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Abstract. This paper is concerned with the numerical approximation of sto-
chastic ordinary differential equations, which satisfy a global monotonicity con-
dition. This condition includes several equations with super-linearly growing
drift and diffusion coefficient functions such as the stochastic Ginzburg-Landau
equation and the 3/2-volatility model from mathematical finance. Our analysis
of the mean-square error of convergence is based on a suitable generalization
of the notions of C-stability and B-consistency known from deterministic nu-
merical analysis for stiff ordinary differential equations. An important feature
of our stability concept is that it does not rely on the availability of higher
moment bounds of the numerical one-step scheme.

While the convergence theorem is derived in a somewhat more abstract
framework, this paper also contains two more concrete examples of stochas-
tically C-stable numerical one-step schemes: the split-step backward Euler
method from Higham et al. (2002) and a newly proposed explicit variant of
the Euler-Maruyama scheme, the so called projected Euler-Maruyama method.
For both methods the optimal rate of strong convergence is proven theoreti-
cally and verified in a series of numerical experiments.

1. Introduction

Initiated by the papers [4] and [5] the field of numerical analysis for stochas-

tic ordinary differential equations (SODEs) with super-linearly growing coefficient

functions has seen a considerable progress, especially over the last couple of years.

For instance, we refer to [6, 7, 8, 12, 17, 20] and the references therein.

The starting point of this article is the following observation: There exist strongly

convergent numerical schemes, whose one-step maps satisfy suitable Lipschitz-type

conditions, although the underlying stochastic differential equation has non-globally

Lipschitz continuous coefficient functions. For the numerical approximation of stiff

deterministic ODEs this observation has been formalized in the notion of C-stability,

see for example [1, Definition 2.1.3] and [18, Chap. 8.4]. A related result is also

found in [3, Prop. 15.2].

In this paper we present a generalization of this notion to the stochastic situ-

ation. Together with its counterpart, the notion of B-consistency, we will show

that the error analysis of stochastically C-stable numerical methods can be simpli-

fied significantly compared to existing approaches in the literature. In particular, it

turns out that it is not necessary to study higher moment estimates of the numerical

scheme nor to consider their continuous time extensions.
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We apply this more abstract framework to study the strong error of convergence

for the numerical discretization of SODEs under the global monotonicity condition

(see (3)). This assumption is imposed in many recent papers on this topic. For

instance, we refer to [12] for the strong error analysis of the backward Euler method,

and to [17, 20] for a corresponding result of the explicit tamed Euler method.

Further, in [7] strong convergence rates are derived for a stopped-tamed Euler-

Maruyama method applied to SODEs which lie beyond the global monotonicity

condition.

In this paper we work with the following notion of strong convergence: We say

that a numerical scheme converges strongly with order γ to the exact solution

X : [0, T ]× Ω → R
d if there exists a constant C independent of the temporal step

size h such that

max
n∈{1,...,N}

‖X(tn)−Xh(tn)‖L2(Ω;Rd) ≤ C|h|γ .(1)

Here, Xh : {t0, t1, . . . , tN}×Ω → R
d denotes the grid function generated by the nu-

merical scheme. Let us remark that several of the above mentioned papers consider

stronger notions of strong convergence, where, for example, the maximum occurs

inside the L2-norm or the norm in Lp(Ω;Rd) with p > 2 is considered instead of the

L2-norm. Our choice of (1) is explained by the fact that our proof of the stability

lemma (see Lemma 3.5), which plays a central role in our approach, relies on the

orthogonality of the conditional expectation with respect to the norm in L2.

In order to demonstrate the usefulness of our abstract results we present two

more concrete examples of stochastically C-stable numerical schemes: First we are

concerned with the split-step backward Euler method (SSBE) from [4], which is

shown to be strongly convergent of order γ = 1
2 in Theorem 5.8. Secondly, we pro-

pose a new explicit scheme, the projected Euler-Maruyama method (PEM), which

turns out to be, in general, computationally less expensive then the implicit SSBE

scheme but performs equally well in our numerical experiments. In Theorem 6.7

we verify that the PEM method is also strongly convergent of order 1
2 .

We refer to [8] for a detailed comparison between implicit numerical methods

and a further purely explicit variant of the Euler-Maruyama method, the tamed

Euler method, which is considered in several of the above mentioned papers.

Let us briefly highlight two results in the literature, which are closely related to

our approach from a methodological point of view: In [21] the authors investigate

a family of one-leg theta methods for the discretization of SODEs under a one-

sided Lipschitz condition on the drift and a global Lipschitz bound on the diffusion

coefficient function. Hereby, they make use of the related notion of B-convergence.

The second paper [20] presents a fundamental mean square convergence theorem

for the discretization of SODEs under the global monotonicity condition. This

theorem imposes a similar concept of the local truncation error as our notion of

B-consistency. However, in the proof of the theorem the authors relate the global

error at time ti to the error at time ti−1 by one time step of the exact solution. But

by doing so one cannot benefit from the global Lipschitz properties of the numerical

method.

The remainder of this paper is organized as follows: The following section con-

tains a detailed description of the stochastic ordinary differential equation, whose

solution we want to approximate. Further, we state our main assumptions and
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present the numerical schemes, which are analyzed in the subsequent sections. In

Section 3 we develop our notions of stochastic C-stability and B-consistency in a

somewhat more abstract framework. Then we prove the already mentioned stability

lemma, from which we easily deduce our strong convergence theorem for C-stable

numerical methods.

In Section 4 we briefly summarize some results on the solvability of nonlinear

equations, which are needed for the error analysis of the SSBE method. In Sec-

tions 5 and 6 we verify that the split-step backward Euler scheme and the projected

Euler-Maruyama method are stochastically C-stable and B-consistent, and, hence,

strongly convergent. In Section 7 we present some numerical experiments which

illustrate our theoretical results for the discretization of the stochastic Ginzburg-

Landau equation and for the financial 3/2-volatility model.

2. Problem description and the numerical methods

In this section we introduce the class of stochastic differential equations, which

we aim to discretize. Further, we state our main assumptions and the numerical

methods, which we study in the remainder of this paper.

Let d,m ∈ N, T ∈ (0,∞), and (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability

space satisfying the usual conditions. We consider the solution X : [0, T ]×Ω → R
d

to the SODE

dX(t) = f(t,X(t)) dt+

m
∑

r=1

gr(t,X(t)) dW r(t), t ∈ [0, T ],

X(0) = X0.

(2)

Here f : [0, T ]×R
d → R

d stands for the drift coefficient function, while gr : [0, T ]×

R
d → R

d, r = 0, ...,m, are the diffusion coefficient functions. By W r : [0, T ] ×

Ω → R, r = 1, . . . ,m, we denote an independent family of real-valued standard

(Ft)t∈[0,T ]-Brownian motions on (Ω,F ,P). For a sufficiently large p ∈ [2,∞) the

initial condition X0 is assumed to be an element of the space Lp(Ω,F0,P;Rd).

By 〈·, ·〉 and |·| we denote the Euclidean inner product and the Euclidean norm on

R
d, respectively. Throughout this paper we impose the following conditions on the

drift and the diffusion coefficient functions. Note that the range of the parameter

η appearing in (3) needs to be narrowed down for the formulation of the strong

convergence result of the SSBE method in Theorem 5.8.

Assumption 2.1. The mappings f : [0, T ]× R
d → R

d and gr : [0, T ]× R
d → R

d,

r = 1, . . . ,m, are continuous. Furthermore, there exist a positive constant L and a

parameter value η ∈ (12 ,∞) with

〈

f(t, x1)− f(t, x2), x1 − x2

〉

+ η
m
∑

r=1

∣

∣gr(t, x1)− gr(t, x2)
∣

∣

2
≤ L|x1 − x2|

2(3)
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for all t ∈ [0, T ] and x1, x2 ∈ R
d. In addition, there exists a constant q ∈ (1,∞)

such that for every r = 1, . . . ,m it holds

|f(t, x)| ∨ |gr(t, x)| ≤ L
(

1 + |x|q
)

,(4)

|f(t1, x)− f(t2, x)| ∨ |gr(t1, x)− gr(t2, x)| ≤ L
(

1 + |x|q
)

|t1 − t2|
1
2 ,

(5)

|f(t, x1)− f(t, x2)| ∨ |gr(t, x1)− gr(t, x2)| ≤ L
(

1 + |x1|
q−1 + |x2|

q−1
)

|x1 − x2|,

(6)

for all t, t1, t2 ∈ [0, T ] and x, x1, x2 ∈ R
d.

The assumption (3) is called global monotonicity condition. We exclude the case

q = 1, since this coincides with the well-known global Lipschitz case studied in [9,

13]. In Section 7 we present two more concrete SODEs, which fulfill Assumption 2.1.

Before we describe the numerical schemes we remark that Assumption 2.1 is also

sufficient to ensure the existence of a unique solution to (2), see [10], [11, Chap. 2.3]

or [16, Chap. 3]. By this we understand an almost surely continuous and (Ft)t∈[0,T ]-

adapted stochastic process X : [0, T ]× Ω → R
d which satisfies P-almost surely the

integral equation

X(t) = X0 +

∫ t

0

f(s,X(s)) ds+

m
∑

r=1

∫ t

0

gr(s,X(s)) dW r(s)(7)

for all t ∈ [0, T ]. In addition, if there exist C ∈ (0,∞) and p ∈ [2,∞) such that

〈

f(t, x), x
〉

+
p− 1

2

m
∑

r=1

∣

∣gr(t, x)
∣

∣

2
≤ C

(

1 + |x|2
)

(8)

for all x ∈ R
d, t ∈ [0, T ], then the exact solution has finite p-th moments, that is

sup
t∈[0,T ]

∥

∥X(t)
∥

∥

Lp(Ω;Rd)
< ∞.(9)

For a proof we refer, for instance, to [11, Chap. 2.4]. The condition (8) is called

global coercivity condition.

For the formulation of the numerical methods we introduce the following ter-

minology: For N ∈ N we say that h = (h1, . . . , hN ) ∈ (0, T ]N is a vector of

(deterministic) step sizes if
∑N

i=1 hi = T . Every vector of step sizes h gives rise to

a set of temporal grid points Th, which is given by

Th :=
{

tn :=
n
∑

i=1

hi : n = 0, . . . , N
}

.

For short we write

|h| := max
i∈{1,...,N}

hi

for the maximal step size in h.

The aim of this paper is to show that the following two schemes are examples of

stochastically C-stable numerical methods.

Example 2.2. Our first example is the so called split-step backward Euler method

(SSBE), which is already studied in [4]. For its formulation let h = (h1, . . . , hN) be
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a vector of step sizes. Then the SSBE method is given by setting XSSBE
h (0) = X0

and by the recursion

X
SSBE

h (ti) = XSSBE
h (ti−1) + hif(ti, X

SSBE

h (ti)),

XSSBE
h (ti) = X

SSBE

h (ti) +

m
∑

r=1

gr(ti, X
SSBE

h (ti))
(

W r(ti)−W r(ti−1)
)

,

for every i = 1, . . . , N . It is shown in Section 5 that the SSBE scheme is a well-

defined stochastic one-step method under Assumption 2.1, which is strongly con-

vergent of order γ = 1
2 .

Let us remark that we evaluate the diffusion coefficient functions gr at time ti in

the i-th step in the definition of the SSBE method. This appears to be somewhat

out of the ordinary if compared to the definition of the backward Euler scheme in

[9, Chap. 12], where it is more common to evaluate gr at ti−1 instead.

The reason for this slight modification lies in condition (3), which is applied to

f and gr, r = 1, . . . ,m, simultaneously at the same point t in time. Compare also

with the inequality (19) further below. It helps to avoid some technical issues if we

already take this relationship into consideration in the definition of the numerical

scheme.

Example 2.3. Our second example of a stochastically C-stable scheme is the

following explicit variant of the Euler-Maruyama method, which we term pro-

jected Euler-Maruyama method (PEM). It consists of the standard Euler-Maruyama

method and a projection onto a ball in R
d whose radius is expanding with a negative

power of the step size.

To be more precise, let h ∈ (0, 1]N be an arbitrary vector of step sizes. The

parameter value α ∈ (0, 1] is chosen to be α = 1
2(q−1) in dependence of the growth

rate q appearing in Assumption 2.1. Then, the PEM method is given by the

recursion

X
PEM

h (ti) := min
(

1, h−α
i

∣

∣XPEM
h (ti−1)

∣

∣

−1)
XPEM

h (ti−1),

XPEM
h (ti) := X

PEM

h (ti) + hif(ti−1, X
PEM

h (ti))

+

m
∑

r=1

gr(ti−1, X
PEM

h (ti))
(

W r(ti)−W r(ti−1)
)

, for 1 ≤ i ≤ N,

where XPEM
h (0) := X0. The definition of the scheme is inspired by a truncation

procedure, which plays an important role in the proof of [11, Chap. 2, Theorem 3.4].

The strong error analysis of the PEM method is carried out in Section 6.

3. An abstract convergence theorem

This section contains a detailed introduction to our notions of stochastic C-

stability and B-consistency in a somewhat more abstract framework. Then we state

our strong convergence theorem, whose proof turns out to be a direct application

of the stability Lemma 3.5.

We begin by introducing some additional notation. By h ∈ (0, T ] we denote an

upper step size bound and we define the set T := T(h) ⊂ [0, T )× (0, h] to be

T :=
{

(t, δ) ∈ [0, T )× (0, h] : t+ δ ≤ T
}

.
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Further, for a given vector of step sizes h ∈ (0, h]N we denote by G2(Th) the space

of all adapted and square integrable grid functions, that is

G2(Th) :=
{

Z : Th × Ω → R
d : Z(tn) ∈ L2(Ω,Ftn ,P;Rd) for all n = 0, 1, . . . , N

}

.

Now, we give the definition of our abstract class of stochastic one-step methods,

which we consider in this paper.

Definition 3.1. Let h ∈ (0, T ] be an upper step size bound and Ψ: Rd×T×Ω → R
d

a mapping satisfying the following measurability and integrability condition: For

every (t, δ) ∈ T and Z ∈ L2(Ω,Ft,P;Rd) it holds

Ψ(Z, t, δ) ∈ L2(Ω,Ft+δ,P;Rd).(10)

Then, for every vector of step sizes h ∈ (0, h]N we say that a grid function Xh ∈

G2(Th) is generated by the stochastic one-step method (Ψ, h, ξ) with initial condition

ξ ∈ L2(Ω,F0,P;Rd) and step sizes h = (h1, . . . , hN) if

Xh(ti) = Ψ(Xh(ti−1), ti−1, hi), 1 ≤ i ≤ N,

Xh(t0) = ξ.
(11)

We call Ψ the one-step map of the method.

Next, we present our definition of stability for stochastic one-step methods, which

we apply in this paper. It is a suitable generalization of the notion of C-stability

from [1, Definition 2.1.3] and has been used in the context of numerical approxi-

mation of stiff differential equations. We also refer to [3, Prop. 15.2] and to [18,

Chap. 8.4] for a more recent exposition.

Definition 3.2. A stochastic one-step method (Ψ, h, ξ) is called stochastically C-

stable (with respect to the norm in L2(Ω;Rd)) if there exist a constant Cstab and

a parameter value η ∈ (1,∞) such that for all (t, δ) ∈ T and all random variables

Y, Z ∈ L2(Ω,Ft,P;Rd) it holds
∥

∥E
[

Ψ(Y, t, δ)−Ψ(Z, t, δ)|Ft

]
∥

∥

2

L2(Ω;Rd)

+ η
∥

∥

(

idRd − E[ · |Ft]
)(

Ψ(Y, t, δ)−Ψ(Z, t, δ)
)∥

∥

2

L2(Ω;Rd)

≤
(

1 + Cstabδ
)∥

∥Y − Z
∥

∥

2

L2(Ω;Rd)
.

(12)

The next definition is concerned with the local truncation error. The conditions

(13) and (14) are well-known to the literature and already found in slightly different

form in [13, Th. 1.1] and [14, Th. 1.1]. A related concept has been applied in [20],

but there the authors are in need of higher moment estimates of the local truncation

error.

Definition 3.3. We call a stochastic one-step method (Ψ, h, ξ) stochastically B-

consistent of order γ > 0 to (2) if there exists a constant Ccons such that for every

(t, δ) ∈ T it holds
∥

∥E
[

X(t+ δ)−Ψ(X(t), t, δ)|Ft

]∥

∥

L2(Ω;Rd)
≤ Cconsδ

γ+1
(13)

and
∥

∥

(

idRd − E[ · |Ft]
)(

X(t+ δ)−Ψ(X(t), t, δ)
)∥

∥

L2(Ω;Rd)
≤ Cconsδ

γ+ 1
2 ,(14)

where X : [0, T ]× Ω → R
d denotes the exact solution to (2).

Finally, it remains to give our definition of strong convergence.
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Definition 3.4. A stochastic one-step method (Ψ, h, ξ) converges strongly with

order γ > 0 to the exact solution of (2) if there exists a constant C such that for

every vector of step sizes h ∈ (0, h]N it holds

max
n∈{0,...,N}

∥

∥Xh(tn)−X(tn)
∥

∥

L2(Ω;Rd)
≤ C|h|γ .

Here X denotes the exact solution to (2) and Xh ∈ G2(Th) is the grid function

generated by (Ψ, h, ξ) with step sizes h ∈ (0, h]N .

Before we turn to the main result of this section we first prove the following

useful stability lemma. It follows from the discrete Gronwall Lemma and gives a

motivation for the conditions (12) to (14). The underlying principle is similar as in

the proof of [13, Th. 1.1] and [14, Th. 1.1], but differs in one important point: In

[13, Th. 1.1] the error at time ti is related to the error at time ti−1 by one discrete

time step of the exact solution (compare with [13, Lemma 1.1]). Here we follow the

same idea, but we propagate the error by one application of the one-step map. This

turns out to be important since a stochastically C-stable one-step method enjoys a

global Lipschitz property, which is not necessarily true for the exact solution under

Assumption 2.1.

Lemma 3.5. Let (Ψ, h, ξ) be a stochastically C-stable one-step method with con-

stants Cstab and η ∈ (1,∞). Let h ∈ (0, h]N be an arbitrary vector of step sizes.

For every grid function Z ∈ G2(Th) it then follows that

max
n∈{0,...,N}

‖Z(tn)−Xh(tn)‖
2
L2(Ω;Rd) ≤ e(1+Cstab(1+h))T

(

‖Z(0)− ξ‖2L2(Ω;Rd)

+

N
∑

i=1

(

1 + h−1
i

)∥

∥E
[

Z(ti)−Ψ(Z(ti−1), ti−1, hi)|Fti−1

]∥

∥

2

L2(Ω;Rd)

+ Cη

N
∑

i=1

∥

∥

(

idRd − E
[

· |Fti−1

])(

Z(ti)−Ψ(Z(ti−1), ti−1, hi)
)∥

∥

2

L2(Ω;Rd)

)

,

where Cη = 1 + (η − 1)−1 and Xh ∈ G2(Th) denotes the grid function generated by

(Ψ, h, ξ) with step sizes h.

Proof. For every 1 ≤ i ≤ N we write the difference of the two grid functions as

eh(ti) := Z(ti)−Xh(ti).

By the orthogonality of the conditional expectation it holds

‖eh(ti)‖
2
L2(Ω;Rd) =

∥

∥E[eh(ti)|Fti−1 ]
∥

∥

2

L2(Ω;Rd)
+
∥

∥eh(ti)− E[eh(ti)|Fti−1 ]
∥

∥

2

L2(Ω;Rd)
.

The first term is estimated as follows: Since

eh(ti) = Z(ti)−Ψ(Z(ti−1), ti−1, hi) + Ψ(Z(ti−1), ti−1, hi)−Xh(ti)

we first have

∥

∥E[eh(ti)|Fti−1 ]
∥

∥

L2(Ω;Rd)
≤

∥

∥E
[

Z(ti)−Ψ(Z(ti−1), ti−1, hi)|Fti−1

]
∥

∥

L2(Ω;Rd)

+
∥

∥E
[

Ψ(Z(ti−1), ti−1, hi)−Xh(ti)|Fti−1

]
∥

∥

L2(Ω;Rd)
.
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Then, after taking squares, it follows from the inequality (a+ b)2 = a2+2ab+ b2 ≤

(1 + h−1
i )a2 + (1 + hi)b

2 that

∥

∥E[eh(ti)|Fti−1 ]
∥

∥

2

L2(Ω;Rd)

≤ (1 + h−1
i )

∥

∥E
[

Z(ti)−Ψ(Z(ti−1), ti−1, hi)|Fti−1

]∥

∥

2

L2(Ω;Rd)

+ (1 + hi)
∥

∥E
[

Ψ(Z(ti−1), ti−1, hi)−Xh(ti)|Fti−1

]∥

∥

2

L2(Ω;Rd)
.

The second term is estimated similarly by
∥

∥eh(ti)− E[eh(ti)|Fti−1 ]
∥

∥

2

L2(Ω;Rd)

≤ Cη

∥

∥

(

idRd − E[ · |Fti−1 ]
)(

Z(ti)−Ψ(Z(ti−1), ti−1, hi)
)∥

∥

2

L2(Ω;Rd)

+ η
∥

∥

(

idRd − E[ · |Fti−1 ]
)(

Ψ(Z(ti−1), ti−1, hi)−Xh(ti)
)
∥

∥

2

L2(Ω;Rd)
,

where Cη = 1 + (η − 1)−1. To sum up, we have shown that

∥

∥Z(ti)−Xh(ti)
∥

∥

2

L2(Ω;Rd)

≤ (1 + h−1
i )

∥

∥E
[

Z(ti)−Ψ(Z(ti−1), ti−1, hi)|Fti−1

]
∥

∥

2

L2(Ω;Rd)

+ (1 + hi)
∥

∥E
[

Ψ(Z(ti−1), ti−1, hi)−Xh(ti)|Fti−1

]
∥

∥

2

L2(Ω;Rd)

+ Cη

∥

∥

(

idRd − E[ · |Fti−1 ]
)(

Z(ti)−Ψ(Z(ti−1), ti−1, hi)
)
∥

∥

2

L2(Ω;Rd)

+ η
∥

∥

(

idRd − E[ · |Fti−1 ]
)(

Ψ(Z(ti−1), ti−1, hi)−Xh(ti)
)
∥

∥

2

L2(Ω;Rd)

for all 1 ≤ i ≤ N . After inserting Xh(ti) = Ψ(Xh(ti−1), ti−1, hi) and (12) we get
∥

∥Z(ti)−Xh(ti)
∥

∥

2

L2(Ω;Rd)

≤ (1 + h−1
i )

∥

∥E
[

Z(ti)−Ψ(Z(ti−1), ti−1, hi)|Fti−1

]∥

∥

2

L2(Ω;Rd)

+ Cη

∥

∥

(

idRd − E[ · |Fti−1 ]
)(

Z(ti)−Ψ(Z(ti−1), ti−1, hi)
)∥

∥

2

L2(Ω;Rd)

+
(

1 + (1 + Cstab(1 + h)hi)
)∥

∥Z(ti−1)−Xh(ti−1)
∥

∥

2

L2(Ω;Rd)
,

where we also made use of the fact that by (12)

hi

∥

∥E
[

Ψ(Z(ti−1), ti−1, hi)−Xh(ti)|Fti−1

]∥

∥

2

L2(Ω;Rd)

≤ hi(1 + Cstabh)
∥

∥Z(ti−1)−Xh(ti−1)
∥

∥

2

L2(Ω;Rd)
.

Next, we subtract
∥

∥Z(ti−1)−Xh(ti−1)
∥

∥

2

L2(Ω;Rd)
from both sides of this inequality.

Together with a telescopic sum argument this yields
∥

∥Z(tn)−Xh(tn)
∥

∥

2

L2(Ω;Rd)
−
∥

∥Z(0)−Xh(0)
∥

∥

2

L2(Ω;Rd)

=
n
∑

i=1

(

∥

∥Z(ti)−Xh(ti)
∥

∥

2

L2(Ω;Rd)
−
∥

∥Z(ti−1)−Xh(ti−1)
∥

∥

2

L2(Ω;Rd)

)

≤
n
∑

i=1

(

(

1 + h−1
i

)∥

∥E
[

Z(ti)−Ψ(Z(ti−1), ti−1, hi)|Fti−1

]∥

∥

2

L2(Ω;Rd)

+ Cη

∥

∥

(

idRd − E
[

· |Fti−1

])(

Z(ti)−Ψ(Z(ti−1), ti−1, hi)
)
∥

∥

2

L2(Ω;Rd)

+ (1 + Cstab(1 + h))hi

∥

∥Z(ti−1)−Xh(ti−1)
∥

∥

2

L2(Ω;Rd)

)

.



STOCH. C-STAB. AND B-CONS. OF EULER-TYPE SCHEMES 9

After adding ‖Z(0)−Xh(0)‖2L2(Ω;Rd) = ‖Z(0)−ξ‖2
L2(Ω;Rd) the assertion follows from

an application of the discrete Gronwall Lemma. �

A simple consequence of the stability lemma is the following estimate of the

second moment of the grid function which is generated by the numerical method.

Corollary 3.6. Let (Ψ, h, ξ) be stochastically C-stable. If there exists a constant

C0 such that for all (t, δ) ∈ T it holds
∥

∥E
[

Ψ(0, t, δ)|Ft

]∥

∥

L2(Ω;Rd)
≤ C0δ,

∥

∥

(

idRd − E
[

· |Ft

])

Ψ(0, t, δ)
∥

∥

L2(Ω;Rd)
≤ C0δ

1
2 ,

then it follows for a positive constant C and for all vectors of step sizes h ∈ (0, h]N

that

max
n∈{0,...,N}

‖Xh(tn)‖L2(Ω;Rd) ≤ eCT
(

‖ξ‖2L2(Ω;Rd) + C2
0 (1 + h+ Cη)T

)
1
2

,

where Xh denotes the grid function generated by (Ψ, h, ξ) with step sizes h.

Proof. The assertion follows directly from an application of Lemma 3.5 with Z ≡

0 ∈ G2(Th). �

As the next theorem shows consistency and stability imply the strong conver-

gence of a stochastic one-step method.

Theorem 3.7. Let the stochastic one-step method (Ψ, h, ξ) be stochastically C-

stable and stochastically B-consistent of order γ > 0. If ξ = X0, then there exists

a constant C depending on Cstab, Ccons, T , h, and η such that for every vector of

step sizes h ∈ (0, h]N it holds

max
n∈{0,...,N}

∥

∥X(tn)−Xh(tn)
∥

∥

L2(Ω;Rd)
≤ C|h|γ ,

where X denotes the exact solution to (2) and Xh the grid function generated by

(Ψ, h, ξ) with step sizes h. In particular, (Ψ, h, ξ) is strongly convergent of order γ.

Proof. Let h ∈ (0, h]N be an arbitrary vector of step sizes. Since X(0) = Xh(0) =

X0 it directly follows from Lemma 3.5 that

max
n∈{0,...,N}

‖X(tn)−Xh(tn)‖
2
L2(Ω;Rd)

≤ e(1+Cstab(1+h))T
(

N
∑

i=1

(

1 + h−1
i

)∥

∥E
[

X(ti)−Ψ(X(ti−1), ti−1, hi)|Fti

]∥

∥

2

L2(Ω;Rd)

+ Cη

N
∑

i=1

∥

∥

(

idRd − E
[

· |Fti−1

])(

X(ti)−Ψ(X(ti−1), ti−1, hi)
)∥

∥

2

L2(Ω;Rd)

)

.

After inserting (13) and (14) we get

max
n∈{0,...,N}

∥

∥X(tn)−Xh(tn)
∥

∥

2

L2(Ω;Rd)

≤ e(1+Cstab(1+h))TC2
cons

N
∑

i=1

(

(1 + h−1
i )h

2(γ+1)
i + Cηh

2γ+1
i

)

≤ e(1+Cstab(1+h))T (1 + h+ Cη)TC
2
cons|h|

2γ .

This completes the proof. �
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4. Solving nonlinear equations under a one-sided Lipschitz condition

This section collects some results on the solvability of nonlinear equations under

a one-sided Lipschitz condition, which are needed for the error analysis of the split-

step backward Euler scheme.

The following Uniform Monotonicity Theorem is a standard result in nonlinear

analysis (see for instance, [15, Chap.6.4], [19, Theorem C.2]). We take explicit

notice of the Lipschitz bound for the inverse which will be used later on.

Theorem 4.1. Let G : Rd → R
d be a continuous mapping such that there exists a

positive constant c with

〈G(x1)−G(x2), x1 − x2〉 ≥ c|x1 − x2|
2(15)

for all x1, x2 ∈ R
d. Then G is a homeomorphism with Lipschitz continuous inverse,

in particular

∣

∣G−1(y1)−G−1(y2)
∣

∣ ≤
1

c
|y1 − y2|(16)

for all y1, y2 ∈ R
d.

Proof. It is well known [15, Chap. 6.4], [19, Theorem C.2] that G(x) = y has a

unique solution for every y ∈ R
d. Setting x1 = G−1(y1), x2 = G−1(y2), condition

(15) implies

c|x1 − x2|
2 ≤ 〈y1 − y2, x1 − x2〉 ≤ |y1 − y2||x1 − x2|,

from which the Lipschitz estimate (16) follows. �

The following consequence of Theorem 4.1 contains the key estimates for the C-

stability of the split-step backward Euler scheme. For related estimates under global

Lipschitz conditions on the diffusion coefficient functions we refer to [4, Lemmas

3.4, 4.5].

Corollary 4.2. Let the functions f : [0, T ]× R
d → R

d and gr : [0, T ]× R
d → R

d,

r = 1, . . . ,m, satisfy Assumption 2.1 with Lipschitz constant L > 0 and parameter

value η ∈ (1,∞). Let h ∈ (0, L−1) be given and define for every δ ∈ (0, h] the

mapping Fδ : [0, T ] × R
d → R

d by Fδ(t, x) = x − δf(t, x). Then, the mapping

R
d ∋ x 7→ Fδ(t, x) ∈ R

d is a homeomorphism for every t ∈ [0, T ].

In addition, the inverse F−1
δ (t, ·) : Rd → R

d satisfies

∣

∣F−1
δ (t, x1)− F−1

δ (t, x2)
∣

∣ ≤ (1 − Lδ)−1|x1 − x2|,(17)
∣

∣F−1
δ (t, x)

∣

∣ ≤ (1 − Lδ)−1
(

Lδ + |x|
)

,(18)

for every x, x1, x2 ∈ R
d and t ∈ [0, T ]. Moreover, there exists a constant C1 only

depending on L and h such that

∣

∣F−1
δ (t, x1)− F−1

δ (t, x2)
∣

∣

2
+ ηδ

m
∑

r=1

∣

∣gr(t, F−1
δ (t, x1))− gr(t, F−1

δ (t, x2))
∣

∣

2

≤ (1 + C1δ)
∣

∣x1 − x2

∣

∣

2

(19)

for every x1, x2 ∈ R
d and t ∈ [0, T ].
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Proof. Fix arbitrary δ ∈ (0, h] and t ∈ [0, T ]. First, note that by (3) the mapping

Fδ(t, ·) : Rd → R
d is continuous and satisfies

〈Fδ(t, x1)− Fδ(t, x2), x1 − x2〉

= |x1 − x2|
2 − δ〈f(t, x1)− f(t, x2), x1 − x2〉 ≥ (1− Lδ)|x1 − x2|

2

for all x1, x2 ∈ R
d. Note that 1 − Lδ > 0 follows from h ∈ (0, L−1) and δ ∈ (0, h].

Hence, we directly obtain the first assertion and (17) from Theorem 4.1.

Next, we set x0 := Fδ(t, 0) = −δf(t, 0) ∈ R
d. Then F−1

δ (t, x0) = 0 and for

arbitrary x ∈ R
d by (17) and (4) we derive

∣

∣F−1
δ (t, x)

∣

∣ =
∣

∣F−1
δ (t, x)− F−1

δ (t, x0)
∣

∣ ≤ (1− Lδ)−1|x− x0|

= (1− Lδ)−1
(

|x|+ δ|f(t, 0)|
)

≤ (1− Lδ)−1
(

|x|+ Lδ
)

.

It remains to give a proof of (19). By also taking the diffusion coefficient functions

into account, it follows from (3) that

〈Fδ(t, x1)− Fδ(t, x2), x1 − x2〉

= |x1 − x2|
2 − δ〈f(t, x1)− f(t, x2), x1 − x2〉

≥ (1 − Lδ)|x1 − x2|
2 + ηδ

m
∑

r=1

∣

∣gr(t, x1)− gr(t, x2)
∣

∣

2
.

For some y1, y2 ∈ R
d we substitute x1 = F−1

δ (t, y1) and x2 = F−1
δ (t, y2) into the

inequality. Then, after rearranging we end up with

∣

∣F−1
δ (t, y1)− F−1

δ (t, y2)
∣

∣

2
+ ηδ

m
∑

r=1

∣

∣gr(t, F−1
δ (t, y1))− gr(t, F−1

δ (t, y2))
∣

∣

2

≤
〈

y1 − y2, F
−1
δ (t, y1)− F−1

δ (t, y2)
〉

+ Lδ
∣

∣F−1
δ (t, y1)− F−1

δ (t, y2)
∣

∣

2
.

Now, an application of (17) together with the Cauchy-Schwarz inequality yields

∣

∣F−1
δ (t, y1)− F−1

δ (t, y2)
∣

∣

2
+ ηδ

m
∑

r=1

∣

∣gr(t, F−1
δ (t, y1))− gr(t, F−1

δ (t, y2))
∣

∣

2

≤ |y1 − y2|
∣

∣F−1
δ (t, y1)− F−1

δ (t, y2)
∣

∣+ Lδ
∣

∣F−1
δ (t, y1)− F−1

δ (t, y2)
∣

∣

2

≤ (1− Lδ)−1
(

1 + (1− Lδ)−1Lδ
)

|y1 − y2|
2 = (1− Lδ)−2|y1 − y2|

2

for all y1, y2 ∈ R
d. Finally, note that b(δ) = (1−Lδ)−2 is a convex function, hence

for all δ ∈ [0, h],

(1− Lδ)−2 ≤ 1 + C1δ, C1 =
b(h)− b(0)

h
= L(2− Lh)(1 − Lh)−2,

and inequality (19) is verified. �

The following lemma contains some further estimates of F−1
h , which will be useful

for the analysis of the local truncation error.

Lemma 4.3. Consider the same situation as in Corollary 4.2. Then there exist

constants C2, C3 only depending on L, h and q such that for every δ ∈ (0, h] the

inverse F−1
δ (t, ·) : Rd → R

d satisfies the estimates
∣

∣F−1
δ (t, x) − x

∣

∣ ≤ δC2

(

1 + |x|q
)

,(20)
∣

∣F−1
δ (t, x) − x− δf(t, x)

∣

∣ ≤ δ2C3

(

1 + |x|2q−1
)

(21)

for every x ∈ R
d and t ∈ [0, T ].
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Proof. Let x ∈ R
d be arbitrary. For the proof of (20) we make use of the substitu-

tion x = Fδ(t, y) and (4). Then we get
∣

∣F−1
δ (t, x)− x

∣

∣ =
∣

∣y − Fδ(t, y)
∣

∣ = δ|f(t, y)| ≤ Lδ
(

1 + |y|q
)

.

Resubstitution of y and inserting (18) yields
∣

∣F−1
δ (t, x)− x

∣

∣ ≤ Lδ
(

1 + |F−1
δ (t, x)|q

)

≤ Lδ
(

1 + (1− Lδ)−q(1 + |x|)q
)

≤ Lδ
(

1 + 2q−1(1− Lh)−q
)(

1 + |x|q
)

,
(22)

which is (20) with C2 = L(1 + 2q−1(1 − Lh)−q).

Finally, by making use of the same substitution as well as (6) we obtain
∣

∣F−1
δ (t, x)− x− δf(t, x)

∣

∣ =
∣

∣y − Fδ(t, y)− δf(t, Fδ(t, y))
∣

∣

= δ
∣

∣f(t, y)− f(t, Fδ(t, y))
∣

∣

≤ Lδ
(

1 + |y|q−1 + |Fδ(t, y)|
q−1

)∣

∣y − Fδ(t, y)
∣

∣

≤ Lδ
(

1 + |x|q−1 + |F−1
δ (t, x)|q−1

)∣

∣F−1
δ (t, x) − x

∣

∣

for every x ∈ R
d. We continue in the same way as in (22) and find by applying

(18) that
∣

∣F−1
δ (t, x)− x− δf(t, x)

∣

∣ ≤ C2Lδ
2
(

1 + |x|q
)(

1 + |x|q−1 + |F−1
δ (t, x)|q−1

)

≤ δ2C3

(

1 + |x|2q−1
)

for a suitable constant C3 only depending on q, L, and h. �

5. C-stability and B-consistency of the SSBE method

In Section 3 we derived a strong convergence result in a more abstract framework.

After the preparation of Section 4 we are now in the position to verify that the split-

step backward Euler scheme from Example 2.2 is stable and consistent with order

γ = 1
2 .

But before we come to this we first show that the SSBE method is indeed a

well-defined stochastic one-step method in the sense of Definition 3.1. In Section 4

we saw that the implicit step of the SSBE method admits a unique solution if f

satisfies Assumption 2.1 with one-sided Lipschitz constant L. To be more precise,

let h ∈ (0, L−1) and consider an arbitrary vector of step sizes h ∈ (0, h]N . Then, we

obtain from Corollary 4.2 that for every 1 ≤ i ≤ N there exists a homeomorphism

Fhi
(ti, ·) : Rd → R

d such that X
SSBE

h (ti) = F−1
hi

(ti, X
SSBE
h (ti−1)) is the solution to

X
SSBE

h (ti) = XSSBE
h (ti−1) + hif(ti, X

SSBE

h (ti)).

Hence, we define the one-step map ΨSSBE : Rd × T × Ω → R
d of the split-step

backward Euler method by

ΨSSBE(x, t, δ) = F−1
δ (t+ δ, x) +

m
∑

r=1

gr(t+ δ, F−1
δ (t+ δ, x))∆δW

r(t)(23)

for every x ∈ R
d and (t, δ) ∈ T, where ∆δW

r(t) := W r(t + δ) −W r(t). Next, we

verify that ΨSSBE satisfies condition (10) and the assumptions of Corollary 3.6.

Proposition 5.1. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

with L ∈ (0,∞) and q ∈ (1,∞) and let h ∈ (0, L−1). For every initial value

ξ ∈ L2(Ω;F0,P;Rd) it holds that (ΨSSBE, h, ξ) is a stochastic one-step method.
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In addition, there exists a constant C0, which depends on L, q, m, and h, such

that
∥

∥E
[

ΨSSBE(0, t, δ)|Ft

]∥

∥

L2(Ω;Rd)
≤ C0δ,(24)

∥

∥

(

idRd − E[ · |Ft]
)

ΨSSBE(0, t, δ)
∥

∥

L2(Ω;Rd)
≤ C0δ

1
2(25)

for all (t, δ) ∈ T.

Proof. For the first assertion we only have to verify that ΨSSBE satisfies (10). For

this we fix arbitrary (t, δ) ∈ T and Z ∈ L2(Ω,Ft,P;Rd). Then, we obtain from

Corollary 4.2 that the mapping F−1
δ (t+ δ, ·) : Rd → R

d is a homeomorphism satis-

fying the linear growth bound (18). Hence, we have

F−1
δ (t+ δ, Z) ∈ L2(Ω,Ft,P;Rd).

Consequently, by the continuity of gr the mapping

Ω ∋ ω 7→ gr(t+ δ, F−1
δ (t+ δ, Z(ω))) ∈ R

d

is Ft/B(Rd)-measurable for every r = 1, . . . ,m. Therefore, ΨSSBE(Z, t, δ) : Ω → R
d

is a well-defined random variable, which is Ft+δ/B(Rd)-measurable. It remains to

show that ΨSSBE(Z, t, δ) is square integrable.

For this we first consider the case that Z = 0 ∈ L2(Ω;Rd). Then it is evident

that ΨSSBE(0, t, δ) ∈ L2(Ω,Ft+δ,P;Rd). In particular, it follows from (18) that
∥

∥E
[

ΨSSBE(0, t, δ)|Ft

]
∥

∥

L2(Ω;Rd)
=

∣

∣F−1
δ (t+ δ, 0)

∣

∣ ≤ (1− Lδ)−1Lδ ≤ (1− Lh)−1Lδ.

Further, from an application of Itō’s isometry, (4) and (18) we get
∥

∥

(

idRd − E[ · |Ft]
)

ΨSSBE(0, t, δ)
∥

∥

2

L2(Ω;Rd)

=
∥

∥

∥

m
∑

r=1

gr(t+ δ, F−1
δ (t+ δ, 0))

(

W r(t+ δ)−W r(t)
)

∥

∥

∥

2

L2(Ω;Rd)

= δ

m
∑

r=1

∣

∣gr(t+ δ, F−1
δ (t+ δ, 0))

∣

∣

2

≤ L2mδ
(

1 +
∣

∣F−1
δ (t+ δ, 0)

∣

∣

q)2
≤ L2m

(

1 + (1− Lh)−qLqh
q)2

δ.

This verifies (24) and (25).

Next, for arbitrary Z ∈ L2(Ω;Ft,P;Rd) we compute by similar arguments
∥

∥ΨSSBE(Z, t, δ)−ΨSSBE(0, t, δ)
∥

∥

2

L2(Ω;Rd)

=
∥

∥F−1
δ (t+ δ, Z)− F−1

δ (t+ δ, 0)
∥

∥

2

L2(Ω;Rd)

+ δ

m
∑

r=1

∥

∥gr(t+ δ, F−1
δ (t+ δ, Z))− gr(t+ δ, F−1

δ (t+ δ, 0))
∥

∥

2

L2(Ω;Rd)

= E

[

∣

∣F−1
δ (t+ δ, Z)− F−1

δ (t+ δ, 0)
∣

∣

2

+ δ

m
∑

r=1

∣

∣gr(t+ δ, F−1
δ (t+ δ, Z))− gr(t+ δ, F−1

δ (t+ δ, 0))
∣

∣

2
]

.

Thus, an application of (19) yields
∥

∥ΨSSBE(Z, t, δ)− ΨSSBE(0, t, δ)
∥

∥

2

L2(Ω;Rd)
≤ (1 + C1δ)‖Z‖2L2(Ω;Rd).

This completes the proof. �



14 W.-J. BEYN, E. ISAAK, AND R. KRUSE

Theorem 5.2. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

with L ∈ (0,∞) and η ∈ (1,∞). Further, let h ∈ (0, L−1). Then, for every

ξ ∈ L2(Ω,F0,P;Rd) the SSBE scheme (ΨSSBE, h, ξ) is stochastically C-stable.

Proof. Let us consider arbitrary (t, δ) ∈ T and Y, Z ∈ L2(Ω,Ft,P;Rd). For the

proof of (12) we first note that

E
[

ΨSSBE(Y, t, δ)−ΨSSBE(Z, t, δ)|Ft

]

= F−1
δ (t+ δ, Y )− F−1

δ (t+ δ, Z)

and

(

idRd − E[ · |Ft]
)(

ΨSSBE(Y, t, δ)−ΨSSBE(Z, t, δ)
)

=

m
∑

r=1

(

gr(t+ δ, F−1
δ (t+ δ, Y ))− gr(t+ δ, F−1

δ (t+ δ, Z))
)

∆δW
r(t).

Then, from (19) we obtain

∥

∥F−1
δ (t+ δ, Y )− F−1

δ (t+ δ, Z)
∥

∥

2

L2(Ω;Rd)

+ η
∥

∥

∥

m
∑

r=1

(

gr(t+ δ, F−1
δ (t+ δ, Y ))− gr(t+ δ, F−1

δ (t+ δ, Z))
)

∆δW
r(t)

∥

∥

∥

2

L2(Ω;Rd)

= E

[

∣

∣F−1
δ (t+ δ, Y )− F−1

δ (t+ δ, Z)
∣

∣

2

+ ηδ
m
∑

r=1

∣

∣gr(t+ δ, F−1
δ (t+ δ, Y ))− gr(t+ δ, F−1

δ (t+ δ, Z))
∣

∣

2
]

≤ (1 + C1δ)
∥

∥Y − Z
∥

∥

2

L2(Ω;Rd)
.

which is condition (12) for the SSBE method with Cstab = C1. �

The following fact is a consequence of Theorem 5.2 and Corollary 3.6 together

with (24) and (25).

Corollary 5.3. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

with L ∈ (0,∞) and η ∈ (1,∞). Let h ∈ (0, L−1). Then, for every vector of step

sizes h ∈ (0, h]N it holds for the grid function Xh generated by (ΨSSBE, h, ξ) that

max
n∈{0,...,N}

‖XSSBE
h (tn)‖L2(Ω;Rd) ≤ eCT

(

‖ξ‖2L2(Ω;Rd) + C2
0 (1 + h+ Cη)T

)
1
2

,

where the constant C0 is the same as in Proposition 5.1.

In preparation of the proof of consistency we state the following result on the

Hölder continuity of the exact solution to (2) with respect to the norm in Lp(Ω;Rd).

Proposition 5.4. Let f and gr, r = 1, . . . ,m, satisfy Assumption 2.1 with L ∈

(0,∞) and q ∈ (1,∞). For every p ∈ [2,∞) with supt∈[0,T ] ‖X(t)‖Lpq(Ω;Rd) < ∞

there exists a constant C such that

∥

∥X(t1)−X(t2)
∥

∥

Lp(Ω;Rd)
≤ C

(

1 + sup
t∈[0,T ]

‖X(t)‖q
Lpq(Ω;Rd)

)

|t1 − t2|
1
2

for all t1, t2 ∈ [0, T ], where X denotes the exact solution to (2).
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Proof. Let 0 ≤ t1 < t2 ≤ T . After inserting (7) we get

∥

∥X(t1)−X(t2)
∥

∥

Lp(Ω;Rd)
≤

∫ t2

t1

∥

∥f(τ,X(τ))
∥

∥

Lp(Ω;Rd)
dτ

+
∥

∥

∥

m
∑

r=1

∫ t2

t1

gr(τ,X(τ)) dW r(τ)
∥

∥

∥

Lp(Ω;Rd)
.

For the drift integral it follows from (4) that

∫ t2

t1

∥

∥f(τ,X(τ))
∥

∥

Lp(Ω;Rd)
dτ ≤ L

(

1 + sup
τ∈[0,T ]

‖X(τ)‖q
Lpq(Ω;Rd)

)

|t1 − t2|.

In addition, the Burkholder-Davis-Gundy inequality yields

∥

∥

∥

m
∑

r=1

∫ t2

t1

gr(τ,X(τ)) dW r(τ)
∥

∥

∥

Lp(Ω;Rd)
≤ C

(

m
∑

r=1

∫ t2

t1

∥

∥gr(τ,X(τ))
∥

∥

2

Lp(Ω;Rd)
dτ

)
1
2

for a constant C = C(p). Then, we deduce from (4) that

∥

∥gr(τ,X(τ))
∥

∥

Lp(Ω;Rd)
≤ L

(

1 + sup
τ∈[0,T ]

∥

∥X(τ)
∥

∥

q

Lpq(Ω;Rd)

)

.

Therefore, it holds

∥

∥

∥

m
∑

r=1

∫ t2

t1

gr(τ,X(τ)) dW r(τ)
∥

∥

∥

Lp(Ω;Rd)

≤ CLm
1
2

(

1 + sup
τ∈[0,T ]

∥

∥X(τ)
∥

∥

q

Lpq(Ω;Rd)

)

|t1 − t2|
1
2 .

This completes the proof. �

The following two lemmas contain estimates, which play important roles in the

proofs of consistency for the SSBE scheme and the PEM method.

Lemma 5.5. Let Assumption 2.1 be satisfied by f and gr, r = 1, . . . ,m, with

L ∈ (0,∞) and q ∈ (1,∞). Further, let the exact solution X to (2) satisfy

supt∈[0,T ] ‖X(t)‖L4q−2(Ω;Rd) < ∞. Then, there exists a constant C such that for

all t1, t2, s ∈ [0, T ] with 0 ≤ t1 ≤ s ≤ t2 ≤ T it holds

∫ t2

t1

∥

∥f(τ,X(τ)) − f(s,X(t1))
∥

∥

L2(Ω;Rd)
dτ

≤ C
(

1 + sup
t∈[0,T ]

∥

∥X(t)
∥

∥

L4q−2(Ω;Rd)

)

|t1 − t2|
3
2 .

Proof. It follows from (5) and (6) that

∣

∣f(τ1, x1)− f(τ2, x2)
∣

∣ ≤
∣

∣f(τ1, x1)− f(τ1, x2)
∣

∣+
∣

∣f(τ1, x2)− f(τ2, x2)
∣

∣

≤ L
(

1 + |x1|
q−1 + |x2|

q−1
)

|x1 − x2|+ L
(

1 + |x2|
q
)

|τ1 − τ2|
1
2

for all τ1, τ2 ∈ [0, T ] and x1, x2 ∈ R
d. By an additional application of Hölder’s

inequality with exponents ρ = 2 − 1
q

and ρ′ = 2q−1
q−1 we therefore get for all s, τ ∈
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[t1, t2]
∥

∥f(τ,X(τ))− f(s,X(t1))
∥

∥

L2(Ω;Rd)

≤ L
∥

∥

(

1 + |X(τ)|q−1 + |X(t1)|
q−1

)

|X(τ)−X(t1)|
∥

∥

L2(Ω;R)

+ L
∥

∥

(

1 + |X(t1)|
q
)

|τ − s|
1
2

∥

∥

L2(Ω;Rd)

≤ L
(

1 + 2 sup
t∈[0,T ]

‖X(t)‖q−1

L2ρ′(q−1)(Ω;Rd)

)

‖X(τ)−X(t1)‖L2ρ(Ω;Rd)

+ L
(

1 + sup
t∈[0,T ]

‖X(t)‖q
L2q(Ω;Rd)

)

|t1 − t2|
1
2 .

(26)

Observe that 2ρ′(q − 1) = 4q − 2. Moreover, Proposition 5.4 with p = 2ρ yields

‖X(τ)−X(t1)‖L2ρ(Ω;Rd) ≤ C
(

1 + sup
t∈[0,T ]

‖X(t)‖q
L2ρq(Ω;Rd)

)

|τ − t1|
1
2

≤ C
(

1 + sup
t∈[0,T ]

‖X(t)‖q
L4q−2(Ω;Rd)

)

|t1 − t2|
1
2 .

Altogether, this proves
∥

∥f(τ,X(τ))− f(s,X(t1))
∥

∥

L2(Ω;Rd)
≤ C

(

1 + sup
t∈[0,T ]

‖X(t)‖2q−1
L4q−2(Ω;Rd)

)

|t1 − t2|
1
2

for all s, τ ∈ [t1, t2]. After integrating over τ ∈ [t1, t2] the proof is completed. �

Lemma 5.6. Let Assumption 2.1 be satisfied by f and gr, r = 1, . . . ,m. Further,

let the exact solution X to (2) satisfy supτ∈[0,T ] ‖X(τ)‖L4q−2(Ω;Rd) < ∞. Then,

there exists a constant C such that for all t1, t2, s ∈ [0, T ] with 0 ≤ t1 ≤ s ≤ t2 ≤ T

it holds

∥

∥

∥

m
∑

r=1

∫ t2

t1

(

gr(τ,X(τ))− gr(s,X(t1))
)

dW r(τ)
∥

∥

∥

L2(Ω;Rd)

≤ Cm
1
2

(

1 + sup
τ∈[0,T ]

∥

∥X(τ)
∥

∥

2q−1

L4q−2(Ω;Rd)

)

|t1 − t2|.

Proof. By the Itō isometry we get

∥

∥

∥

m
∑

r=1

∫ t2

t1

(

gr(τ,X(τ)) − gr(s,X(t1))
)

dW r(τ)
∥

∥

∥

L2(Ω;Rd)

=
(

m
∑

r=1

∫ t2

t1

∥

∥gr(τ,X(τ))− gr(s,X(t1))
∥

∥

2

L2(Ω;Rd)
dτ

)
1
2

.

Then, the integrands are estimated in the same way as in (26) by
∥

∥gr(τ,X(τ)) − gr(s,X(t1))
∥

∥

L2(Ω;Rd)

≤ L
(

1 + 2 sup
t∈[0,T ]

‖X(t)‖q−1

L2ρ′(q−1)(Ω;Rd)

)

‖X(τ)−X(t1)‖L2ρ(Ω;Rd)

+ L
(

1 + sup
t∈[0,T ]

‖X(t)‖q
L2q(Ω;Rd)

)

|τ − s|
1
2

≤ C
(

1 + sup
t∈[0,T ]

‖X(t)‖2q−1
L4q−2(Ω;Rd)

)

|t1 − t2|
1
2 ,

where we again made use of the 1
2 -Hölder continuity of the exact solution. �

The next theorem finally investigates the B-consistency of the SSBE method.
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Theorem 5.7. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

with L ∈ (0,∞) and q ∈ (1,∞). Let h ∈ (0, L−1). If the exact solution X to

(2) satisfies supτ∈[0,T ] ‖X(τ)‖L4q−2(Ω;Rd) < ∞, then the split-step backward Euler

method (ΨSSBE, h,X0) is stochastically B-consistent of order γ = 1
2 .

Proof. Let (t, δ) ∈ T be arbitrary. First we insert (7) and (23) and obtain

X(t+ δ)−ΨSSBE(X(t), t, δ) =

∫ t+δ

t

(

f(τ,X(τ))− f(t+ δ,X(t))
)

dτ

+X(t) + δf(t+ δ,X(t))− F−1
δ (t+ δ,X(t))

+

m
∑

r=1

∫ t+δ

t

(

gr(τ,X(τ))− gr(t+ δ,X(t))
)

dW r(τ)

+

m
∑

r=1

(

gr(t+ δ,X(t))− gr(t+ δ, F−1
δ (t+ δ,X(t)))

)

∆δW
r(t).

For the proof of (13) we therefore have to estimate

∥

∥E
[

X(t+ δ)−ΨSSBE(X(t), t, δ)|Ft

]∥

∥

L2(Ω;Rd)

≤

∫ t+δ

t

∥

∥E
[

f(τ,X(τ))− f(t+ δ,X(t))|Ft

]
∥

∥

L2(Ω;Rd)
dτ

+
∥

∥X(t) + δf(t+ δ,X(t))− F−1
δ (t+ δ,X(t))

∥

∥

L2(Ω;Rd)
.

(27)

Together with the inequality ‖E[Y |Ft]‖L2(Ω;Rd) ≤ ‖Y ‖L2(Ω;Rd) for all Y ∈ L2(Ω;Rd)

it follows from Lemma 5.5 that

∫ t+δ

t

∥

∥E
[

f(τ,X(τ))− f(t+ δ,X(t))|Ft

]∥

∥

L2(Ω;Rd)
dτ ≤ Cconsδ

3
2

for a constant Ccons depending on L, q, m, and supτ∈[0,T ] ‖X(τ)‖2q−1
L4q−2(Ω;Rd)

. In

order to complete the proof of (13) we need to show a similar estimate of the

second term in (27). In fact, it follows from (21) that

∥

∥X(t) + δf(t+ δ,X(t))− F−1
δ (t+ δ,X(t))

∥

∥

L2(Ω;Rd)

≤ C3δ
2
∥

∥1 + |X(t)|2q−1
∥

∥

L2(Ω;R)
≤ C3δ

2
(

1 + sup
τ∈[0,T ]

‖X(τ)‖2q−1
L4q−2(Ω;Rd)

)

.

This completes the proof of (13) with γ = 1
2 and we turn our attention to the proof

of (14). For this we need to estimate the following three terms

∥

∥

(

idRd − E[ · |Ft]
)(

X(t+ δ)−ΨSSBE(X(t), t, δ)
)∥

∥

L2(Ω;Rd)

≤

∫ t+δ

t

∥

∥

(

idRd − E[ · |Ft]
)(

f(τ,X(τ))− f(t+ δ,X(t))
)
∥

∥

L2(Ω;Rd)
dτ

+
∥

∥

∥

m
∑

r=1

∫ t+δ

t

(

gr(τ,X(τ))− gr(t+ δ,X(t))
)

dW r(τ)
∥

∥

∥

L2(Ω;Rd)

+
∥

∥

∥

m
∑

r=1

(

gr(t+ δ,X(t))− gr(t+ δ, F−1
δ (t+ δ,X(t)))

)

∆δW
r(t)

∥

∥

∥

L2(Ω;Rd)
.

(28)
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For the first term we get from Lemma 5.5 and since ‖(idRd −E[ · |Ft]
)

Y ‖L2(Ω;Rd) ≤

‖Y ‖L2(Ω;Rd) for all Y ∈ L2(Ω;Rd) that
∫ t+δ

t

∥

∥

(

idRd − E[ · |Ft]
)(

f(τ,X(τ)) − f(t+ δ,X(t))
)∥

∥

L2(Ω;Rd)
dτ ≤ Cconsδ

3
2 .

We apply Lemma 5.6 to the second term in (28). This yields

∥

∥

∥

m
∑

r=1

∫ t+δ

t

(

gr(τ,X(τ))− gr(t+ δ,X(t))
)

dW r(τ)
∥

∥

∥

L2(Ω;Rd)
≤ Cconsδ.

Finally, for the last term in (28) it follows from (6), (18), and (20) that
∣

∣gr(t+ δ,X(t))− gr(t+ δ, F−1
δ (t+ δ,X(t)))

∣

∣

≤ L
(

1 + |X(t)|q−1 + |F−1
δ (t+ δ,X(t))|q−1

)∣

∣X(t)− F−1
δ (t+ δ,X(t))

∣

∣

≤ δC2L
(

1 + |X(t)|q−1 + (1− Lδ)−(q−1)(Lδ + |X(t)|)q−1
)(

1 + |X(t)|q
)

≤ Cδ
(

1 + |X(t)|2q−1
)

for a suitable constant C only depending on C2, L, q, and h. Therefore,

∥

∥

∥

m
∑

r=1

(

gr(t+ δ,X(t))− gr(t+ δ, F−1
δ (t+ δ,X(t)))

)

∆δW
r(t)

∥

∥

∥

2

L2(Ω;Rd)

≤ δ

m
∑

r=1

∥

∥gr(t+ δ,X(t))− gr(t+ δ, F−1
δ (t+ δ,X(t)))

∥

∥

2

L2(Ω;Rd)

≤ Cmδ3
(

1 + sup
τ∈[0,T ]

‖X(τ)‖2q−1
L4q−2(Ω;Rd)

)

.

Altogether, this completes the proof of (14). �

The strong convergence of the SSBE scheme follows now directly from Theo-

rems 5.2 and 5.7 as well as Theorem 3.7.

Theorem 5.8. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

with constants L ∈ (0,∞), η ∈ (1,∞), and q ∈ (1,∞). Let h ∈ (0, L−1). If the

exact solution X to (2) satisfies supτ∈[0,T ] ‖X(τ)‖L4q−2(Ω;Rd) < ∞, then the split-

step backward Euler method (ΨSSBE, h,X0) is strongly convergent of order γ = 1
2 .

Remark 5.9. Instead of the SSBE method many authors study the implicit Euler-

Maruyama method or backward Euler-Maruyama method (BEM) from [9, Chap. 12].

For instance, in [4, 12] this scheme is considered for the approximation of stochastic

differential equations with super-linearly growing coefficient functions.

Let h = (h1, . . . , hN) be a suitable vector of step sizes. Then, the BEM method

is implicitly given by the recursion

XBEM
h (ti) = XBEM

h (ti−1) + hif(ti, X
BEM
h (ti))

+

m
∑

r=1

gr(ti−1, X
BEM
h (ti−1))

(

W r(ti)−W r(ti−1)
)

, 1 ≤ i ≤ N,

XBEM
h (0) = X0.

For the remainder of this remark, we assume that h is a vector of equidistant step

sizes, that is hi = hj , for all j, i = 1, . . . , N . Further, we consider the situation of

autonomous coefficient functions f(t, x) = f(x) and gr(t, x) = gr(x), r = 1, . . . ,m,

for all x ∈ R
d and t ∈ [0, T ].
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Under these additional conditions we are able to mimic an idea of proof from [4,

Lemma 5.1]. The starting point is the observation that the defining recursion of

the BEM method can be rewritten artificially as a split-step method by

X
BEM

h (ti) = XBEM
h (ti−1) +

m
∑

r=1

gr(XBEM
h (ti−1))∆hi

W r(ti−1),

XBEM
h (ti) = X

BEM

h (ti) + hif(X
BEM
h (ti))

(29)

for every 1 ≤ i ≤ N . Thus, the SSBE scheme and the BEM method only differ

in the order, in which the implicit step for the drift part and the explicit step for

the diffusion part are applied. Consequently, one easily verifies that X
BEM

h is the

grid function generated by the SSBE scheme (ΨSSBE, h, ξ) with initial condition

ξ = Fh1(X0). Then, one can interpret the BEM method as a perturbation of the

SSBE scheme in the following sense: By the homeomorphism Fhi
(·) it holds

XBEM
h (ti) = F−1

hi
(X

BEM

h (ti)).(30)

Therefore, a strong error result for the BEM method can be derived by an appli-

cation of the stability Lemma 3.5, where XBEM
h takes over the role of the exact

solution. To be more precise, we decompose the strong error of the BEM method

into the following three parts
∥

∥X(tn)−XBEM
h (tn)

∥

∥

L2(Ω;Rd)
≤

∥

∥X(tn)−XSSBE
h (tn)

∥

∥

L2(Ω;Rd)

+
∥

∥XSSBE
h (tn)−X

BEM

h (tn)
∥

∥

L2(Ω;Rd)
+
∥

∥X
BEM

h (tn)−XBEM
h (tn)

∥

∥

L2(Ω;Rd)

(31)

for every n ∈ {1, . . . , N}. Then the first term is the strong error of the SSBE

scheme while the second can be estimated by Lemma 3.5 and (4). Similarly, we

derive a suitable bound for the third term by inserting (29) and making again use

of (4). However, this line of arguments has the disadvantage that we are in need of

higher moment bounds for the grid function XBEM
h , uniformly with respect to the

step size h.

It remains an open question if the BEM method is a stochastically C-stable

numerical one-step scheme under Assumption 2.1.

6. C-stability and B-consistency of the PEM method

In this section we prove that the projected Euler-Maruyama method from Ex-

ample 2.3 is stochastically C-stable and B-consistent of order order γ = 1
2 .

We begin by showing that the PEM method is a stochastic one-step method

in the sense of Definition 3.1. Let Assumption 2.1 be satisfied with growth rate

q ∈ (1,∞). Then we set α = 1
2(q−1) and for an arbitrary upper step size bound

h ∈ (0, 1] we define the one-step map ΨPEM : Rd × T× Ω → R
d by

ΨPEM(x, t, δ) := min(1, δ−α|x|−1)x+ δf(t,min(1, δ−α|x|−1)x)

+
m
∑

r=1

gr(t,min(1, δ−α|x|−1)x)∆δW
r(t)

(32)

for every x ∈ R
d and (t, δ) ∈ T. As before we write ∆δW

r(t) = W r(t+ δ)−W r(t).

Proposition 6.1. Let the functions f and gr, r = 1, . . . ,m, satisfy Assump-

tion 2.1 with L ∈ (0,∞), q ∈ (1,∞), and let h ∈ (0, 1]. For every initial value
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ξ ∈ L2(Ω;F0,P;Rd) it holds that (ΨPEM, h, ξ) with α = 1
2(q−1) is a stochastic

one-step method.

In addition, there exists a constant C0 only depending on L and m such that
∥

∥E
[

ΨPEM(0, t, δ)|Ft

]∥

∥

L2(Ω;Rd)
≤ C0δ,(33)

∥

∥

(

idRd − E[ · |Ft]
)

ΨPEM(0, t, δ)
∥

∥

L2(Ω;Rd)
≤ C0δ

1
2(34)

for all (t, δ) ∈ T.

Proof. As in the proof of Proposition 5.1 we first verify that ΨPEM satisfies (10).

Let us fix arbitrary (t, δ) ∈ T and Z ∈ L2(Ω,Ft,P;Rd).

By the continuity and boundedness of the mapping R
d ∋ x 7→ min(1, δ−α|x|−1)x

we obtain

min(1, δ−α|Z|−1)Z ∈ L∞(Ω,Ft,P;Rd).

Consequently, by (4) it also holds true that

f(t,min(1, δ−α|Z|−1)Z) ∈ L∞(Ω,Ft,P;Rd)

as well as

gr(t,min(1, δ−α|Z|−1)Z) ∈ L∞(Ω,Ft,P;Rd)

for every r = 1, . . . ,m. Therefore, ΨPEM(Z, t, δ) : Ω → R
d is an Ft+δ/B(Rd)-

measurable random variable, which satisfies condition (10).

It remains to show (33) and (34). From (4) it follows at once that
∥

∥E
[

ΨPEM(0, t, δ)|Ft

]∥

∥

L2(Ω;Rd)
=

∣

∣δf(t, 0)
∣

∣ ≤ Lδ.

Similarly, from Itō’s isometry and (4) we get
∥

∥

(

idRd − E[ · |Ft]
)

ΨPEM(0, t, δ)
∥

∥

2

L2(Ω;Rd)

=
∥

∥

∥

m
∑

r=1

gr(t, 0)
(

W r(t+ δ)−W r(t)
)

∥

∥

∥

2

L2(Ω;Rd)
= δ

m
∑

r=1

∣

∣gr(t, 0)
∣

∣

2
≤ L2mδ.

This verifies (33) and (34). �

For the formulation of the following lemmas we introduce the abbreviation

x◦ := min(1, δ−α|x|−1)x(35)

for every x ∈ R
d and every step size δ ∈ (0, 1].

Lemma 6.2. For every α ∈ (0,∞) and δ ∈ (0, 1] the mapping R
d ∋ x 7→ x◦ ∈ R

d

is globally Lipschitz continuous with Lipschitz constant 1. In particular, it holds
∣

∣x◦
1 − x◦

2

∣

∣ ≤
∣

∣x1 − x2

∣

∣(36)

for all x1, x2 ∈ R
d.

Proof. For a proof of the Lipschitz continuity we first compute
∣

∣x◦
1 − x◦

2

∣

∣

2
= |x1 − x2|

2 +
[∣

∣x◦
1

∣

∣

2
− |x1|

2 − 2
(

〈x◦
1, x

◦
2〉 − 〈x1, x2〉

)

+
∣

∣x◦
2

∣

∣

2
− |x2|

2
]

for all x1, x2 ∈ R
d. We show that the second term is always nonpositive.

This is clearly true for the case |x1| ≤ δ−α and |x2| ≤ δ−α, since then xi = x◦
i ,

i ∈ {1, 2}. Therefore, for the rest of this proof we assume without loss of generality
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that |x1| > δ−α. After inserting this into the second term we obtain from an

application of the Cauchy-Schwarz inequality

∣

∣x◦
1

∣

∣

2
− |x1|

2 − 2
(

〈x◦
1, x

◦
2〉 − 〈x1, x2〉

)

+
∣

∣x◦
2

∣

∣

2
− |x2|

2

= δ−2α − |x1|
2 +min(|x2|, δ

−α)2 − |x2|
2

+ 2
(

1− δ−α|x1|
−1 min(1, δ−α|x2|

−1)
)

〈x1, x2〉

≤ δ−2α − |x1|
2 +min(|x2|, δ

−α)2 − |x2|
2

+ 2
(

|x1||x2| − δ−α min(|x2|, δ
−α)

)

=
(

δ−α −min(|x2|, δ
−α)

)2
−
(

|x1| − |x2|
)2

≤ 0,

since we assumed |x1| > δ−α. This proves the asserted Lipschitz continuity. �

The following inequality (37) will play the same role for the stability analysis of

the PEM method as (19) does for the SSBE scheme.

Lemma 6.3. Let f and gr, r = 1, . . . ,m, satisfy Assumption 2.1 with L ∈ (0,∞),

q ∈ (1,∞), and η ∈ (12 ,∞). Consider the mapping R
d ∋ x 7→ x◦ ∈ R

d defined in

(35) with α = 1
2(q−1) . Then, there exists a constant C only depending on L with

∣

∣x◦
1 − x◦

2 + δ(f(t, x◦
1)− f(t, x◦

2))
∣

∣

2
+ 2ηδ

m
∑

r=1

∣

∣gr(t, x◦
1)− gr(t, x◦

2))
∣

∣

2

≤ (1 + Cδ)|x1 − x2|
2

(37)

for all x1, x2 ∈ R
d.

Proof. For the proof of (37) we obtain from (3)

∣

∣x◦
1 − x◦

2 + δ(f(t, x◦
1)− f(t, x◦

2))
∣

∣

2

=
∣

∣x◦
1 − x◦

2

∣

∣

2
+ 2δ

〈

x◦
1 − x◦

2, f(t, x
◦
1)− f(t, x◦

2)
〉

+ δ2
∣

∣f(t, x◦
1)− f(t, x◦

2))
∣

∣

2

≤ (1 + 2Lδ)
∣

∣x◦
1 − x◦

2

∣

∣

2
− 2ηδ

m
∑

r=1

∣

∣gr(t, x◦
1)− gr(t, x◦

2))
∣

∣

2

+ δ2
∣

∣f(t, x◦
1)− f(t, x◦

2))
∣

∣

2

for all x1, x2 ∈ R
d. Next, applications of (6) and (36) yield

∣

∣f(t, x◦
1)− f(t, x◦

2))
∣

∣ ≤ L
(

1 + |x◦
1|

q−1 + |x◦
2|

q−1
)∣

∣x◦
1 − x◦

2

∣

∣

≤ L
(

1 + 2δ−α(q−1)
)∣

∣x1 − x2

∣

∣,

where we also made use of the fact that |x◦
1|, |x

◦
2| ≤ δα. After inserting α =

1
2 (q − 1)−1 we conclude

∣

∣x◦
1 − x◦

2 + δ(f(t, x◦
1)− f(t, x◦

2))
∣

∣

2
+ 2ηδ

m
∑

r=1

∣

∣gr(t, x◦
1)− gr(t, x◦

2))
∣

∣

2

≤
(

1 + Cδ
)∣

∣x1 − x2

∣

∣

2

with C = 2L+ 3L2. �

The next theorem verifies that the PEM method is stochastically C-stable.
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Theorem 6.4. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

with L ∈ (0,∞), q ∈ (1,∞), and η ∈ (12 ,∞). Further, let h ∈ (0, 1]. Then, for

every ξ ∈ L2(Ω,F0,P;Rd) the projected Euler-Maruyama method (ΨPEM, h, ξ) with

α = 1
2(q−1) is stochastically C-stable.

Proof. Let (t, δ) ∈ T be arbitrary and consider Y, Z ∈ L2(Ω,Ft,P;Rd). By recalling

the notation (35) we get that

E
[

ΨPEM(Y, t, δ)−ΨPEM(Z, t, δ)|Ft

]

= Y ◦ + δf(t, Y ◦)− (Z◦ + δf(t, Z◦))

and

(

idRd − E[ · |Ft]
)(

ΨPEM(Y, t, δ)−ΨPEM(Z, t, δ)
)

=

m
∑

r=1

(

gr(t, Y ◦)− gr(t, Z◦)
)

∆δW
r(t).

Then, from the Itō isometry and (37) it follows

∥

∥Y ◦ + δf(t, Y ◦)− (Z◦ + δf(t, Z◦))
∥

∥

2

L2(Ω;Rd)

+ 2η
∥

∥

∥

m
∑

r=1

(

gr(t, Y ◦)− gr(t, Z◦)
)

∆δW
r(t)

∥

∥

∥

2

L2(Ω;Rd)

= E

[

∣

∣Y ◦ + δf(t, Y ◦)− (Z◦ + δf(t, Z◦))
∣

∣

2
+ 2ηδ

m
∑

r=1

∣

∣gr(t, Y ◦)− gr(t, Z◦)
∣

∣

2
]

≤ (1 + Cδ)
∥

∥Y − Z
∥

∥

2

L2(Ω;Rd)
.

which is condition (12) for the PEM method with Cstab = C. �

It remains to show that the PEM method is stochastically B-consistent of order

γ = 1
2 . An important ingredient of our proof is contained in the following lemma,

which is based on an argument already found in the proof of [4, Theorem 2.2].

Lemma 6.5. Let L ∈ (0,∞) and κ ∈ [1,∞). Consider a measurable mapping

ϕ : Rd → R
d which satisfies

|ϕ(x)| ≤ L
(

1 + |x|κ
)

for all x ∈ R
d. For some p ∈ (2,∞) let Y ∈ Lpκ(Ω;Rd). Then there exists a

constant C only depending on L and p with

∥

∥ϕ(Y )− ϕ(Y ◦)
∥

∥

L2(Ω;Rd)
≤ C

(

1 + ‖Y ‖κLpκ(Ω;Rd)

)

p
2 δ

1
2α(p−2)κ

for all δ ∈ (0, 1], where Y ◦ = min
(

1, δ−α|Y |−1
)

Y with arbitrary α ∈ (0,∞).

Proof. We apply the same idea as in the proof of [4, Theorem 2.2]. Consider the

two measurable sets

Aδ :=
{

ω ∈ Ω : |Y (ω)| ≤ δ−α
}

∈ F

and Ac
δ := Ω \Aδ. Note that Y (ω) = Y ◦(ω) for all ω ∈ Aδ. Thus,

∥

∥ϕ(Y )− ϕ(Y ◦)
∥

∥

2

L2(Ω;Rd)
=

∫

Ω

∣

∣ϕ(Y (ω))− ϕ(Y ◦(ω))
∣

∣

2
IAc

δ
(ω) dP(ω).
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For ν, ρ, ρ′ ∈ (0,∞) with 1
ρ
+ 1

ρ′
= 1 we apply the Young inequality ab ≤ δν

ρ
aρ +

1
ρ′
δ−ν

ρ′

ρ bρ
′

. If we set ρ = p
2 then we obtain

∫

Ω

∣

∣ϕ(Y (ω))− ϕ(Y ◦(ω))
∣

∣

2
IAc

δ
(ω) dP(ω)

≤
2δν

p

∥

∥ϕ(Y )− ϕ(Y ◦)
∥

∥

p

Lp(Ω;Rd)
+
(

1−
2

p

)

δ−
2ν

p−2P(Ac
δ).

Now, the polynomial growth condition on ϕ yields

‖ϕ(Y )− ϕ(Y ◦)‖Lp(Ω;Rd) ≤ ‖ϕ(Y )‖Lp(Ω;Rd) + ‖ϕ(Y ◦)‖Lp(Ω;Rd)

≤ 2L
(

1 + ‖Y ‖κLpκ(Ω;Rd)

)

.

Further, it holds

P(Ac
δ) = E

[

IAc
δ

]

≤ δαpκE
[

IAc
δ
|Y |pκ

]

≤ δαpκ‖Y ‖pκ
Lpκ(Ω;Rd)

.

To sum up, if we choose ν := α(p − 2)κ, then we obtain αpκ − 2ν
p−2 = ν and,

consequently,
∥

∥ϕ(Y )− ϕ(Y ◦)
∥

∥

2

L2(Ω;Rd)
≤

2

p
(2L)pδα(p−2)κ

(

1 + ‖Y ‖κLpκ(Ω;Rd)

)p

+
(

1−
2

p

)

δα(p−2)κ‖Y ‖pκ
Lpκ(Ω;Rd)

.

This completes the proof. �

Theorem 6.6. Let f and gr, r = 1, . . . ,m, satisfy Assumption 2.1 with L ∈ (0,∞)

and q ∈ (1,∞). Let h ∈ (0, 1] be arbitrary. If the exact solution X to (2) satisfies

supτ∈[0,T ] ‖X(τ)‖L6q−4(Ω;Rd) < ∞, then the projected Euler method (ΨPEM, h,X0)

with α = 1
2(q−1) is stochastically B-consistent of order γ = 1

2 .

Proof. Let (t, δ) ∈ T be arbitrary. First we insert (7) and (32) and obtain in the

same way as in the proof of Theorem 5.7

X(t+ δ)−ΨPEM(X(t), t, δ) =

∫ t+δ

t

(

f(τ,X(τ))− f(t,X(t))
)

dτ

+X(t) + δf(t,X(t))−X◦(t)− δf(t,X◦(t))

+

m
∑

r=1

∫ t+δ

t

(

gr(τ,X(τ)) − gr(t,X(t))
)

dW r(τ)

+

m
∑

r=1

(

gr(t,X(t))− gr(t,X◦(t))
)

∆δW
r(t),

where as before X◦(t) = min(1, δ−α|X(t)|−1)X(t). In order to show (13) we there-

fore have to estimate
∥

∥E
[

X(t+ δ)−ΨPEM(X(t), t, δ)|Ft

]
∥

∥

L2(Ω;Rd)

≤

∫ t+δ

t

∥

∥E
[

f(τ,X(τ))− f(t,X(t))|Ft

]∥

∥

L2(Ω;Rd)
dτ

+
∥

∥X(t)−X◦(t)
∥

∥

L2(Ω;Rd)
+ δ

∥

∥f(t,X(t))− f(t,X◦(t))
∥

∥

L2(Ω;Rd)
.

(38)

From Lemma 5.5 and the inequality ‖E[Y |Ft]‖L2(Ω;Rd) ≤ ‖Y ‖L2(Ω;Rd) for all Y ∈

L2(Ω;Rd) we infer that
∫ t+δ

t

∥

∥E
[

f(τ,X(τ))− f(t,X(t))|Ft

]
∥

∥

L2(Ω;Rd)
dτ ≤ Cconsδ

3
2
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for a constant Ccons depending on L, q, m, and supτ∈[0,T ] ‖X(τ)‖L4q−2(Ω;Rd).

For the proof of (13) it therefore remains to verify that similar estimates hold

true for the second and third term in (38). For this we apply Lemma 6.5 with

ϕ = idRd , κ = 1, and p = 6q − 4. Then we obtain
∥

∥X(t)−X◦(t)
∥

∥

L2(Ω;Rd)
≤ C

(

1 + ‖X(t)‖L6q−4(Ω;Rd)

)3q−2
δ

3
2 ,

since 1
2α(p − 2) = 3

2 . A further application of Lemma 6.5 with ϕ = f(t, ·), κ = q,

and p = 4− 2
q

yields

∥

∥f(t,X(t))− f(t,X◦(t))
∥

∥

L2(Ω;Rd)
≤ C

(

1 + ‖X(t)‖q
L4q−2(Ω;Rd)

)2− 1
q δ

1
2 ,

since in this case 1
2α(p− 2)q = 1

2 . Altogether, this proves (13) with γ = 1
2 .

For the proof of (14) we have to estimate the following three terms
∥

∥

(

idRd − E[ · |Ft]
)(

X(t+ δ)−ΨPEM(X(t), t, δ)
)∥

∥

L2(Ω;Rd)

≤

∫ t+δ

t

∥

∥

(

idRd − E[ · |Ft]
)(

f(τ,X(τ)) − f(t,X(t))
)
∥

∥

L2(Ω;Rd)
dτ

+
∥

∥

∥

m
∑

r=1

∫ t+δ

t

(

gr(τ,X(τ)) − gr(t,X(t))
)

dW r(τ)
∥

∥

∥

L2(Ω;Rd)

+
∥

∥

∥

m
∑

r=1

(

gr(t,X(t))− gr(t,X◦(t))
)

∆δW
r(t)

∥

∥

∥

L2(Ω;Rd)
.

(39)

First, we use the inequality ‖(idRd − E[ · |Ft])Y ‖L2(Ω;Rd) ≤ ‖Y ‖L2(Ω;Rd) for all Y ∈

L2(Ω;Rd) and then we obtain from Lemma 5.5 that
∫ t+δ

t

∥

∥

(

idRd − E[ · |Ft]
)(

f(τ,X(τ))− f(t,X(t))
)∥

∥

L2(Ω;Rd)
dτ ≤ Cconsδ

3
2 .

Next, we directly apply Lemma 5.6 to the second term in (39). This yields

∥

∥

∥

m
∑

r=1

∫ t+δ

t

(

gr(τ,X(τ)) − gr(t,X(t))
)

dW r(τ)
∥

∥

∥

L2(Ω;Rd)
≤ Cconsδ.

Regarding the last term in (39) we obtain from the Itō isometry that

∥

∥

∥

m
∑

r=1

(

gr(t,X(t))− gr(t,X◦(t))
)

∆δW
r(t)

∥

∥

∥

2

L2(Ω;Rd)

= δ

m
∑

r=1

∥

∥gr(t,X(t))− gr(t,X◦(t))
∥

∥

2

L2(Ω;Rd)
.

Similarly as above the estimate is completed by a further application of Lemma 6.5

with ϕ = gr(t, ·), κ = q, and p = 4− 2
q
, which gives

∥

∥gr(t,X(t))− gr(t,X◦(t))
∥

∥

L2(Ω;Rd)
≤ C

(

1 + ‖X(t)‖q
L4q−2(Ω;Rd)

)2− 1
q δ

1
2 .

Thus, as desired it holds

∥

∥

∥

m
∑

r=1

(

gr(t,X(t))− gr(t,X◦(t))
)

∆δW
r(t)

∥

∥

∥

L2(Ω;Rd)
≤ Cconsδ,

for a constant Ccons depending on L, q, m, and supτ∈[0,T ] ‖X(τ)‖L4q−2(Ω;Rd). �

We conclude this section by stating the strong convergence result for the PEM

method, which follows directly from Theorems 6.4 and 6.6 as well as Theorem 3.7.
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Theorem 6.7. Let f and gr, r = 1, . . . ,m, satisfy Assumption 2.1 with L ∈

(0,∞), η ∈ (12 ,∞), and q ∈ (1,∞). Let h ∈ (0, 1]. If the exact solution X to

(2) satisfies supτ∈[0,T ] ‖X(τ)‖L6q−4(Ω;Rd) < ∞, then the projected Euler-Maruyama

method (ΨPEM, h,X0) with α = 1
2(q−1) is strongly convergent of order γ = 1

2 .

7. Numerical experiments

In this section we perform a series of numerical experiments which aim to il-

lustrate the strong convergence results of the previous sections. In particular, we

compute estimates of the strong error of convergence for the numerical discretization

of the stochastic Ginzburg-Landau equation [9, Chap. 4.4] and the 3/2-stochastic

volatility model from [2] and [17, Sec. 1].

First, we consider the stochastic Ginzburg-Landau equation (GLE) which is given

by

dX(t) =
(

−X3(t) + (µ+
1

2
σ2)X(t)

)

dt+ σX(t) dW (t),

X(0) = X0.
(40)

where µ, σ, t ≥ 0. This equation satisfies Assumption 2.1 and condition (8) with

q = 3 since the cubic term in the drift function has a negative sign. As already

noted in [9, Chap. 4.4] the exact solution to (40) is

X(t) =
X0 exp(µt+ σW (t))

√

1 + 2X2
0

∫ t

0
exp(2µs+ 2σW (s)) ds

, t ≥ 0.(41)

Having an explicit expression for the exact solution, explains why the GLE is often

used for numerical experiments in the literature. For instance, we refer to [21],

where similar experiments have been conducted for split-step one-leg theta methods.
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Figure 1. Strong convergence errors for the approximation of the

stochastic Ginzburg-Landau equation (40)
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Table 1. Error of numerical approximations

SSBE BEM PEM

h error EOC error EOC error EOC

0.01562 0.046478 0.040973 0.045787

0.00781 0.030155 0.62 0.028202 0.54 0.029215 0.65

0.00391 0.020145 0.58 0.019532 0.53 0.019939 0.55

0.00195 0.013982 0.53 0.013637 0.52 0.013882 0.52

0.00098 0.009757 0.52 0.009572 0.51 0.009701 0.52

0.00049 0.006828 0.51 0.006759 0.50 0.006840 0.50

In our experiments the SODE (40) is discretized by the split-step backward

Euler method, the backward Euler-Maruyama scheme and the projected Euler-

Maruyama method, respectively. Table 1 and Figure 1 show the estimated strong

error of convergence for six different equidistant step sizes h = 2k−12, k = 1, . . . , 6.

For simplicity we only estimate the error at the final time T = 1, that is

error = (E(|Xh(T )−X(T )|2))
1
2 ,(42)

where Xh(T ) denotes the numerical approximation of the exact solution X(T ). For

the simulation of the exact solution it is necessary to approximate the deterministic

integral appearing in (41). This is done by a Riemann sum with step size ∆t = 2−12.

Further, the expected value is estimated by a Monte Carlo simulation based on 105

sample paths. Our experiments indicate that the Monte Carlo error then drops well

below the strong error to be estimated. The parameter values are µ = 0.5, σ = 1,

and X0 = 2. Finally, we use Cardano’s method for directly solving the nonlinear

equations for the two implicit schemes SSBE and BEM. Since Assumption 2.1 is

satisfied with growth rate q = 3, the parameter value α = 1
2(q−1) = 1

4 is used for

the projected Euler-Maruyama method. In Figure 1 one clearly observes strong

order γ = 1
2 for all three methods. Further, no numerical method has a significant

advantage over one of the others. Table 1 also contains the estimates of the errors

and the corresponding experimental order of convergence defined by

EOC =
log(error(hi))− log(error(hi−1))

log(hi)− log(hi−1)
, i = 2, . . . , k.

For each method we also computed an average of the experimental order of con-

vergence by determining the best fitting line in a least-squares sense for the loga-

rithmically scaled errors. The slopes of these lines are 0.55, 0.51, and 0.54 for the

SSBE, BEM, and PEM method, respectively.

Our next example is the following nonlinear SODE which incorporates a super-

linearly growing diffusion coefficient function

dX(t) = λX(t)(µ− |X(t)|) dt+ σ|X(t)|
3
2 dW (t),

X(0) = X0,
(43)

where λ, µ, σ, X0 ≥ 0. This equation is used as a stochastic volatility model (SVM)

in mathematical finance [2] and is also considered in [17] for a tamed Euler method.

The mappings f, g : R → R defined by f(x) := λx(µ − |x|) and g(x) := σ|x|
3
2

are continuous for all x ∈ R and satisfy the global monotonicity condition in As-

sumption 2.1 with η ≤ λ+σ2

σ2 and L = λµ. Moreover, the coercivity condition (8) is
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fulfilled for every p ≤ 2λ+σ2

σ2 . We refer to the Appendix in [17] for calculations of

the constants η, p, and L.

For the numerical experiments the parameter values are λ = 1, µ = 1, σ = 0.5,

and the initial value is X0 = 2. Hence, the global monotonicity condition (3) is sat-

isfied with 1 < η < 5. Further, the exact solution fulfills supt∈[0,T ] ‖X(t)‖Lp(Ω;Rd) <

∞ for every p ≤ 9.
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Figure 2. Strong convergence errors for the approximation of the

3/2-volatility model (43).

Table 2. Error of numerical approximations
SSBE BEM PEM

h error EOC error EOC error EOC

0.01562 0.003922 0.003517 0.003727

0.00781 0.002599 0.59 0.002449 0.52 0.002584 0.53

0.00391 0.001767 0.56 0.001724 0.51 0.001732 0.58

0.00195 0.001199 0.56 0.001206 0.52 0.001209 0.52

0.00098 0.000858 0.48 0.000864 0.48 0.000845 0.52

0.00049 0.000600 0.52 0.000612 0.50 0.000601 0.49

Since there is no explicit expression available, we replace the exact solution in

(42) by a numerical approximation with a very fine step size ∆t = 2−16. The

implicit schemes are again implemented by solving the nonlinear equation in each

time step explicitly. This time we take the parameter value α = 1
2 for the PEM

method. As above our estimate of the errors are based on a Monte Carlo simulation

with 105 sample paths.

Figure 2 shows the strong convergence errors of the three methods with six

different step sizes h = 2k∆t, k = 5, . . . , 10. The results are well in line with
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Table 3. Relative frequency of truncated paths in the PEM method

GLE 3/2-SVM

h Rel. frequency Rel. frequency

0.01562 0.033764 0.000048

0.00781 0.002203 0.000004

0.00391 0.000040 0.000000

0.00195 0.000000 0.000000

0.00098 0.000000 0.000000

0.00049 0.000000 0.000000

the predicted strong order γ = 1
2 for all schemes. Again, there is no significant

difference in the behaviour of the three schemes. This can also been seen from

Table 2, which contains the numerical values for the strong errors shown in Figure 2.

The values for the corresponding experimental order of convergence again verify the

theoretical results. As above we also determine an average experimental order of

convergence for the three methods as the slope of the best fitting line in the mean-

square sense. The results for the SSBE, BEM, and PEM method are 0.53, 0.51,

and 0.52, respectively.

The numerical experiment underlying Table 3 is concerned with the projection

in the first step of the PEM method. For the equidistant step sizes h = 2−12+k, k =

1, . . . , 6, we generate 106 independent sample paths with the PEM method for the

stochastic Ginzburg-Landau equation and for the stochastic volatility model with

the same parameter values and initial condition as above. Then, the table shows

the relative frequency to observe trajectories of XPEM
h , which leave the sphere of

radius h−α at least once. More precisely, we counted those sample paths satisfying
{

i = 1, . . . , N : |XPEM
h (ti)| > h−α

}

6= ∅.

As expected, the frequency to observe this event decays rapidly if h becomes small.

Note that if the trajectory never leaves the sphere of radius h−α, then the PEM

method coincides with the standard Euler-Maruyama scheme.
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