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Abstract

Stable and unstable fiber bundles with respect to a fixed point or a
bounded trajectory are of great dynamical relevance in (non)autonomous
dynamical systems. These sets are defined via an infinite limit process.
However, the dynamics of several real world models are of interest on a
short time interval only. This task requires finite time concepts of at-
traction and repulsion that have been recently developed in the literature.
The main idea consists in replacing the infinite limit process by a mono-
tonicity criterion and in demanding the end points to lie in a small neigh-
borhood of the reference trajectory. Finite time areas of attraction and
repulsion defined in this way are fat sets and their dimension equals the
dimension of the state space. We propose an algorithm for the numer-
ical approximation of these sets and illustrate its application to several
two- and three-dimensional dynamical systems in discrete and continuous
time. Intersections of areas of attraction and repulsion are also calculated,
resulting in finite time homoclinic orbits.

Keywords: Invariant fiber bundles, finite time dynamical systems, finite time
hyperbolicity, areas of attraction and repulsion, contour algorithm, homoclinic
orbits.
AMS Subject Classification: 37B55, 37D10, 34D09, 34C37.

1 Introduction

Stable and unstable fiber bundles in autonomous and nonautonomous dynamical
systems on a bi-infinite time interval, consist of all points that converge in for-
ward time respectively in backward time towards a reference solution. Due to the

∗Supported by CRC 701 ’Spectral Structures and Topological Methods in Mathematics’.

1



dynamical importance of invariant fiber bundles, various concepts have been de-
veloped for their approximation, cf. [8, 10, 14, 17, 19, 21, 23, 27, 32, 33, 38, 45, 46].
However, the infinite limit process becomes meaningless, when one is interested
in short time dynamics or if the system is defined on a finite time interval only.

In this paper, we consider a nonautonomous dynamical system (Rd,T,Ψ),
where T denotes a finite interval of R or Z. The operator Ψ(t, s; x) describes the
evolution of the point x ∈ Rd from time s ∈ T to time t ∈ T. The evolution
operator of a nonautonomous dynamical system is alternatively denoted as two-
parameter semi-groups or as processes, see [37, Definition 2.1].

The reference objects for which areas of attraction are computed are hyper-
bolic trajectories. An appropriate concept of finite time hyperbolicity is intro-
duced in detail in Section 2. It is based on exponential dichotomies and has been
developed in [5, 6, 16].

In finite time dynamical systems, the notions area of attraction and area of
repulsion allows various definitions that are not equivalent. Several authors define
these sets via decay conditions, and we refer to [18] for planar nonautonomous
ODEs, to [22] for nonautonomous ODEs in Rn and to [36] for nonautonomous
processes in Rn. Areas of attraction and repulsion are called stable and unstable
manifolds in autonomous systems. Corresponding sets in the nonautonomous
case are denoted as invariant stable and unstable fiber bundles, assuming they
exhibit respective topological structures.

In autonomous dynamical systems, generated by two-dimensional velocity
fields, Haller computed in [24] finite-time invariant manifolds via local maxima of
the scalar field dT (x0) = maxt∈[t0,t0+T ]{t : detDxf(Ψ(τ, t0; x0), τ) < 0 for all t0 ≤
τ < t}. Contour plots of dT provide approximations of finite time manifolds. For
detecting organized structures in fluid flows, the authors of [9] compare methods
that are based on manifold approximations with techniques for evaluating the
finite time Lyapunov exponent field. Related techniques are based on computing
contours of Lagrangian descriptors, see e.g. [40]. Alternative approaches for com-
puting areas of attraction and repulsion are based on numerical continuation of
local approximations. This ansatz is applied in [41] to nonautonomous dynamical
systems, generated by aperiodic vector fields.

We introduce in this paper a related concept of finite time areas of attraction
that is motivated by the definition of stable fibers in infinite time w.r.t. a bounded
trajectory ξ

T

= (ξ(t))t∈T. First, we choose an ε > 0 and replace the condition
limt→∞Ψ(t, t0; x) − ξ(t) = 0 by ‖Ψ(t+, t; x) − ξ(t+)‖ ≤ ε, where T = [t−, t+].
Note that a trajectory may enter and leave the ε-neighborhood of ξ

T

several
times. From the last entry point in T on, we additionally require the trajec-
tory to decay monotonously towards ξ

T

in an appropriately chosen norm. This
condition reflects the fact, that in infinite time, the stable fiber of a hyperbolic
trajectory consists locally of those points, whose orbits stay for all positive times
in a sufficiently small neighborhood of this trajectory, see [48, Theorem III.7] for
autonomous and [44, Corollary 4.6.11] for nonautonomous systems.

Areas of attraction, defined in this way, are numerically accessible and invert-
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ibility assumptions on the dynamical system are not needed for their calculation.
The approach that we pursue in this paper is motivated by recent contour tech-
niques for dynamical systems in infinite time. Corresponding algorithms allow
the computation of stable fibers, cf. [32, 33] as well as the detection of stable
hierarchies of fiber bundles, see [34]. In contrast to the infinite time case, finite
time systems do not require artificial restrictions to finite intervals in order to
apply numerical algorithms. The boundaries of finite time areas of attractions
turn out to be explicitly given as zero-contours of specific operators.

When dealing with areas of attraction, we do not assume invertibility of the
underlying dynamical system. However, invertibility is assumed for the compu-
tation of areas of repulsion, which are areas of attraction for the inverted system.
In the discrete time case, this assumption is critical, while for continuous time
ODE models, invertibility is guaranteed under reasonable assumptions.

In Section 3 we introduce contour techniques for nonautonomous linear sys-
tems. The resulting algorithm is applied to several three-dimensional discrete
time models. A generalization to nonlinear systems is introduced in Section 4.
Furthermore, we compute areas of attraction and areas of repulsion as well as
their intersections for finite time ODE models. The latter set is also accessible via
contour calculations. Points in this intersection belong to finite time homoclinic
orbits and we particularly discuss the dynamical relevance of homoclinic orbits
in finite time dynamical systems.

2 Hyperbolic trajectories and areas of attraction and re-

pulsion

Finite time dynamical systems

(Rd,T,Ψ) with Ψ ∈ C2(T×T×Rd,Rd) (1)

are generated, for example, by nonautonomous ODEs on a continuous time
interval T = [t−, t+] and by difference equations on a discrete time interval
T = [t−, t+] ∩ Z with t± ∈ Z:

x′(t) = f(t, x(t)), t ∈ T respectively x(t+ 1) = f(t, x(t)), t ∈ T. (2)

Ψ is the evolution operator of these systems, i.e. if x(s) = x0 then x(t) =
Ψ(t, s; x0) for t, s ∈ T, t ≥ s.

For f ∈ C0,1(R×Rd,Rd) solutions of the ODE (2) locally exist in both time
directions and thus, Ψ is invertible. Invertibility is generally not true, if Ψ is
generated by a difference equation.

In the following, open and closed intervals in T are denoted by (t, s)
T

=
(t, s) ∩T and [t, s]

T

= [t, s] ∩T, respectively.
Let ξ(t) = Ψ(t, t−; ξ(t−)) for t ∈ T be a reference solution. We establish a

notion of hyperbolicity for the trajectory ξ
T

= (ξ(t))t∈T and consider for this
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task the dynamical system

(Rd,T,Φ), where Φ(t, s) = DxΨ(t, s; ξ(s)), t, s ∈ T, t ≥ s. (3)

If Ψ is generated by (2), then Φ is the solution operator of the corresponding
variational equation

u′(t) = Dxf(t, ξ(t))u(t), t ∈ T respectively
u(t+ 1) = Dxf(t, ξ(t))u(t), t ∈ T.

(4)

2.1 Finite time hyperbolicity

The notion of hyperbolicity considered here is based on exponential dichotomies
that have been developed in [12, 13, 43]. For noninvertible systems in infinite
time, we refer to [2, 28, 35]. The definition of a finite time exponential dichotomy
considered here is an extension of [6, 5, 16, 36] to noninvertible systems. In the
following, R(P ) denotes the range of the projector P .

Definition 1 The dynamical system (3) has an exponential dichotomy on
T w.r.t. ‖ · ‖, if there exist constants αs, αu > 0 and families of projectors P s

t ,
P u
t := I − P s

t , t ∈ T, such that

(i) P
s,u
t Φ(t, s) = Φ(t, s)P s,u

s for all t, s ∈ T, t ≥ s,

(ii) Φ(t + 1, t)|R(Pu
t
) : R(P u

t ) → R(P u
t+1) is invertible for all t, t+1 ∈ T. Denote

the inverse of Φ(t, s)|R(Pu
s ) by Φ(s, t) : R(P u

t ) → R(P u
s ), t, s ∈ T, t ≥ s.

(iii) For t, s ∈ T, t ≥ s, the following estimates hold

‖Φ(t, s)x‖ ≤ e−αs(t−s)‖x‖ for all x ∈ R(P s
s ),

‖Φ(s, t)x‖ ≤ e−αu(t−s)‖x‖ for all x ∈ R(P u
t ).

(5)

For dynamical systems, generated by ODE models, both systems (1) and (3)
are invertible under reasonable assumptions. Thus, condition (ii) from Definition
1 is satisfied.

Unlike the infinite time case, dichotomy projectors of finite time systems are
in general not unique, see [5, Example 4]. The unique objects are stable and
unstable cones, cf. [16].

The choice of the norm in (5) is critical since an additional constant K on
the right hand side is not permitted that may compensate for transient dynam-
ics. Typical choices of norms are ‖x‖Γ := 〈x,Γx〉 with a positive definite and
symmetric matrix Γ ∈ Rd,d. The matrix Γ may originate from a similarity trans-
formation, since the Euclidean norm of SΦ(t, s)S−1 equals the Γ-norm of (3),
with Γ = STS. For autonomous systems, ‖ · ‖ can alternatively be chosen to
be Lyapunov adapted, cf. [3, Section 4.1]. Note that a nonautonomous choice
of the norm ‖x‖Γt

= 〈x,Γtx〉, where Γt = ST
t St is also possible. Selecting this
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norm is particularly motivated by a nonautonomous Lyapunov transformation
StΦ(t, s)S

−1
s of (3). In finite time, this concept is problematic, since transforma-

tions to arbitrary systems can be achieved in this way, see [6, Remark 7].
Due to its strict monotonicity, the dichotomy concept from Definition 1 is

referred to as M-hyperbolicity in the literature. We note that further nonequiv-
alent finite-time notions of hyperbolicity have been introduced, and connections
between these spectral concepts are pointed out in [15]. We particularly men-
tion the stronger concept of D-hyperbolicity, see [4, 25] and finite time Lyapunov
exponents, see [26, 47].

2.2 Finite time areas of attraction

Let ξ
T

be a trajectory of (1) that is hyperbolic, i.e. the corresponding variational
equation (3) has an exponential dichotomy in the sense of Definition 1. With
respect to this trajectory, we define finite time areas of attraction as follows.
First, we fix ε > 0 and introduce a local characterization of areas of attraction
in Bε(ξT) = {x

T

: ‖x
T

− ξ
T

‖∞ ≤ ε}. For t ∈ T, t < t+ we define

Ws
loc,ε(ξT, t) := {x ∈ Bε(ξ(t)) : ∀t1, t2 ∈ [t, t+]T, t1 < t2 :

‖Ψ(t2, t; x)− ξ(t2)‖ < ‖Ψ(t1, t; x)− ξ(t1)‖} ∪ {ξ(t)}.
(6)

Here, the limit condition from infinite time dynamical systems is replaced by
ε-closeness and eventual monotonicity.

Orbits of the variational equation (3) converge monotonously for starting
points x in the range of the stable dichotomy projector. Using the dichotomy
estimate (5), it follows for all t ∈ [t−, t+)T and all t1, t2 ∈ [t, t+]T with t1 < t2
that

‖Φ(t2, t)x‖ = ‖Φ(t2, t1)Φ(t1, t)x‖ ≤ e−αs(t2−t1)‖Φ(t1, t)x‖ < ‖Φ(t1, t)x‖.

This result motivates the monotonicity condition in (6). Conversely, if we assume
for fixed t ∈ [t−, t+)T that

‖Φ(t2, t)x‖ < ‖Φ(t1, t)x‖ for all t1, t2 ∈ [t, t+]T with t1 < t2,

then we conclude in this linear case that x ∈ R(P s
t ), where P

s
t is a stable projector

of an exponential dichotomy on [t, t+]T.
The local area of attraction of the bounded trajectory ξ

T

of the nonlinear
model turns out to be tangential to the stable cone from the exponential di-
chotomy of the corresponding variational equation, see [36, Theorem 4.13].

Dependence on the chosen norm that we observed in Definition 1 is also
critical in (6). For nonautonomous, linear models, strictly monotone convergence
towards the fixed point 0 holds true globally, if all stable and unstable directions
are invariant and orthogonal to each other. One can achieve this, by applying a
nonautonomous Lyapunov transformation, resulting in a nonautonomous norm.
However, assuming monotonicity globally is too restrictive.
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We define the time, when the trajectory with starting point x at time t ∈ T,
defined as {Ψ(ℓ, t; x) : ℓ ∈ [t, t+]T}, enters Bε(ξT) and stays from that time on in
this neighborhood:

ms(ξ
T

, ε, x, t) = inf{s ∈ [t, t+]T : Ψ(ℓ, t; x) ∈ Bε(ξ(ℓ))∀ℓ ∈ [s, t+]T}, (7)

where inf ∅ := t+.
Our global version of the finite time area of attraction reads for t ∈ T, t < t+

Ws
ε (ξT, t) := {x ∈ Rd : s = ms(ξ

T

, ε, x, t) ∈ [t, t+)T
and Ψ(s, t; x) ∈ Ws

loc,ε(ξT, s)}.
(8)

The definition of (8) mimics the construction of the global stable manifold via
a continuation process, starting with a local graph representation. Observe that
the evolution operator Ψ does not have to be invertible in order to define (8). In
(8), the length of the finite time area of attraction depends on ε. The following
lemma describes its dependence on ε.

Lemma 2 Assume that ξ
T

is a hyperbolic trajectory of (1) and fix t ∈ [t−, t+)T.

(i) Let ε1 > ε2 > 0, then Ws
loc,ε1

(ξ
T

, t) ⊃ Ws
loc,ε2

(ξ
T

, t).

(ii) Let ε1 > ε2 > 0, x ∈ Ws
ε1
(ξ
T

, t) and assume that ms(ξ
T

, ε2, x, t) ∈ [t, t+)T,
then x ∈ Ws

ε2
(ξ
T

, t).

Areas of attraction are positive invariant in the following sense:

Lemma 3 Assume that ξ
T

is a hyperbolic trajectory of (1) and fix ε > 0, t ∈
[t−, t+)T.

(i) Let x ∈ Ws
loc,ε(ξT, t), then Ψ(s, t; x) ∈ Ws

loc,ε(ξT, s) for all s ∈ [t, t+)T.

(ii) Let x ∈ Ws
ε (ξT, t), then Ψ(s, t; x) ∈ Ws

ε (ξT, s) for all s ∈ [t, t+)T.

2.3 Finite time areas of repulsion

Assuming that the dynamical system (1) is invertible, we observe that areas of
repulsion are areas of attraction of the inverse system. Thus, one can define
W u

loc,ε, W
u
ε and mu in complete analogy to (6), (8) and (7). The version that we

introduce here is more general and applies to noninvertible systems, too, since
the evolution operator Ψ is evaluated forward in time only. Let

Wu
ε (ξT, t) := {x ∈ Rd : ∃y ∈ Rd : Ψ(t, t−; y) = x and

s = mu(ξ
T

, ε, y, t) ∈ (t−, t]T and ∀t1, t2 ∈ [t−, s]T, t2 < t1 :
‖Ψ(t2, t−; y)− ξ(t2)‖ < ‖Ψ(t1, t−; y)− ξ(t1)‖} ∪ {ξ(t)},

with

mu(ξ
T

, ε, y, t) = sup{s ∈ [t−, t]T : Ψ(ℓ, t−; y) ∈ Bε(ξ(ℓ))∀ℓ ∈ [t−, s]T},

where sup ∅ := t−.
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3 Linear systems, areas of attraction and their computa-

tion

In this section, we consider linear dynamical systems (Rd,T,Φ) that are finite
time hyperbolic in the sense of Definition 1. An important example within this
class of systems is the variational equation (3), (4) w.r.t. a hyperbolic trajectory.

On a bi-infinite time interval T, one compensates for transient dynamics by
allowing a constant K ≥ 1 on the right hand sides of the dichotomy estimates (5).
Furthermore, dichotomy projectors are uniquely determined in infinite time, see
[42]. Stable and unstable fiber bundles turn out to be the ranges of corresponding
stable respectively unstable dichotomy projectors. Techniques for the numerical
approximation of dichotomy projectors have been proposed in [29, 30]. The
corresponding algorithms are based on solving least squares and boundary value
problems.

To finite time systems, these techniques are not directly applicable, due to the
non-uniqueness of dichotomy projectors. The unique objects, one is interested in,
are stable and unstable cones, cf. [16]. We define the stable cone for t ∈ [t−, t+)T
as follows

Ms(t) := {x ∈ Rd : ∀t1, t2 ∈ [t, t+]T, t1 < t2 : ‖Φ(t2, t)x‖ < ‖Φ(t1, t)x‖} ∪ {0}
(9)

and observe the following connection between stable cones and areas of attraction:

Ms(t) ∩ Bε(0) = Ws
loc,ε(0T, t) for all ε > 0.

Note that Ms(t) does generally not define the stable cone of the finite time
dichotomy in the sense of [16, Section 3], which requires monotonicity on [t−, t+]T
rather than on [t, t+]T as in (9).

3.1 Numerical approximation in the linear case

In order to derive a numerical algorithm, we assume that T is a discrete set. Note
that hyperbolic continuous time dynamical systems turn into hyperbolic discrete
time systems when considered on a discrete subset {tn

−

, . . . , tn+
} of T. But for

concrete ODE-models, the corresponding t-flow is typically not known explicitly.
Then, a one-step discretization scheme provides the required discrete time data.

On T = {tn
−

, . . . , tn+
}, (9) reads for n ∈ [n−, n+ − 1]

Z

Ms(tn) = {x ∈ Rd : ∀ℓ ∈ [n, n+ − 1]
Z

: ‖Φ(tℓ+1, tn)x‖ < ‖Φ(tℓ, tn)x‖}. (10)

We observe that ∂Ms(tn) ⊂ J s(tn) for n ∈ [n−, n+ − 1]
Z

, where

J s(tn) = {x ∈ Rd : gn(x) = 0},
gn(x) = maxℓ∈[n,n+−1]

Z

(‖Φ(tℓ+1, tn)x‖ − ‖Φ(tℓ, tn)x‖).

For d = 2 dimensional systems, we numerically calculate J s(tn), i.e. the zero
contour of gn, for x in some rectangle, using the Matlab-command contour.
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For a d = 3 dimensional model we similarly compute an approximation of J s(tn)
on some cuboid using the Matlab-command isosurface. The input of these
Matlab-functions is a value table of gn w.r.t. a discretization of the rectangle
respectively cuboid. In higher dimensional systems, this approach allows the
computation of two- and three-dimensional projections of J s(tn).

3.2 Autonomous linear models

We consider the autonomous linear case Φ(t, s) = At−s for t, s ∈ T = [n−, n+]Z,
t ≥ s with some hyperbolic matrix A ∈ Rd,d. Assuming that A is diagonalizable,
one only has to verify the condition (10) for the last step

‖Φ(tn+
, t)x‖Γ < ‖Φ(tn+−1, t)x‖Γ

in order to prove that x ∈ Ms(t) w.r.t. a Lyapunov adapted Γ-norm. Here

Γ = STS, where SAS−1 = diag(λ1, . . . , λd) (11)

with eigenvalues λ1, . . . , λd of A. As described at the end of Section 2.1 the
corresponding norm is given as ‖x‖2Γ := 〈x,Γx〉. The following lemma justifies
this simplification.

Lemma 4 Let A ∈ Rd,d be diagonalizable and hyperbolic. Let N ∈ N, x ∈ Rd

and assume that ‖AN+1x‖Γ < ‖ANx‖Γ. Then ‖Aℓ+1x‖Γ < ‖Aℓx‖Γ for all ℓ =
0, . . . , N .

Proof: Fix x ∈ Rd and note that ‖Ax‖2Γ = ‖SAS−1Sx‖22 =
∑d

i=1 λ
2
i (Sx)

2
i , where

(Sx)i denotes the i-th component of Sx.
We prove the converse statement ‖x‖Γ ≤ ‖Ax‖Γ ⇒ ‖Ax‖Γ ≤ ‖A2x‖Γ which

yields the claim inductively.
Assuming ‖x‖Γ ≤ ‖Ax‖Γ it follows that

0 ≥ ‖x‖2Γ − ‖Ax‖2Γ =

d
∑

i=1

(1− λ2
i )(Sx)

2
i

=

d
∑

i=1

λ2
i (1− λ2

i )(Sx)
2
i +

d
∑

i=1

(1− λ2
i )

2(Sx)2i .

As a consequence

0 ≥
d

∑

i=1

λ2
i (1− λ2

i )(Sx)
2
i = ‖Ax‖2Γ − ‖A2x‖2Γ.

�
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For an illustration, we consider the three examples

A1 =





0.9 0 0
0 1.1 0
0 0 1.5



 , A2 =





0.9 0 0
0 0.8 0
0 0 1.5



 , A3 =





0.9 0 0
0 0 0
0 0 1.5



 .

(12)
For these examples, we compute the stable cones Ms(t) for t ∈ {n+ − 3, n+ −
2, n+ − 1} in Figure 1. Note that these models are autonomous and Ms(t) only
depends on the distance from t to the right boundary n+ of the finite interval.
The actual choices of n+ and t are therefore irrelevant.

The noninvertibility in the third case causes for t ∈ T, t ≤ n+ − 2 degenerate
stable cones Ms(t). Components in x2-direction are zero after one iteration step.
If, in addition x1 = 0, then the monotonicity condition in (9) is violated in the
next iteration steps if x3 6= 0.

A1 A2 A3

x1x1x1

x1x1x1

x2x2x2

x2x2x2

x3x3x3

x3x3x3

Figure 1: Upper row: Boundaries of stable conesMs(n+−1) (brown), Ms(n+−2)
(red), Ms(n+ − 3) (blue) for the three examples (12). Lower row: Intersection
of the unit sphere with Ms(n+ − 1) for A1,2 and with Ms(n+ − 2) for A3.

3.3 Nonautonomous linear models

We observed for autonomous models in Lemma 4 that it suffices to analyze mono-
tonicity in the last step of an iteration to ensure monotonicity in each step. How-
ever, Lemma 4 does not apply to nonautonomous models. The nonautonomous
case requires to verify monotonicity in each step. For an illustration, we consider
the following system in discrete time

u(n+ 1) = A(n)u(n), where A(n) = D(n+ 1) · B ·D(−n), (13)
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B =





0.9 0 0
0 0.95 0
0 0 1.1



 , D(n) =





cosnϕ 0 − sinnϕ
sinnϕ 0 cos nϕ

0 1 0



 , ϕ =
π

3
.

We note that system (13) is not a nonautonomous similarity transformation of the
constant system v(n+1) = Bv(n), since D(−n)D(n) 6= I. Thus, the eigenvalues
of A(n), n ∈ T are meaningless for an analysis of the stability behavior of the fixed
point 0. We refer to [20, Example 4.17] and [11, Section 2.6] for counterexamples
in discrete and continuous time. Indeed, the stable subspace of the exponential
dichotomy on Z of (13) turns out be one-dimensional.

With respect to the finite interval T = [1, 11]
Z

we compute the stable cones
Ms(t) for t ∈ {3, 4, 5, 7, 9, 10} in Figure 2. This figure particularly illustrates
that each half of the stable (and unstable) cone is generally not convex.

x1

x1x1 x1

x1x1

x2

x2

x2
x2

x2x2

x3
x3

x3x3x3

x3

t = 10 t = 9 t = 7

t = 5 t = 4 t = 3

Figure 2: Intersection of the Euclidean unit-ball with stable cones Ms(t) of (13).
For t = 4, an alternative view of the cone is presented.

4 Nonlinear systems, areas of attraction and repulsion

and their computation

In this section, the contour techniques from Section 3 are transferred to nonlinear
dynamical systems, starting with the autonomous case.
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4.1 Autonomous nonlinear models

Consider the autonomous nonlinear case Ψ(t, s; ·) = f t−s(·) for t, s ∈ T =
{tn

−

, . . . , tn+
}, t ≥ s. We define tn = n, if the underlying system is discrete

and generated by the map f . If the underlying system is an ODE, T defines
some grid in R and f is the corresponding one-step map that originates from a
numerical discretization scheme.

We assume that

(A0) f ∈ C2(Rd,Rd), f(0) = 0 and A := Df(0) is a hyperbolic matrix.

As in Section 3.2, we additionally assume that A is diagonalizable in order to
define Γ as in (11). Also in this nonlinear setup, we obtain for sufficiently small
ε that x ∈ Ws

loc,ε(t) for x ∈ Bε(0), provided ‖Ψ(tn+
, t; x)‖Γ < ‖Ψ(tn+−1, t; x)‖Γ

holds true. Thus we do not have to verify monotonicity in each step of the
iteration within (6).

Lemma 5 Assume (A0), let A be diagonalizable and fix N ∈ N. Then there
exists an ε > 0 such that for each x ∈ Bε(0), satisfying ‖fN+1(x)‖Γ < ‖fN(x)‖Γ
it follows for any ℓ ∈ {0, . . . , N} with f i(x) ∈ Bε(0), i = ℓ, . . . , N that

‖f ℓ+1(x)‖Γ < ‖f ℓ(x)‖Γ.

Proof: First, observe that ‖f(x)‖2Γ = ‖Ax‖2Γ + g1(x) and ‖f 2(x)‖2Γ = ‖A2x‖2Γ +
g2(x) with g1,2(x) = O(‖x‖3Γ).

Choose ε > 0 such that

d
∑

i=1

(1− λ2
i )

2(Sx)2i ≥ 2g1(x)− g2(x) for all x ∈ Bε(0). (14)

Similar to the proof of Lemma 4, we show the converse statement.

Let x ∈ Bε(0) such that ‖x‖Γ − ‖f(x)‖Γ ≤ 0 then ‖f(x)‖Γ − ‖f 2(x)‖Γ ≤ 0,

which yields the claim inductively.
Assuming ‖x‖Γ ≤ ‖f(x)‖Γ it follows that

0 ≥ ‖x‖2Γ − ‖f(x)‖2Γ = ‖x‖2Γ − ‖Ax‖2Γ − g1(x)

=

d
∑

i=1

λ2
i (1− λ2

i )(Sx)
2
i +

d
∑

i=1

(1− λ2
i )

2(Sx)2i − g1(x).

Using (14), we conclude for x ∈ Bε(0) that

0 ≥
d

∑

i=1

λ2
i (1− λ2

i )(Sx)
2
i + g1(x)− g2(x) = ‖f(x)‖2Γ − ‖f 2(x)‖2Γ.

�
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In the autonomous case, Lemma 5 allows in an appropriate norm ‖ · ‖ and for
sufficiently small ε > 0 the efficient approximation of Ws

ε (0, t). First we define
for t ∈ [tn

−

, tn+−1]T

G̃s(z, t) := ‖Ψ(tn+−1, t; z)‖ − ‖Ψ(tn+
, t; z)‖. (15)

By including the condition ‖Ψ(tn+−1, t; z)‖ < ε into the operator, we obtain

Gs
ε(z, t) := min{G̃s(z, t), ε− ‖Ψ(tn+−1, t; z)‖}. (16)

The boundary of Ws
ε (0, t) is a subset of the zero-contour of Gs

ε(·, t) and equality
holds true, if the system satisfies certain nondegeneracy conditions.

If the system is invertible, we similarly obtain an approximation of the area
of repulsion for t ∈ [tn

−
+1, tn+

]
T

by computing the zero-contour of

Gu
ε (z, t) := min{‖Ψ(tn

−
+1, t; z)‖ − ‖Ψ(tn

−

, t; z)‖, ε− ‖Ψ(tn
−
+1, t; z)‖}. (17)

Note that areas of repulsion are introduced in Section 2.3 for both, invertible
and noninvertible systems. We avoid the time consuming search for appropriate
pre-images and numerically compute in this paper areas of repulsion for invertible
examples only.

Finally, we consider homoclinic areas, which are the intersections of areas of
attraction and repulsion, see Section 4.1.5 for a formal introduction. This set
turns out to be numerically accessible at time t ∈ [tn

−
+1, tn+−1]T by computing

the zero-contour of

Gε(z, t) := min{Gs
ε(z, t), G

u
ε (z, t)}. (18)

4.1.1 A three-dimensional map with one stable eigenvalue

For an illustration, we consider the system x(n+ 1) = f(x(n)), where

f





x1

x2

x3



 =





1
2
x1

2x2 −
7
4
x2
1

3x3 −
11
4
x2
1



 . (19)

On an infinite time interval, the one-dimensional stable manifold of the hyperbolic
fixed point 0 has the global graph representation

Ws(0) =
{

(y, y2, y2)T : y ∈ R
}

. (20)

We compute the boundary ofWs
ε (0, t) for ε = 0.2 and t ∈ {n+−3, n+−2, n+−1} in

Figure 3. For this task, we evaluate for all starting points on a 400×400×400 grid
around the fixed point, the function G̃s

ε(·, t), defined in (15). From the resulting
data, the Matlab routine isosurface computes the zero-contour, shown in
Figure 3. We observe that for decreasing t, the approximation ofWs

ε (0, t) becomes
longer and narrower. These three-dimensional sets converge towards the one-
dimensional manifold (20) as t → −∞.
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x1

x1

x1

x2

x2

x2

x3

x3

x3

Figure 3: Approximation of Ws
ε (0, t) for (19) for t = n+ − 1 (upper diagram),

t = n+ − 2 (lower diagram) and t = n+ − 3 (right diagram).

4.1.2 A three-dimensional map with two stable eigenvalues

Next, we analyze the dynamical system x(n + 1) = f(x(n)) that is generated by

f





x1

x2

x3



 =







1
2
x1

1
3
x2

2x3 −
7
4
x2
1 −

17
9
x2
2






. (21)

The hyperbolic fixed point 0 possesses two stable and one unstable eigenvalue.
When considering this system on an infinite time frame, the stable manifold has
the global graph representation

Ws(0) = {(y1, y2, y
2
1 + y22)

T , y ∈ R2}. (22)

We detect the boundary of Ws
ε (0, t) for ε = 0.2 and t ∈ {n+ − 3, n+ − 2, n+ −

1}. For all points z from a 400 × 400 × 400 grid we evaluate Gs
ε(z, t), see (16).

Zero-contours of Gs
ε(·, t), computed with the Matlab routine isosurface, are

shown in Figure 4. We observe that these three-dimensional finite time areas of
attraction converge towards the two-dimensional manifold (22) as t → −∞.

4.1.3 Areas of attraction and repulsion for a two-dimensional ODE-model

We consider the finite time ODE-model
(

x1

x2

)′

=

(

1.6(x1 + x2
2)

ν(−x2
1 + x2)

)

, ν = −1.6016, for t ∈ T = [−2.5, 2.5]. (23)

This model exhibits homoclinic dynamics in finite time, since – as we will see –
areas of attraction and repulsion of the hyperbolic fixed point 0 intersect. We

13



x1 x1

x1

x2x2

x2

x3

x3x3

Figure 4: Approximation of Ws
ε (0, t) for (21) for t = n+−1 (upper left diagram),

t = n+ − 2 (upper right diagram) and t = n+ − 3 (lower diagram).

note that on an infinite time axis, (23) exhibits homoclinic orbits only for the
parameter value ν = −1.6, since for this choice of parameter, stable and unstable
manifolds of the fixed point 0 have a whole orbit in common.

We discretize (23) with the classical Runge-Kutta scheme – which is a one-
step method of order 4 – with step size h = 0.01. The area of repulsion coincides
with the area of attraction for the inverse system. In the continuous time system
(23), this inversion is not critical and in practice, we apply the numerical scheme
with a negative step size.

We proceed by computing the zero-contour of Gs,u
ε (·, t) with ε = 0.1, cf. (16),

(17), on a 1000 × 1000 grid, using the Matlab routine contour. Finite time
homoclinic points lie in the intersection of areas of attraction and repulsion, shown
in yellow in Figure 5. The boundary of this set is given as the zero-contour of
the operator Gε(·, t), defined in (18). Additionally, we apply in a neighborhood
of the fixed point the contour-algorithm from [32, 33] for computing nearly one-
dimensional parts of areas of attraction and repulsion. We refer to the end of
Section 4.2 for more details on numerical difficulties that we observe in this case.

4.1.4 A three-dimensional ODE-model with finite time homoclinic orbits

We illustrate that the techniques from Section 4.1.3 are not restricted to two-
dimensional models. Consider the three-dimensional version of (23)





x1

x2

x3





′

=





1.6(x1 + x2
2)

ν(−x2
1 + x2)

0.01x3



 , ν = −1.6016, for t ∈ T = [−2.5, 2.5]. (24)
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x1

x2

n = 50

n = 400

n = 450

n = 499

Figure 5: Approximation of Ws
ε (0, t) (green) and of Wu

ε (0, t) (red) with t =
−2.5+nh for (23). Homoclinic points lie in the intersection of these sets (yellow).

Using the same approach as in Section 4.1.3 we compute in Figure 6 the three-
dimensional analog of the lower right diagram from Figure 5. For this task, we
choose ε = 0.1, h = 0.01, t = 2.5−h and apply the isosurface algorithm, w.r.t.
a 400× 400× 400 grid, to Gs

ε(·, t), G
u
ε (·, t) respectively Gε(·, t).

4.1.5 A note on homoclinic dynamics

Let ξ
T

be a bounded trajectory of the dynamical system (Rd,T,Ψ) on a bi-
infinite time interval T. A second trajectory x̄

T

6= ξ
T

is homoclinic w.r.t. ξ
T

if limt→±∞,t∈T ‖x̄(t) − ξ(t)‖ = 0. Under reasonable hyperbolicity assumptions,
numerical approximations of ξ

T

and x̄
T

can be computed by solving boundary
value problems. Precise error estimates justify the approximation process, see [7,
Section 4] for autonomous and [31] for nonautonomous systems. Persistence of
homoclinic orbits under time discretization has been analyzed in [52, Theorem
4.3] and [23, Theorem 4.2].

Homoclinic orbits are of great dynamical relevance. For autonomous discrete
time systems, it is well known that in the maximal invariant neighborhood of
a homoclinic orbit, the dynamics are conjugate to a subshift on bi-infinite se-
quences. This symbolic dynamical system is a prototype for chaotic dynamics.
We refer to the famous theorem of Smale [50] and Shilnikov [49] and to the arti-
cles [51] and [7] for recent discussions of the symbolic coding in infinite time. The
latter reference also considers the finite time case, including numerical techniques
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x1

x1

x2

x2
x3

x3

Figure 6: The left panel shows an approximation of Ws
ε (0, t) (green) and of

Wu
ε (0, t) (red) for (24) for t = 2.5 − h. The intersection of these sets (blue) is

illustrated in the right panel.

that provide an approximation of the maximal invariant set.
Let T̃ be a bounded time interval in discrete or continuous time. An orbit x̄

T̃

of the finite time dynamical system (Rd, T̃,Ψ) is homoclinic w.r.t. the reference
trajectory ξ

T̃

if

x̄(t) ∈ Ws
ε (ξ

T̃

, t) ∩Wu
ε (ξ

T̃

, t) for all t ∈ (t−, t+)
T̃

.

Homoclinic orbits of infinite time dynamical systems result in finite time ho-
moclinic orbits for a finite time restriction of the system, under two additional
assumptions. First, the homoclinic orbit must eventually converge monotonously
towards the reference trajectory and secondly, these orbits must reach the ε-
neighborhood within the finite time horizon.

Formally, we assume on the infinite time interval T without loss of generality
that ξ(t) = 0 for all t ∈ T, which can be achieved by a nonautonomous Lyapunov
transformation. In an ε̄-neighborhood of 0, points on the stable fiber bundle at
time t ∈ T have the graph representation x = xs + hs

t (xs), where xs lies in the
stable subspace at time t of the exponential dichotomy and hs

t (0) = 0,Dhs
t(0) = 0,

see [1, Theorem 4.1]. A corresponding graph representation also exists for points
on the unstable fiber bundle: x = xu + hu

t (xu) for t ∈ T.
We state the following assumptions on the infinite time dynamical systems

(1) and (3).

(A1) The fixed point 0 is M-hyperbolic in the sense of Definition 1.

(A2) x̄
T

is a homoclinic orbit w.r.t. the fixed point 0 of Ψ.

(A3) There exists a C > 0 such that Ψ(t, s; x) = Φ(t, s)x + g(t, s, x), where
‖g(t, s, x)‖ ≤ C‖x‖2 for all x ∈ Bε̄(0) and all s, t ∈ T such that |t− s| ≤ 1.
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(A4) ‖Φ(t, s)‖ ≤ C for all s, t ∈ T such that |t− s| ≤ 1.

(A5) ‖hs,u
t (x)‖ ≤ C‖x‖2 for all t ∈ T and x ∈ Bε̄(0).

(A6) The (possibly nonautonomous) norm satisfies ‖xs,u(t)‖ ≤ ‖x(t)‖ for all
x(t) = xs(t) + xu(t) ∈ Bε̄(0), where xs,u(t) lies in the stable respectively
unstable subspace of the exponential dichotomy at time t ∈ T.

Theorem 6 Let the assumptions (A1)-(A6) be satisfied. Then there exists an
ε̃ > 0 such that for any 0 < ε < ε̃, there is an N̄ such that for all N ≥ N̄ ,
TN := [−N,N ]

T

it follows that x̄
TN

is a finite time homoclinic orbit of the
system (Rd,TN ,Ψ) w.r.t. the fixed point 0.

Proof: First, we verify monotonicity of the homoclinic orbit x̄
T

in a sufficiently
small neighborhood of 0. With ε̄ from (A3), one finds an s̄ ∈ T such that
x̄(t) ∈ Bε̄(0) for all t ∈ T, t ≥ s̄. We conclude for all t, s ∈ T, t = s + 1 > s > s̄

that

‖Ψ(t, s; x̄(s))‖ ≤ ‖Φ(t, s)x̄(s)‖+ ‖g(t, s, x̄(s))‖

≤ ‖Φ(t, s)x̄s(s)‖+ ‖Φ(t, s)hs
s(x̄s(s))‖+ ‖g(t, s, x̄(s))‖

≤ e−αs(t−s)‖x̄s(s)‖+ C‖x̄s(s)‖
2 + C‖x̄(s)‖2

≤
(

e−αs + 2C‖x̄(s)‖
)

‖x̄(s)‖

< ‖x̄(s)‖

for 0 < ε̃ ≤ ε̄ sufficiently small and x̄(s) ∈ Bε̃(0). A similar computation proves
monotone convergence for t → −∞, provided ε̃ is decreased even further.

Thus, we find for each 0 < ε < ε̃ an N̄ such that the endpoints of the
homoclinic orbit x̄

TN
lie in Bε(0) for all N ≥ N̄ . As a consequence, x̄

TN
lies in

the intersection of finite time areas of attraction and repulsion of the fixed point
0. �

Homoclinic points of (24) at time t = 2.5 − h are located in the blue area,
shown in Figure 6. The assumptions of Theorem 6 are satisfied for this example.
However, the variational equation (4) along this homoclinic orbit does not possess
an exponential dichotomy in the sense of Definition 1. A dichotomy estimate of
the form (5) only holds, if a reasonably small constant K > 1 is accepted on the
right hand side of (5).

In finite time models, homoclinic orbits are not isolated. It follows from [7,
Theorem 8] that the distance between two homoclinic orbits shrinks exponentially
fast towards the midpoint of the finite time interval. The homoclinic areas that
are shown in Figure 5 clearly illustrate this characteristic.

Finally, we note that the occurrence of homoclinic chaos in nonautonomous
discrete time systems – on infinite time intervals – depends on the way in which
stable and unstable sets intersect each other, cf. [39]. The main reason for non-
chaotic dynamics near homoclinic orbits constitutes the observation that stable
and unstable fibers may intersect only once in an isolated point, see [23] for more
details. We introduce a finite time example of this type in the next section.
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4.2 A nonautonomous nonlinear model

We consider the following model for homoclinic dynamics from [23, Section 5.1]:

(

x1

x2

)′

=

(

x2 + x2
1 + 6x1sech

2(t)
x2
1 + 4x1 + x2

2 − 12x2sech
2(t) tanh(t)

)

. (25)

With respect to the finite time interval T = [−1.5, 1.5], we compute areas of
attraction and repulsion of the hyperbolic fixed point 0 at t = −1 and t = −0.5.
We choose ε ∈ {1.8, 2, 2.2} rather large. This setting guarantees an intersection of
stable and unstable sets on the short time interval T. In Figure 7, these sets and
their intersections are computed. We apply the classical Runge-Kutta scheme for
discretizing the ODE (25) with step size h = 0.01.

x1

x2

x2

t = −1, ε = 1.8 t = −1, ε = 2 t = −1, ε = 2.2

t = −0.5, ε = 1.8 t = −0.5, ε = 2 t = −0.5, ε = 2.2

Figure 7: Approximation of Ws
ε (0, t) (green) and of Wu

ε (0, t) (red) for (25). Ho-
moclinic points lie in the intersection of these sets (yellow).

During this computation, we have to verify monotonicity in the ε-neighbor-
hood of 0 in each step. Unlike the autonomous case, it does not suffice to verify
monotonicity in the last step only, since Lemma 5 does not apply to nonau-
tonomous models.
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The width of the green sets shrinks in a neighborhood of the fixed point and
we cannot expect to detect these narrow areas by computing the zero contour of

Ĝs
ε(z, t) := min{ε− ‖Ψ(t+ − h, t; z)‖,

‖Ψ(s, t; z)‖ − ‖Ψ(s+ h, t; z)‖ : ms(0, ε, z, t) ≤ s ≤ t+ − h},

where ms is defined in (7). For this task, points from the chosen 2000 × 2000
grid have to lie inside and outside of the contour, which is not satisfied in a
neighborhood of 0. Alternatively, one may apply techniques for infinite time
dynamical systems to compute this nearly one-dimensional part of the stable set.
The contour-algorithm from [32, 33] provides an approximation of invariant fiber
bundles for infinite time systems. We apply this algorithm for computing parts
of Figure 5.

5 Conclusion

In finite time dynamical systems, the absence of an infinite limit process leads to
several meaningful, but nonequivalent definitions of areas of attraction and re-
pulsion. The definition proposed here is based on two characteristics: ε-closeness
of the end points to the reference trajectory and eventual monotonicity. This
ansatz allows numerical computations, since the boundaries of these areas are
essentially the zero-set of specific operators. By evaluating these operators nu-
merically and applying theMatlab-routines contour and isosurface we obtain
a graphical representation of areas of attraction and repulsion. These techniques
apply to autonomous and nonautonomous dynamical systems. Calculations in
the nonautonomous case are slightly more expensive, since the test for mono-
tonicity is more involved. Intersections of areas of attraction and repulsion reveal
homoclinic points that are of great dynamical relevance. For an illustration, we
choose two- and three-dimensional models in discrete and continuous time. We
note that our techniques also apply to higher dimensional models and enable the
computation of two- and three-dimensional projections, see [34, Section 3.6] for
corresponding calculations in infinite time dynamical systems.
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& Applications. Birkhäuser Boston, Inc., Boston, MA, 2000.

[12] W. A. Coppel. Dichotomies in Stability Theory. Springer-Verlag, Berlin, 1978. Lecture
Notes in Mathematics, Vol. 629.
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[31] T. Hüls. Homoclinic trajectories of non-autonomous maps. J. Difference Equ. Appl.,
17(1):9–31, 2011.
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[45] C. Pötzsche and M. Rasmussen. Taylor approximation of invariant fiber bundles for nonau-
tonomous difference equations. Nonlinear Anal., 60(7):1303–1330, 2005.
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