and satisfy the uniform Lipschitz condition

�

�

�

('

n

)

(1,d)
x,h

(x, µ1)� ('

n

)

(1,d)
x,h

(x, µ2)

�

�

�

 C1(K) kµ1 � µ2k

for all x 2 K, 0  µ1, µ2  h1(K) and n 2 .
Further, let

�

�

�

('

n

)

(r,1)
x,h

(x, h)

�

�

�

 C1(K) for all n 2 , r 2 {0, 1}, x 2 K and
0  h  h1(K).

Here, upper and lower indicies denote partial derivatives

('

n

)

(i,j)
x,h

(x, h) :=

@

i

@x

i

@

j

@h

j

'

n

(x, h).

(A2) 0 2 k satisfies f(0, t) = 0 for all t 2 .
(A3) 0 is hyperbolic, i.e. the variational equation

ẋ = f

x

(0, ·)x

has an exponential dichotomy on , cf. Def. A.1. Denote the corresponding
dichotomy data by (K,�, P

s,u

t

).

The Banach space of bounded functions is defined as

X

i

=

n

u(·) 2 C

1
( ,

k

) : kuk
i

=

i

X

j=0

sup

t2

�

�

�

u

(j)
(t)

�

�

�

1
< 1

o

.

If (2.1) possesses a (hyperbolic) bounded solution ⇠(·) 2 X

0, then the trans-
formed system

ẏ = g(y, t), g(y, t) := f(y + ⇠(t), t)� f(⇠(t), t)

has 0 as a t–independent (hyperbolic) equilibrium. Thus without loss of gener-
ality (A2) is fulfilled. Note that (A1) is invariant under this transformation.

We introduce the notion of homoclinic orbits in nonautonomous systems:

Definition 2.1 Two bounded trajectories x(·) and y(·) of (2.1) are ho-
moclinic toward each other if

lim

t!±1,

t2

kx(t)� y(t)k = 0. (2.2)
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Note that homoclinic orbits in discrete time systems are defined similarly but
t is restricted to , see [16].

Assuming (A3), the trajectory y(t) = 0 for all t is trivial and (2.2) has the
form lim

t!±1 x(t) = 0 if x(·) is homoclinic w.r.t. the equilibrium 0. Unless
stated otherwise, homoclinic always means homoclinic w.r.t. the equilibrium
0. We further assume existence and transversality of this homoclinic orbit.

(A4) A nontrivial homoclinic orbit x̄(·) of (2.1) exists.
(A5) The homoclinic orbit x̄(·) is transversal in the following sense:

u̇(t) = f

x

(x̄(t), t)u(t), t 2 with u(·) 2 X

1 , u(·) = 0.

Geometrically, transversality means that stable and unstable fiber bundles
intersect transversally along the homoclinic orbit. The definition of invariant
fiber bundles in continuous time can be found in [25]. Note that invariant
fiber bundles in discrete time systems are defined similarly, see [1]. They are
the nonautonomous equivalent of the hyperbolic manifolds in the autonomous
case.

Definition 2.2 Stable and unstable global fiber bundles of the fixed
point 0 of equation (2.1) are defined as

F±
:= {(t, x) 2 ⇥ k

: lim

s!±1
'(x, s, t) = 0}

and global t–fibers are F±
(t) := {x 2 k

: (t, x) 2 F±}.
Local fiber bundles w.r.t. a neighborhood U ⇢ k of 0 are defined as

F+
U

:= {(t, x) 2 F+
: '(x, s, t) 2 U 8s � t},

F�
U

:= {(t, x) 2 F�
: '(x, s, t) 2 U 8s  t}

and local t–fibers are F±
U

(t) := {x 2 k

: (t, x) 2 F±
U

}.
Alternative characterizations of transversality are summarized in

Theorem 2.1 Assume (A1)–(A4), then the following statements are equiv-

alent

(ac) The homoclinic orbit x̄(·) is transversal in the sense of (A5).
(bc) The variational equation

u̇ = f

x

(x̄(·), ·)u (2.3)

has an exponential dichotomy on .

(cc) The linear operator

L(x̄) : X

1 ! X

0
, L(x̄)u(·) := u̇(·)� f

x

(x̄(·), ·)u(·)
is a homeomorphism.

(dc) The tangent spaces T

x̄(0)F±
(0) of the fibers F±

(0) at the point x̄(0) sat-

isfy

T

x̄(0)F�
(0)� T

x̄(0)F+
(0) =

k

.
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Proof (ac))(bc): Since x̄ is a homoclinic orbit w.r.t. the hyperbolic equilib-
rium 0, the Roughness–Theorem [5, Prop.1] applies and gives an exponen-
tial dichotomy of (2.3) that one can extend to + and �. By assuming
(ac), a nontrivial bounded solution cannot exist. Using [23, Prop. 2.1] half
sided dichotomies can be combined into a dichotomy on .

(bc))(cc): Assuming (bc) N (L(x̄)) = {0 2 X

1} directly follows. On the other
hand, we obtain for each r 2 X

0 – using Green’s function – a unique
bounded solution in X

1 of the inhomogeneous equation

u̇ = f

x

(x̄(·), ·)u+ r(·).
Thus L(x̄) is injective and surjective.

(cc))(ac): The claim immediately follows, since L(x̄) is a homeomorphism.
(ac), (dc): For a proof we refer to the end of Section 3 where we introduce

the discrete equivalent of these statements.
ut

Several of the following results hold true for bounded trajectories that need
not to be homoclinic. In this case, we assume

(A6) Let ȳ(·) be a hyperbolic bounded trajectory of (2.1). Denote by (

¯

K,

¯

�,

¯

Q

s,u

t

)

the dichotomy data of the corresponding variational equation

u̇ = f

x

(ȳ(·), ·)u
and let S

ȳ

(s, t) be its solution operator.

3 Discretization by the h–flow

In this section, we discretize the differential equation (2.1), using the h–flow.
From a numerical point of view, this ansatz is of no practical relevance. It is
introduced for deriving error estimates of one–step methods in Section 4.

We consider the h–flow

'

n

(x, h) := '(x, (n+ 1)h, nh) (3.1)

and note that the resulting dynamical system is invertible. A ' (·, h)–orbit is
a zero of the operator

� : S ⇥ ! S , (x , h) 7! (x

n+1 � '

n

(x

n

, h))

n2

that operates on the Banach space of bounded sequences

S :=

⇢

x = (x

n

)

n2 : x

n

2 k

, kx k := sup

n2
kx

n

k < 1
�

.

Assuming (A6), the discretized orbit

ȳ (h) := (ȳ

n

(h))

n2 := (ȳ(nh))

n2



Nonautonomous transversal homoclinic structures under discretization 7

is bounded and a zero of � .
Further, we look at the corresponding variational equation that we obtain

by differentiating � w.r.t. the first component

�

x

(ȳ (h), h) : S ! S , u 7! (u

n+1 � ('

n

)

x

(ȳ

n

(h), h)u

n

)

n2 .

Transversality of homoclinic orbits x (h) in discrete time systems is charac-
terized by one of the equivalent properties given in Theorem 3.1, see Theorem
2.1 for the continuous time case and note that all results applied in the proof
have a discrete time counterpart. We particularly refer to [13, Lemma 3.7] for
the equivalence of (a

�

) and (d
�

).

Theorem 3.1 Assume (A1)–(A4) and let h > 0. Then x̄ (h) is a homoclinic

orbit of (3.1). Furthermore, the following statements are equivalent:

(a
�

) u

n+1 = ('

n

)

x

(x̄

n

(h), h)u

n

, u 2 S , u = 0.

(b
�

) The variational equation

u

n+1 = ('

n

)

x

(x̄

n

(h), h)u

n

, n 2
has an exponential dichotomy on .

(c
�

) �
x

(x̄ , h) is a homeomorphism.

(d
�

) The tangent spaces T

x̄0F±
h

(0) of the global stable and unstable 0–fibers

F±
h

(0) of the h–flow x

n+1 = '

n

(x

n

, h) satisfy

T

x̄0F�
h

(0)� T

x̄0F+
h

(0) =

k

.

We show that the stable and unstable fiber bundles of the continuous system
coincide with those of the system defined by the h–flow for h sufficiently small.

Lemma 3.1 Assume (A1) and (A2). Then there exists a constant

ˆ

h > 0

such that

F±
(0) = F±

h

(0)

holds for all 0 < h <

ˆ

h.

Proof F±
(0) ⇢ F±

h

(0) is trivial. For proving the other inclusion let x0 2
F±

h

(0). For every t 2 we find an n 2 such that nh  t  (n+ 1)h holds.
With (A1), (A2) and the mean value theorem we get

sup

nht(n+1)h
k'(x0, t, 0)k

= sup

nht(n+1)h
k'('(x0, nh, 0), t, nh)� '(0, t, nh)k

= sup

nht(n+1)h

�

�

�

Z 1

0
'

x

(s'(x0, nh, 0), t, nh)ds'(x0, nh, 0)

�

�

�

C1k'(x0, nh, 0)k. (3.2)

From x0 2 F±
h

(0) it follows that lim

n!±1
'(x0, nh, 0) = 0 holds. With (3.2) we

get lim

t!±1
'(x0, t, 0) = 0 and consequently x0 2 F±

(0). ut
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Also hyperbolicity as well as transversality of a trajectory in continuous
time carries over to the discrete trajectory generated by the h–flow.
Lemma 3.2 (a) Assume (A1) and (A6), then ȳ (h) is a hyperbolic bounded

trajectory of '

n

(·, h) for all h > 0.

(b) Assume (A1)–(A4), then the following statements are equivalent:

(b1) The continuous time orbit x̄(·) is transversal in the sense of (A5).
(b2) There exists an

ˆ

h > 0 such that x̄ (h) is a transversal homoclinic

orbit of the h–flow '

n

(·, h) for all step sizes 0 < h  ˆ

h.

Proof Let h > 0 and assume (A1) as well as (A6). Denote by � the solution
operator of the variational equation

u

n+1 = ('

n

)

x

(ȳ

n

(h), h)u

n

, n 2 (3.3)

and observe that

�(n,m) = S

ȳ

(nh,mh), n,m 2 .

Using the continuous time dichotomy data from (A6), we define

Q

s,u

n

(h) :=

¯

Q

s,u

hn

, n 2
and immediately obtain that (3.3) has an exponential dichotomy on with
data (

¯

K,h

¯

�, Q

s,u

n

(h)). This completes the proof of (a).
For proving (b) assume (A1)–(A4). If (b1) holds true, then Theorem 2.1

guarantees that (2.3) has an exponential dichotomy on . An application of (a)
combined with the observation that the h–flow preserves homoclinic structures
proves (b2).

To show the implication "(b2))(b1)", we assume that (b1) is not satis-
fied, i.e. the orbit x̄(·) is not transversal. Then a nontrivial bounded solution
u(·) of (2.3) exists. As a consequence, we find an ˜

h > 0 such that u (h) =

(u(nh))

n2 6= 0 for all 0 < h  ˜

h and u

n+1(h) = S

x̄

((n+ 1)h, nh)u

n

(h) holds
for all n 2 , where S

x̄

(s, t) is the solution operator of (2.3). Applying the
identity

S

x̄

((n+ 1)h, nh) = ('

n

)

x

(x̄

n

(h), h)

for all n 2 we obtain

u

n+1(h) = ('

n

)

x

(x̄

n

, h)u

n

(h), n 2 .

Since u (h) 6= 0 for all h  ˜

h Theorem 3.1 (a
�

) applies and thus x̄ (h) is not
transversal for all h  ˜

h. This violates condition (b2). ut
Combining these results, we prove the remaining statements of Theorem

2.1.
Proof of Theorem 2.1, “(ac) , (dc)”. It follows from Lemma 3.2 (b) that an
ˆ

h > 0 exists such that (ac) , (a
�

holds for all h  ˆ

h). Applying Theorem 3.1
we get (a

�

) , (d
�

) and finally, Lemma 3.1 yields (d
�

holds for all h  ˆ

h) ,
(dc). ut
Corollary 3.1 Let x̄ be a transversal homoclinic orbit of the map '

n

(·, h).
Then x̄ is a regular solution of the operator �, i.e. � (x̄ , h) = 0 and �

x

(x̄ , h)

is a homeomorphism.
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4 Discretization by a one–step method

For a general one–step method, we prove a closeness result for approximate
trajectories in our nonautonomous context. From this, we conclude our main
theorem – the persistence of homoclinic orbits under one–step discretizations.

We consider a general one–step method

x

n+1 =  

n

(x

n

, h), x

n

2 k

, n 2 (4.1)

with step size h > 0. The orbits of (4.1) are zeros of the operator

˜

� : S ⇥ ! S , (xZ, h) 7! (x

n+1 �  

n

(x

n

, h))

n2 .

We assume consistency of order d as well as smoothness:

(A7) For any compact set K ⇢ k there exist constants C2(K), h2(K) > 0 such
that the consistency estimate of order d 2

k'
n

(x, h)�  

n

(x, h)k  C2(K)h

d+1

holds for all n 2 , x 2 K and 0 < h  h2(K).
(A8) Mixed derivatives of  

n

(x, h) up to order 3 exist. For any compact set K ⇢
k the derivatives are continuous and uniformly bounded by some constant

˜

C(K) in K ⇥ (0, h3(K)], with 0 < h3(K) sufficiently small. Furthermore,
 

n

(x, h) is Cd smooth in h and mixed derivatives ( 

n

)

(1,d)
x,h

(x, h) exist and
satisfy the uniform Lipschitz estimate

�

�

�

( 

n

)

(1,d)
x,h

(x, µ1)� ( 

n

)

(1,d)
x,h

(x, µ2)

�

�

�

 C3(K) kµ1 � µ2k

for all n 2 , x 2 K and 0 < µ1,2  h3(K) with a constant C3(K) > 0.

The following Lemma summarizes closeness estimates between the h–flow
and an h–step with (4.1). Garay proved in [9] closeness estimates for au-
tonomous systems. With our uniformity Assumptions (A7) and (A8) Garay’s
approach immediately carries over to the nonautonomous case. For the readers
convenience, we present a sketch of the proof.

Lemma 4.1 Assume (A1), (A7) and (A8). Then for any compact set K ⇢
k

there exist constants

˜

C(K), C4(K), h4(K) > 0 such that for all x 2 K and

0 < h  h4(K) with h4(K)  h1,2,3(K) the following statements hold true:

(i) sup

n2
k('

n

)

x

(x, h)� ( 

n

)

x

(x, h)k  C4(K)h

d+1
,

(ii)  
n

(x, h) = x + h�

n

(x, h) where �

n

(x, h) :=

R 1
0 ( n

)

h

(x, sh)ds has the

same smoothness properties as  

n

except for losing one derivative with

respect to h. Further, for r 2 {0, 1, 2} the following estimates are true:

sup

n2
k(�

n

)

(r)
x

(x, h)k  ˜

C(K), (4.2)

sup

n2
k( 

n

)

x

(x, h)

�1k  1

1� h

˜

C(K)

. (4.3)
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Proof With Taylor’s formula at h = 0 and (A8) we get

'

n

(x, h)�  

n

(x, h)

=

Z 1

0

⇣

(1�s)d�1

(d�1)! ('

n

(x, sh)�  

n

(x, sh))

(d)
h

� ('

n

(x, 0)�  

n

(x, 0))

(d)
h

⌘

dsh

d

for all x 2 K, 0 < h  h4(K). By differentiating this expression w.r.t. x and
using (A1) and (A7) we get the estimate from (i). The second statement
follows immediately from the mean value theorem. The estimate (4.2) is a
direct consequence of (A8) and with the Banach–Lemma we obtain (4.3) for
sufficiently small h. ut

Now, we have all tools at hand to prove h

d–closeness between orbits of
the continuous time system and orbits of the one–step discretization, see [30,
Theorem 4.3] for a related result in autonomous systems.

Theorem 4.1 Assume (A1), (A6)–(A8). Then there exist constants h5, � >

0 such that for all 0 < h  h5 the operator

˜

� (·, h) has a unique zero ỹ (h) in

a �–neighborhood of ȳ (h).

Furthermore, ỹ (h) is a hyperbolic bounded trajectory of (4.1) that satisfies

sup

n2
kỹ

n

(h)� ȳ

n

(h)k = O(h

d

). (4.4)

Proof Let K ⇢ k be compact and sufficiently large. We prove the statements
from above by applying Lemma A.2 with the settings: F =

˜

� , Y = S , ⇤ =

+
, Z = S and v̄0(h) = ȳ (h), �1 = � and �2 = h5.
We verify the assumptions of Lemma A.2 and first prove that ˜

� (·, h) for
0 < h  h5 is invertible with uniformly bounded inverse.

From Lemma 4.1 we get the closeness estimate
�

�

�

˜

�

x

(x , h)� �

x

(x , h)

�

�

�

 C4(K)h

d+1 (4.5)

for all 0 < h  h4(K) and x 2 K . Since �
x

(ȳ (h), h) is a homeomorphism
for all 0 < h  h4(K), a possibly smaller bound 0 < h5  h4(K) exists such
that ˜

�

x

(ȳ (h), h) is a homeomorphism for all 0 < h  h5. Consequently, we
obtain for any r̃ , r 2 S unique solutions ũ , u 2 S of the inhomogeneous
equations

˜

�

x

(ȳ (h), h)ũ = r̃ , �

x

(ȳ (h), h)u = r .

From (A6) an exponential dichotomy of (3.3) with exponential rate h

¯

� and
constant ¯

K follows. Applying Lemma A.1 together with an elementary esti-
mate for the exponential, we obtain

ku k  ¯

K

1 + e

�h�̄

1� e

�h�̄

kr k  1

⌫h

k�
x

(ȳ (h), h)u k (4.6)

with some constant ⌫ > 0 that does neither depend on h nor on r .
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Combining (4.5) with (4.6) for r := �

x

(ȳ (h), h)ũ , the estimate

kr̃ k =

�

�

�

˜

�

xZ(ȳ (h), h)ũ

�

�

�

� k�
x

(ȳ (h), h)ũ k �
�

�

�

(�

x

(ȳ (h), h)� ˜

�

x

(ȳ (h), h))ũ

�

�

�

� ⌫h kũ k � C4(K)h

d+1 kũ k � 1

2

⌫h

�

�

�

˜

�

x

(ȳ (h), h)

�1
r̃

�

�

�

(4.7)

holds for all 0 < h  h5 with a possibly smaller h5. Since (4.7) holds true for
all r̃ 2 S we conclude

�

�

�

˜

�

x

(ȳ (h), h)

�1
�

�

�

�1
� ⌫h

2

. (4.8)

Next, we verify Assumption (A.3) of Lemma A.2 and define

�(h) :=

⌫h

2

and (h) :=

�(h)

2

. (4.9)

Lemma 4.1, (A8) and the mean value theorem yields
�

�

�

˜

�

x

(x , h)� ˜

�

x

(ȳ (h), h)

�

�

�

 h

�

�

((�

n

)

x

(ȳ

n

(h), h)� (�

n

)

x

(x

n

, h))

n2
�

�

 h

Z 1

0

�

�

�

�

⇣

(�

n

)

(2)
x

(ȳ

n

(h) + s(x

n

� ȳ

n

(h)), h)

⌘

n2

�

�

�

�

ds kȳ (h)� x k

 ˜

C(K)h kȳ (h)� x k (4.10)

for all x 2 K and 0 < h  h4(K). Note that for sufficiently small � the
estimate ˜

C(K)h�  (h) holds and using (4.8), Assumption (A.3) is confirmed
for all kx � ȳ (h)k  �:

�

�

�

˜

�

x

(x , h)� ˜

�

x

(ȳ (h), h)

�

�

�

 ˜

C(K)h�  (h) < �(h) =

⌫h

2


�

�

�

˜

�

x

(ȳ (h), h)

�1
�

�

�

�1
.

Assumption (A.4) of Lemma A.2 immediately follows from (A7) for suffi-
ciently small h5, 0 < h  h5:

�

�

�

˜

� (ȳ (h), h)

�

�

�

=

�

�

�

˜

� (ȳ (h), h)� � (ȳ (h), h)

�

�

�

= k('
n

(ȳ

n

(h), h)�  

n

(ȳ

n

(h), h))

n2 k

 C2(K)h

d+1  ⌫h

4

�  �(h)

2

� = (�(h)� (h))�.

Thus, Lemma A.2 applies and guarantees the existence of a unique zero
ỹ (h) of ˜

� (·, h) in a �–neighborhood of ȳ (h), satisfying the inequality (4.4)

kỹ (h)� ȳ (h)k  (�(h)� (h))

�1
�

�

�

˜

� (ȳ (h), h)

�

�

�

 4
⌫h

C2(K)h

d+1
=

4C2(K)

⌫

h

d (4.11)
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for all 0 < h  h5.
Next, we prove hyperbolicity of this solution. In order to show that the

variational equation, given in terms of the operator ˜

�

x

(ỹ(h), h), has an ex-
ponential dichotomy on , we apply the Roughness–Theorem A.1 with the
settings: A

n

= ('

n

)

x

(ȳ

n

(h), h) and E

n

= ( 

n

)

x

(ỹ

n

(h), h)� ('

n

)

x

(ȳ

n

(h), h).
With (4.10) and (4.11) it follows

�

�

�

˜

�

x

(ỹ (h), h)� ˜

�

x

(ȳ (h), h)

�

�

�

 ˜

C(K)h

4C3(K)

⌫

h

d

=

ˆ

C(K)h

d+1

and combining this result with (4.5) we obtain

sup

n2
k( 

n

)

x

(ỹ

n

(h), h)� ('

n

)

x

(ȳ

n

(h), h)k

= k ˜�
x

(ỹ (h), h)� �

x

(ȳ (h), h)k
 k ˜�

x

(ỹ (h), h)� ˜

�

x

(ȳ (h), h)k+ k ˜�
x

(ȳ (h), h)� �

x

(ȳ (h), h)k
 (

ˆ

C(K) + C4(K))h

d+1
. (4.12)

Following the proof of Lemma 4.1 (ii) we observe for h sufficiently small that

sup

n2
k('

n

)

x

(ȳ

n

(h), h)

�1k  1

1� hC1(K)

and together with (4.12) this yields the estimate

1

2

inf

n2
k('

n

)

x

(ȳ

n

(h), h)

�1k�1 � 1

2

(1� hC1(K)) � (

ˆ

C(K) + C4(K))h

d+1

� sup

n2
k( 

n

)

x

(ỹ

n

(h), h)� ('

n

)

x

(ȳ

n

(h), h)k

for h sufficiently small. This is the first Assumption (A.1) of the Roughness–
Theorem A.1. For verifying the second Assumption (A.2), note that (3.3) has
an exponential dichotomy on with data (

¯

K,h

¯

�, Q

s,u

n

(h)) and observe
✓

1

e

h�̄
2 � e

�h�̄

+

1

e

�h�̄
2 � e

�h�̄

+

1

e

h�̄ � e

�h�̄
2

◆�1

=

3

10

¯

�h+O(h

2
). (4.13)

As a consequence

sup

n2
k( 

n

)

x

(ỹ

n

(h), h)� ('

n

)

x

(ȳ

n

(h), h)k  (

ˆ

C(K) + C4(K))h

d+1

1

2

¯

K

�1

✓

1

e

h�̄
2 � e

�h�̄

+

1

e

�h�̄
2 � e

�h�̄

+

1

e

h�̄ � e

�h�̄
2

◆�1

holds true for h sufficiently small. Lemma A.1 applies and guarantees that
the variational equation, given in terms of ˜

�

x

(ỹ (h), h), has an exponential
dichotomy on with constant 2 ¯

K+1 and rate h�̄

2 . Thus, ỹ (h) is a hyperbolic
bounded trajectory of the h–step method  (·, h) for all 0 < h  h5. ut
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We exploit this result for analyzing discretized homoclinic orbits. Note that
the application of a one–step method turns the equilibrium 0 into a bounded
trajectory.

Corollary 4.1 Assume (A1)–(A3), (A7) and (A8). Choose h2 and � as

in Theorem 4.1. Then there exists a C > 0, such that for all 0 < h  h5 a

unique hyperbolic bounded trajectory

˜

⇠ (h) of (4.1) in a �–neighborhood of the

equilibrium 0 of (2.1) exists which satisfies

sup

n2

�

�

�

˜

⇠

n

(h)� 0

�

�

�

 Ch

d

.

The variational equation, belonging to

˜

�

x

(

˜

⇠ (h), h), has an exponential di-

chotomy on with constant 2K + 1 and rate

h�

2 .

Further assume (A4) and (A5). Then there exists a unique hyperbolic

bounded trajectory x̃ (h) of (4.1) in a �–neighborhood of the transversal ho-

moclinic orbit x̄ (h) of the h–flow, which satisfies

sup

n2
kx̃

n

(h)� x̄

n

(h)k  Ch

d

.

Furthermore, there exists an N 2 +
, such that

sup

n2J

±
kx̃

n

(h)� ˜

⇠

n

(h)k  3Ch

d (4.14)

holds with J

+
:= [N,1) \ , J

�
:= (�1,�N ] \ .

Proof It remains to prove the estimate (4.14) for sufficiently large |n|, n 2 :

sup

n2J

±
kx̃

n

(h)� ˜

⇠

n

(h)k

 sup

n2
kx̃

n

(h)� x̄

n

(h)k+ sup

n2J

±
kx̄

n

(h)� 0k+ sup

n2
k0� ˜

⇠

n

(h)k  3Ch

d

.

ut

From the previous results, we already know that the tails of the discretized
hyperbolic bounded trajectories x̃ (h) and ˜

⇠ (h) of (4.1) stay in a common
small neighborhood. In the following we show that these trajectories are indeed
homoclinic toward each other for all 0 < h  h5. This can be achieved by
establishing the identity

lim

n!±1

�

�

�

x̃

n

(h)� ˜

⇠

n

(h)

�

�

�

= 0.

The next lemma states that if two hyperbolic bounded trajectories stay in
a sufficiently small common neighborhood, then they converge towards each
other. Note that a related result for the autonomous case can be found in [24,
Lemma 5.3].
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Lemma 4.2 Assume that f

n

2 C1
(

k

,

k

) for n 2 and let ⇠ be a bounded

trajectory of the difference equation

x

n+1 = f

n

(x

n

), n 2 . (4.15)

Further assume that (f

n

)

x

is uniformly Lipschitz with constant L in a neigh-

borhood of ⇠ for all n 2 and that the variational equation

u

n+1 = (f

n

)

x

(⇠

n

)u

n

, n 2 (4.16)

has an exponential dichotomy on with data (K,↵, P

s,u

n

). Fix n1 2 and let

x be a second bounded trajectory of (4.15), satisfying the following estimates

with some constant 0 < � < ↵:

k(x
n

� ⇠

n

)

n2Tk  L

�1
inf

n2T
k(f

n

)

x

(⇠

n

)

�1k�1
, (4.17)

k(x
n

� ⇠

n

)

n2Tk  L

�1
K

�1

✓

1

e

� � e

�↵

+

1

e

�� � e

�↵

+

1

e

↵ � e

��

◆�1

,

(4.18)

for T 2 {(�1, n1] \ , [n1,1) \ }.
Then there exists a constant

˜

C > 0 such that the exponential estimate

kx
n

� ⇠

n

k  ˜

Ce

��|n�n1| (4.19)

holds for all n 2 T.

Proof First we define z

n

:= x

n

� ⇠

n

for n 2 T and get with the mean value
theorem

z

n+1 = x

n+1 � ⇠

n+1 = f

n

(x

n

)� f

n

(⇠

n

)

= f

n

(z

n

+ ⇠

n

)� f

n

(⇠

n

) =

Z 1

0
(f

n

)

x

(⇠

n

+ sz

n

)dsz

n

.

By defining B

n

=

R 1
0 (fn)x(⇠n+ sz

n

)ds we see that zT is a bounded solution of

u

n+1 = B

n

u

n

, n 2 T. (4.20)

To finish the proof, we show that (4.20) has an exponential dichotomy on T
with data (2K + 1,�, Q

s,u

n

).
Assume this dichotomy is already known. Then we get z

n

= Q

u

n

z

n

for
n 2 T1 = (�1, n1] \ and z

n

= Q

s

n

z

n

for n 2 T2 = [n1,1) \ since zT
is a bounded solution of (4.20). Denote by �(·, ·) the corresponding solution
operator, then

kz
n

k = k�(n, n1)Q
s,u

n1
z

n1k  (2K + 1)e

��|n�n1|kz
n1k

for n 2 T2,1 which completes the proof of (4.19).
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For proving an exponential dichotomy of (4.20), we start with (4.16) that
already has an exponential dichotomy and apply the Roughness–Theorem A.1.
To verify its assumptions, we use the estimate

kB
n

� (f

n

)

x

(⇠

n

)k 
Z 1

0
k(f

n

)

x

(⇠

n

+ sz

n

)� (f

n

)

x

(⇠

n

)k ds

 L

Z 1

0
ksz

n

kds  1

2

Lkz
n

k for all n 2 T.

Then Assumption (A.1) of the Roughness–Theorem A.1 directly follows from
(4.17) and (A.2) from (4.18). ut

Our next step is to show that discretized homoclinic trajectories converge
towards each other. For this task, Lemma 4.2 is applied to the one–step method
 (·, h) and the hyperbolic bounded trajectories ˜

⇠ (h) and x̃ (h).
From Corollary 4.1 we know that the variational equation, belonging to

˜

�

x

(

˜

⇠ (h), h), has an exponential dichotomy on with constant 2K + 1 and
dichotomy rate h�

2 . Let K ⇢ k be compact and sufficiently large such that
˜

⇠ (h), x̃ (h) 2 K . Then the Lipschitz constant of ( 
n

)

x

is L := h

˜

C(K), see
equation (4.10). The first Assumption (4.17) of Lemma 4.2 for T1,2 := J

±

follows with (4.3) and (4.14) for h sufficiently small:

sup

n2J

±
kx̃

n

(h)� ˜

⇠

n

(h)k  3Ch

d  h

�1
˜

C(K)

�1
(1� h

˜

C(K))

 L

�1
inf

n2
k( 

n

)

x

(

˜

⇠

n

(h), h)

�1k�1
.

The second one (4.18) is fulfilled with ¯

� :=

�

2 since

sup

n2J

±
kx̃

n

(h)� ˜

⇠

n

(h)k  3Ch

d  h

�1
˜

C(K)

�1

2K + 1

3C(2K + 1)

˜

C(K)h

2

 L

�1

2K + 1

✓

1

e

h�̄
2 � e

�h�̄

+

1

e

�h�̄
2 � e

�h�̄

+

1

e

h�̄ � e

�h�̄
2

◆

�1

follows from (4.14) and (4.13) for h sufficiently small. Now we apply Lemma
4.2 and get a constant C5 > 0 such that

kx̃
n

(h)� ˜

⇠

n

(h)k  C5e
�h�

4 |n�N | (4.21)

for all n 2 J

±.
Summarizing these results we have seen that bounded trajectories in con-

tinuous time lead to bounded trajectories in discrete time, staying close to
each other. Furthermore, if the tails of two trajectories of a nonautonomous
system lie for all future (backward) times in a sufficiently small neighbor-
hood, then they converge exponentially fast towards each other in forward
(backward) time. As a consequence, homoclinic orbits stay homoclinic under
discretization by a one–step method. This is the message of our main result:
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Theorem 4.2 Let x̄(·) be a homoclinic orbit of the continuous time system

(2.1) w.r.t. the fixed point 0 and assume that our Assumptions (A1)–(A5),
(A7) and (A8) are satisfied. Then we find constants

¯

h,C > 0, such that two

hyperbolic bounded trajectories

˜

⇠ (h) and x̃ (h) of the one–step approximation

(4.1) exist which satisfy

sup

n2
k˜⇠

n

(h)� 0k  Ch

d

, sup

n2
kx̃

n

(h)� x̄

n

(h)k  Ch

d

,

lim

n!±1

�

�

�

x̃

n

(h)� ˜

⇠

n

(h)

�

�

�

= 0 for all 0 < h <

¯

h.

5 Applications

In this section we construct a two–dimensional example with an explicitly
known homoclinic orbit. We compare orbits of a one–step method with the
exact ones and numerically verify our error estimates for various step sizes.

For illustrating transversality of the computed orbits we look at the corre-
sponding stable and unstable fiber bundles of the one–step discretization. We
propose an algorithm for the approximation of one–dimensional stable fibers in
a two–dimensional system that does not need the inverse map (which does not
exist in general). The presented approach is a nonautonomous generalization
from techniques that are introduced in [6].

Periodic forcing of an autonomous ODE leads to a special class of nonau-
tonomous systems. We construct a model of this type and discuss the underly-
ing autonomous dynamics and their influence on invariant fiber bundles along
a homoclinic orbit.

Finally, a two–dimensional continuous time model from mathematical bi-
ology is introduced that is nonautonomous due to time variant environmental
influences. For its time discretization we compute a homoclinic orbit as well
as invariant fiber bundles.

5.1 An artificial example with explicitly known homoclinic orbits

We start with the Hamiltonian system

ẋ = f(x) =

✓

x2

x

2
1 � 4

◆

,

which has the homoclinic orbit

x̂(t) = 2(1� 3sech

2
(t), 6sech

2
(t)tanh(t))

with respect to the fixed point (2, 0), see [3, Section 11.2.2], [10, Section 7.3].
To construct a nonautonomous example, we first shift the fixed point to

(0, 0). This leads us to the new system

ẋ = f(x) =

✓

x2

x

2
1 + 4x1

◆

(5.1)
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with corresponding homoclinic orbit

x̄(t) = 6(�sech

2
(t), 2sech

2
(t)tanh(t)). (5.2)

Next we add a nonautonomous term as follows

ẋ = g(x, t) := f(x) +

✓

x1(x1 � x̄1(t))

x2(x2 � x̄2(t))

◆

=

✓

x2 + x

2
1 + 6sech

2
(t)x1

x

2
1 + 4x1 + x

2
2 � 12sech

2
(t)tanh(t)x2

◆

. (5.3)

Obviously, (0, 0) is for all t 2 a fixed point; furthermore, (5.2) is still a
homoclinic orbit w.r.t. (0, 0) of this new system.

For a one–step discretization, we choose Heun’s method with step size h

which has order d = 2 and obtain the discrete time system

x

n+1 = F

n

(x

n

) := x

n

+

h

2

(g(x

n

, t

n

) + g(x

n

+ hg(x

n

, t

n

), t

n+1)) , n 2 .

(5.4)
Tools for the numerical approximation of homoclinic orbits in nonautono-

mous systems have been proposed in [13,16]. The key idea lies in introducing
boundary value problems to obtain error controlled orbit segments on a finite
time interval. More precisely, we compute an orbit segment (x̃

n� , . . . , x̃n+) by
solving the periodic boundary value problem

0

B

B

B

@

x

n�+1 � F

n�(xn�)

...
x

n+ � F

n+�1(xn+�1)

x

n� � x

n+

1

C

C

C

A

=

0

B

B

B

B

@

0

...

...
0

1

C

C

C

C

A

, (5.5)

using Newton’s method with an appropriate initial guess. For the model (5.4),
we start with the exact orbit (5.2). Note that the sparse structure of the
derivative allows efficient computations. We solve (5.5) on the time–interval
[�30, 30] with the step size h = 0.03, i.e. n± = ±1000. Figure 5.1 shows the
orbit with time dependence (right) and without it (left).

Theorem 4.2 states that the maximal error e (h) := max

n2 kx̃
n

� x̄(hn)k
that occurs by approximating the original orbit using an h–step method of
order d is less than Ch

d, with some constant C > 0. Furthermore, the com-
putation of finite orbit segments by solving (5.5) introduces a second error. A
precise analysis of this second error, cf. [16, Theorem 5], reveals that its max-
ima occur at the end points of the finite interval whereas this error decreases
exponentially fast towards the midpoint. Thus, we avoid secondary errors by
computing a solution of (5.5) on the time–interval [�30, 30] and determine the
maximal error e(h) := max

n2
[

� 5
h ,

5
h ]\

kx̃
n

� x̄(hn)k only on the center [�5, 5].
Figure 5.2 illustrates the numerical output of this procedure for various step
sizes from 0.00005 up to 0.04 in a double logarithmic scale. The slope of the
graph represents the exponent d. In Figure 5.2 it is 1.9930 in accordance with
Theorem 4.2.
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Fig. 5.1 Projection onto the x1–x2–plane (left), orbit with time dependence (right).
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Fig. 5.2 Maximal error between exact and numerically approximated orbits.

5.2 An algorithm for computing stable fiber bundles

In autonomous systems, stable and unstable manifolds of a hyperbolic fixed
point are important sources for understanding underlying dynamics. Numeri-
cal tools for their computation are often based on continuation techniques, see
for example [20]. If the system is noninvertible, stable sets cannot be computed
via backward iteration. To avoid this problem, the authors of [6] proposed a
refined approach – the so called search circle algorithm – for computing stable
sets without applying the inverse mapping.

The method that we introduce here generalizes these ideas to the nonau-
tonomous case

x

n+1 = f

n

(x

n

), f

n

(0) = 0 for all n 2 , (5.6)

where 0 is a hyperbolic fixed point.
The algorithm chooses the first point on a linear approximation of the

stable fiber, i.e. its tangent space. This subspace can formally be expressed
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as the stable subspace of an exponential dichotomy, which the variational
equation

u

n+1 = Df

n

(0)u

n

, n 2
possesses due to our hyperbolicity assumption, cf. [13, Theorem 3.5]. Indeed,
these subspaces are numerically accessible, using tools that have been devel-
oped in [14,15].

Fig. 5.3 Approximation of stable fiber bundles.

One step of the algorithm works as follows. Assume we already have an
approximation of the (n + 1)–th fiber, given by the set of points M

n+1
:=

{pn+1
1 , . . . , p

n+1
`n+1

} that are marked in blue in Figure 5.3. Further assume that
the points p

n

1 , . . . , p
n

r

on the n–th fiber have also been computed (light blue
data in Figure 5.3). We search for the next point p

n

r+1 (red) on a circular
segment �, marked in red in Figure 5.3. Then, its boundary points p

n

end and
p

n

start are mapped by f

n

(dark red data). If the angle ↵ of the circular segment
is chosen appropriately, f

n

(p

n

start) and f

n

(p

n

end) lie on different sides of the
(n+1)–th fiber and thus, f

n

(�) has a common intersection with this fiber. For
its approximation, we first detect the neighboring points p

n+1
left , pn+1

right 2 M

n+1

(green in Figure 5.3) and then calculate the point of intersection between the
line segment p

n+1
left p

n+1
right and f

n

(�) using bisection. Its pre–image under f

n

is
the next point p

n

r+1 on the n–th fiber.
In case f

n

(�) lies beyond the (n + 1)–th fiber, the continuation of the n–
th fiber stops and we proceed with the (n � 1)–th fiber. Note that the first
fibers that we compute in this way are rather short, but expanding dynamics
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on the stable fibers – in backward time – lead to an increase of length if n

decreases. Figure 5.4 illustrates this increase of length for our artificial example
from Section 5.1. In the left diagram the stable fibers are extremely close to
each other. To reveal the differences we rotate the highlighted area of the
left picture and show its zoom in the right part of Figure 5.4. The bottom
stable fiber (darkest shade of green) in Figure 5.4 is the first computed one
and belongs to time 70h; the last computed one is the 65-th fiber at the top
(lightest shade of green). Particularly, the shades of green from dark to light
show the order, in which stable fibers are calculated by our algorithm.

−0.015 −0.01 −0.005 0
0

0.01

0.02

0.03

0

Fig. 5.4 Computation of stable fibers for (5.3), (5.4) with h = 0.04.

We finally note that details on the choice of the search angle ↵ and on
techniques for step size control have a similar implementation in autonomous
systems and can be found in [6].

The computation of unstable fiber bundles is not so involved. One can
choose points on the tangent space and iterate them in forward time, jumping
in this way from fiber to fiber (neglecting small approximation errors).

The upper diagrams in Figure 5.5 show for the model from Section 5.1 a
homoclinic orbit together with transversally intersecting fibers. The left panel
illustrates them at time 20h and the right panel pictures them at the next time
instance 21h. The stable fibers (green) are computed with the algorithm from
above while the unstable fibers (red) are approximated by forward iteration.
The lower diagram visualizes transversally intersecting fiber bundles on the
time interval [�30h, 30h].

This orbit is truly nonautonomous, since two fibers at different times do
not coincide.
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Fig. 5.5 Homoclinic orbit and transversally intersecting fiber bundles of (5.3), (5.4) with
h = 0.04.

5.3 A periodic nonautonomous ODE

In ⌧–periodic ODEs, stable (and unstable) fibers of a fixed point at times t and
t+⌧ , t 2 coincide. For an illustration we modify (5.1) to the ⌧ = ⇡–periodic
model

ẋ = f(x, t) =

✓�(1 + 0.3 sin(2t))x2

x

2
1 + x1

◆

. (5.7)

Discretizing this system with Heun’s method and step size h =

⇡

30 leads to a
30–periodic difference equation of the form

x

n+1 = g

n

(x

n

), g

n

= g

n+30, n 2 . (5.8)

This discrete time system exhibits a homoclinic orbit w.r.t. the fixed point
(�1, 0), see Figure 5.6 for an illustration. We further observe that stable and
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unstable fibers intersect transversally at every 30th point along the orbit.
Stable and unstable fibers at time 20h are depicted in Figure 5.6. For their
computation, we apply the algorithm from Section 5.2.

Note that alternatively, autonomous tool for computing homoclinic orbits
from [4] as well as the search circle algorithm, introduced in [6], are directly
applicable to G

n

:= g

n+29 � · · · � g

n

, n 2 fixed. We do not follow this
route, since this problem typically has a worse condition number than the
nonautonomous equation (5.8).

−1.5 −1 −0.5 0 0.5

−1

−0.5

0

0.5

1

 

 

Fig. 5.6 Homoclinic orbit segment on the time interval [�200h, 200h]\h of (5.7) and the
fibers at time (20 + 30n)h, n 2 [�7, 6] \ .

5.4 An example from mathematical biology

Let us apply our techniques to a more realistic model from mathematical biol-
ogy. The dynamics of the growth of algea and zooplankton, typically Daphnia,
is presented in [26] with the help of a periodically forced predator–prey system.
The authors introduce a 2–dimensional ODE

dA
dt = 0.5A

�

1� A

10

�� 0.4Z

⇣

A

A+0.6

⌘

+ 0.01(10�A),

dZ
dt = 0.24Z

A

A+0.6 � 0.15Z � E

Z

2

Z

2+0.52 ,

(5.9)

where (A) describes the amount of edible algea and (Z) the amount of large
herbivorous zooplankton. The growth of zooplankton is influenced by the fish
population and some other environmental terms (E). Our first step is to search
for homoclinic structures in the autonomous system (5.9), see [26, Figure 6b],
which can be found for

E := 0.0784372294995495865 . . .
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Next we add a time–dependent perturbation to E reflecting time dependent
environmental influences. Choosing

E(t) := 0.0784372294995495865 + exp(�0.2t

2
)

(5.9) is a continuous time nonautonomous 2–dimensional ODE of the form
ẋ = g(x, t) with x :=

�

A Z

�

T . We start with an analysis of the underlying
dynamics by searching for homoclinic structures. To study this we are looking
at the discretized system. For the one–step discretization x

n+1 = F

n

(x

n

) of the
system we take Heun’s method (5.4). First we compute a bounded trajectory
x̂[n�,n+] of (5.4) replacing the fixed point from the autonomous case. For this
task, we solve, as in Section 5.1, the periodic boundary value problem (5.5) on
the time–interval [�1750, 1750] with step size h = 0.5, i.e. n± = ±3500. Using
this bounded solution x̂[n�,n+] the transformed system

y

n+1 = G

n

(y

n

), G

n

(y

n

) := F

n

(y

n

+ x̂

n

)� x̂

n+1, n 2 [n�, n+ � 1] (5.10)

has (0, 0) as an n independent fixed point.
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Fig. 5.7 Homolinic orbit of (5.10) with h = 0.5 (top left) and transversally intersecting
fiber bundles (right and bottom).
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To obtain a homoclinic orbit w.r.t. the fixed point (0, 0), see Figure 5.7
(left), we solve the periodic boundary value problem (5.5) with G

n

(·) instead
of F

n

(·) and initial value

(0, . . . , 0, x

n

, G

n

(x

n

), G

n+1Gn

(x

n

), . . . , G

n+249Gn+248 · · ·Gn

(x

n

), 0, . . . , 0),

n = �125, x�125 =

✓�0.081

0.096

◆

.

In the top right diagram of Figurer 5.7 the stable (green) and unstable
(red) fibers at time 0 are plotted. The stable fiber is approximated with the
algorithm introduced in Section 5.2. The fibers intersect each other transver-
sally in a single point. This is also the case for fibers in the time interval
[�30h, 30h], see the lower diagram in Figure 5.7. For the original continuous
time system, this is a strong evidence for transversal homoclinic trajectories,
satisfying (A5).

6 Conclusion

We studied transversal homoclinic orbits in nonautonomous ODEs. Transver-
sality can be characterized by an exponential dichotomy of the corresponding
variational equation. An equivalent, but more geometric interpretation is given
in terms of transversally intersecting fiber bundles along the homoclinic orbit.
These properties carry over to the h-flow and are used for proving existence of
homoclinic orbits of one–step discretizations. Furthermore, closeness estimates
have been established.

It is important to keep in mind that in nonautonomous ODEs, stable and
unstable fibers of a fixed point typically intersect each other transversally at
any fixed time. If the system is ⌧ -periodic, then one observes an infinite number
of isolated points of intersection along a homoclinic orbit and the ⌧ -flow defines
an autonomous system. On the other hand, intersecting stable and unstable
manifolds in autonomous systems have a whole orbit in common.

For autonomous ODEs, the existence of nondegenerate homoclinic orbits
is of codimension 1, see [3, Section 6]. Contrary to this result, the existence
of transversal homoclinic orbits in nonautonomous ODEs is of codimension 0.
Thus, these objects can be found for a wide range of parameters in various
models.

For an illustration of stable and unstable fiber bundles, we restrict ourselves
in this paper to the two–dimensional plane and propose adequate numerical
tools. Note that an alternative algorithm for computing stable fibers has been
introduced in [17]. This algorithm is based on computing zero contours of a par-
ticular operator and it applies to two and three–dimensional nonautonomous,
noninvertible maps.

Finally, we point out that all theorems presented in this article as well as
the boundary value approach (5.5) for computing homoclinic orbit segments
are formulated in arbitrary space dimensions.
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A Appendix

A.1 Exponential dichotomy

Consider a nonautonomous linear ODE or difference equation, for which the solution oper-
ator S(·, ·) is well defined on J ⇥ J , where J is an interval of or , respectively.

Definition A.1 The equation has an exponential dichotomy on J if there exist con-
stants K,↵ > 0 and families of projectors P

s,u
n , n 2 J with I = P

s
n + P

u
n for all n 2 J such

that the invariance condition

P

s,u
n S(n,m) = S(n,m)P s,u

m for all n,m 2 J

holds true as well as the following estimates for n � m, n,m 2 J :

kS(n,m)P s
mk  Ke

�↵(n�m)
, kS(m,n)Pu

n k  Ke

�↵(n�m)
.

The corresponding data are (K,↵, P

s,u
n ).

For the discrete case we refer to [24, Definition 2.1] and for the continuous time system,
see [5], [11, Definition 7.6.1], [23, Chapter 2].

The next lemma, cf. [24, Lemma 2.7] establishes uniqueness and estimates for the
bounded solution of an inhomogeneous equation.

Lemma A.1 Assume that the difference equation un+1 = Anun, un 2 k, n 2 has an
exponential dichotomy on with data (K,↵, P

s,u
n ) and let r , be a bounded sequence in

k.
Then the inhomogeneous difference equation

un+1 = Anun + rn, n 2

has a unique bounded solution u . Moreover the following estimate holds true for all n 2

kunk  K(1 + e

�↵)(1� e

�↵)�1 krZk1 .

Exponential dichotomies are robust under small additive perturbations of the equa-
tion.The Roughness–Theorem provides precise bounds on these perturbations, see [24, Propo-
sition 2.10], [19, Lemma 2.3].

Theorem A.1 (Roughness–Theorem) Assume that the difference equation un+1 =
Anun has an exponential dichotomy on J = [n�, n+], n± 2 [{±1} with data (K,↵, P

s,u
n ).

Then for 0 < � < ↵ and every EJ 2 ( k,k)J with

kEJk 
1

2
inf
n2J

kA�1
n k�1

, (A.1)

kEJk 
1

2
K

�1
✓

1

e

� � e

�↵
+

1

e

�� � e

�↵
+

1

e

↵ � e

��

◆�1

, (A.2)

the equation
un+1 = (An + En)un, n 2 J

has an exponential dichotomy on J with data (2K + 1,�, Qs,u
n (En)).
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A.2 A Lipschitz inverse mapping theorem

The following quantitative version of the Lipschitz inverse mapping theorem cf. [29, §3
Lemma 1], [18, Appendix C] is essential for proving Theorem 4.1.

Lemma A.2 Let F : Y ⇥⇤ ! Z be a C

`, ` � 1 mapping from a Banach space Y ⇥⇤ into
some Banach space Z. Assume there exists a function v̄0 : ⇤ ! Y such that Fv(v̄0(h), h)
are homeomorphisms for all |h|  �2, and there exist some constants (h) > 0, �(h) > 0
such that for all kv � v̄0(h)k  �1 and |h|  �2 we have

kFv(v, h)� Fv(v̄0(h), h)k  (h) < �(h) 
��
Fv(v̄0(h), h)

�1
���1

, (A.3)
kF (v̄0(h), h)k  (�(h)� (h))�1. (A.4)

Then for any |h|  �2, F (·, h) has a unique zero ṽ(h) with kṽ(h) � v̄0(h)k  �1 that is
C

`-smooth w.r.t. h. The following estimates hold for all kvi � v̄0(h)k  �1, i = 1, 2

kṽ(h)� v̄0(h)k  (�(h)� (h))�1 kF (v̄0(h), h)k ,

kv1 � v2k  (�(h)� (h))�1 kF (v1, h)� F (v2, h)k .
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