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We propose an algorithm for the approximation of stable and unstable fibers that applies to
autonomous as well as to nonautonomous ODEs. The algorithm is based on computing the
zero-contour of a specific operator; an idea that was introduced in [Hiils, 2014] for discrete time
systems. We present precise error estimates for the resulting contour algorithm and demonstrate
its efficiency by computing stable and unstable fibers for a (non)autonomous pendulum equation
in two space dimensions. Our second example is the famous three-dimensional Lorenz system
for which several approximations of the two-dimensional Lorenz manifold are calculated. In
both examples, we observe an equally well performance for autonomously and nonautonomously

chosen parameters.
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1. Introduction

Stable and unstable manifolds provide a deep in-
sight into the global dynamics of an autonomous
ODE

o = f(z), feCYRYRY). (1)

Denote by Y(-) its solution operator and let £ be an
equilibrium of (1). Stable and unstable manifolds
are defined as

WiE) = {z € R : lim Y(t)e = £},

Wu(¢) ={z e R¢: tiiinooT(t)w -y (2)

Various methods have been proposed for find-
ing approximations of (2). We briefly list some of
these approaches.

Several algorithm are based on numerical con-
tinuation techniques. Starting points are chosen
from a local approximation, i.e. the tangent space,

from which a global approximation is computed, see
[Friedman & Doedel, 1991], [Johnson et al., 1997],
[Krauskopf & Osinga, 2003] and [Henderson, 2005].
The latter reference presents an algorithm that is
based on computing two dimensional manifolds via
so called fat trajectories.

The ansatz in [Guckenheimer & Vladimirsky,
2004] uses the fact that the vector field is tangent
to the graph of the manifold. This results in a first-
order quasilinear PDE that the authors solve effi-
ciently to continue the manifold in this way.

Alternative approaches are based on set ori-
ented methods, e.g. [Dellnitz & Hohmann, 1997]
or on deriving Taylor expansions of the graph of
the manifold, cf. [Sim6, 1989], [Beyn & Klef}, 1998],
[Eirola & von Pfaler, 2004].

We refer to [Krauskopf et al., 2005] for a survey
article that illustrates the application of selected
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techniques for computing the two-dimensional sta-
ble manifold of the fixed point & = 0 in the famous
Lorenz system. This stable manifold is often re-
ferred to as the Lorenz manifold. Figure 1 shows this
manifold, calculated with a variant of the method
from [Johnson et al., 1997].

Fig. 1. Approximation of the Lorenz manifold and of the
Lorenz attractor.

Real world systems almost always have time
dependent influences, resulting in nonautonomous
ODE models of the form

' = F(t,r), FecC"(RxRIRY. (3)

The development and analysis of a corresponding
nonautonomous framework is currently an active
field of research. Denote by W(:,-) the solution op-
erator of (3), i.e ¥(s,¢)x maps the initial point = at
time ¢, to the solution at time s. In Section 2.1 we
introduced assumptions that guarantee existence of
these solutions. First note that a time independent
equilibrium of (3) generally does not exist — its only
meaningful replacement is a solution £(-) that is
bounded on R. Stable and unstable manifolds w.r.t.
the solution £(-) are time variant sets that we call
stable and unstable s-fibers, s € R, defined as

FHE) = {x € RY: Jim |[W(t, 5)x — £()] = 0},
Fo©={r eR': lim [[W(t, )7 — ()] =0},

Alternatively, these sets are frequently denoted as
integral manifolds in the literature.

The fact that unstable fibers are pull-
back attractors under reasonable assumptions, see
[Aulbach et al., 2006, Theorem 4.1], allows the ap-
plication of set oriented methods for their computa-
tion. Reversing the direction of time, this approach
yields an approximation of the stable fiber. Tay-
lor expansions of fiber bundles are computed in

[Potzsche & Rasmussen, 2006] with special focus
on obtaining coefficients of nonautonomous bifurca-
tions. Finally, we refer to [Potzsche & Rasmussen,
2009] and [Potzsche & Rasmussen, 2010], where
fiber approximations are derived via fixed points of
the Lyapunov-Perron operator.

In this paper, we adapt a new ansatz to
continuous time systems that was introduced in
[Hiils, 2014] for the discrete time case. This ap-
proach is based on Hadamard’s graph transform,
cf. [Hadamard, 1901], [Katok & Hasselblatt, 1995,
Theorem 6.2.8] and computes the zero-contour of
a particular operator which results in an approxi-
mation of the desired fiber with high accuracy. The
resulting contour algorithm uses available software
for level sets. It is fast, easy to implement and error
estimates justify its applicability. We demonstrate
its power for a two-dimensional damped pendulum
model as well as for the three-dimensional Lorenz
system. For both models, we choose an autonomous
and a nonautonomous parameter setup.

2. Approximation scheme

In this section, our approximation scheme and cor-
responding error estimates are presented. We be-
gin with the introduction of the assumptions on the
nonautonomous system (3).

2.1.

Let us start with a motivation of our main assump-
tions (A1)-(A3) below. Although it is not a generic
property, we assume without loss of generality that
&(t) =0 for all ¢, since F' and the shifted equation

¥ =G(t,x), Gt,x):=F(tz+E&t)—F(tE(>1¢))

show the same dynamics. Furthermore, we assume
that the equilibrium & = 0 is hyperbolic which for-
mally can be expressed in terms of an exponential
dichotomy of the variational equation

W = D,F(t,0)u, teR. (4)

For readers, unfamiliar with this hyperbolicity con-
cept, we refer to [Coppel, 1978, Section 2] and
[Henry, 1981, Section 7.6].

Denote by ds and d,, ds + d,, = d the dimen-
sions of the stable and the unstable subspace, re-
spectively. In an autonomous setup, these subspaces
are eigenspaces, while in nonautonomous systems,
they are defined as the ranges of the stable and
unstable dichotomy projectors. We assume without
loss of generality that at each time instance, the sta-
ble subspace is aligned to the first ds; components
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while the last d, components belong to the unsta-
ble subspace. Note that a nonautonomous similarity
transformation, cf. [Hiils, 2014, Sect. 4.2] — which
does not change dynamics — always leads to this
setup.

We apply the decomposition x = <§s>, Tg €

u

R%, x, € R%* and write our assumptions in terms
of the solution operator of (3).

(A1) F satisfies assumptions, guaranteeing exis-
tence of solutions on the whole time interval. The
solution operator ¥ satisfies the following uniform
Lipschitz condition. On each compact set I ¢ R?
there exists a constant Lx such that

1W(t + h,t)e = U+ h, )yl < (L) M|z -y

for all t,h € R and z,y € K.

_ (At s)ms + fA(L s, (s, Tu))
(a2 v = (i TR )
for all t,5 € R, x € R% Here A%(t,s) € R,
AU(t,s) € Ré%wdu for all t,s € R. For any t,s €
R the maps f%%(t,s,-) € C}(R4 R%wu) satisfy
fo"(t,s,0) = 0 and D, f*"(t,s,0) = 0. For arbi-
trary € > 0 there exist v > 0 and a neighborhood
U of 0 such that || D, f*"(t,s,x)|| < e for all z € U,
|t —s| <~,t,se€R.
(A3) Denote by ® the solution operator of the vari-
ational equation (4) and define the projectors

I, 0 00
S __ s U __
P_<0 0>’ P_<Ofdu>’

where Iy, , denotes the identity in R% | respec-
tively. There exist constants K, o, > 0 such that

21, 5) PP < Ko,
(s, )P < Ko=)

forallt > s, t,s € R.

Remark 2.1. For arbitrary systems, approximate di-
chotomy projectors, specifying stable and unstable
subspaces, can actually be computed efficiently. The
algorithm, proposed in [Hiils, 2010, Section 2.3| ap-
plies to the h-flow of (3) and calculates these pro-
jectors by solving a linear least squares problem.

Algorithms that are based on SVD- and QR-
decompositions are used in [Dieci et al., 2010] to
identify dichotomy spectra as well as stable and un-
stable subspaces.

Finally, we note that the strong assumption of
an exponential dichotomy on R in (A3) is for con-
venience only. Indeed, it suffices to demand a half-

3

sided dichotomy on some interval, unbounded above
(below) for computing stable (unstable) fibers.

2.2. Approximation Theorem

At a fixed time s € R, we aim for an approximation
of F£(£) (below, we skip the argument (€)). First,
we define the following sets with ¢t € R:

U :{mEle:\IJ(s—i—T—i—r,s)xEBgVOSTgt},

s,m,t
Vi ={zeR: (U(s+t+rs)z), =0}

U, ={z R U(s—7—rs)z € BNO< T <t}
V=17 € RY : (\IJ(s—t—r,s)x)s = 0}.

Here, Bs := {z € R% : ||z|| < 6} and ”),,,” denotes
the projection to the s and u component, respec-
tively.

It turns out that

s,r,t

T+ — u+

s,r,t ° s,r,t N V;Cr,t and 7;;’,t = u;r,t N
define good approximations of the stable and un-
stable s-fibers F and F , respectively.

Indeed, we obtain upper-semicontinuity
w.r.t. the Hausdorff semi-distance dist(A,B) :=

SUp,e 4 infyep la — bl

Theorem 1. Assume (A1)-(A83). For any 0 <
Qs < ag, 0 < @y < ay there exist a § > 0 and
constants C' > 0, B > 0 such that for all s € R and
all t,r € Ry we get

dist(T;5 . FF) < Cefre=(@stant,

dist(7; .4, Fs ) < CePre=(@stau)t,

,T

()

Proof. Without loss of generality assume that ¢ =

b oy — % with t19,712 € N. Then the proof

t )

follows along the lines of [Hiils, 2014, Theorem 4]
with the setting £k = 0, p = rite, m = rot; and
F, = ¥(s + (n + 1)h,s + nh) with h = ﬁ,
n=20,...,r+m in case of stable fibers. Note that
it is an important consequence of (A1) that the s-
fiber 7 and the corresponding k-fiber F;" of the
h-flow coincide.

In the unstable case, we change the direction of
time by iterating with F,, = ¥(s— (n+1)h, s —nh).
Further note that the constant 8 is chosen as 8 =
|h|log Li, where K is a sufficiently large compact

set, satisfying T;t +CK N

,T



2.3. Numerical recipe

We now turn the results from Theorem 1 into a nu-
merical recipe.
The set ,7.8+

,7 b
F, has two additional parameters r and ¢. The pa-
rameter r controls the length of the computed fiber
and the error estimate (5) shows that the parameter
t controls the accuracy of this approximation.
Numerically, we approximate V; »+ by calculat-
ing the zero-contour of the operator

which yields an approximation of

Ht(z) = (U(s+t+m, s)x),,
and in case of V_.

S,T

H™ (x) = (VU(s —t —rs)z),.

+» we consider the operator
K

Determining this contour is the main idea, giving
the proposed method its name: Contour algorithm.

In stable and unstable cases, we restrict our-
selves to d — 1-dimensional fibers with d € {2,3}.
On a rectangle (cuboid) we define a sufficiently fine
grid and compute — in a first step — for all grid
points the corresponding values of H*. In a second
step, the MATLAB routine contour (space dimen-
sion d = 2) and isosurface (d = 3), respectively,
applies to these data and determines the desired
approximation of Vf r+- Note that the computation
of H*(x) for all points x on the grid can easily be
parallelized, using vectorization techniques in MAT-
LAB, resulting in a rather efficient algorithm.

So far, we only considered the set Vsi,,,,t, which
often yields a good approximation of 73,,5 But if
artifacts occur, see Section 3.1 for an example, one
additionally has to verify, whether the computed

. .. +
points lie in U, ;.

We note that the final implementation of the
contour algorithm directly applies to the original
system. It is not necessary first to transform the
bounded trajectory £(-) to the origin and to align
the dichotomy subspaces as described in the begin-
ning of Section 2.1. This transformation is intro-
duced for clarity of presentation only. Alternatively,
one can include these transformation steps directly
in the definition of ’7':;7“ see [Hiils, 2014, Section
4.1] for details in the discrete time case.

For solving ODEs numerically, we apply the
classical Runge-Kutta scheme with step size h
which is a forth order explicit one-step method. In
case of stable fibers, we choose a positive step size
h > 0, while unstable fibers require negative step

sizes h < 0. With n, we denote the number of h-
steps. Then n - |h| corresponds to ¢+ r in the defini-
tion of H*. Thus, n and h are two relevant param-
eters for controlling the accuracy of our algorithm.

A third parameter that influences the quality of
the output is the number of grid points, on which
we evaluate H*. For two-dimensional examples, we
choose a grid of size 1500 x 1000 and in a three-
dimensional space, the grid size is 400 x 400 x 400.

3. Application

We apply our algorithm for computing stable and
unstable fiber bundles to two examples. The first
one is a pendulum equation with damping that we
rewrite as a first order system of dimension two.
The second example is the famous Lorenz system
[Lorenz, 1963]. We particularly compute the Lorenz
manifold in a small neighborhood of the attractor.
For both examples, an autonomous as well as a
nonautonomous setup of parameters is considered.

3.1. Autonomous pendulum
equation

Consider the ODE

(i;)/ - (—sz fzsin(gn)) ) A=0.1. (6)

We start with the unstable manifold of the fixed

point £ = and apply the contour algorithm.

T
0
Note that one-dimensional stable (unstable) mani-
folds can easily be calculated numerically via back-
ward (forward) orbits with starting points on the
stable (unstable) subspace. Nevertheless, we select
this autonomous example for illustrating our algo-
rithm before we turn to more challenging nonau-
tonomous and three-dimensional cases.

We choose the step size h = —0.1 and iter-
ate n = 300 steps with the classical Runge-Kutta
scheme to obtain an approximation of H~. Figure
2 shows the graph of H™.



not necessarily in U, , and therefore not necessar-
ily in 7, ;. Respecting this second condition, we
avoid artifacts by deleting any point from the con-
tour whose backward orbit does not intersect a suf-
ficiently small neighborhood of the fixed point &.
In this way, the gray points are deleted from the
approximate fiber in Fig. 3.

Figure 4 shows the stable manifold in green,
= 0.1 and n = 50 it-

computed with step size h
eration steps, while for the unstable manifold, we
choose h = —0.1 and n = 600 iteration steps.
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ST NN NS
N /\\\\ N \\ \ >/// \\\
\/?//\'\\\\,,,>/ \\\// \\\
A N7 NN
)//\'\ S N O\
///\Q\\%/ ARARE7ZZN NN
S v AN N L AN
/r‘{/\‘\\\)"’ ‘*‘\ﬁ\/ \\\\
\/;“f\\‘\‘/““ 1 I Wy
\ Vo AT\ A
_ m2°"x“‘ff‘w‘ | ﬁswifif
Fig. 2. Graph of H™ for h = —0.1 and n = 300. v K AR W WANE! Y/, ;!
R T U A [V N A\ & B/ B
\ ] \ TRV \ / 2R
The corresponding zero-contour of H ™ is given AR A : :\ 71/ N\ .
o AN L VN S W\N\
in Fig. 3. One clearly observes the occurrence of AN TSNNSO\ L
numerical artifacts (gray points in Fig. 3). Indeed, AN S/ NN\ AN\T N
these i i i 2bs NN/ NN Y NN
gray points lie on the unstable manifolds of AR N\ A\ )\
. (2k + 1) \s‘i{//:/\/\\\\\&//@Q\"\//L/’\
adjacent saddles 0 ,k#0,keZ. Sy e'//:j\ N \\//<‘Q
10 5 0 5 10
- . — — ~ il x
3§>/ﬁ§§§;/ﬂw§§gﬂz%§§§ :
>/ SN N 77 NN A N
L/ j AR j a7 N\ ; 7 : AR Fig. 4. Approximation of the stable (green) and unstable
2N 7 N\ A > N\ \\ j R AR (red) manifold of the fixed point £.
/AR AN \
/1 \\\jﬁ// \\\\\\/’/ \\\\
SN B '/ N 1A : \ 3.2. Nonautonomous pendulum
y/ e AR / \ .
Wl Vo Vo WY equation
h ‘w‘ \~ \ \
T2 orf! j /I »‘ \ I Q We introduce a time dependent modification of (6):
\ AR\ HEASRL\ [/ /
\ \ VBN L\ / R\ / \ (1’1) ( 9 )
At \ ¥ AN / - /[« = o .
Q \ 1)/ S0\ /- s\ N\ . § T2 (0.6 sin({55t) + 0.7) w2 — sin(z1)
NN 5 < NN ; ; AN i / j AN The periodic choice of the time dependent influ-
2K\ \\s - ? oS s s S, € ss N ? - Q ence is for convenience only. Note that the period is
Q\\ <y /i\\ <\ a z\\ \Q RN rather long and that the contour algorithm makes
AN T NN NN\ T no use of any periodicity.
10 s xo 5 10 This systems still has the time independent
! fixed point & = 0. In Fig. 5, we compute sta-
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h = 0.1 and n = 100, while in the unstable case

Note that the computed points lie in V., but A = —0.1 and n = 300.
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Fig. 5.

The nonautonomous parameter 0.6 sin(gg5) +
0.7 is minimal for s = 150 4 200¢ and maximal for
t = 50+200¢, £ € Z. Consequently, the shape of the
s-fibers significantly differs at these extreme values.

In Fig. 6 we plot stable and unstable s-fibers for
s € {140,145,150}. Two trajectories illustrate that
these fibers are invariant in the sense that = € F
if and only if (¢t + s, s)x € ]-'sjit.

Fig. 6.
point ¢ and two trajectories on these fibers.

Stable (green) and unstable (red) s-fibers of the fixed

Finally, we refer to an alternative ansatz
for computing one-dimensional fibers in two-
dimensional systems. The authors of [Mancho et al.,
2003] calculate stable (unstable) fibers at time ¢ by

130 150 170

Stable (green) and unstable (red) s-fibers of the fixed point &.

starting with a local approximation at time t + 7,
(t—7) for 7 > 0 sufficiently large. A continuation of
this local segment backward (forward) in time leads
to the desired approximation.

3.3. The Lorenz manifold

In this section, we consider the three-dimensional
Lorenz system, cf. [Lorenz, 1963]

/

il O’(.Tz — .%‘1)
X2 =\|0r1 —T2 — 173
x3 122 — B3

with parameter setup

c=10, p=28 pB=34.

We are interested in visualizing the Lorenz mani-
fold, i.e. the two-dimensional manifold of the equi-
librium £ = 0. Figure 1 shows an approximation of
this manifold and of the Lorenz attractor. This ap-
proximation of the Lorenz manifold was achieved by
computing sufficiently many trajectories with start-
ing points on a small circle, lying in the stable sub-
space, see [Johnson et al., 1997].

The overview article [Krauskopf et al., 2005]
compares five different methods for the approxima-
tion of this manifold. These methods are base on

e computing geodesic level sets,

e continuation of trajectories via boundary value
problems,

e computation of so called fat trajectories,

e solving first order quasilinear PDEs, resulting
from the fact that the vector field is tangent to the
graph of the manifold,



e finding a box covering of the Lorenz manifold,
using set oriented algorithms.

We are particularly interested in the Lorenz
manifold in a neighborhood of the attractor and
aim for an illustration of its leafs, cutting through
the attractor without intersecting it. For this task,
we apply the contour algorithm with h = 0.02 and
n = 100, see Fig. 7.

The colors in this figure are chosen from yel-
low to blue, depending on the value of z;. A similar
color coding with respect to one coordinate is used
in all figures below.

Fig. 7. Approximation of the Lorenz manifold in a neigh-
borhood of the attractor.

For a study of the manifold close to the at-
tractor in more detail, we cut away parts of this
manifold that obstruct the view on the attractor.
Numerically, we proceed the other way round by
choosing three boxes on which we recompute the
Lorenz manifold, applying the contour algorithm.
Figure 8 shows these boxes together with the ap-
proximate manifolds.

Fig. 8. The Lorenz manifold in three areas close to the at-
tractor.

7

In combination with the Lorenz attractor, the
local approximations from Fig. 8 are depicted in
Fig. 9.

Fig. 9. The Lorenz manifold in three areas close to the at-

tractor.

These figures illustrate a fundamental differ-
ence between the contour algorithm and continu-
ation techniques. For the computation of Fig. 7,
the contour method iterates each grid-point in the
given box for 100 steps. Then the resulting infor-
mation is used to approximate the graph of the
stable manifold with high resolution. Furthermore,
whether the fixed point lies in the starting box or
at great distance from it, is irrelevant for this al-
gorithm. Note that the manifold is not computed
up to a fixed length in a dynamic of geodesic sense.
This can be achieved, using continuation techniques
that start in a small neighborhood of the fixed point
and grow the manifold from these starting points.
Consequently, the output of the contour algorithm
differs from the continuation picture in Fig. 1.

For an illustration, we apply the contour algo-
rithm on the box [—70, 70] x [-70, 70] x [-125, 125]
with n = 50. Figure 10 shows the resulting surface
that we plot semitransparently. In addition, the ap-
proximation from Fig. 1 is displayed and a care-
ful inspection indicates that this approximation lies
close to the surface, computed by the contour algo-
rithm.
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Fig. 10. Lorenz manifold, computed with the contour algo-
rithm (semitransparent) and the alternative approximation
from Fig. 1.

We demonstrate how the approximate mani-
folds depend on the number of iteration steps n.
An application of the contour algorithm on the box
[—50,50] x [-50,50] x [—30,27], yields an approxi-
mation similar to the one in [Henderson, 2005, Fig.
31]. In Fig. 11 and Fig. 12 we choose n € {50, 75},
respectively.

50 -50

Fig. 11. Parts of the Lorenz manifold with n = 50.

50

Fig. 12. Parts of the Lorenz manifold with n = 75.

Corresponding computations on the box

[-50,50] x [~50, 0] x [~50, 100] with n € {50,100},
cf. [Henderson, 2005, Fig. 15(c)], are pictured in Fig.
13 and Fig. 14.

Fig. 13. Parts of the Lorenz manifold with n = 50.

100 -

50 §

T2 20 50 r1

Fig. 14. Parts of the Lorenz manifold with n = 100.



3.4. A nonautonomous Lorenz
system

We consider a nonautonomous generalization of the
Lorenz system
!/

1 o(ry — 1)
X9 = | 01 — X2 — X123 (7)
T3 1T — ﬁ(t):l)g
with parameter setup
c=10, =28, B(t) =3 (1-sin(%t)),

cf. [Rasmussen, 2007, Example 7.14].

Figure 15 shows a local picture of the stable s-
fibers for s = 0 and s = 2 in a neighborhood of the
fixed point £ = 0. For their computation, we apply
the contour algorithm on the box [—10,10]® with
n = 100. The point, marked in red in Fig. 15 (left),
is mapped by the solution operator ¥(2,0) into a
tiny neighborhood of the fixed point & (right).

An application of the contour algorithm on the
box [—0,50] x [—50,50] x [—50,100] with n = 50
yields a global picture of s-fibers with s € {0,2},
see Fig. 16.

3.5. Computing time

In this section, we comment on computing times of
the contour algorithm. Recall that a fiber approxi-
mation requires the following steps:

(i) Iterate all points on the grid for a given num-
ber of Runge-Kutta steps and obtain a value table

{

-10

10 €2

Fig. 15.

of H*.

(ii) Use these data and the MATLAB commands
contour and isosurface, respectively, to obtain
the zero-contour of H¥.

For the numerical experiments in this article,
we use MATLAB® R20158 on an Intel® Xeon®
Processor E5-2670 with 2.6 GHz as base frequency.

The computation of the one-dimensional stable
manifold in Fig. 4 took 7.5 s for step (i) and 0.05 s to
execute the contour command in step (ii). The un-
stable manifold in this figure is more time consum-
ing, since we iterate every point on the 1500 x 1000
grid for 600 Runge-Kutta steps: 93 s for step (i) and
0.8 s for step (ii). The additional check to avoid ar-
tifacts took 4.3 s.

The two-dimensional Lorenz manifold from Fig.
12 is approximated with 400 x 400 x 400 grid points
and 75 iterations. Step (i) took 1348 s and 267 s
were needed to apply the isosurface command.

Finally, we emphasize a particular strength of
the contour algorithm: It easily calculates fiber bun-
dles in a nonautonomous model. Furthermore, the
computational effort for a single nonautonomous
fiber matches computing times for a manifold in an
autonomous system.

The left fiber in Fig. 16 needed on a 400 x 400 x
400 grid 975 s for the 50 iterations of step (i) and
the isosurface command in step (ii) took 41 s.
Corresponding times for the right fiber in Fig. 16
are 989 s and 88 s.

Approximation of nonautonomous s-fibers of (7) for s € {0, 2}.
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100
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-50
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Fig. 16. Approximation of nonautonomous s-fibers of (7) for s € {0, 2}.

References

Aulbach, B., Rasmussen, M. & Siegmund, S. [2006]
“Invariant manifolds as pullback attractors of
nonautonomous differential equations,” Dis-
crete Contin. Dyn. Syst. 15, 579-596, doi:
10.3934/dcds.2006.15.579.

Beyn, W.-J. & Klefl, W. [1998] “Numerical Tay-
lor expansions of invariant manifolds in large
dynamical systems,” Numer. Math. 80, 1-38,
d0i:10.1007/s002110050357.

Coppel, W. A. [1978] Dichotomies in Stability The-
ory (Springer-Verlag, Berlin), ISBN 3-540-
08536-X, lecture Notes in Mathematics, Vol.
629.

Dellnitz, M. & Hohmann, A. [1997] “A sub-
division algorithm for the computation of
unstable manifolds and global attractors,”
Numer. Math. 75, 293-317, doi:10.1007/
s002110050240.

Dieci, L., Elia, C. & Van Vleck, E. [2010] “Expo-
nential dichotomy on the real line: SVD and
QR methods,” J. Differential Equations 248,
287-308, doi:10.1016/j.jde.2009.07.004.

Eirola, T. & von Pfaler, J. [2004] “Numeri-
cal Taylor expansions for invariant mani-
folds,” Numer. Math. 99, 25-46, doi:10.1007/
s00211-004-0537-6.

Friedman, M. J. & Doedel, E. J. [1991] “Numeri-
cal computation and continuation of invariant
manifolds connecting fixed points,” SIAM J.
Numer. Anal. 28, 789-808.

Guckenheimer, J. & Vladimirsky, A. [2004] “A
fast method for approximating invariant man-

ifolds,” SIAM J. Appl. Dyn. Syst. 3, 232-260,
doi:10.1137/030600179.

Hadamard, J. [1901] “Sur l'itératio et les solutions
asymptotiques des équations différentielles,”
Bull. Soc. Math. France 29, 224-228.

Henderson, M. E. [2005] “Computing invariant
manifolds by integrating fat trajectories,”
SIAM J. Appl. Dyn. Syst. 4, 832-882 (elec-
tronic), doi:10.1137/040602894.

Henry, D. [1981] Geometric Theory of Semilinear
Parabolic Equations (Springer-Verlag, Berlin),
ISBN 3-540-10557-3.

Hils, T. [2010] “Computing Sacker-Sell spectra
in discrete time dynamical systems,” SIAM
J. Numer. Anal. 48, 2043-2064, doi:10.1137/
090754509.

Hiils, T. [2014] “A contour algorithm for computing
stable fiber bundles of nonautonomous, non-
invertible maps,” Tech. Rep. 14070, Bielefeld
University, CRC 701.

Johnson, M. E., Jolly, M. S. & Kevrekidis, 1. G.
[1997] “Two-dimensional invariant manifolds
and global bifurcations: some approximation
and visualization studies,” Numer. Algorithms
14, 125-140, do0i:10.1023/A:1019104828180.

Katok, A. & Hasselblatt, B. [1995] Introduc-
tion to the modern theory of dynamical sys-
tems, Encyclopedia of Mathematics and its
Applications, Vol. 54 (Cambridge University
Press, Cambridge), ISBN 0-521-34187-6, doi:
10.1017/CB0O9780511809187, with a supple-
mentary chapter by Katok and Leonardo Men-
doza.



Krauskopf, B. & Osinga, H. M. [2003] “Comput-
ing geodesic level sets on global (un)stable
manifolds of vector fields,” SIAM J. Appl.
Dyn. Syst. 2, 546-569 (electronic), doi:10.
1137/030600180.

Krauskopf, B., Osinga, H. M., Doedel, E. J., Hen-
derson, M. E., Guckenheimer, J., Vladimirsky,
A., Dellnitz, M. & Junge, O. [2005] “A survey
of methods for computing (un)stable manifolds
of vector fields,” Internat. J. Bifur. Chaos
Appl. Sci. Engrg. 15, 763-791, doi:10.1142/
S0218127405012533.

Lorenz, E. N. [1963] “Deterministic nonperiodic
flow,” J. Atmos. Sci. 20, 130-141.

Mancho, A. M., Small, D., Wiggins, S. &
Ide, K. [2003] “Computation of stable and
unstable manifolds of hyperbolic trajecto-
ries in two-dimensional, aperiodically time-
dependent vector fields,” Phys. D 182, 188-
222, d0i:10.1016/S0167-2789(03)00152-0.

REFERENCES 11

Pétzsche, C. & Rasmussen, M. [2006] “Taylor ap-
proximation of integral manifolds,” J. Dy-
nam. Differential Fquations 18, 427-460, doi:
10.1007/s10884-006-9011-8.

Pétzsche, C. & Rasmussen, M. [2009] “Computa-
tion of nonautonomous invariant and inertial
manifolds,” Numer. Math. 112, 449-483, doi:
10.1007/s00211-009-0215-9.

Potzsche, C. & Rasmussen, M. [2010] “Computa-
tion of integral manifolds for Carathéodory dif-
ferential equations,” IMA J. Numer. Anal. 30,
401-430, doi:10.1093/imanum /drn059.

Rasmussen, M. [2007] Attractivity and bifurca-
tion for monautonomous dynamical systems,
Lecture Notes in Mathematics, Vol. 1907
(Springer, Berlin).

Simé, C. [1989] “On the analytical and numeri-
cal approximation of invariant manifolds,” Les

méthodes modernes de la mécanique céleste,
eds. Benest, D. & Froeschlé, C., pp. 285-329.



