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Abstract

It is well known that the Homoclinic Theorem, which conjugates a map near
a transversal homoclinic orbit to a Bernoulli subshift, extends from invertible to
specific noninvertible dynamical systems. In this paper, we provide a unifying ap-
proach, which combines such a result with a fully discrete analog of the conjugacy
for finite but sufficiently long orbit segments. The underlying idea is to solve ap-
propriate discrete boundary value problems in both cases, and to use the theory
of exponential dichotomies for controlling the errors. This leads to a numerical
approach which allows to compute the conjugacy to any prescribed accuracy. The
method is demonstrated for several examples where invertibility of the map fails in
different ways.

Keywords: Noninvertible dynamical systems, homoclinic orbits, symbolic coding, nu-
merical computation
AMS Subject Classification: 65P20, 37B10, 65Q10, 37C29

1 Introduction

Quite a few fundamental theorems on invertible dynamical systems have found suitable
analogs in the theory of noninvertible systems. In this paper we reconsider corresponding
generalizations of the well-known Homoclinic Theorem (see Smale [40] and Šil′nikov [39])
on the symbolic coding of maximal invariant sets near a transversal homoclinic point.
Our main goal is to set up and analyze a numerical approach that allows to compute
all symbolically coded orbits near a homoclinic orbit of a noninvertible system up to a
prescribed tolerance.

∗Supported by CRC 701 ’Spectral Structures and Topological Methods in Mathematics’.
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The motivation for studying noninvertible maps comes from different sources. One
major source are maps in infinite-dimensional Banach spaces which arise as flow maps
or Poincaré maps of partial differential equations and delay differential equations. We
mention the work of Hale and Lin [12] and, in particular, the ensuing work of Steinlein
and Walther [41], [42] which gives a rather complete picture of shadowing and symbolic
coding near homoclinics in the noninvertible case. In the work of Kalkbrenner [22] (see
also the survey in [2]), the closely related notion of exponential dichotomy was generalized
to noninvertible and nonautonomous systems and then applied to characterize symbolic
coding near homoclinics. The proposed notion of a ’regular exponential dichotomy’ agrees
with the earlier definition by Henry [14, Ch. 7], and the proof of symbolic coding employs
Palmer’s method for proving the Homoclinic Theorem for invertible systems [31], [32]. We
also mention modern results on so called generalized Hénon maps from [9], [11] as well
as the work of Sander [35] which generalizes the notions of hyperbolicity and homoclinic
tangles from nonlinear maps to nonlinear relations.

A second source of noninvertibility are reduced models of higher dimensional dynam-
ical systems which allow to study chaotic dynamics in low dimensions. A characteristic
example, which will also be treated in this paper, is a noninvertible two-dimensional model
for ’wild chaos’, derived in [5] from a 5-dimensional invertible system and investigated ex-
tensively in [15], [16].

In the following, we describe in more detail the contents of this paper by putting some
emphasis on our computational approach. In particular, we treat finite orbit segments
approximating the symbolic coding of noninvertible maps, and we provide an alternative
road to proving the Homoclinic Theorem in the biinfinite case.

Since we aim at numerical computations we consider a finite-dimensional smooth map
f : Rd → Rd and its induced dynamical system

xn+1 = f(xn), xn ∈ R
d, n ∈ Z.

Moreover, we assume that we are given a fixed point

ξ = f(ξ) ∈ R
d

and an associated nontrivial homoclinic orbit x̄Z = (x̄n)n∈Z, i.e.

x̄n+1 = f(x̄n), n ∈ Z, lim
n→±∞

x̄n = ξ, x̄n 6= ξ for some n ∈ Z.

Our basic assumption states that the variational equation

un+1 = Df(x̄n)un, n ∈ Z (1)

has an exponential dichotomy on Z according to Definition 18. We emphasize that this
definition does not assume Df(x̄n) to be invertible, but we refrain from using the term
’regular dichotomy’ from [22] for this situation. Also note that an exponential dichotomy
in this sense implies hyperbolicity of the set

H = {ξ} ∪ {x̄n : n ∈ Z} (2)
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as defined in [42, Def. 1.1] (in fact, both properties are equivalent in the finite-dimensional
case).

In the invertible, finite-dimensional case, the condition that (1) has an exponential
dichotomy on Z is equivalent to the homoclinic orbit lying on the intersection of the
stable and unstable manifold to the fixed point and this intersection being transversal,
c.f. [32, Proposition 5.6].

If the intersection is not transversal but tangential, the resulting orbit is called a
homoclinic tangency. Homoclinic tangencies show quite intricate dynamical behavior, c.f.
[6], [10], [29], [35] and references therein.

For any bounded open set O ⊂ Rd we define the set of orbits remaining in O by

Orb(O) = {xZ ∈ (Rd)Z : xn ∈ O, xn+1 = f(xn) for all n ∈ Z}. (3)

This set is closed in OZ when endowed with the product topology, and it is invariant
under the orbit shift induced by f ,

F(xZ) := (f(xn))n∈Z. (4)

It is shown in [42] that there exists a neighborhood O of H, a number N ∈ N and a
homeomorphism h which conjugates F : Orb(O) → Orb(O) to a subshift (ΣZ

A(N), σ):

ΣZ

A(N)
σ //

h

��

ΣZ

A(N)

h

��
Orb(O)

F
// Orb(O)

F ◦ h = h ◦ σ.
(5)

Here, SZ

N := {0, · · · , N−1}Z is the space of symbolic sequences on N symbols endowed
with the product topology, σ denotes the Bernoulli shift and ΣZ

A(N) ⊂ SZ

N is the topological
Markov chain

ΣZ

A(N) = {s ∈ SZ

N : A(N)sj ,sj+1
= 1, j ∈ Z}

defined by the matrix

A(N) =

















1 1 0 · · · 0

0 0 1
. . . 0

...
...

. . .
. . . 0

0 0
. . . 1

1 0 · · · · · · 0

















∈ {0, 1}N,N .

As in [42] it is not difficult to retrieve the classical Homoclinic Theorem for the invertible
case from this result by adding another conjugacy to the diagram in (5) that assigns to
any orbit xZ ∈ Orb(O) a single point such as x0.

In our approach we consider also the finite time case SJ
N = {0, . . . , N − 1}J , where

J = [n−, n+] = {n ∈ Z : n− ≤ n ≤ n+}, −∞ < n− < n+ < ∞. Setting J̃ = [n−, n+ − 1],
we then define ΣJ

A(n) by

ΣJ
A(N) = {s ∈ SJ

N : sn− = sn+ = 0, A(N)sj ,sj+1
= 1, j ∈ J̃}. (6)
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Finite orbits are determined as solutions of boundary value problems

xn+1 = f(xn), n = n−, . . . , n+ − 1, b(xn− , xn+) = 0 (7)

with boundary operators b : Rd × R
d → R

d satisfying a nondegeneracy condition, see
Section 4. With the set of finite orbits defined by

Orb(J,O) := {xJ ∈ OJ : xJ = (xn)n∈J solves (7)},

our finite time analog of the diagram (5) takes the form

ΣJ
A(N)

σJ //

hJ

��

ΣJ−1
A(N)

hJ−1

��
Orb(J,O)

FJ

// Orb(J − 1,O)

(8)

In this diagram we use the shifted interval J−1 = [n−−1, n+−1] and the finite Bernoulli
shift

σJ : ΣJ
A(N) → ΣJ−1

A(N),

aJ 7→ bJ−1, with bn = an+1, for n ∈ J − 1.
(9)

Note that due to the shift of interval from J to J − 1, the endpoint condition in (6) is
automatically satisfied. Furthermore the map FJ in (8) is defined by

FJ : OJ → OJ−1,

xJ 7→ yJ−1, with yn =

{

xn− , for n = n− − 1,

f(xn), for n ∈ J̃ .
(10)

This operator satisfies FJ : Orb(J,O) → Orb(J − 1,O) since it preserves the boundary
condition. With these settings we obtain a complete finite time analog of the Homoclinic
Theorem in Theorem 14.

In the following, we discuss the further results of this paper. In Section 2.1, we consider
systems, for which several homoclinic orbits exist, connecting to the same fixed point.
We indicate how the finite time conjugacy from above and its numerical computation
can be generalized. In Section 2.2 we turn the theoretical approach into a numerical
algorithm. For a given symbolic sequence sJ ∈ ΣJ

A(N), we compute the orbit segment

hJ(sJ) in Orb(J,O) from the solution of an appropriate boundary value problem. Our
approximation theory shows that these boundary value problems are well-conditioned in
the neighborhood of suitable pseudo-orbits despite the fact that the map f is noninvertible.
This will be demonstrated for a series of examples in Section 6.

The theoretical part of our paper is the subject of Sections 3 and 4. The starting
point is the Roughness Theorem for exponential dichotomies in the noninvertible case
(see [22], [14] and Theorem 20 in the Appendix). We indicate an alternative proof by
a direct perturbation argument for the Green’s function in an exponentially weighted
space. The argument follows an idea of Sandstede [36], [37] for flows, which has been
transferred to invertible mappings in the work of Kleinkauf [23], [25]. Then we consider
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pseudo-orbits obtained by piecing together the original homoclinic orbit according to the
coding sequence sZ ∈ ΣZ

A(N). In Theorem 4 we show that the variational equations from
a suitable neighborhood of the pseudo-orbits have an exponential dichotomy with data
independent of the coding. This result has a complete analog for finite orbit segments,
see Theorem 6.

With these preparations we prove solvability of discrete boundary value problems
on both finite and infinite time intervals, see Theorem 7. For the infinite case this result
replaces the Shadowing Lemma for noninvertible maps from [22] (see the monographs [34],
[30] for invertible maps). For the solutions of finite boundary value problems we show
error estimates which decay towards the interior and which are uniform with respect to
the coding sequence (Corollary 9).

As a consequence, in Theorem 10 we prove convergence of solution sets of finite orbits
to those of infinite orbits. Convergence holds with respect to the Hausdorff distance

distH(X, Y ) = max

(

sup
x∈X

inf
y∈Y

dist(x, y), sup
y∈Y

inf
x∈X

dist(x, y)

)

, (11)

where the distance of finite segments is defined by

dist(xJ , yJ) =

n+
∑

n=n−

2−|n||xn − yn|. (12)

Note that this metric converges as n± → ±∞ to the metric

dist(xZ, yZ) =
∑

n∈Z

2−|n||xn − yn|, xZ, yZ ∈ OZ,

which defines the product topology on OZ. The whole approach extends earlier approx-
imation results for homoclinic tangles in the invertible case [7] and for single connecting
orbits in the nonautonomous case [19].

In Section 5 we show how the Homoclinic Theorem for the noninvertible case derives
naturally from these results. A crucial step here is to construct an open neighborhood O
such that the orbit set Orb(O) from (3) agrees with the set of orbits coded by symbolic
sequences, see Theorem 12.

In Section 6 numerical computations are shown for the classical (invertible) Hénon
example, a three-dimensional Hénon map and for a modified Hénon example where the
dynamics collapses into a line and a snap-back repeller occurs (cf. [26]). Then we use our
approach to investigate chaotic features created by homoclinic orbits in the noninvertible
model of ’wild chaos’ from [5], [15] and in a recent model of asset pricing from [8].

2 Numerical computation of the maximal invariant set

We propose an algorithm for the approximation of points from the maximal invariant set

Oc := {x0 : xZ ∈ Orb(O)}. (13)
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Note that Oc typically is a Cantor set on which f -dynamics are semi-conjugate to F -
dynamics on Orb(O), i.e.

Orb(O) F //

r

��

Orb(O)

r

��
Oc f

// Oc

f ◦ r = r ◦ F ,

where r is sujective. Indeed, if f is invertible, then r turns out to be a homeomorphism,
resulting in a conjugacy of f -dynamics on Oc to the shift on ΣZ

A(N).

Further note that stable and unstable manifolds of the fixed point ξ intersect at each
point x ∈ Oc transversally, assuming the hyperbolicity assumptions, introduced in Section
3. Finding intersection points of these two manifolds is rather involved. Instead, we
calculate points in Oc via homoclinic orbits, that we approximate numerically by solving
boundary value problems. Manifolds are plotted only for illustrating the output of this
ansatz.

Before the algorithm is introduced in detail, we extend to a slightly more general
setup.

2.1 Combining several homoclinic orbits

If only one primary homoclinic orbit is considered, one misses several points of intersection
of stable and unstable manifolds, see the left panel in Figure 5 for an illustration. Thus,
we generalize immediately to multi-humped orbits that are constructed from ℓ different
primary homoclinic orbits xi

J , i = 1, . . . , ℓ w.r.t. the same fixed point ξ. It turns out that
there exists for each i ∈ {1, . . . , ℓ} a number Ni and corresponding neighborhoods that
allow the coding of multi-humped orbits with L = 1 +

∑ℓ
i=1Ni symbols. For details, we

refer to Theorems 11 and 14. More precisely, we find a homeomorphism between multi-
humped orbits in these neighborhoods and sequences of L symbols sZ ∈ ΣA(N1,...,Nℓ), where

A(N1, . . . , Nℓ) =































1 1 1 · · · · · · 1
I1

1
I2

1
...

. . .
...

. . .

Iℓ
1































and Ii denotes the identity in RNi−1,Ni−1, i = 1, . . . , ℓ. In this section, we do not introduce
different notions for finite and infinite time intervals. While the case J = Z is presented
here, the finite time case requires suitable boundary conditions, see (6).
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We further simplify notions by coding this Markov chain with ℓ+1 symbols sZ ∈ ΣA(1ℓ)

A(1ℓ) =











1 1 · · · 1
1
...
1











∈ {0, 1}ℓ+1,ℓ+1

and by an extended set

Σ∗
A(1ℓ) = {(sZ, n) : sZ ∈ ΣA(1ℓ), n ∈ {1, . . . , Ns0}}.

The purpose of the second component n is to serve as a pointer for the current position.
This enables us to establish a one to one connection between ΣA(N1,...,Nℓ) and Σ∗

A(1ℓ).

For (sZ, k) ∈ Σ∗
A(1ℓ), we define g : Σ∗

A(1ℓ) → ΣA(N1,...,Nℓ):

g(sZ, k) := (· · · , a(s−1), a(s0), a(s1), . . . ) (14)

where N0 := 1 and

a(si) :=

(

si−1
∑

j=0

Nj , . . . ,−1 +

si
∑

j=0

Nj

)

, i ∈ Z, such that g(sZ, k)0 = a(s0)k.

Denote by σL and σℓ the Bernoulli shift on ΣA(N1,...,Nℓ) and on ΣA(1ℓ), respectively and
define

σ∗
ℓ (sZ, i) =

{

(σℓ(sZ), 1), if i = Ns0 ,
(sZ, i+ 1), otherwise.

A direct computation shows that the diagram

ΣA(N1,...,Nℓ)
σL // ΣA(N1,...,Nℓ)

Σ∗
A(1ℓ) σ∗

ℓ

//

g

OO

Σ∗
A(1ℓ)

g

OO

commutes. Consequently, we obtain a conjugacy between this shift-dynamics and the
F -dynamics on Orb(O), where O is a sufficiently small neighborhood of the ℓ primary
homoclinic orbits.

2.2 The algorithm

We introduce our numerical method for computing an approximation of the maximal
invariant set Oc close to a given point of a homoclinic orbit. Here, we assume that the
map f ∈ C1(Rd × R,Rd) depends on a one-dimensional parameter p and we aim at an
approximation for the fixed parameter value p̄. We abbreviate f(·) for f(·, p̄).

The algorithm works along the following steps.

(Ia) Compute a first homoclinic orbit segment x1
J on a finite interval J = [j−, j+] by

solving the boundary value problem (7) using Newton’s method. For a discussion
of appropriate boundary conditions, we refer to Section 4.1.
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(Ib) Calculate a curve of homoclinic f(·, p)-orbits w.r.t. the parameter p by applying
numerical continuation techniques, see [1, Algorithm 10.2.10]. Detect further ho-
moclinic orbits x2

J , . . . , x
ℓ
J (ℓ ∈ N) lying on this curve at the parameter value p̄.

(II) Choose k± ∈ Z, k− < 0 < k+ and consider all sequences s[k−,k+] ∈ ΣA(1ℓ) satisfying

s0 = 1, #{k− ≤ i ≤ −1 : si ≥ 1} = 1, #{1 ≤ i ≤ k+ : si ≥ 1} = 1. (15)

We refer to the beginning of this Section for corresponding notions and to Figure 1
for an illustration.

(III) Define the pseudo-orbit w.r.t. the code sequence (s[k−,k+], j−+1) ∈ Σ∗
A(1ℓ) by replac-

ing the symbol 0 with the fixed point ξ and the symbol i with the orbit segment xi
J ,

i = 1, . . . , ℓ, respectively.

(IV) Compute a corresponding orbit segment yĴ by applying Newton’s method on Ĵ :=
[m−, m+], m− = 2j−− j++k−, m+ = 2j+− j−+k+ to the boundary value problem

yn+1 = f(yn), n = m−, . . . , m+ − 1,

0 = b(ym−, ym+),

starting at the pseudo-orbit from step (III).

(V) Plot the midpoints y0 of these orbits for all finite code sequences from step (II).

Additionally, we compute approximations of the unstable and stable manifold of the
fixed point ξ. For the latter task, we apply a contour algorithm that is introduced in
[20] and which applies to a wide class of dynamical systems, including invertible and
noninvertible maps.

In Section 6 we demonstrate the performance of the algorithm by applying it to several
two and one three-dimensional systems, showing various dynamical features.

Its applicability is formally justified by the following theorem in anticipation of the
assumptions (A1)-(A4) discussed in Section 3 and of condition (A5) from Section 4.1.

Theorem 1 Assume that the exact primary homoclinic orbits x1
Z
, . . . , xℓ

Z
satisfy the as-

sumptions (A1)-(A4), and the boundary operator b satisfies condition (A5). Then there
exist constants C, βs, βu > 0 such that for all sufficiently large −j−, j+ the following state-
ment holds true: Fix k− < 0 < k+ and let yĴ be the solution of the boundary value problem
from step (IV). Then there exists an x0 ∈ Oc such that

‖y0 − x0‖ ≤ C(eβsm− + e−βum+).

As a consequence, approximation errors, occurring in step (V) of the algorithm, are
exponentially small.

In the forthcoming sections, we provide the theoretical background for proving Theo-
rem 1 and the Homoclinic Theorem. For a concise presentation, we restrict ourselves to
the case of ℓ = 1 primary homoclinic orbit. After developing this framework, Theorem
1 then directly follows by generalizing Theorem 8 and Corollary 9 in a straightforward
manner to the case of different primary orbits.
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00109876005 04321
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x1
J x2

J

ξ

ΣA(4,4):

ΣA(4,4):

ΣA(12):

ΣA(12):

Figure 1: Upper diagram: A sketch of two homoclinic orbit segments x1,2
J , J = [−2, 2]

and of the fixed point ξ together with their coding in ΣA(4,4) and ΣA(12), respectively.
The lower diagram illustrates the construction and coding of multi-humped orbits in case
±k± = 6. The code sequence in the last row – which we formally introduce in Section 6.2
– represents the number of 0-symbols on the left and right side of the center hump. The
colors of these two numbers symbolize the type of the neighboring hump.

3 Uniform dichotomies of variational equations

In this section we show that exponential dichotomies along a homoclinic orbit extend in a
uniform way to arbitrary orbits obtained by concatenating sufficiently long pieces of the
primary orbit. This will enable us in Section 4 to prove a kind of numerical shadowing
result: one finds true orbits in the neighborhood of the concatenated orbits which either
solve an infinite or a finite boundary value problem. Detailed estimates in terms of the
metric (12) are given. As in the introduction our assumptions are the following:

(A1) f ∈ C1(Rd,Rd).

(A2) There exist ξ ∈ Rd and x̄Z ∈ (Rd)Z such that x̄n+1 = f(x̄n) for all n ∈ Z, x̄k 6= ξ for
at least one k ∈ Z and limn→±∞ x̄n = ξ.

(A3) The point ξ is a hyperbolic fixed point of f , i.e. Df(ξ) has no eigenvalues on the
unit circle (but may have the eigenvalue zero).

(A4) The variational equation

un+1 = Df(x̄n)un, n ∈ Z (16)

has an exponential dichotomy on Z with data (K̄, ᾱs,u, P̄
s,u
n ).
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Condition (A4) guarantees hyperbolicity of the set H, introduced in (2) and [42,
Def. 1.1]. It is not difficult to show that Assumptions (A1), (A2) and (A4) imply (A3).
However, (A4) does not follow from (A1), (A2), (A3) since it specifies a global property
of the set H. Let Qs,u be the projector onto the stable resp. unstable subspace of Df(ξ).
Then the autonomous variational equation

un+1 = Df(ξ)un, n ∈ Z (17)

has an exponential dichotomy on Z with associated projectors Qs,u. Without loss of
generality we may assume the same parameters (K̄, ᾱs,u) as in (A4). Moreover, the
Roughness Theorem 20 applied to (16) and (17) on intervals (−∞, n−]∩Z and [n+,∞)∩Z
with −n−, n+ sufficiently large, shows that the projectors satisfy

P̄ s,u
n → Qs,u as n → ±∞.

This fact will be essential for deriving Theorem 4 below.

3.1 The principal part of the homoclinic orbit and a particular pseudo-orbit

For proving our main results, it is important to fix the ’principle part’ of the homoclinic
orbit. For each N ∈ N we choose a position a(N) ∈ Z such that the interval [a(N) +
1, a(N) +N − 1] contains the principle part of the homoclinic orbit x̄Z from (A2). More
formally, we define

b(N) := min

{

b ∈ Z : sup
n/∈[b+1,b+N−1]

‖x̄n − ξ‖ ≤ sup
n/∈[c+1,c+N−1]

‖x̄n − ξ‖ ∀c ∈ Z

}

and

a(N) :=

{

b(N), if x̄n 6= ξ for all n ∈ Z,
b(⌊N

2
⌋), if x̄n = ξ for some n ∈ Z.

The latter case occurs if the fixed point ξ has several pre-images and one of these pre-
images coincides with an orbit point. If the fixed point has no stable eigenvalue, then
this orbit is called a snap-back repeller in the literature, see [26]. An example of this
kind is discussed in Section 6.4. The extra condition in the snap-back case guarantees
convergence of the dichotomy projectors at the left and right boundary, see (28).

Figure 2 illustrates this choice of intervals in both cases.
From condition (A2) we deduce the first assertion of the following lemma.

Lemma 2 Assume (A1)–(A4).

(i) For each ε > 0 there exists an N ∈ N such that ‖x̄a(N)+n − ξ‖ ≤ ε for all n ≤ 0 and
for all n ≥ N .

(ii) For any N1 ∈ N there exists an N2 > N1 such that

[a(N1) + 1, a(N1) +N1 − 1] ⊂ [a(N2) + 1, a(N2) +N2 − 1]. (18)
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a(N1) + 1 a(N1) + N1 − 1

a(N2) + 1 a(N2) + N2 − 1

a(N) + 1

a(N) + ⌊N

2
⌋ − 1

a(N) + N − 1

x̄Z

x̄Z

ξ

Figure 2: Choice of a(N).

Proof: (of (ii)) First note that ε− = supn/∈[a(N1)−1,a(N1)+N1−1] ‖x̄n − ξ‖ > 0 since x̄n is
nonconstant. Moreover, let ε+ = ‖x̄a(N1)+N1−1 − ξ‖. If ε+ = 0, then we are in the snap-
back case and set ε = 1

2
ε−, otherwise, we define ε = 1

2
min{ε−, ε+}. Applying assertion

(i) to this ε yields a number N = N2 > N1 with property (18). �

Let J = [n−, n+], where the cases n− = −∞ and n+ = ∞ are allowed and fix an
N ∈ N. Given a sequence of symbols sJ ∈ ΣJ

A(N), we define the corresponding pseudo-

orbit ξJ(sJ , N) as follows

ξn(sJ , N) :=

{

ξ, if sn = 0,
x̄a(N)+sn , otherwise,

n ∈ J. (19)

In what follows we study variational equations obtained by linearizing at orbits from the
ε-neighborhoods

Bε(ξZ(sZ, N)) := {xZ ∈ (Rd)Z : ‖xZ − ξZ(sZ, N)‖∞ ≤ ε}.

3.2 Uniform dichotomies of multi-humped pseudo-orbits

In the following we will concatenate two orbits each of which have exponential dichotomies,
but for which the projectors at the interface do not coincide. This situation will be repaired
by modifying the system matrix at the interface according to the following lemma.

Lemma 3 Consider B ∈ R
d,d and three projectors P−1, P0, Q0 ∈ R

d,d such that

BP−1 = P0B. (20)

Then the perturbed matrix

B0 = (I +∆)B, ∆ = 2Q0P0 − P0 −Q0

satisfies

B0P−1 = Q0B0 (21)

and the estimate

‖∆‖ ≤ (‖Q0‖+ ‖P0‖)‖P0 −Q0‖. (22)
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If ‖∆‖ < 1 and B : R(I − P−1) → R(I − P0) is invertible, then so is
B0 : R(I − P−1) → R(I −Q0) and

‖(B0|R(I−P−1))
−1‖ ≤

1

1− ‖∆‖
‖(B|R(I−P−1))

−1‖. (23)

Proof: A direct computation shows

I +∆ = Q0P0 + (I −Q0)(I − P0) = I +Q0(P0 −Q0) + (Q0 − P0)P0. (24)

From the first equality and (20) we obtain

B0P−1 = (I +∆)P0B = Q0P0B = Q0(I +∆)B = Q0B0,

while the second equality leads to the estimate (22). If ‖∆‖ < 1 it is clear that I + ∆
is invertible with ‖(I + ∆)−1‖ ≤ 1

1−‖∆‖
. Moreover, equation (24) shows that I + ∆

maps R(I − P0) into R(I − Q0) and R(P0) into R(Q0) so that both projectors must
have the same rank and I + ∆ is a bijection between their ranges. We conclude that
B0 = (I +∆)B : R(I −P−1) → R(I −Q0) is invertible and satisfies the estimate (23). �

Our main result on persistence of exponential dichotomies is the following theorem.

Theorem 4 Let conditions (A1)–(A4) be satisfied and let 0 < αs,u < ᾱs,u.

(i) There exists an NED ∈ N such that for all N ≥ NED and for all sZ ∈ ΣZ

A(N) the
variational equation

un+1 = Df(ξn(sZ, N))un, n ∈ Z (25)

has an exponential dichotomy with constants (16K̄3, αs,u).

(ii) Fix ε̄ > 0. Then there exists an N̄ ≥ NED such that for all N ≥ N̄ , the dichotomy
projectors P s,u

n , n ∈ Z of (25) satisfy the inequalities for n ∈ Z

‖P s,u
n −Qs,u‖ ≤ ε̄, if sn = 0,

‖P s,u
n − P̄ s,u

a(N)+k‖ ≤ ε̄, if sn = k ∈ {1, . . . , N − 1}.

(iii) Let 0 < βs,u < αs,u. Then, there exists an εED > 0 such that for all N ≥ NED,
for all sZ ∈ ΣZ

A(N) and for all xZ, dZ ∈ (Rd)Z with xZ, xZ + dZ ∈ BεED
(ξZ(sZ, N)), it

follows that the difference equation

un+1 =

∫ 1

0

Df(xn + τdn)dτ · un, n ∈ Z (26)

has an exponential dichotomy with constants (32K̄3, βs,u) independent of xZ, dZ and
sZ.

12



Remark 5 In case dn = 0 for all n ∈ Z, Theorem 4 (iii) proves a uniform exponential
dichotomy of the variational equation

un+1 = Df(xn)un, n ∈ Z

for all pseudo-orbits xZ ∈ BεED
(ξZ(sZ, N)).

A related result for invertible maps is proved by Palmer in [33, Theorem 2.1]. An
exponential dichotomy on Z holds, if the difference equation has uniform dichotomies on
all finite intervals [b, b+M ] with b from a suitable, relatively dense set of Z.

Proof: The proof of (i) is based on the following idea: We begin with exponential
dichotomies on the subintervals marked in red and black in Figure 3. Then, we invoke the
repair mechanism from Lemma 3 with matrices ∆± in order to combine these dichotomies
to a dichotomy on Z. Finally, an application of the Roughness Theorem 20 proves the
desired dichotomy of the original equation.

∆−∆−∆− ∆+∆+∆+

Figure 3: Illustration of the repair mechanism.

Step 1: Choice of constants. Fix 0 < αs,u < α̂s,u < ᾱs,u and choose N0 ∈ N such that

4K̄2e−(ᾱs,u−α̂s,u)N0 < 1. (27)

Define for N ∈ N the matrices

∆−(N) := 2P̄ s
a(N)+1Q

s −Qs − P̄ s
a(N)+1, ∆+(N) := 2QsP̄ s

a(N)+N − P̄ s
a(N)+N −Qs,

where Qs,u are the dichotomy projectors of (17). Then, it follows from Lemma 3, equation
(22) that

‖∆−(N)‖ ≤ 2K̄‖P̄ s
a(N)+1 −Qs‖, ‖∆+(N)‖ ≤ 2K̄‖P̄ s

a(N)+N −Qs‖

and these quantities converge to 0 as N → ∞. Choose N1 with

max{‖∆−(N)‖, ‖∆+(N)‖} ≤ 1
2
for all N ≥ N1 (28)

and N2 such that

max{‖∆−(N)Df(ξ)‖, ‖∆+(N)Df(x̄a(N)+N−1)‖} ≤ γ(8K̄3, α̂s,u, αs,u) (29)

holds for all N ≥ N2. Here, γ is the function from the Roughness Theorem 20. Finally,
we define NED := max{N0, N1, N2}.
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Step 2: Definition of the repaired system. Let N ≥ NED and sZ ∈ ΣZ

A(N). We define

for n ∈ Z the matrices An := Df(ξn(sZ, N)) and

Bn :=







(I +∆−(N))Df(ξ), if sn+1 = 1,
(I +∆+(N))Df(x̄a(N)+N−1), if sn = N − 1,

Df(ξn(sZ, N)), otherwise.

Using (29), we conclude

‖An − Bn‖ =







‖∆−(N)Df(ξ)‖, if sn+1 = 1,
‖∆+(N)Df(x̄a(N)+N−1)‖, if sn = N − 1,

0, otherwise

≤ γ(8K̄3, α̂s,u, αs,u).

The Roughness Theorem 20 yields the result (i), i.e. an exponential dichotomy with
constants (16K̄3, αs,u) of the original system (25), if the repaired system

un+1 = Bnun, n ∈ Z (30)

has an exponential dichotomy with constants (8K̄3, α̂s,u).
Step 3: System (30) has an exponential dichotomy on Z with constants (8K̄3, α̂s,u).

We introduce for n ∈ Z the projectors

P̂ s,u
n :=

{

Qs,u, if sn = 0,
P̄ s,u
a(N)+k, if sn = k ∈ {1, . . . , N − 1}.

(31)

One immediately sees from equation (21) in Lemma 3 that these projectors satisfy the
invariance condition (i) in Definition 18 w.r.t. the difference equation (30).

By the assumptions, the system (30) has exponential dichotomies on every subinterval
(red or black in Figure 3) with constants (K̄, ᾱs,u). Our construction shows that every
subinterval can be enlarged by its right neighbor, where the dichotomy constant grows at
most by ‖I + ∆±(N)‖ ≤ 2 due to (28). Therefore, we have exponential dichotomies on
the extended subintervals with projectors from (31) and constants (2K̄, ᾱs,u).

Next we introduce the index set

Z1 = {k ∈ Z : sk = 1},

and for each k ∈ Z1 its successor and its predecessor by

ν(k) = inf{ℓ ∈ Z1 : ℓ > k}, p(k) = sup{ℓ ∈ Z1 : ℓ < k},

where ν(k) = ∞ resp. p(k) = −∞ if the corresponding sets are empty.
Denote by Φ the solution operator of (30). We prove the dichotomy estimate in

forward time. For arbitrary n ≥ m let

k− := min{[m,n] ∩ Z1}, k+ :=

{

n, if sn = 0,
max{[m,n] ∩ Z1}, otherwise.

14



It follows from (27) that

‖Φ(n,m)P̂ s
m‖ = ‖Φ(n, k+)P̂

s
k+Φ(k+, k−)P̂

s
k−Φ(k−, m)P̂ s

m‖

≤ ‖Φ(n, k+)P̂
s
k+
‖‖Φ(k−, m)P̂ s

m‖
∏

k∈Z1∩[k−,p(k+)]

‖Φ(ν(k), k)P̂ s
k‖

≤ 2K̄e−ᾱs(n−k+) · 4K̄2e−ᾱs(k−−m)
∏

k∈Z1∩[k−,p(k+)]

4K̄2e−ᾱs(ν(k)−k)

≤ 8K̄3e−ᾱs(n−k++k−−m)

·
∏

k∈Z1∩[k−,p(k+)]

[

4K̄2e−(ᾱs−α̂s)(ν(k)−k)
]

· e−α̂s(ν(k)−k)

≤ 8K̄3e−ᾱs(n−k++k−−m)
∏

k∈Z1∩[k−,p(k+)]

e−α̂s(ν(k)−k)

≤ 8K̄3e−α̂s(n−m).

In a similar fashion one gets for n ≥ m

‖Φ̄(m,n)P̂ u
n ‖ ≤ 8K̄3e−α̂u(n−m).

Thus, (30) has an exponential dichotomy on Z with data (8K̄3, α̂s,u, P̂
s,u
n ) and the proof

of (i) is complete.

For proving (ii), choose an arbitrary ε̄ > 0 and let µ = µ(8K̄3, α̂s,u, αs,u) be the
function from the Roughness Theorem 20. Then, one finds an N̄ ≥ NED, such that

max{‖∆−(N)Df(ξ)‖, ‖∆+(N)Df(x̄a(N)+N−1)‖} ≤
ε̄

16K̄3µ
for all N ≥ N̄.

The Roughness Theorem 20 proves an exponential dichotomy for (25) with data (16K̄3,
αs,u, P

s,u
n ). The estimate (60) reads

‖P s,u
n − P̂ s,u

n ‖ ≤ 16K̄3µmax{‖∆−(N)Df(ξ)‖, ‖∆+(N)Df(x̄a(N)+N−1)‖}

≤ 16K̄3µ
ε̄

16K̄3µ
= ε̄.

Using the definition (31), our estimates follow.

For proving (iii), we recall the compact hyperbolic set H from (2) and choose Ω
compact and sufficiently large such that dist(x,H) ≤ 1 implies x ∈ Ω. Further, introduce
the modulus of continuity

ω(Df,Ω, δ) = sup{‖Df(x)−Df(y)‖ : x, y ∈ Ω, ‖x− y‖ ≤ δ}. (32)

Fix N ≥ NED and 0 < βs,u < αs,u. Choose εED such that

∥

∥

∫ 1

0

Df(xn + τdn)dτ −Df(ξn(sZ, N))
∥

∥ ≤ ω(Df,Ω, εED) ≤ γ(16K̄3, αs,u, βs,u)
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for all sZ ∈ ΣZ

A(N) and for all xZ, xZ+dZ ∈ BεED
(ξZ(sZ, N)). Then, the Roughness Theorem

20 applies and proves an exponential dichotomy of (26) with constants (32K̄3, βs,u). �

In the next section we need a result analogous to Theorem 4 for finite, but suffi-
ciently large intervals J ⊂ Z. The proof uses the same techniques and shows that the
resulting data NED, εED and N̄ = N̄(ε̄) as well as the dichotomy constants can be taken
independently of J . For completeness, we state the theorem.

Theorem 6 Let conditions (A1)–(A4) be satisfied and let 0 < αs,u < ᾱs,u. Then, there
exists an ℓ0 > 0 such that the assertions (i)-(iii) of Theorem 4 hold for all intervals
J = [n−, n+] with n+ − n− ≥ ℓ0.

4 Multi-humped orbits on finite and infinite intervals

In this section, we prove existence of a multi-humped homoclinic orbit w.r.t. each finite or
infinite coding sequence. In all considerations of the following sections, we fix parameters
0 < αs,u < ᾱs,u and 0 < βs,u < αs,u.

4.1 Solutions of boundary value problems

Let J = [n−, n+], J̃ = [n−, n+ − 1] be either a finite interval or let J = J̃ = Z. We define
the operator

ΓJ(xJ ) =

(

xn+1 − f(xn), n ∈ J̃ ,
b(xn− , xn+), if J is finite

)

.

We impose the following condition on the boundary operator.

(A5) The operator b satisfies b ∈ C1(R2d,Rd) and b(ξ, ξ) = 0. Furthermore, the linear
map

B :=
(

D1b(ξ, ξ)|R(Qs) D2b(ξ, ξ)|R(Qu)

)

: R(Qs)⊕R(Qu) → R
d

is invertible, where Qs,u are the dichotomy projectors from (17).

Examples of boundary operators, satisfying (A5) are

• periodic boundary conditions bper(x, y) := x− y,

• projection boundary conditions bproj(x, y) :=

(

Y T
s (x− ξ)

Y T
u (y − ξ)

)

, where Ys,u are bases of

(R(Qu,s))⊥, respectively.

Now, we have all tools at hand to prove our main existence theorem for finite and
infinite homoclinic orbits.

Theorem 7 Assume (A1)–(A5). Then there exists a constant εsol and for any 0 < ε ≤
εsol a number Nε, such that for all N ≥ Nε the following property holds true for both
J = Z and J finite with |J | ≥ N + 1:

For any sJ ∈ ΣJ
A(N), the operator ΓJ has a unique zero xJ ∈ Bε(ξJ(sJ , N)), where the

pseudo-orbit ξJ(sJ , N) is defined in (19). Furthermore, Bε(ξJ(s
1
J , N))∩Bε(ξJ(s

2
J , N)) = ∅

for any s1J 6= s2J ∈ ΣJ
A(N).
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Proof: Step 1: Choice of constants. Theorems 4, 6 give constants εED and NED such
that the dichotomy rates of the variational equation w.r.t. the pseudo-orbit ξJ(sJ , N),
N ≥ NED do not depend on the specific sequence sJ . As a consequence, we get uniform
estimates for the corresponding Green’s function, defined in (58) with K = 16K̄3, n ∈ J :

∥

∥

∑

m∈J

G(n,m)
∥

∥ ≤
n
∑

m=−∞

Ke−αs(n−m) +

∞
∑

m=n+1

Ke−αu(m−n)

= K

(

1

1− e−αs
+

e−αu

1− e−αu

)

=: CG.

In the following let CB−1 = Cb = 1 if J = Z, and define CB−1 := max{‖B−1‖, 1} with
B from (A5), Cb := max{‖D1b(ξ, ξ)‖, ‖D2b(ξ, ξ)‖, 1} if J is finite.

Applying assertion (ii) of Theorem 6 with ε̄ = 1
2
, we find an N0 ≥ NED, such that the

system (25) has an exponential dichotomy on the interval J = [n−, n+] for all N ≥ N0

and sJ ∈ ΣJ
A(N). The corresponding projectors P s,u

n depend on sJ , but satisfy uniform

estimates. Note that sJ ∈ ΣJ
A(N) and hence, sn− = sn+ = 0 and ‖Qs − P s

n−
‖ ≤ 1

2
and

‖Qu − P u
n+
‖ ≤ 1

2
due to Theorem 6 (ii).

We define

T s
n−

:= I +Qs − P s
n−

: R(P s
n−
) → R(Qs),

T u
n+

:= I +Qu − P u
n+

: R(P u
n+
) → R(Qu)

and observe that these matrices are invertible with uniformly bounded inverse
‖(T s

n−
)−1‖ ≤ 2, ‖(T u

n+
)−1‖ ≤ 2. Let BJ =

(

An− An+

)

with

An− = D1b(ξ, ξ)(T
s
n−
)−1
|R(Qs) +D2b(ξ, ξ)Φ(n+, n−)(T

s
n−
)−1
|R(Qs),

An+ = D2b(ξ, ξ)(T
u
n+
)−1
|R(Qu) +D1b(ξ, ξ)Φ̄(n−, n+)(T

u
n+
)−1
|R(Qu).

The second terms decay exponentially as n± → ±∞, due to the uniform dichotomy
rates, while the first terms converge to D1b(ξ, ξ)|R(Qs) and D2b(ξ, ξ)|R(Qu) respectively,
as n± → ±∞. Thus, there exists N1 ≥ N0, such that for all N ≥ N1 the estimate
‖BJ − B‖ ≤ 1

2C
B−1

holds.

Let η = (17KCB−1CbCG)
−1. Using the modulus of continuity from (32), there exists

an ε̃ such that

ω(Df,Ω, ε̃) ≤ η
2
,

‖Db(y, z)−Db(ξ, ξ)‖ ≤ η
2

for all y, z ∈ Bε̃(ξ).
(33)

Choose ε̂ > 0 such that

max
n∈[a(NED)+1,a(NED)+NED−1]

min
m∈Z,m6=n

‖x̄n − x̄m‖ > 2ε̂. (34)

Fix εsol = min{εED, ε̃, ε̂} and let ε ≤ εsol.
Using Lemma 2 (i), we find an Nε ≥ N1 such that we get for all N ≥ Nε

‖x̄a(N)+n − ξ‖ ≤ η
2
ε for all n ≤ 1 and n ≥ N. (35)
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Fix N ≥ Nε, let J be an interval, |J | ≥ N + 1 and choose an arbitrary sequence of
symbols sJ ∈ ΣJ

A(N). By Theorems 4, 6 the variational equation along the corresponding

pseudo-orbit ξJ(sJ , N) has an exponential dichotomy with data (K,αs,u, P
s,u
n ).

Step 2: DΓJ(ξJ(sJ , N)) is invertible with inverse uniformly bounded by η−1. For
yJ̃ ∈ SJ̃ and r ∈ Rd solve the boundary value problem

DΓJ(ξJ(sJ , N))uJ =

(

yJ̃
r

)

⇔

{

un+1 −Df(ξn(sJ , N))un = yn, n ∈ J̃ ,
D1b(ξ, ξ)un− +D2b(ξ, ξ)un+ = r,

(36)

where the second row vanishes if J = Z. Here, SJ denotes the Banach space of bounded
sequences on J , cf. Appendix A.1. The general solution of the linear equation is given by

un = Φ(n, n−)v− + Φ̄(n, n+)v+ +
∑

m∈J̃

G(n,m+ 1)ym, v− ∈ R(P s
n−
), v+ ∈ R(P u

n+
). (37)

In case J = Z, the first two terms are equal to 0 and the third term defines the unique
bounded solution on Z. In the finite case, we plug (37) into the boundary condition in
(36) and guarantee in this way uniqueness of the solution. Then, we transform the system
into n±-independent spaces by introducing the variables v̄− = T s

n−
v− and v̄+ = T u

n+
v+. In

the new coordinates, the resulting system reads

BJ

(

v̄−
v̄+

)

= R,

where

R = r −D1b(ξ, ξ)
∑

m∈J̃

G(n−, m+ 1)ym −D2b(ξ, ξ)
∑

m∈J̃

G(n+, m+ 1)ym,

‖R‖ ≤ ‖r‖+ 2CbCG‖yJ̃‖∞.

Since ‖BJ − B‖ ≤ 1
2C

B−1
, the Banach Lemma applies and guarantees that BJ is

invertible and ‖B−1
J ‖ ≤ 2CB−1 . Furthermore the following estimates hold true:

‖v±‖ ≤ 2‖v̄±‖ ≤ 4CB−1‖r‖+ 8CB−1CbCG‖yJ̃‖∞.

This implies that for all n ∈ J ,

‖un‖ ≤ 8KCB−1‖r‖+ 16KCB−1CbCG‖yJ̃‖∞ + CG‖yJ̃‖∞

≤ 17KCB−1CbCG(‖r‖+ ‖yJ̃‖∞) = η−1(‖yJ̃‖∞ + ‖r‖)

and consequently
‖DΓJ(ξJ(sJ , N))−1‖ ≤ η−1.

Step 3: Existence of a unique solution in Bε(ξJ(sJ , N)). We apply the Lipschitz Inverse
Mapping Theorem 21 with the setting

Y = (SJ , ‖ · ‖∞), Z = (SJ̃ × R
d,max{‖ · ‖∞, ‖ · ‖}), F = ΓJ , y0 = ξJ(sJ , N)
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and in case J = Z we define Z = (SZ, ‖ · ‖∞). Finally, we choose δ = ε and κ = η
2
.

Assumption (63) is satisfied, since by (33) we find that

‖DΓJ(zJ)−DΓJ(ξJ(sJ , N))‖ ≤ max{sup
n∈J̃

‖Df(zn)−Df(ξn(sJ , N))‖,

‖Db(zn−, zn+)−Db(ξ, ξ)‖} ≤ η
2

holds for all zJ ∈ Bε(ξJ(sJ , N)).
Assumption (64) follows from (35):

‖ΓJ(ξJ(sJ , N))‖ = ‖(ξn+1(sJ , N)− f(ξn(sJ , N)))n∈J̃‖∞

= max
{

‖x̄a(N)+1 − ξ‖, ‖ξ − x̄a(N)+N‖
}

≤ η
2
ε.

Thus, Theorem 21 proves that ΓJ has a unique zero xJ ∈ Bε(ξJ(sJ , N)).
Step 4: Bε(ξJ(s

1
J , N)) ∩ Bε(ξJ(s

2
J , N)) = ∅ for any s1J 6= s2J ∈ ΣJ

A(N). From (34), we

conclude the existence of an ℓ ∈ [1, NED − 1] such that

Bε(ξn(s
1
J , N)) ∩ Bε(ξn(s

2
J , N)) = ∅ for all n satisfying s1n = ℓ, s2n 6= ℓ. (38)

Let s1J 6= s2J ∈ ΣJ
A(N). Then, there exists anm ∈ J such that 0 = s1m 6= s2m = k ∈ [1, N−1].

It follows that s2m+ℓ−k = σℓ−k(s2m) = σℓ−k(k) = k + ℓ − k = ℓ. On the other hand,
s1m+ℓ−k 6= ℓ since s1m+ℓ−k = ℓ implies s1m = σk−ℓ(s1m+ℓ−k) = σk−ℓ(ℓ) = k, a contradiction.
Using (38), the claim follows. �

4.2 Exponential decay of errors

Precise error estimates are based on the fact that all orbits in Bε(ξJ(sJ , N)) converge in
the interior of J exponentially fast towards each other with a uniform rate.

Theorem 8 Assume (A1)–(A4), then the following statement holds for all 0 < ε ≤ εED,
N ≥ NED, |J | ≥ N + 1.

Any two finite orbit segments z1J , z
2
J ∈ Bε(ξJ(sJ , N)) satisfy the estimate

‖z1n − z2n‖ ≤ Lε
(

e−βs(n−n−) + e−βu(n+−n)
)

, n ∈ J, L := 64K̄3 (39)

with constants εED, NED and βs,u from Theorem 6 (iii).

Proof: For z1J , z
2
J ∈ Bε(ξJ(sJ , N)), define dJ = z1J − z2J . Then, dJ solves the difference

equation

dn+1 = z1n+1 − z2n+1 = f(z1n)− f(z2n) =

∫ 1

0

Df(z2n + τdn)dτ · dn

= Andn, n ∈ J̃ .

Note that z2n + τdn ∈ Bε(ξn(sJ , N)) for all n ∈ J and all τ ∈ [0, 1]. Thus, Theorem 6 (iii)
applies and yields an exponential dichotomy of the difference equation

un+1 = Anun, n ∈ J̃ (40)
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with uniform constants L
2
= 32K̄3, βs,u and projectors Qs,u

n . Denote by Φ the solution
operator of (40). Since dJ is a solution of (40) we conclude

dn = Φ(n, n−)Q
s
n−
dn− + Φ̄(n, n+)Q

u
n+
dn+ , n ∈ J

and

‖dn‖ ≤ L
2
e−βs(n−n−)‖dn−‖+

L
2
e−βu(n+−n)‖dn+‖

≤ Lε
(

e−βs(n−n−) + e−βu(n+−n)
)

.

�

For a given sequence sJ ∈ ΣJ
A(N), the choice of a boundary condition in (A5) leads to

a unique zero z1J of ΓJ in Bε(ξJ(sJ , N)), cf. Theorem 7. Changing the boundary condition
results in an alternative orbit segment z2J ∈ Bε(ξJ(sJ , N)). The error estimate (39) shows
that the influence of the boundary condition is only over a short range. For a similar
observation in nonautonomous systems, we refer to [19, Theorem 5].

Combining Theorem 7 and Theorem 8 we immediately obtain the following approxi-
mation result for multi-humped homoclinic orbits.

Corollary 9 Assume (A1)–(A5). Let 0 < ε ≤ εsol and Nε be given as in Theorem 7.
Consider a finite interval J = [n−, n+] with |J | ≥ N + 1 and N ≥ Nε. For any sequence
of symbols sZ ∈ ΣZ

A(N) such that sn− = sn+ = 0 denote by ξZ(sZ, N) the pseudo-orbit,

defined in (19).
Then there exist unique orbits xZ ∈ Bε(ξZ(sZ, N)) and yJ ∈ Bε(ξJ(sJ , N)), satisfying

ΓZ(xZ) = 0, ΓJ(yJ) = 0,

respectively. Furthermore, approximation errors can be estimated as

‖xn − yn‖ ≤ Lε
(

e−βs(n−n−) + e−βu(n+−n)
)

, n ∈ J.

4.3 Hausdorff distance between finite and infinite orbits

Choose 0 < ε ≤ εsol, N ≥ Nε as in Theorem 7. We define the set of all infinite and finite
multi-humped orbits for sufficiently large finite intervals J , |J | ≥ N + 1:

XJ(N, ε) = {xJ ∈ ΩJ : ∃sJ ∈ ΣJ
A(N) : xJ ∈ Bε(ξJ(sJ , N)),ΓJ(xJ ) = 0},

X (N, ε) = {xZ ∈ ΩZ : ∃sZ ∈ ΣZ

A(N) : xZ ∈ Bε(ξZ(sZ, N)),ΓZ(xZ) = 0}. (41)

Theorem 10 Assume (A1)–(A5). Fix 0 < ε ≤ εsol, N ≥ Nε as in Theorem 7. For
any δ > 0 there exists an n̄ > 0 such that for all J = [n−, n+] with −n−, n+ ≥ n̄ and
n+ − n− ≥ 3N + 1 the following assertion holds

distH(X (N, ε)|J − XJ(N, ε)) ≤ δ.

Here, X (N, ε)|J is the set of sequences from X (N, ε), restricted to the finite interval J
and distH is the Hausdorff distance (11) with the dist-function defined in (12).
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Proof: Let Ω be the compact neighborhood of the homoclinic orbit from Theorem 4 and
let C = diam(Ω). Further, denote by (L

2
= 32K̄3, βs,u) the uniform dichotomy data, which

Theorems 4, 6 (iii) provides for the variational equations along any orbit xZ ∈ X (N, ε).
For fixed δ > 0 we choose n̄ such that

max
{

C
∑

n∈J\Ĵ

2−|n| + Lε
∑

n∈Ĵ

2−|n|
(

e−βs(n−n−−N) + e−βu(n+−N−n)
)

,

Lε
∑

n∈J

2−|n|
(

e−βs(n−n−) + e−βu(n+−n)
)

}

≤ δ

for J = [n−, n+], Ĵ = [n− + N, n+ − N ], −n−, n+ ≥ n̄, n+ − n− ≥ 3N + 1. Note the
different directions of exponential decay in the second and third sum.

Step 1: For any xJ ∈ X (N, ε)|J there exists a yJ ∈ XJ(N, ε) such that dist(xJ , yJ) ≤
δ, where the distance between two segments is defined in (12). For xZ ∈ X (N, ε) let
sZ ∈ ΣZ

A(N) be the corresponding sequence of symbols. Since its restriction to the finite

interval J does not necessarily lie in XJ(N, ε), we introduce an adapted cutoff process.
Let i− = max{n ∈ [n−, n− + N ] : sn = 0}, i+ = min{n ∈ [n+ − N, n+] : sn = 0} and
define for n ∈ J

ŝn =

{

sn, for n ∈ [i−, i+],
0, otherwise.

For the sequence ŝJ , the existence of an orbit yJ ∈ XJ(N, ε) follows from Theorem 7.
Estimates for the difference of these orbits are due to Theorem 8:

‖xn − yn‖ ≤ Lε
(

e−βs(n−n−−N) + e−βu(n+−N−n)
)

, n ∈ Ĵ ,

‖xn − yn‖ ≤ C, n ∈ J \ Ĵ .

Combining these estimates we obtain

dist(xJ , yJ) =
∑

n∈J

2−|n|‖xn − yn‖

≤ C
∑

n∈J\Ĵ

2−|n| + Lε
∑

n∈Ĵ

2−|n|
(

e−βs(n−n−−N) + e−βu(n+−N−n)
)

≤ δ.

Step 2: For any xJ ∈ XJ(N, ε) there exists a yJ ∈ X (N, ε)|J such that dist(xJ , yJ) ≤ δ.
Let xJ ∈ XJ(N, ε) and let sJ ∈ ΣJ

A(N) be the corresponding symbolic sequence. Define for
n ∈ Z

s̃n =

{

sn, for n ∈ J,
0, otherwise.

Since sn− = sn+ = 0 this setting leads to s̃ ∈ ΣZ

A(N). By Theorem 7 we obtain an orbit

yZ ∈ X (N, ε) which belongs to the sequence s̃Z, and Theorem 8 gives the estimate

‖xn − yn‖ ≤ Lε
(

e−βs(n−n−) + e−βu(n+−n)
)

, n ∈ J.

Thus, we get

dist(xJ , yJ) ≤ Lε
∑

n∈J

2−|n|
(

e−βs(n−n−) + e−βu(n+−n)
)

≤ δ.

�
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5 The Homoclinic Theorem for finite and infinite orbits in non-
invertible systems

In this section we show how the Homoclinic Theorem for noninvertible maps ([42], [22])
can be derived in a straightforward manner from the results of Section 4. In addition we
prove an analogous theorem for finite orbits segments of sufficient length. The idea is to
first prove the conjugacy of a subshift with the map F (see (4)), induced by f on the
solution set X (N, ε) from (41). Then one shows that the solution set coincides with the
orbit set Orb(O) from (3) for a properly chosen neighborhood O. This approach will then
be transferred to finite orbit segments J for a suitably defined operator FJ , see (10).

5.1 Conjugacy between shift-dynamics and the dynamics on X (N, ε)

Instead of directly considering the maximal invariant set Orb(O), it is advantageous to
start with the set X (N, ε), defined in (41) with ε ≤ εsol and N ≥ Nε. Exploiting the
results from the previous section, we prove the existence of a homeomorphism h, which
conjugates the subshift σ on ΣZ

A(N) to the orbit shift F on X (N, ε), cf. (4):

ΣZ

A(N)
σ //

h

��

ΣZ

A(N)

h

��
X (N, ε)

F
// X (N, ε)

(42)

Theorem 11 Assume (A1)–(A4). Let 0 < ε ≤ εsol, N ≥ Nε as in Theorem 7. Then
there exists a homeomorphism h, such that the diagram (42) commutes, i.e. F ◦h = h◦σ.

Proof: Fix 0 < ε ≤ εsol and N ≥ Nε.

Step 1: Definition of h : ΣZ

A(N) → X (N, ε). It follows from Theorem 7 that for any

sZ ∈ ΣZ

A(N), there exists a unique xZ(sZ) ∈ Bε(ξZ(sZ, N)) such that ΓZ(xZ(sZ)) = 0. We
define

h(sZ) := xZ(sZ), sZ ∈ ΣZ

A(N).

Step 2: h is invertible. By definition, for each xZ ∈ X (N, ε) there exists an sZ ∈
ΣZ

A(N) such that h(sZ) = xZ. Furthermore, Theorem 7 guarantees uniqueness of sZ, since

Bε(ξZ(sZ, N)) ∩Bε(ξZ(s̃Z, N)) = ∅ for any sZ 6= s̃Z ∈ ΣZ

A(N).

Step 3: h and h−1 are continuous. Let C = diam(Ω) and L
2
= 32K̄3, βs,u be the

uniform dichotomy constant for the variational equation along each xZ ∈ X (N, ε), cf.
Theorem 4 (iii).

For any fixed δ1 > 0, careful estimates show there exist integers n− < 0 < n+ such
that the following estimates hold for J = [n−, n+],

C
∑

n∈Z\J

2−|n| + Lε
∑

n∈J

2−|n|
(

e−βs(n−n−) + e−βu(n+−n)
)

≤ δ1.
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Choose δ2 < 2−max{−n−,n+}. For all s1,2
Z

∈ ΣZ

A(N) satisfying

d(s1Z, s
2
Z) =

∑

n∈Z

2−|n||s1n − s2n| ≤ δ2

we conclude s1n = s2n for all n ∈ J . Applying Theorem 8 on the interval J with the
boundary operator bproj gives the estimate

‖h(s1
Z
)n − h(s2

Z
)n‖ ≤ Lε

(

e−βs(n−n−) + e−βu(n+−n)
)

for n ∈ J.

Inserting this into the dist-function and applying a global estimate outside the finite
interval J , we obtain

dist(h(s1
Z
), h(s2

Z
)) ≤ C

∑

n∈Z\J

2−|n| + Lε
∑

n∈J

2−|n|
(

e−βs(n−n−) + e−βu(n+−n)
)

≤ δ1.

This proves continuity of h, and then continuity of h−1 follows from the compactness of
ΣZ

A(N) and the Hausdorff property of X (N, ε).

Step 4: Proof of conjugacy. Let sZ ∈ ΣZ

A(N). Then, xZ = h(sZ) ∈ Bε(ξZ(sZ, N)).

Define yZ = F(xZ), i.e. yn = f(xn) = xn+1 for n ∈ Z and as a consequence,
yZ ∈ Bε(ξZ(σ(sZ), N)). The uniqueness property from Theorem 7 yields the asserted
conjugacy h(σ(sZ)) = yZ = F(xZ) = F(h(sZ)). �

5.2 Conjugacy between shift-dynamics and the dynamics on Orb(O)

For sufficiently small ε and sufficiently large N , we construct an open set O, such that
Orb(O) coincides with X (N, ε). Using this result and Theorem 11, the proof of the
conjugacy, described in diagram (5), is complete.

Theorem 12 Assume (A1)–(A4). Then there exist constants ε > 0, N > 0 and an
open set O, which is a neighborhood of the homoclinic orbit, such that Orb(O) = X (N, ε).

Proof: Step 1: Choice of constants. Let ε̄ = εsol be defined as in Theorem 7. Choose
N̄ + 1 ≥ Nεsol such that

Bε̄/2(x̄a(N̄+1)+i) ⊂ Bε̄(ξ) for all i ≤ 0, i ≥ N̄ + 1,

cf. Lemma 2 (i). We define

p(N̄) :=

{

N̄ , if x̄a(N̄+1)+N̄ 6= ξ,

k, if x̄a(N̄+1)+k 6= ξ, x̄a(N̄+1)+k+1 = ξ,

where the latter case accounts for possible snap-back behavior. Next, fix ε ≤ ε̄
2
such that

‖x̄a(N̄+1)+n − x̄a(N̄+1)+m‖ > 2ε for all

{

n 6= m, n,m ∈ [1, p(N̄)],
n ∈ [1, p(N̄)], m /∈ [1, p(N̄)]
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and

f
(

⋃

i≤0,N̄+1≤i

Bε(x̄a(N̄+1)+i) ∪ Bε(ξ)
)

∩ Bε(x̄a(N̄+1)+j) = ∅ for all j = 2, . . . , p(N̄). (43)

For this choice of ε > 0, we find an N ≥ max{N̄ + 2, Nε} with Nε from Theorem 7, such
that [a(N̄ + 1) + 1, a(N̄ + 1) + N̄ ] ⊂ [a(N) + 1, a(N) +N − 1], cf. Lemma 2 (ii).

Finally, we set ℓ = a(N̄ + 1)− a(N), M := N − p(N̄) and note ℓ ≤ M − 1.
Step 2: Construction of O. This construction is similar to the approach in [42, Theo-

rem 5.1].
We define

B0 :=
⋃

i≤0,N̄+1≤i

Bε(x̄a(N̄+1)+i) ∪ Bε(ξ), Bi := Bε(x̄a(N̄+1)+i) for i = 1, . . . , p(N̄), (44)

and note that B0 ⊂ Bε̄(ξ).
We have to ensure that orbits in the union of these sets enter B0 only via Bp(N̄), then

stay in B0 for at least M steps. Orbits are only allowed to leave B0 via B1 and the i-th
iterate of an orbit point in B1 lies in Bi+1 for i = 1, . . . , p(N̄)− 1. This behavior can be
achieved by further shrinking the neighborhoods.

Let O =
⋃p(N̄)

i=0 Vi, where

V0 := B0, Vp(N̄) := Bp(N̄)∩
M
⋂

n=1

f−n(V0), Vi := Bi∩f
−1(Vi+1), i = p(N̄)−1, . . . , 1. (45)

The setting (45) and condition (43) guarantee the properties

x ∈ V0, f(x) /∈ V0 ⇒ f(x) ∈ V1,

x ∈ Vi ⇒ f(x) ∈ Vi+1 for i = 1, . . . , p(N̄)− 1,

x ∈ Vp(N̄) ⇒ fn(x) ∈ V0 for n = 1, . . . ,M.

Step 3: X (N, ε) ⊃ Orb(O). For xZ ∈ Orb(O), we introduce two sequences of symbols
in ΣZ

A(N̄+1)
and ΣZ

A(N), respectively. Starting with ΣZ

A(N̄+1)
, we define for n ∈ Z

s̄n :=

{

i, if xn ∈ Vi,

p(N̄) + j, if j ∈ [1, N̄ − p(N̄)] such that xn−j ∈ Vp(N̄).

This sequence is extended to N > N̄+1 symbols as follows, see Table 1 for an illustration:

sn :=















ℓ+ i, if ∃i ∈ [1, N̄ ] : s̄n = i,
ℓ+ 1− i, if ∃i ∈ [1, ℓ+ 1] : s̄n+j = 0 ∀j ∈ [0, i− 1] ∧ s̄n+i = 1,
ℓ+ N̄ + i, if ∃i ∈ [1,M − ℓ− 1] : s̄n−j = 0 ∀j ∈ [0, i− 1] ∧ s̄n−i = N̄ ,

0, otherwise.

By Theorem 7 there exists a unique ȳZ ∈ Bε̄(ξZ(s̄Z, N̄ + 1)), satisfying ΓZ(ȳZ) = 0,
and there is a second unique orbit yZ ∈ Bε(ξZ(sZ, N)), satisfying ΓZ(yZ) = 0. Since
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s̄Z 0 0 . . . 0 0 1 . . . N̄ 0 . . . 0
sZ 0 1 . . . ℓ− 1 ℓ ℓ+ 1 . . . ℓ + N̄ ℓ+ N̄ + 1 . . . N − 1

Table 1: Connection between symbolic sequences.

Bε(ξZ(sZ, N)) ⊂ Bε̄(ξZ(s̄Z, N̄ + 1)) holds true, the uniqueness of the above orbits yields
yZ = ȳZ. Observe that xZ ∈ Bε̄(ξZ(s̄Z, N̄ + 1)) with ΓZ(xZ) = 0. Consequently, by the
uniqueness above, xZ = ȳZ = yZ ∈ X (N, ε).

Step 4: X (N, ε) ⊂ Orb(O). For any xZ ∈ X (N, ε) there exists a unique sZ ∈ ΣZ

A(N)

such that xZ ∈ Bε(ξZ(sZ, N)) and ΓZ(xZ) = 0 holds true. Using the construction of O, we
prove that xn ∈ O for all n ∈ Z and thus, xZ ∈ Orb(O), as follows.

For xn /∈
⋃p(N̄)

i=1 Bi we get xn ∈ B0 ⊂ O.
For xn ∈ Bp(N̄) the construction (44) and xZ ∈ X (N, ε) show f i(xn) ∈ B0 for all

i = 1, . . . ,M . Thus, xn ∈ Bp(N̄) ∩
⋂M

i=1 f
−i(V0) = Vp(N̄) ⊂ O.

For xn ∈ Bi, i = p(N̄) − 1, . . . , 1, we get f(xn) ∈ Vi+1 by induction, from which we
deduce xn ∈ Bi ∩ f−1(Vi+1) = Vi ⊂ O. �

5.3 A Homoclinic Theorem for finite orbits

In the section we provide the theorem underlying the conjugacy in the diagram (8). In
a first step, replacing Z by J in the proof of Theorem 12 and carefully handling the
boundary condition, we obtain the following finite time analog of Theorem 12.

Theorem 13 Assume (A1)–(A5). Then there exist constants εX > 0, NX > 0 and an
open set O, which is a neighborhood of the homoclinic orbit, such that for all intervals J
with |J | ≥ NX + 1, it holds that Orb(J,O) = XJ(NX , εX ).

Recall from (10) and (9) the finite time versions FJ , σJ of the operator F and the time
shift σ. With these notions the finite time analog of the Homoclinic Theorem, indicated
by the diagram (8), reads as follows.

Theorem 14 Assume (A1)–(A5) and let εX and NX be as in Theorem 13. Then for
any interval |J | ≥ NX + 1 there exists a homeomorphism hJ : ΣJ

A(N) → Orb(J,O) such

that the diagram (8) commutes, i.e. FJ ◦ hJ = hJ−1 ◦ σJ .

Proof: Step 1: Definition of hJ . Let J be a finite interval, satisfying |J | ≥ NX + 1.
Due to Theorem 7, for any sJ ∈ ΣJ

A(NX ), there exists a unique xJ (sJ) ∈ BεX (ξJ(sJ , NX ))

such that ΓJ(xJ (sJ)) = 0. Thus we conclude that xJ (sJ) ∈ XJ(NX , εX ) and consequently
xJ (sJ) ∈ Orb(J,O) by Theorem 13. We define hJ(sJ) := xJ(sJ).

Step 2: hJ is a homeomorphism. For any xJ ∈ Orb(J,O) = XJ(NX , εX ), there exists
– due to Theorem 7 – a unique sJ ∈ ΣJ

A(NX ) such that xJ ∈ BεX (ξJ(sJ , NX )). Since

hJ(sJ) = xJ , we conclude that hJ is invertible. Note that ΣJ
A(NX ) and Orb(J,O) are finite

sets with the same cardinality. Hence, hJ is a homeomorphism.
Step 3: Proof of conjugacy. For any symbolic sequence sJ ∈ ΣJ

A(NX ), we get xJ =

hJ(sJ) ∈ BεX (ξJ(sJ , NX )). Let yJ−1 = FJ(xJ), then it follows that yn = xn+1 for all
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n ∈ J − 1. As a consequence, yJ−1 ∈ BεX (ξJ−1(σJ (sJ), NX )) and ΓJ−1(yJ−1) = 0. From
this, we deduce hJ−1(σJ(sJ)) = yJ−1 = FJ(hJ(sJ)). �

6 Computation and visualization of the maximal invariant set
and its coding

In this section, we illustrate the theory by applying the algorithm from Section 2.2 to
several examples. In each case we approximate the maximal invariant set Oc, defined
in (13), by solving appropriate boundary value problems, and we indicate the symbolic
coding for points close to the midpoint of the primary homoclinic orbit.

First, we comment on how to verify our hyperbolicity assumptions.

6.1 Transversality of homoclinic orbits from a geometric point of view

Unlike in the invertible case, stable and unstable sets of a fixed point ξ are in general not
immersed submanifolds of Rd. Nevertheless, these sets have graph representations near
the fixed point, cf. [12, Theorem 3.1], [42, Theorem 4.1]:

W s
loc(ξ) = {ξ + xs + hs(xs) : xs ∈ Us}, W u

loc(ξ) = {ξ + xu + hu(xu) : xu ∈ Uu},

where hs,u : Us,u → Uu,s is smooth and Us,u denote sufficiently small neighborhoods of
0 within the stable and unstable subspace of Df(ξ), respectively. Note that the global
stable set can be obtained by continuation in backward time in a set valued sense, while
the stable set is obtained by iterating in forward time. One can verify transversality of
the homoclinic orbit x̄Z, i.e. an exponential dichotomy of the variational equation (1) with
projectors P̄ s,u

n , n ∈ Z, if the following conditions are satisfied, see [42, Theorem 4.2]:

Dfn−m(x̄m)Tx̄m
W u

loc(ξ)⊕ Tx̄n
W s

loc(ξ) = R
d, Dfn−m(x̄m)|Tx̄mWu

loc(ξ)
is invertible

with
Tx̄m

W u
loc(ξ) = R(P̄ u

m), Tx̄n
W s

loc(ξ) = R(P̄ s
n) (46)

for all m ≤ −Nloc and all n ≥ Nloc and a suitable Nloc ∈ N. We refer to [32, Propo-
sition 5.4] and [18, Theorem 3.5] for corresponding results for invertible systems in the
autonomous as well as the nonautonomous case.

Assume that the variational equation (1) has an exponential dichotomy and let Φ
denote its solution operator, then

R(P̄ s
n) = {u ∈ R

d : sup
k≥n

‖Φ(k, n)u‖ < ∞}, (47)

see [3, Theorem 2.5]. For a general point x ∈ W s,u(ξ), we define the stable and unstable
tangent set:

TxW
s,u(ξ) = {v ∈ R

d : ∃ζ ∈ C1((−ε, ε),W s,u(ξ)) : ζ(0) = x, ζ ′(0) = v}.

Lemma 15 Assume (A1)–(A4). Then the following assertions hold for all n ∈ Z:
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(i) R(P̄ u
n ) ⊂ Tx̄n

W u(ξ),

(ii) N (Df(x̄n)) ⊂ R(P̄ s
n).

Proof:

(i) Fix n ∈ Z. For n ≤ −Nloc, the assertion follows from (46).
For n > −Nloc, observe that fn+Nloc(x̄−Nloc

) = x̄n and since f is noninvertible in
general, we conclude that f−n−Nloc(x̄n) ⊃ {x̄−Nloc

} in a set valued sense. As a
consequence, we obtain

R(P̄ u
n ) = Dfn+Nloc(x̄−Nloc

)R(P̄ u
−Nloc

) = Dfn+Nloc(x̄−Nloc
)Tx̄−Nloc

W u
loc(ξ)

⊂ Tx̄n
W u(ξ).

(ii) For v ∈ N (Df(x̄n)), we conclude that Φ(k, n)v = Dfk−n(x̄n)v = 0 for all k ≥ n+1.
Using (47), we immediately get v ∈ R(P̄ s

n).

�

We apply this lemma in Section 6.6 and illustrate that the given model from mathemat-
ical finance has an exponential dichotomy for one set of parameters, while the regularity
condition (ii) in Definition 18 is violated for a second set of parameters.

The examples that we analyze in the following sections show different characteristics,
concerning their invertibility:

Sect. 6.2: An invertible system with identical stable and unstable dichotomy rates.

Sect. 6.3: An invertible three-dimensional map with a two-dimensional stable manifold.

Sect. 6.4: A model for which Df(x̄n) is noninvertible for all n ∈ Z.

Sect. 6.5: A map – showing wild chaos – that is noninvertible but still locally invertible
near each finite x ∈ R2 \ {0}.

Sect. 6.6: A model from mathematical finance for which Df(x̄n) is noninvertible for
exactly one n ∈ Z.

6.2 The invertible Hénon map

Our first example is the well known Hénon map that plays the role of a normal form for
invertible, quadratic, two-dimensional maps, see [13]:

F

(

x1

x2

)

=

(

1 + x2 − ax2
1

bx1

)

. (48)

A generalized version of the Hénon map possessing nontrivial orientation properties has
been studied in [11] and [9].

We consider here the parameters a = 1.4, b = −1 for which the Hénon map (48) is
orientation preserving and possesses two primary homoclinic orbits. As in steps (Ia), (Ib)
of the algorithm, these are determined via parameter continuation. The resulting orbits
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Figure 4: Two homoclinic orbits (blue and magenta in the upper right picture) of (48),
found via numerical continuation w.r.t. the parameter b (left diagram). The lower right
figure additionally shows stable (green) and unstable (red) manifolds of the fixed point ξ.
A zoom of the black square is given in Figure 5.

are depicted in Figure 4 together with a continuation diagram. The variational equations
(1) along these homoclinic orbits turn out to have exponential dichotomies with identical
rates ᾱs = ᾱu ≈ 1.58.

Next, we execute steps (II)-(V) of our algorithm and obtain Figure 5, which reveals
the local structure of the maximal invariant set by zooming into the black square of Figure
4. In our diagrams we will display the coding of the computed homoclinic points by a
shorter sequence s[k−,k+] ∈ ΣA(1ℓ). Due to the construction in step (II) of the algorithm, the
symbolic sequence s[k−,k+] satisfies condition (15), which allows a shorter coding, realized
by colored tuples. We explain the coding by taking the example from Figure 1. Take the
sequence in ΣA(12)

· · · 0 1 0 0 0 0 1 0 0 0 2 0 · · ·

where the 1 denotes the center element at position 0. We count the zero symbols on the
left and right of the center element and introduce the coding (4, 3). The blue color of 4
symbolizes that the orbit on the left is of type 1, while the magenta color of 3 indicates
an orbit of type 2 on the right.

Figure 5, shows the gain in information when passing over from ℓ = 1 primary ho-
moclinic orbit (left diagram) to ℓ = 2 orbits (right diagram). Note that points with the
coding (1, i), i ∈ {1, . . . , 10} lie outside the plotting area of Figure 5 (right).

We now consider three-humped orbits of type ℓ = 1 and derive an estimate between
certain points in the maximal invariant set. For N ≥ Nsol let z1,2

Z
be two homoclinic

orbits, coded by (i, k) and (j, k), respectively. The left diagram in Figure 5 shows a small
common neighborhood of z1,2n̄ for n̄ = 0.
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Figure 5: Zoom of the black square from Figure 4. Points in the maximal invariant set are
computed by the algorithm from Section 2.2 with J = [−3, 3], −k− = k+ = 10. Humps of
ℓ = 1 type only (left) and of both types (right). Note that the distance between points of
type (i, k), (j, k) (resp. (k, i), (k, j)) converges to zero as k increases, cf. (49), (50) resp.

Denote by s̃1,2
Z

the corresponding coding in ΣA(11) and let s1,2
Z

:= g(s̃1,2
Z
, 1) be the

coding in ΣZ

A(N), where g is defined in (14).

Since the second symbols in the short coding coincide, we conclude s1n = s2n for n ≥
m− := max{−i,−j} + 1. Using Theorem 8 on the interval [m−, m+] (which applies for
sufficiently large m+), we get in the limit m+ → ∞ for n̄ ≥ m−

‖z1n̄ − z2n̄‖ ≤ Lεsole
−βs(n̄−m−). (49)

Thus, the distance between these points essentially depends on the stable dichotomy
rate. Note that this result also holds true for finite time computations, see Corollary 9.
Furthermore, our numerical experiments suggest that corresponding points of these orbits
lie on the same segment of the stable manifold.

If we consider coding symbols (k, i) and (k, j) with identical first entries, then stable
has to be replaced by unstable in the discussion from above. The corresponding estimate
from Theorem 8 reads with m+ := min{i, j}+N − 2 and n̄ ≤ m+:

‖z1n̄ − z2n̄‖ ≤ Lεsole
−βu(m+−n̄). (50)
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6.3 A three-dimensional invertible Hénon map

We demonstrate in this section that our algorithm from Section 2.2 can easily be applied
to higher-dimensional systems. In contrast to the two-dimensional case, a meaningful
presentation of the numerical output turns out to be an additional challenge. We meet
this challenge, using the contour algorithm, see [20, Section 4], that allows to approximate
two-dimensional invariant manifolds in three-dimensional discrete time systems.

Consider a three-dimensional version of Hénon’s map proposed in [7, Example 2]:

F





x1

x2

x3



 =





a + bx3 − x2
1

x1

x2



 with a = 1.4, b = 0.3. (51)

First, we compute a homoclinic orbit w.r.t. the fixed point ξ, where

ξi =
b−1
2

+

√

(b−1)2

4
+ a, i = 1, 2, 3.

The matrix DF (ξ) has one unstable and two stable eigenvalues and consequently, the
stable manifold is two-dimensional, while the unstable manifold in of dimension one.

In a second step, we apply numerical continuation w.r.t. the parameter b, resulting in
the closed loop of homoclinic orbits, shown in the left diagram in Figure 6. The right
diagram displays the x1-components of the corresponding orbits for b = 0.3. Note that
(51) implies that the other two components are time-shifted versions of the first one, i.e.
the x1-component at time n equals the x2-component at time n+1 and the x3-component
at time n + 2. A phase-plot of these orbits together with approximations of stable and
unstable manifolds is given in Figure 7.
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Figure 6: Continuation of homoclinic orbits of (51) w.r.t. b (left). The right diagram
shows two orbits for b = 0.3.

An analysis of the local structure of the maximal invariant set inside the black box
in Figure 7 is carried out as described in the previous section. Figure 8 illustrates the
output of this procedure.
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x1x1

x2x2

x3x3
ξ

Figure 7: The two homoclinic orbits from Figure 6, shown with the unstable manifold of
ξ in red (left panel) and with parts of the two-dimensional stable manifold (right panel).
A zoom of the small black box in the right panel is provided in Figure 8.

6.4 A noninvertible Hénon example

Denote by ξ ≈ (−1.82, 1.82) a fixed point of (48) with stable and unstable eigenvalues
and vectors

DF (ξ)xs = λsxs, DF (ξ)xu = λuxu

and let Vs,u be the corresponding stable and unstable subspaces. We modify this system
such that the stable eigenvalue is 0 while the unstable eigenvalue is unchanged. In this
way, we create the noninvertible system

G(x) := F (x) + A · (F (x)− ξ), where A :=
(

−xs 0
)

·
(

xs xu

)−1
. (52)

It turns out that dynamics are reduced to a one-dimensional line D := Vu + ξ.

Lemma 16 For each x ∈ R2 we get G(x) ∈ D.

Proof: For x ∈ R
2 let y = x− ξ. It follows that

G(x) = G(ξ + y) = F (ξ + y) + A · (F (ξ + y)− ξ)

= (I + A)

(

F (ξ) +

∫ 1

0

DF (ξ + τy)dτ · y

)

− Aξ

= ξ + (I + A)(zs + zu) = ξ + zs + zu − zs = ξ + zu,

where z =
∫ 1

0
DF (ξ + τy)dτ · y, zs,u = z|Vs,u. �

As a consequence, it suffices to analyze the one-dimensional reduced system, defined
as

λ 7→ µ(λ), where G(ξ + λxu) = ξ + µ(λ)xu. (53)

Figure 9 shows the two-dimensional systems (52) together with a homoclinic orbit as well
as stable and unstable manifolds of ξ. The right diagram illustrates corresponding data
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x1

x1

x2

x2

x3

x3

Figure 8: Zoom of the black box from Figure 7. Points in the maximal invariant set are
computed by the algorithm from Section 2.2 with J = [−4, 4], −k− = k+ = 10. The upper
diagram shows the (visible) computed points and parts of the one-dimensional unstable
manifold (red) and of the two-dimensional stable manifold of ξ. The lower diagram
appears when slightly rotating the upper one such that the leaves almost collapse to lines.
In the latter figure we also illustrate the coding of the homoclinic points.

for the reduced system. It turns out that the variational equation along the homoclinic
orbit in the full system (52) has an exponential dichotomy, where the range of the unstable
projector P u

n satisfies R(P u
n ) = Vu for all n ∈ Z.

Note that the fixed point 0 in the reduced system (53) is unstable and has two pre-
images. Thus, homoclinic orbits may exist and in this case, the unstable fixed point is
called a snap-back repeller in the literature. One of the first proofs of chaos (in the sense
of Li and Yorke, cf. [4, Def. 3.1]) in this noninvertible context is due to Marotto, see [26]
and ensuing literature.

In Figure 10, we apply the algorithm from Section 2.2 to compute points in the in-
tersection of the maximal invariant set with the black box from Figure 9. The zoom in
Figure 10 illustrates the fractal structure of the maximal invariant set.

For k ∈ N the set of tuples (·, k) := {(i, k) : i ∈ N} symbolizes the coding of cor-
responding points of the homoclinic orbits. In this example, λs = 0 and hence, the
dichotomy rate βs can be chosen arbitrarily large. With the notation from Section 6.2,
equation (49) gives ‖z1n̄ − z2n̄‖ = 0 for orbits z1,2

Z
with symbolic coding (i, k) and (j, k),

respectively and n̄ ≥ max{−i,−j} + 1. Thus, orbit points z1,2n̄ , with the coding (·, k)
coincide and our numerical approximations of these points are identical up to machine
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Figure 9: Left diagram: Homoclinic orbit of (52) (black points) with stable (green)
and unstable (red) manifolds of the fixed point ξ. The right diagram shows the same
homoclinic orbit in the reduced system (53) as well as a snap-back behavior of this orbit.

accuracy.

The maximal invariant set contains further points in the intersection of the stable
and unstable manifolds. These points belong to different primary homoclinic orbits as
described in Section 2.1. There is a multitude of such orbits, since each point of a
homoclinic orbit has two pre-images.
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·10−6 + 1.624895

·10−6 − 0.861826

Figure 10: Maximal invariant set within the black box from Figure 9. For the computation
we use −k− = k+ = 10 and J = [−3, 4].

6.5 A model for wild chaos

The notion of wild chaos refers to the existence of a hyperbolic set with robust homoclinic
tangencies. Wild chaos can occur in vector fields, diffeomorphism and noninvertible dif-
ference equations of at least dimension four, three and two, respectively. The model that
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we analyze here originates from [5],

F : R2 \ {0} → R
2,

x =

(

x1

x2

)

7→
1− λ+ λ‖x‖a2

‖x‖22

(

x2
1 − x2

2

2x1x2

)

+ c. (54)

The authors of [5] reduce the flow of a special vector field on the solid torus T n of
dimension n ≥ 5 to the dynamics of this map. Detailed investigations of wild chaos for
this map can be found in [15, 28, 16, 17]. The authors use Cl MatContM to compute
homoclinic orbits and their tangencies by solving suitable boundary value problems.

We use similar techniques but concentrate on calculating the maximal invariant set.
As in [15, Figure 19 (d)], our parameters are

a = 0.8, λ = 0.8, c =

(

1.3
0.2

)

.

We illustrate the maximal invariant set by computing homoclinic orbits together with
stable and unstable manifolds of the fixed point.

For a more global picture, we transform the system to the square [−1, 1]2 by the
transformation T (x) = x

1+‖x‖∞
, see Figure 11. This transformation is better suited for

our contour algorithm than the Poincaré disk used in [15], [16], and we accept the loss of
smoothness caused by this transformation on the diagonals.

ξ

xn̄

Figure 11: Two homoclinic orbits of (54) together with an approximation of the stable
(green) and unstable (red) set of the fixed point ξ.
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An illustration of the maximal invariant set within the black box in Figure 11 is given
in Figure 12.
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Figure 12: Maximal invariant set within the black box from Figure 11. For the computa-
tion we use −k− = k+ = 10 and J = [−10, 9], ℓ = 2.

The dichotomy rates of the variational equation along the homoclinic orbit are βs ≈
0.67 and βu ≈ 0.26. Comparing the estimate (49) with (50), we expect – in agreement
with our numerical computations – that points with coding symbols from the set (·, k) :=
{(i, k) : i ∈ N} ∪ {(i, k) : i ∈ N}, for example, are distinct, but lie in a small common
neighborhood. These points cannot be distinguished within the graphical resolution of
Figure 12. For details on the color coding in case of ℓ = 2 primary humps, we refer to
Section 6.2 and Figure 1.

6.6 A noninvertible model of asset pricing

The following system describes mean (x1) and variance (x2) of asset prices

F (x, γ) =





x1

(

δ + 1−δ
γ−x2

)

δx2 + (1− δ)x2
1

(

1
γ−x2

− 1
)2



 , (55)

where the parameter δ = 0.8 is fixed and the parameter γ will be varied. The underlying
model, see [8, Equation (23)], is based on the interaction of two groups of investors
that believe in fundamental values of an asset or in statistical data only, respectively.
This model exhibits homoclinic orbits w.r.t. the fixed point ξ = 0, which proves chaotic
dynamics in case Assumption (A4) is satisfied.

In the context of this paper, we are particularly interested in the noninvertible setup,
in which a point of the homoclinic orbit lies on the critical set J0(γ) = {x ∈ R2 :
det(DxF (x, γ)) = 0}, see [27, Chapter 3] for more detail on this Ligne Critique.

We find this codimension-one phenomenon for (55) by applying continuation tech-
niques, cf. [1], to homoclinic orbits in combination with a bisection scheme. At the value
γ̄ ≈ −0.02779678052809343, the sets W s(ξ, γ̄), W u(ξ, γ̄) and J0(γ̄) have a common point
of intersection yn̄. A plot of the corresponding homoclinic orbit yZ is given in the left
diagram in Figure 13.

It turns out that our Assumptions (A1)–(A4) are satisfied for the parameter value γ̄.
Denote by P s,u

n , n ∈ Z the dichotomy projectors of the corresponding variational equation.
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Figure 13: Left diagram: Stable (green) and unstable (red) set of the fixed point ξ
together with the homoclinic orbit segment yJ , J = [−40, 40] (black points). The critical
curve J0(γ̄) is shown in blue. At the point yn̄ ∈ J0(γ̄), the maximal invariant set in a
neighborhood of yn̄ is depicted in the right diagram for −k− = k+ = 10 and J = [−14, 14].

Lemma 15 (ii) and Lemma 17 give the following relations between dichotomy projectors
and range, nullspace of DxF (yn̄, γ̄):

N (DxF (yn̄, γ̄)) ⊂ R(P s
n̄),

R(DxF (yn̄, γ̄)) = R(P u
n̄+1) ⊂ Tyn̄+1W

u(ξ, γ̄).

Lemma 17 Assume that f satisfies (A1)–(A4) for space dimension d = 2. Further
assume that dimR(P̄ s

n̄) = 1 and that dimN (Df(x̄n̄)) = 1.
Then R(Df(x̄n̄)) = R(P̄ u

n̄+1) ⊂ Tx̄n̄+1W
u(ξ).

Proof: If follows from (A4) that Df(x̄n̄) : R(P̄ u
n̄ ) → R(P̄ u

n̄+1) is invertible. Since
R(Df(x̄n̄)) and R(P̄ u

n̄+1) are one-dimensional subspaces, they coincide and the claim
follows with Lemma 15 (i). �

The maximal invariant set in a neighborhood of yn̄ is displayed in the right panel of
Figure 13. The dichotomy rates of the variational equation along the homoclinic orbit are
βs ≈ 0.22 and βu ≈ 1.86. From the estimates (49) and (50), we expect – in accordance
with our numerical results – that points having a symbolic coding from the set (k, ·) :=
{(k, i) : i ∈ N} are distinct but lie in a small common neighborhood. Note that we do not
plot the unstable set passing through these points in this tiny neighborhood, since there
is a lack of a fast algorithm that works accurately for this task.

Finally, we consider a second parameter value γ̃ ≈ −0.04212651463673642 for which
the stable and unstable sets as well as J0(γ̃) also have a common point of intersection,
see Figure 14. Denote by zZ the corresponding homoclinic orbit and let zñ be the point
of this orbit, lying on J0(γ̃).

But now the Assumption (A4) is not satisfied, since the regularity condition (ii) in
Definition 18 is violated. For proving this statement, assume to the contrary that the
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Figure 14: Left diagram: Stable (green) and unstable (red) set of the fixed point ξ together
with the homoclinic orbit segment zJ , J = [−40, 40] (black points). The critical curve
J0(γ̃) is shown in blue. Zooms of the red box are given in the right diagrams. The upper
figure illustrates tangential intersections of stable and unstable sets at the point zñ+1. The
lower diagram shows an extensive continuation of the unstable set, indicating additional
transversal intersections close to zñ+1, but not exactly at zñ+1.

variational equation has an exponential dichotomy with projectors P s,u
n , n ∈ Z. Note

that

DxF

((

0
x2

)

, γ̃

)

=

(

δ + 1−δ
γ̃−x2

0

0 δ

)

and this matrix is invertible for x2 6= x̃2 :=
1−δ
δ

+ γ̃ ≈ 0.207. It turns out that zñ =

(

0
x̃2

)

and consequently, DxF (zℓ, γ̃) is invertible for all ℓ ≥ ñ + 1. On the one hand, Lemma
17 yields R(P u

ñ+1) = R(DxF (zñ, γ̃)) = Vs := {λ
(

0
1

)

: λ ∈ R}. On the other hand, Vs is

invariant w.r.t. Φ(ñ + 1, ℓ) for all ℓ ≥ ñ + 1 and we conclude with Lemma 15 (ii) that
R(P s

ñ+1) = Φ(ñ + 1, ℓ)R(P s
ℓ ) ⊃ Φ(ñ + 1, ℓ)N (DxF (zñ, γ̃)) = Φ(ñ + 1, ℓ)Vs = Vs for all

ℓ ≥ ñ+1. As a consequence R(P s
ñ+1)∩R(P u

ñ+1) 6= {0} and thus, the variational equation
cannot have an exponential dichotomy. In particular, we see for this parameter setup that
our theorems do not apply.

Note that a simultaneous occurrence of transversal and tangential intersections of
stable and unstable sets along the same homoclinic orbit is not generic, see the discussion
in [35, Section 4].
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A Appendix

A.1 Exponential dichotomy

In this appendix, we summarize important results from the theory of exponential di-
chotomies in a noninvertible setup.

Let J = [n−, n+], J̃ = [n−, n+ − 1] where the cases n− = −∞ and n+ = ∞ are
permitted. Consider the nonautonomous linear difference equation

un+1 = Anun, An ∈ R
d,d, n ∈ J̃ (56)

and denote by Φ(m,n) = Am−1 · · ·An, m ≥ n its forward solution operator. We define
the notion of an exponential dichotomy, see [14, Def. 7.6.1] that is called regular in [2,
Def. 3.1] and [22, Def. 2.1.2].

Definition 18 The difference equation (56) has an exponential dichotomy on J with
data (K,αs,u, P

s,u
n ), if there exist constants K,αs, αu > 0 and families of projectors P s

n,
P u
n := I − P s

n, n ∈ J such that

(i) P s,u
n Φ(n,m) = Φ(n,m)P s,u

m for all n,m ∈ J , n ≥ m,

(ii) An|R(Pu
n ) : R(P u

n ) → R(P u
n+1) is invertible for all n ∈ J̃ with the inverse of

Φ(n,m)|R(Pu
m), n ≥ m denoted by Φ̄(m,n) : R(P u

n ) → R(P u
m).

(iii) For n,m ∈ J , n ≥ m the following estimates hold:

‖Φ(n,m)P s
m‖ ≤ Ke−αs(n−m), ‖Φ̄(m,n)P u

n ‖ ≤ Ke−αu(n−m).

Denote by
SJ := {xJ ∈ (Rd)J : ‖xJ‖∞ < ∞}

the Banach space of bounded sequences indexed by J . In case J = Z the regularity
condition (ii) in Definition (18) implies that the inhomogeneous equation

un+1 = Anun + rn, n ∈ Z, rZ ∈ SZ (57)

has a unique bounded solution in Z, cf. [14, Theorem 7.6.5], [2, Theorem 4.5].

Lemma 19 Assume that the difference equation (56) has an exponential dichotomy on
Z with data (K,αs,u, P

s,u
n ). Then

ūn :=
∑

i∈Z

G(n, i+ 1)ri, n ∈ Z, G(n,m) :=

{

Φ(n,m)P s
m, for n ≥ m,

−Φ̄(n,m)P u
m, for n < m

(58)

is the unique bounded solution of (57) on Z.

Note that in case J = [n−, n+] with finite n− or n+, extra boundary conditions are needed
to guarantee uniqueness of the solution ūJ .

Finally, we cite the most important perturbation result for exponential dichotomies,
the Roughness Theorem, see [2, Theorem 4.4], [22, Satz 3.2.1] and [14, Theorem 7.6.7].
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Theorem 20 Assume that the difference equation (56) has an exponential dichotomy on
J with data (K,αs,u, P

s,u
n ). Let 0 < βs,u < αs,u. Then there exist positive constants

γ = γ(K,αs,u, βs,u) and µ = µ(K,αs,u, βs,u, ), such that for any sequence of matrices
BJ ∈ (Rd,d)J , satisfying ‖BJ‖∞ ≤ γ, the perturbed equation

un+1 = (An +Bn)un, n ∈ J̃ (59)

has an exponential dichotomy on J with data (2K, βs,u, Q
s,u
n ), where

‖P s
n −Qs

n‖ ≤ 2Kµ‖BJ‖∞ for all n ∈ J. (60)

Note that explicit formulas for γ and µ may be derived from [22, Section 3] and that these
constants do not depend on J .

Sketch of proof: The proof is a noninvertible version of the proof by Kleinkauf [24,
Lemma 1.1.9], [23, Lemma 2.3] who followed an idea of Sandstede [36, Lemma 1.1] for
continuous systems. For details, the reader is referred to [38, Satz 2.1]. For βs,u ∈ (0, αs,u),
introduce the exponentially weighted Banach space

ZJ = {X ∈ (Rd,d)J×J : ‖X‖∗ < ∞}

with norm ‖X‖∗ = max{supn≥m eβs(n−m)‖X(n,m)‖, supn<m eβu(m−n)‖X(n,m)‖}. Con-
sider the operators T1, T : ZJ × SJ(R

d,d) → (Rd,d)J×J defined by

T1(X,BJ)(n,m) =
∑

l∈J̃

G(n, l + 1)BlX(l, m), (n,m) ∈ J × J,

T (X,BJ) = G+ T1(X,BJ),

where G is the Green’s function of the unperturbed system from (58). A computation
shows that T1 is uniformly Lipschitz continuous in the second argument:

‖T1(·, BJ)‖∗ ≤ µ‖BJ‖∞

with µ = µ(αs,u, βs,u) independent of BJ . A crucial step is to show that X ∈ ZJ is a fixed
point of T (·, BJ) if and only if X solves the equation

X(n+ 1, m) = (An +Bn)X(n,m) + δn,m−1I, n ∈ J̃ , m ∈ J (61)

subject to the boundary conditions

P s
n−
X(n−, m) = 0, if −∞ < n−,

P u
n+
X(n+, m) = 0, if n+ < ∞,

(62)

respectively. Here, δ denotes the Kronecker symbol.
For proving this equivalence, we observe that if X is a fixed point of T (·, BJ), then

equations (61) and (62) follows from a direct computation. For the proof of the converse
statement, one studies the inhomogeneous linear equation for fixed m,

Y (n + 1, m)− AnY (n,m) = BnX(n,m) + δn,m−1I,
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which possesses the solution Y = X by (61). Uniqueness is proven by using the dichotomy
properties to show that the associated homogeneous equation possesses the trivial solution
only. An application of a matrix-valued analog of Lemma 19 then yields the fixed point
property.

Existence of a fixed point and thus, of a solution of (61) follows with the Banach fixed
point theorem. Since T (·, BJ) is a uniform contraction on ZJ w.r.t. the norm ‖ · ‖∗ for
sufficiently small ‖BJ‖∞, we get existence and uniqueness of a fixed point X̄(BJ) with
smooth dependence on BJ . Using the uniqueness, one shows that Qs

n = X̄(BJ)(n, n)
is a projector and that the perturbed equation (59) possesses an exponential dichotomy
with data (2K, βs,u, Q

s,u
n ). Finally, one proves that X̄(BJ) is the Green’s function for this

system. �

A.2 A Lipschitz Inverse Mapping Theorem

The proof of Theorem 7 uses a quantitative version of the Lipschitz Inverse Mapping
Theorem cf. [21, Appendix C].

Theorem 21 Assume Y and Z are Banach spaces, F ∈ C1(Y ,Z) and let F ′(y0) be a
homeomorphism for some y0 ∈ Y. Let κ, η, δ > 0 be three constants, such that the
following estimates hold:

∥

∥F ′(y)− F ′(y0)
∥

∥ ≤ κ < η ≤
1

∥

∥F ′(y0)−1
∥

∥

∀y ∈ Bδ(y0), (63)

∥

∥F (y0)
∥

∥ ≤ (η − κ)δ. (64)

Then F has a unique zero ȳ ∈ Bδ(y0).
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[39] L. P. Šil′nikov. On a problem of Poincaré-Birkhoff. Mat. Sb. (N.S.), 74 (116):378–397, 1967.

[40] S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc., 73:747–817, 1967.

[41] H. Steinlein and H.-O. Walther. Hyperbolic sets and shadowing for noninvertible maps. In Advanced
topics in the theory of dynamical systems (Trento, 1987), volume 6 of Notes Rep. Math. Sci. Engrg.,
pages 219–234. Academic Press, Boston, MA, 1989.

[42] H. Steinlein and H.-O. Walther. Hyperbolic sets, transversal homoclinic trajectories, and symbolic
dynamics for C1-maps in Banach spaces. J. Dynam. Differential Equations, 2(3):325–365, 1990.

42


