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Abstract

In this paper we bring together results about the density of subsemigroups of abelian Lie groups, the min-
imal number of topological generators of abelian Lie groups and a result about actions of algebraic groups.
We find the minimal number of generators of a finitely generated abelian semigroup or group of matri-
ces with a dense or a somewhere dense orbit by computing the minimal number of generators of a dense
subsemigroup (or subgroup) of the connected component of the identity of its Zariski closure.
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1. Introduction

The concept of a hypercyclic abelian finitely generated semigroup of bounded linear opera-
tors was introduced by N.S. Feldman in [11]. It generalizes the concept of a hypercyclic operator
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in linear dynamics. A bounded linear operator on a real or complex topological vector space is
called hypercyclic if the semigroup generated by this operator has a dense orbit. Hypercyclicity
of a single bounded linear operator is a phenomenon that occurs only in infinite dimensional
separable spaces, see e.g. [6] or [12], but hypercyclicity of semigroups may occur also on fi-
nite dimensional vector spaces, see [11,14]. A problem raised by Feldman in [11] is to find the
minimal number of generators for an abelian semigroup of matrices which is hypercyclic. More
specific questions which arise naturally is to solve this problem for special types of matrices.
In the same paper Feldman showed that this minimal number of generators for a semigroup of
diagonal n × n matrices with complex entries is n + 1. Recently there has been done much re-
search about this subject. We mention only [15,3,8,9,4,5,10] for the abelian case and [2,13] for
the non-abelian case. Our methods differ from those in the previously mentioned papers since
we use methods from the theories of algebraic groups and algebraic actions.

In this paper we determine the minimal number of generators of a finitely generated group
or semigroup of commuting matrices with real or complex entries with a dense or a somewhere
dense orbit for several classes of matrices. We would like to point out that for this number there
is no difference between dense and somewhere dense orbits and also no difference between the
group and the semigroup cases. This follows from the following theorem which is the basic result
of the present paper.

Let V be a finite dimensional real vector space and let S be a subsemigroup of GL(V ). For a
point x ∈ V we say that x has a somewhere dense orbit if the closure Sx of its orbit Sx contains
a non-empty open subset of V .

Theorem 1.1. Let S be a finitely generated commutative subsemigroup of GL(V ) and let x ∈ V

be a point which has a somewhere dense orbit. Let G be the Zariski closure of S and let G0 be
its connected component of the identity with respect to the Euclidean topology. Then the orbit
Gx of x is an open subset of V , the natural map G → Gx, g �→ gx, is a diffeomorphism and the
closure of S is a subgroup of G and contains G0.

We will obtain more precise information about the closure of the orbit Sx in [1]. In particular
we will prove that Gx is dense in V and, in the complex case, that G = G0 which implies the
following.

Corollary 1.2. If additionally V has a structure as a complex vector space such that every s ∈ S

is complex linear, then Sx is dense in V .

In this paper we show that the orbit Sx is dense in V , if the number of generators of S is
minimal among all subsemigroups S of GL(V ) having a somewhere dense orbit, except if dimV

is odd. For a precise formulation and further information about this see Corollary 5.4.
After Theorem 1.1 it remains to compute the minimal number of generators of a dense sub-

semigroup (or subgroup) of the abelian Lie group G0. This number is one plus the dimension of
the following group, namely G0 modulo its maximal compact subgroup; see Section 4. The re-
sults of Tables 1 and 2 and similar ones follow.

We would like to stress that for complex matrices an orbit of a point is dense if it is somewhere
dense but this is not the case for real matrices, see [11]. In the same work Feldman gave a criterion
for when a somewhere dense orbit is dense in terms of spectral properties of the elements of the
semigroup [11, Theorem 5.5]. In Section 5 we give an explanation for this difference between the
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Table 1
Minimum number of generators of an abelian (semi)group of real matrices which has a dense
or a somewhere dense orbit.

Minimum number of generators of an abelian (semi)group of real matrices

Commuting Diagonal Triangular non-diagonalizable

(n + 2)/2, if n is even n + 1 n + 1
(n + 3)/2, if n is odd

Triangular Toeplitz non-diagonalizable

n + 1

Table 2
Minimum number of generators of an abelian (semi)group of complex matrices which has a
dense or a somewhere dense orbit.

Minimum number of generators of an abelian (semi)group of complex matrices

Commuting Diagonal Triangular non-diagonalizable

n + 1 n + 1 n + 2

Triangular Toeplitz non-diagonalizable

n + 2

real and the complex case based on a structure theorem for algebraic groups and in a forthcoming
paper [1] will give more details.

The contents of the paper are as follows. In Section 2 we show that a somewhere dense sub-
semigroup of a connected abelian Lie group is actually dense. In Section 3 we give the proof
of Theorem 1.1. This proof follows from a basic theorem about actions of algebraic groups
[7, §3.18]. In Section 4 we compute the minimal number of generators of a dense subgroup and
a dense subsemigroup of a connected abelian Lie group. This is an easy application of Kroneck-
er’s theorem. In Section 5 we give applications for the case of hypercyclic finitely generated
abelian (semi)groups of matrices with various types of generators.

So in this paper we bring together results about the density of subsemigroups of abelian
Lie groups (Section 2), the minimal number of topological generators of abelian Lie groups
(Section 4) and a result about actions of algebraic groups (Section 3), to solve the problem of
determining the minimal number of commuting matrices such that the semigroup they generate
has a (somewhere) dense orbit. The results of Sections 2 and 4 may be of independent interest.

2. A somewhere dense finitely generated subsemigroup of an abelian connected Lie group
is dense

Theorem 2.1. Let G be an abelian Lie group whose connected component G0 is of finite index
in G. Let S be a finitely generated subsemigroup of G, which is somewhere dense in G, i.e. its
closure S contains a non-empty open subset of G. Then S is a subgroup of G and contains G0.

We first deal with some special cases.

Lemma 2.2. Let S be a subsemigroup of the additive group R, which contains both a negative
and a positive real number. Then S is either a discrete cyclic subgroup of R or S is dense in R.
In particular, the closure of S is a group.
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Proof. Let m+ := inf{a; a ∈ S, a > 0} and m− := inf{|a|; a ∈ S, a < 0}. We first claim that
m+ = m−. If a > 0 and −b < 0 are elements of S then a − nb ∈ S for every n ∈ N. Hence there
is an element a′ ∈ S with 0 < a′ � b. So m+ � m−. Similarly −b + na ∈ S for every n ∈ N.
Hence there is an element −b′ ∈ S with 0 < b′ � a. Thus m− � m+.

Now there are two cases. If m+ = m− = 0 then S is dense in R. If m+ = m− = a > 0 we
claim that S = a · Z. Suppose b ∈ S. Let b = na + r with n ∈ Z and 0 � r < a. Our claim is
that r = 0. By definition of m+ = m− there is an element c of S arbitrarily close to −na, hence
b + c ∈ S is arbitrarily close to r , so r must be zero. �

The case of the additive group R of Theorem 2.1 follows from the following lemma.

Lemma 2.3. A finitely generated subsemigroup of the additive group R is either dense in R or
has no accumulation point in R.

Proof. Let S be a finitely generated subsemigroup of the additive group R. If S contains both
positive and negative elements, then S is either a discrete cyclic subgroup of R or S is dense in R,
by Lemma 2.2. If S contains only non-negative elements, then there is a minimal element among
the positive generators, say s0. If t is the number of generators of S then there are at most t · n
elements of S of absolute value � n · s0. Similarly, if S contains only non-positive elements. �
Lemma 2.4. Let S be a finitely generated subsemigroup of Rn. If S has non-empty interior, then
the cone C(S) spanned by S, i.e. C(S) := {r · s; r ∈ R, r � 0, s ∈ S} is dense in Rn.

Proof. We first claim that the closure C(S) of C(S) is actually a convex cone. Let a, b be
elements of S. Then all non-negative integral linear combinations of a and b are in S hence all
non-negative rational linear combinations of a and b are in C(S) and hence all non-negative
real linear combinations of a and b are in C(S). It follows that the convex cone spanned by two
elements of C(S) is contained in C(S), therefore C(S) is convex.

We now show that C(S) is actually all of Rn. If not there is a linear form l on Rn such
that l(C(S)) � 0, by the separating hyperplane theorem. The subsemigroup l(S) of R has only
non-negative values and, being finitely generated, must be discrete by Lemma 2.3. But S has
non-empty interior hence so does l(S) ⊃ l(S), since l is an open map. This contradicts our hy-
pothesis. �
Proof of Theorem 2.1. We first show the theorem for the case G = Rn. Let U be a non-empty
open subset of S. It suffices to show that S intersects −U , say −u ∈ −U ∩ S, u ∈ U , because
then the semigroup S contains the neighborhood −u+U of zero and hence S = Rn. We show in
fact that −U ∩C(S) is contained in S. Note that the set −U ∩C(S) is non-empty by Lemma 2.4.
So let −u ∈ −U ∩ C(S). We may assume that u 	= 0. Then the closed subsemigroup Ru ∩ S

of the line Ru contains points on either side of zero, hence it is either all of Ru or has no
accumulation point, by Lemma 2.2. The latter case is impossible since u is an inner point of S.
Thus Ru ⊂ S.

Now let G be a connected abelian Lie group. So there is a covering homomorphism
π : Rn → G whose kernel is a finitely generated discrete subgroup of Rn. Hence if S is a finitely
generated subsemigroup of G whose closure contains a non-empty open set, then so is π−1(S)

in Rn. Hence π−1(S) is dense in Rn, thus S is dense in G.
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The general case is now reduced to the case of a connected group by the following lemma and
the observation that the image of S in G/G0, under the quotient map, is a subsemigroup of the
finite group G/G0 and is hence a subgroup. �
Lemma 2.5. Let G be an abelian Lie group whose connected component G0 is of finite index
in G. If S is a finitely generated subsemigroup of G which is somewhere dense in G then S ∩ G0

contains a finitely generated subsemigroup of G0 which is somewhere dense in G0.

Proof. Let m be the number of connected components of G. Then x �→ xm is a covering home-
omorphism G → G0 with finite kernel which maps S to the subsemigroup Sm = {sm; s ∈ S}
of G0, which is somewhere dense in G0 and generated by {sm

1 , . . . , sm
t } if S is generated by

{s1, . . . , st }. �
We shall need the following fact later on.

Lemma 2.6. Let G be an abelian Lie group with finite component group G/G0.

(a) If G has a dense sub(semi)group with t generators then so does G0.
(b) If G0 has a dense sub(semi)group with t0 generators and G/G0 can be generated (as a

group or semigroup, there is no difference, because a non-empty subsemigroup of a finite
group is a subgroup) by t1 elements then G can be generated by max(t0, t1) elements.

Proof. (a) is proved as the preceding lemma.
(b) Let g = gG0 be a connected component of G. Suppose it has order m(g) regarded as an

element of the group G/G0. Then given an element h ∈ G0 there is an element g ∈ g such that
gm = h with m = m(g). This follows from the fact that the group homomorphism x �→ xm of
G to itself is a covering with finite kernel and hence maps connected components of G onto
connected components of G and that the induced homomorphism G/G0 → G/G0 is x �→ xm.
Let us call an element g as above the m(g)-th root of h and denote it by m(g)

√
h. Our claim now

follows from the following fact. Let {h1, . . . , ht0} be a set of generators of a dense sub(semi)group
of G0 and let {g1, . . . , gt1} be a set of generators of G/G0. Define t2 = min(t0, t1) and Amin =
{ m(g1)

√
h1, . . . ,

m(gt2 )
√

ht2}. Then Amin ∪ {ht2+1, . . . , ht0} generates a dense sub(semi)group of G if
t0 � t1 = t2, and Amin ∪ {gt2+1, . . . , gt1} generates a dense sub(semi)group of G if t1 � t0 = t2,
where gi is an arbitrary element of gi for i > t2. �
3. Proof of Theorem 1.1

Observation 3.1. Let G be an abelian subgroup of GL(V ) and let x ∈ V be a point which has a
somewhere dense orbit. Then the isotropy group Gy is trivial for every point y of the orbit Gx

of x.

Proof. The isotropy group of a point y = gx of the orbit Gx is Gy = gGxg
−1, which equals Gx

since G is abelian. So h ∈ Gx fixes every point of the orbit Gx. But the orbit Gx spans V , since
it is somewhere dense. Hence h = 1. �

All the claims of Theorem 1.1 follow from the following proposition and Theorem 2.1.
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Proposition 3.2. Let S be a commutative subsemigroup of GL(V ) and let G be its Zariski closure.
Suppose that the orbit Sx of x ∈ V is somewhere dense in V . Then G → Gx, g �→ gx, is a
diffeomorphism of G onto an open subset of V . In particular, S is somewhere dense in G.

In a later paper [1] we will see that Gx is actually dense in V and describe G/G0.

Proof. A basic theorem about algebraic actions of algebraic groups says that the orbit Gx is open
in its closure Gx and that the natural map G → Gx, g �→ gx, is a submersion; see [7, §3.18].
Thus in our case it follows that Gx contains a non-empty open subset of V . Then Gx is open
in V , by G-invariance. Furthermore, the natural map G → Gx is a diffeomorphism, since it is
bijective, by Observation 3.1, a submersion by the theorem cited above and its tangent map at
the identity element has as kernel the tangent space to Gx which is trivial. It follows that the
subsemigroup S of G is somewhere dense in G. �
4. The number of topological generators of a connected abelian Lie group

Let G be a topological group. Let us define dgrG and dmG to be the minimal number of
elements of a subset A of G such that the group, resp. semigroup, generated by A is dense in G.
The subscript m was chosen because a semigroup is sometimes called a monoid.

Let G be a connected abelian Lie group. Then G contains a unique maximal compact sub-
group T . The subgroup T is actually a torus, i.e. a compact connected abelian Lie group. Let
d be the dimension of G/T . The number d is called, occasionally, the non-compact dimension
of G.

Theorem 4.1.

dgrG = dmG = d + 1

unless G is the trivial group.

The proof is broken up into a series of lemmata.

Lemma 4.2 (Kronecker). For a torus G 	= {1} we have dgrG = dmG = 1. More precisely, if
G = Rn/Zn then for a vector v = (r1, . . . , rn) ∈ Rn the monoid generated by v mod Zn is dense
in G if and only if the elements 1, r1, . . . , rn in R are linearly independent over Q.

Proof. Let H be the closure of the subsemigroup of G generated by v mod Zn. Then H is a
subgroup of G since every compact subsemigroup of a topological group is actually a group.
Then by Pontryagin duality H is the intersection of the kernels of all continuous homomor-
phisms ϕ : Rn/Zn → R/Z which vanish on H . Now ϕ is induced by a linear map ϕ : Rn → R

with the property that ϕ(Zn) ⊂ Z, so ϕ(x1, . . . , xn) = α1x1 + · · · + αnxn with αi ∈ Z for
(x1, . . . , xn) ∈ Rn. But ϕ = 0 is the only such map which maps v = (r1, . . . , rn) to an element of
Z if and only if 1, r1, . . . , rn are linearly independent over Q. �

It follows that Rn has a dense subgroup with n+1 generators. We show here as a consequence
of Lemma 4.2 that Rn has a dense subsemigroup with n + 1 generators.
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Lemma 4.3. dgr(R
n) = dm(Rn) = n + 1 for n > 0.

Proof. A subgroup of Rn generated by at most n vectors is clearly not dense in Rn. On the other
hand, we will show that the subsemigroup of Rn generated by a set A of the following form is
dense in Rn. Let A = {v1, . . . , vn+1}, where v1, . . . , vn is a basis of the vector space Rn over
R and vn+1 = r1v1 + · · · + rnvn and the elements 1, r1, . . . , rn in R are linearly independent
over Q and all ri are negative. To prove this we may assume that v1, . . . , vn is the standard
basis of Rn. By Lemma 4.2 the subsemigroup of Rn/Zn generated by vn+1 mod Zn is dense in
Rn/Zn. So for each n-tuple x = (x1, . . . , xn) ∈ Rn and every ε > 0 there is an integer m ∈ N

and an element γ ∈ Zn such that ‖mvn+1 + γ − x‖ < ε for a fixed norm ‖ · ‖ on Rn. We may
assume that m is large by applying the preceding lemma to a multiple of vn+1. Then, if xi � 0
for i = 1, . . . , n, it follows that the coordinates of γ are also non-negative, if ε is sufficiently
small. So γ is an element of the subsemigroup Nn of Rn generated by v1, . . . , vn. Thus every
x = (x1, . . . , xn) ∈ Rn with xi � 0 is contained in the closure H of the subsemigroup of Rn

generated by A. But if x ∈ H then x + mvn+1 ∈ H for every m ∈ N. Since all the coordinates of
vn+1 are negative, by hypothesis, every vector y ∈ Rn is of the form y = mvn+1 + x, for some
m ∈ N and all coordinates of x non-negative. Hence H = Rn. �
Proof of Theorem 4.1. Clearly dmG � dgrG > d , since G/T is homeomorphic to Rd . The
universal covering group G̃ of G is isomorphic to Rn for some n and π1G is isomorphic to a
lattice in a subspace of dimension m = n− d . Take a basis v1, . . . , vn of Rn containing a basis of
π1G and let A = {v1, . . . , vn, vn+1} with vn+1 = r1v1 + · · · + rnvn, with ri < 0 and 1, r1, . . . , rn
linearly independent over Q. Then the subsemigroup of Rn generated by A is dense in Rn, hence
the subsemigroup of G = G̃/π1G generated by the n + 1 − m = d + 1 non-zero images of A is
dense in G and this finishes the proof. �

Here is a coordinate free formulation for the conditions on a set A to generate a dense sub-
semigroup of Rn which follows from the proof above by choosing appropriate coordinates.

Corollary 4.4. Let V be a finite dimensional vector space over R. A finite subset A of V generates
a dense subsemigroup of V if and only if the following two conditions hold:

(a) The convex hull of A contains O in its interior.
(b) The zero form is the only R-linear form l on V with the property that l(A) ⊂ Z.

Remark 4.5. In the previous corollary, condition (a) is equivalent to:

(a′) The zero form is the only R-linear form l on V with the property that l(A) ⊂ [0,+∞).

A more computational version of Corollary 4.4 for the case that the cardinality of A is 1 +
dimV is the following:

Remark 4.6. A set {v1, . . . , vn+1} of n + 1 elements of an n-dimensional real vector space V

generates a dense subsemigroup of V if and only if the following two conditions hold:

(a) The vectors v1, . . . , vn are linearly independent over R.
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(b) For the vector vn+1 = α1v1 +· · ·+αnvn we have αi < 0 for all i = 1, . . . , n and 1, α1, . . . , αn

are linearly independent over Q.

We will also need the more general case of an arbitrary connected abelian Lie group.
Let G be a connected abelian Lie group and let g be its Lie algebra, a real vector space of

dimension n, say. The exponential map exp : g → G is the universal covering homomorphism
of G. Let T be the maximal torus of G and let t = exp−1(T ) be its Lie algebra. Then Γ := ker exp
is a lattice in t. Let v1, . . . , vt be a basis of this lattice.

Corollary 4.7. Let {vt+1, . . . , vn+1} be a set of elements of g. Then the subsemigroup of G gen-
erated by exp(vt+1), . . . , exp(vn+1) is dense in G if and only if the following two conditions
hold:

(a) The vectors v1, . . . , vn form a basis of g over R.
(b) The vector vn+1 = α1v1 +· · ·+αnvn has the following properties: αi < 0 for i = t +1, . . . , n

and 1, α1, . . . , αn are linearly independent over Q.

Proof. Let S be the subsemigroup of g generated by vt+1, . . . , vn+1. Then S + Γ is dense in
g if the conditions (a) and (b) are satisfied, by Remark 4.6, hence exp(S) is dense in G. Con-
versely, if S is dense in G, then its image in G/T is dense, hence vt+1, . . . , vn are linearly
independent modulo the span of Γ and αi < 0 for i > t . Assume there is a linear relation be-
tween 1, α1, . . . , αn over Q. So there are numbers b1, . . . , bn+1 in Q, not all of them zero, such
that b1α1 + · · · + bnαn = bn+1. We may assume that b1, . . . , bn+1 are in Z, by multiplying with
an appropriate non-zero integer. Now define a linear form l : g → R by putting l(ui) = bi for
i = 1, . . . , n. Then l(un+1) = bn+1. So l(S + Γ ) ⊂ Z and hence l induces a non-zero homomor-
phism l : g/Γ → R/Z whose kernel contains S. So expS is not dense in G, which is isomorphic
to g/Γ via exp. �
5. Applications to finitely generated hypercyclic abelian semigroups and groups of
matrices

We first collect the facts we have proven so far in order to apply them to the various cases.
Let V be a real vector space of dimension n and let S be a commutative sub(semi)group of

GL(V ). Let G be the Zariski closure of S which is a closed abelian subgroup of GL(V ) with
finite component group and let T be its maximal compact connected subgroup.

Theorem 5.1. If S has a somewhere dense orbit then S has at least n + 1 − dimT generators.

Proof. The group G has dimension n by Theorem 1.1, so dgrG
0 = dmG0 = n + 1 − dimT by

Theorem 4.1 and the corresponding numbers for G are not smaller by Lemma 2.6. �
To obtain the exact minimal number of generators we will apply Lemma 2.6, which in the

terminology of Section 4 reads as follows.

Corollary 5.2. Let G be an abelian Lie group with finite component group. Then

dgrG = dmG = max
(
dmG0, dmG/G0) = max

(
dgrG

0, dgrG/G0).
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Proof. Lemma 2.6 and the formula dgrG
0 = dmG0 of Theorem 4.1. �

We will apply this for closed abelian subgroups G of GL(V ) with finite component group and
for which there is a vector x ∈ V such that the natural map G → Gx, g �→ gx, is a diffeomor-
phism onto an open subset of V .

Corollary 5.3. Let G be a closed subgroup of GL(V ) with finite component group and let T be
a maximal torus of G.

(a) Let S be a commutative sub(semi)group of G with a somewhere dense orbit. Then S has at
least 1 + dimV − dimT generators.

(b) Suppose there is a closed connected abelian subgroup H of G which contains T and has an
open orbit. Then there is a dense sub(semi)group S of H with 1 + dimV − dimT (commut-
ing) generators. Every dense subsemigroup S of G has a somewhere dense orbit.

As an application we compute the numbers in Tables 1 and 2 of the introduction. Note that
the numbers for groups are the same as for semigroups. This follows from Theorem 4.1. It also
turns out that in all the cases we consider the minimal numbers are the same for a somewhere
dense orbit as for a dense orbit. This is due to Corollary 5.2.

Define for any subgroup G of GL(V ) the number m(G) to be the minimal number of commut-
ing elements of G with the property that the subsemigroup S of G they generate has a somewhere
dense orbit. If G has no finitely generated commutative subsemigroup with a somewhere dense
orbit we set m(G) = ∞. We have the following results which we list in the form of a table; see
Table 3. For the definition of T and H in each case see Corollary 5.4.

Table 3
List of structural data.

G m(G) T H

GL(n,C) n + 1 (S1)n (C∗)n

(C∗)n ⊂ G ⊂ GL(n,C) n + 1 (S1)n (C∗)n

GL(2m,R) m + 1 (SO(2))m (R∗
>0 · SO(2))m

GL(2m + 1,R) m + 2 (SO(2))m (R∗
>0 · SO(2))m × R∗

>0
Complex n × n Toeplitz 2n S1 G

Real n × n Toeplitz n + 1 1 G0

Real triangular n + 1 1 Toeplitz

Details will be spelled out in the following corollaries.
For the subsemigroups generated by m(G) elements we have very precise information in case

of G = GL(n,C) and G = GL(n,R), see Remark 4.6.

Corollary 5.4. Let G be GL(n,C) or GL(n,R) and let H be the corresponding subgroup of
Table 3. Let S be a subsemigroup of G generated by m(G) commuting elements and having a
somewhere dense orbit. Then the following claims hold:

(a) S is diagonalizable over C.
(b) S has an everywhere dense orbit unless G = GL(2m + 1,R) in which case for some point

the orbit closure is either R2m+1 or a half space of R2m+1.
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(c) The closure of S in G is a conjugate of H , unless G = GL(2m + 1,R) in which case S

contains a conjugate H1 of H and H1 is of index 1 or 2 in S.

We also have the information about the generators formulated in Remark 4.6 and Corollary 4.7,
in case S is connected.

Proof. Let us consider the following subgroups of G. For G = GL(n,C) let H := TC be the
group of all diagonal matrices in GL(n,C) and let T be the subgroup of all those matrices in H all
of whose entries are of absolute value 1. For GL(2m,R) identify R2m with Cm and let T and H

be the corresponding subgroups of GL(m,C) ⊂ GL(2m,R). For GL(2m + 1,R) identify R2m+1

with Cm ⊕ R and let T be the corresponding subgroup of GL(m,C) × GL(1,R) ⊂ GL(2m +
1,R). For H take TC × R∗

>0 ⊂ GL(m,C)× GL(1,R) ⊂ GL(2m+ 1,R). Then T and H have the
properties of Corollary 5.3 and thus prove the first four rows of Table 3. In fact, every point of the
space has a somewhere dense orbit, except for the points of a finite union of vector subspaces of
real codimension 1 or 2. The orbit is actually dense in V except for G = GL(2m + 1,R) where
its closure is either the whole space or a half space.

Let now S be a subsemigroup of G generated by m(G) commuting elements. Then the Zariski
closure G1 of S has dimension dimR V by Theorem 1.1 and contains a torus of dimension at least
dimT , by Theorem 4.1, since m(G) = 1+dimV −dimT . It follows that G1 contains a maximal
torus of G. But all maximal tori of G are conjugate. Thus, by conjugating, we may assume that
G1 contains T . Then G1 is contained in the centralizer of T . But the connected component of
the centralizer of T is H in all cases we consider. More specifically, the centralizer of T is H

and thus connected, except for G = GL(2m + 1,R) where it is TC × R∗ and thus contains H of
index 2. Now dimG1 = dimH = dimV and G0

1 ⊂ H , so H = G0
1. But the closure S of S is a

subgroup of G1 and contains G0
1, by Theorem 1.1, so S = H or, for G = GL(2m + 1,R), it also

may happen that S contains H of index 2. This implies all the claims in Corollary 5.4. �
We now deal with the remaining cases of Table 3. Let e1, . . . , en be the standard basis of Rn

or Cn. The backward shift σ is the linear map with σ(ei) = ei−1 for i = 2, . . . , n and σ(e1) = 0.
A linear endomorphism is called a Toeplitz operator if it commutes with σ . The following obser-
vation is easily checked.

Observation. For a linear endomorphism A of Rn or Cn with representing matrix aij the fol-
lowing properties are equivalent:

(a) A is Toeplitz.
(b) A is a linear combination of σ i , i = 0, . . . , n − 1, where σ 0 is the identity.
(c) ai+1,j+1 = aij for all i, j and all aij = 0 for i > j .

It follows that the group G of all invertible Toeplitz operators is commutative and has a dense
orbit. The group G is connected in the complex case and has two connected components in the
real case, corresponding to positive resp. negative diagonal elements. Maximal tori in G are S1

in the complex case and the trivial group in the real case. This proves the lines with the Toeplitz
operators in Table 3.

For the group G of triangular matrices, in the complex case G contains the complex diagonal
matrices, hence we are in line 2, and in the real case there is no torus. This shows that m(G) �
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n + 1 in the real case. The opposite inequality m(G) � n + 1 follows e.g. from the Toeplitz
case.

In a forthcoming paper [1] we will give more precise information on the closure of Sx, if Sx

is somewhere dense. It is a union of convex cones of a very special type.
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