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We characterise the Jacobson radical of an analytic crossed product C0(X)×f
Z+, answering a question first raised by Arveson and Josephson in 1969. In fact, we
characterise the Jacobson radical of analytic crossed products C0(X)×f Z

d
+. This

consists of all elements whose ‘‘Fourier coefficients’’ vanish on the recurrent points
of the dynamical system (and the first one is zero). The multidimensional version
requires a variation of the notion of recurrence, taking into account the various
degrees of freedom. © 2001 Elsevier Science
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There is a rich interplay between operator algebras and dynamical
systems, going back to the founding work of Murray and von Neumann in
the 1930’s. Crossed product constructions continue to provide fundamental
examples of von Neumann algebras and Cg-algebras. Comparatively
recently, Arveson [1] in 1967 introduced a nonselfadjoint crossed product
construction, called the analytic crossed product or the semicrossed
product, which has the remarkable property of capturing all of the
information about the dynamical system.



The construction starts with a dynamical system (X, f), i.e., a locally
compact Hausdorff space X and a continuous, proper surjection f: XQX.
Regarding the elements of a1(Z+, C0(X)) as formal series ;n \ 0 Unfn, define
a multiplication by requiring fU=U(f p f). The analytic crossed product,
C0(X)×f Z+, is a suitable completion of a1(Z+, C0(X)); we give a detailed
discussion below. Then the property mentioned above is that, subject to a
mild condition on periodic points, two analytic crossed product algebras
are isomorphic as complex algebras if, and only if, the underlying dynami-
cal systems are topologically conjugate; i.e., there is a homeomorphism
between the spaces that intertwines the two actions. In this generality, the
result is due to Hadwin and Hoover [9, 10]—see also [20], which gives an
elegant direct proof of this if the maps f are homeomorphisms and extends
the result to analytic crossed products by finitely many distinct commuting
homeomorphisms on X, i.e., by Zd

+.
Arveson’s original work [1] was for weakly-closed operator algebras and

Arveson and Josephson in [2] gave an extension to norm closed operator
algebras, including a structure theorem for bounded isomorphisms
between two such algebras. Motivated by this, they asked if the analytic
crossed product algebras were always semisimple (which would imply that
all isomorphisms are bounded), noting that the evidence suggested a
negative answer. This question stimulated considerable work on the ideal
structure of analytic crossed products.

Another stimulus is the close connections between the ideal structure of
Cg-crossed products and dynamical systems, such as the characterisation of
primitive ideals of Cg-crossed products in terms of orbit closures by Effros
and Hahn [5]. In this connection, we should mention Lamoureux’s devel-
opment of a generalisation of the primitive ideal space for various non-
selfadjoint operator algebras, including analytic crossed products [12, 13].

We state our main result for the case d=1. Recall that a point x ¥X is
recurrent for the dynamical system (X, f) if for every neighbourhood V of
x, there is n \ 1 so that fn(x) ¥ V. If X is a metric space, then this is
equivalent to having a sequence (nk) tending to infinity so that fnk(x) con-
verges to x. Let Xr denote the recurrent points of (X, f). Denoting ele-
ments of the analytic crossed product by formal series ;n \ 0 Unfn we prove:

Theorem 1. If X is a locally compact metrisable space, then

Rad(C0(X)×f Z+)=3 C
n \ 1
Unfn ¥ C0(X)×f Z+: fn |Xr

=0 for all n4 .

Important progress towards a characterisation has been made by a
number of authors. In [16], Muhly gave two sufficient conditions, one for
an analytic crossed product to be semisimple and another for the Jacobson
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radical to be nonzero. The sufficient condition for a nonzero Jacobson
radical is that the dynamical system (X, f) possess a wandering set, i.e., an
open set V …X so that V, f−1(V), f−2(V), ... are pairwise disjoint. If there
are no wandering open sets, then the recurrent points are dense, so it turns
out that this sufficient condition is also necessary.

Peters in [18, 19] characterised the strong radical (namely, the intersec-
tion of the maximal (modular, two-sided) ideals) and the closure of the
prime radical and described much of the ideal structure for analytic crossed
products arising from free actions of Z+. He also gave a sufficient condi-
tion for semisimplicity and showed that this condition is necessary and
sufficient for semisimplicity of the norm dense subalgebra of polynomials
in the analytic crossed product.

Most recently, Mastrangelo et al. [15], using powerful coordinate
methods and the crucial idea from [4], characterised the Jacobson radical
for analytic subalgebras of groupoid Cg-algebras. For those analytic
crossed products that can be coordinatised in this way (those with a free
action), their characterisation is the same as ours. The asymptotic centre of
the dynamical system that is used in [15] is also important to our
approach.

However, we are able to dispose of the assumption of freeness (and thus
our dynamical systems can have fixed points or periodic points); in fact,
our methods are applicable to irreversible dynamical systems having several
degrees of freedom (that is, actions of Zd

+). In the multidimensional case
the usual notions of recurrence and centre are not sufficient to describe the
Jacobson radical, as we show by an example. Accordingly, we introduce
appropriate modifications.

After discussing the basic properties of analytic crossed products and
some of the radicals of Banach algebras, we develop the key lemma in
Section 1. This lemma, which is based on the idea of [4, Lemma 1], relates
(multi-) recurrent points in the dynamical system with elements not in the
Jacobson radical. In Section 2, we give a characterisation of semisimplicity.
The proof has three ingredients: the key lemma, a sufficient condition for
an element to belong to the prime radical (a descendant of Muhly’s condi-
tion mentioned earlier), and a basic fact from dynamical systems theory
which is known in the one-dimensional case. Our main result, Theorem 18,
is proved in the last section using a modification of the centre of a dynam-
ical system.

0.1. Definition of analytic crossed products. Analytic crossed products
or semicrossed products have been defined in various degrees of generality
by several authors (see for example [9, 13, 18, 19, 20]), generalising the
concept of the crossed product of a Cg-algebra by a group of g-auto-
morphisms. To fix our conventions, we present the definition in the form
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that we will use it. Let X be a locally compact Hausdorff space and
F={fn: n=(n1, n2, ..., nd) ¥ Zd

+} be a semigroup of continuous and proper
surjections isomorphic (as a semigroup) to Zd

+.
An action of S=Zd

+ on C0(X) by isometric g-endomorphisms an (n ¥ S)
is obtained by defining an(f)=f p fn.

We write elements of the Banach space a1(S, C0(X)) as formal multi-
series A=;n ¥ S Unfn with the norm given by ||A||1=; ||fn ||C0(X). The
multiplication on a1(S, C0(X)) is defined by setting

UnfUm g=Un+m(am(f) g)

and extending by linearity and continuity. With this multiplication,
a
1(S, C0(X)) is a Banach algebra.
We will represent a1(S, C0(X)) faithfully as a (concrete) operator algebra

on Hilbert space, and define the analytic crossed product as the closure of
the image.

Assuming we have a faithful action of C0(X) on a Hilbert space Ho, we
can define a faithful contractive representation p of a1(S, C0(X)) on the
Hilbert space H=Ho é a2(S) by defining p(Unf) as

p(Unf)(t é ek)=ak(f) t é ek+n

To show that p is faithful, let A=;n ¥ S Unfn be in a1(Zd
+, C0(X)) and

x, y ¥Ho be unit vectors. Since p is clearly contractive, the series p(A)=
;n ¥ S p(Unfn) converges absolutely. For m ¥ S, we have

Op(A)(x é e0), y é emP=C
n
Op(Unfn)(x é e0), y é emP

=C
n
Ofnx é en, y é emP

=Ofmx é em, y é emP=Ofmx, yP

as x é en and y é em are orthogonal for n ] m. It follows that

||p(A)|| \ ||fm ||.

Hence if p(A)=0 then fm=0 for all m, showing A=0. Thus p is a
monomorphism.

Definition 2. The analytic crossed product A=C0(X)×f Z
d
+ is the

closure of the image of a1(Zd
+, C0(X)) in B(H) in the representation just

defined.
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This is a generalisation of the definition given in [19]. Note that A is in
fact independent of the faithful action of C0(X) on Ho (up to isometric
isomorphism).

For A=; Unfn ¥ a
1(S, C0(X)) we call fn — En(A) the nth Fourier coef-

ficient of A. We have shown above that the maps En : a1(S, C0(X))Q
C0(X) are contractive in the (operator) norm of A, hence they extend to
contractions En:AQ C0(X).

Moreover,

UmEm(A)=
1
(2p)d

F
([−p, p])d

ht(A) exp(−im.t) dt,

where m.t=m1t1+...+mdtd and the automorphism ht is defined first on
the dense subalgebra a1(S, C0(X)) by

ht
1C Unfn
2=C Un(exp(it.n) fn)

and then extended to A by continuity.
Thus, by injectivity of the Fourier transform on C(([−p, p])d), if a

continuous linear form g on A satisfies g(Em(A))=0 for all m then (the
function t Q g(ht(A)) vanishes and hence) g(A)=0. The Hahn–Banach
Theorem yields the following remark.

Remark. Any A ¥A belongs to the closed linear span of the set
{UmEm(A): m ¥ S} of its ‘‘associated monomials’’.

In particular, A is the closure of the subalgebra A0 of trigonometric
polynomials, i.e., finite sums of monomials.

As ht is an automorphism of A, we conclude that if J ıA is a closed
automorphism invariant ideal (in particular, the Jacobson radical) then for
all B ¥J and m ¥ S we obtain UmEm(B) ¥J. Thus, an element ; Unfn is
in J if and only if each monomial Unfn is in J; this was first observed (for
d=1) in [16, Proposition 2.1]. It now follows from the remark that any
such ideal is the closure of the trigonometric polynomials it contains.

0.2 Radicals in Banach algebras. Recall that an ideal J of an algebra
A is said to be primitive if it is the kernel of an (algebraically) irreducible
representation. The intersection of all primitive ideals of A is the Jacobson
radical of A, denoted Rad A.

An ideal J is prime if it cannot factor as the product of two distinct
ideals, i.e., if J1,J2 are ideals of A such that J1J2 ıJ then either J1 ıJ
or J2 ıJ. The intersection of all prime ideals is the prime radical of A,
denoted PRad A. An algebra A is semisimple if Rad A={0} and
semiprime if PRad A={0}, or equivalently, if there are no (nonzero)
nilpotent ideals.
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As a primitive ideal is prime, PRad A ı Rad A. Thus a semisimple
algebra is semiprime. If A is a Banach algebra, then the Jacobson radical is
closed; indeed every primitive ideal is the kernel of some continuous repre-
sentation of A on a Banach space. In fact an element A ¥A is in Rad A if
and only if the spectral radius of AB vanishes for all B ¥A.

The prime radical need not be closed; it is closed if and only if it is a
nilpotent ideal (see [8] or [17, Theorem 4.4.11]). Thus for a general
Banach algebra, PRad A ı PRad A ı Rad A.

1. RECURRENCE AND MONOMIALS

Our main results will be proved for metrisable dynamical systems; hence
we make the blanket assumption that X will be a locally compact metrisable
space. As in the one-dimensional case, we say that a point x ¥X is
recurrent for the dynamical system (X, F) if there exists a sequence (nk)
tending to infinity so that fnk (x)Q x. We will need the following variant:

Definition 3. Let J ı {1, 2, ..., d}. Say x ¥X is J-recurrent if there
exists a sequence (nk) which is strictly increasing in the directions of J (that
is, the jth entry of nk+1 is greater than the jth entry of nk for every j ¥ J
and k ¥N) such that limk fnk (x)=x. Denote the set of all J-recurrent
points by XJr.

We say that a point x ¥X is strongly recurrent if it is {1, 2, ..., d}-
recurrent. Finally, SJ denotes {n ¥ Zd

+: nj > 0 for all j ¥ J}.

In the multidimensional case, the Jacobson radical cannot be charac-
terised in terms of either the recurrent points (in the traditional sense) or
the strongly recurrent points. To justify this, we give the following example.

Example 4. Let X=X0 2X1 2X2 where Xi=R×{i}. Consider the
dynamical system (X, (f1, f2)), where f1 acts as translation by 1 on X1 and
as the identity on X0 2X2 while f2 acts as translation by 1 on X2 and as
the identity on X0 2X1. It is easy to see that the set of {1}-recurrent points
is X0 2X2, the set of {2}-recurrent points is X0 2X1 and the set of strongly
recurrent points is X0.

Choose small neighbourhoods V1 ıX1 and V2 ıX2 of (0, 1) and (0, 2)
respectively such that f1(V1) 5 V1=” and f2(V2) 5 V2=”. Let f ¥ C0(X)
be any function supported on V1 2 V2 such that f(0, 1)=f(0, 2)=1.

Then one can verify (as in the proof of Lemma 8 in the next section) that
U1U2f is in the prime radical. On the other hand, neither U1f nor U2f
belong to the Jacobson radical (they are not even quasinilpotent).

134 DONSIG, KATAVOLOS, AND MANOUSSOS



Here, the associated semicrossed product has nonzero Jacobson radical,
although every point is recurrent. Also, the monomial U1f is not in the
Jacobson radical, although f vanishes on the strongly recurrent points. The
next lemma shows that for such a monomial to be in the Jacobson radical,
f must vanish on the {1}-recurrent points.

The main result of this section is the following lemma, which is crucial to
our analysis.

Lemma 5. Let Uqf ¥ Rad(C0(X)×f Z
d
+). If J contains the support of q,

then f vanishes on each J-recurrent point of (X, F).

In order to prove this lemma, we need a basic property of recurrent
points, adapted to our circumstances.

Definition 6. Given a sequence n̄=(nk) ı Zd
+ we define recursively

the family of indices associated to n̄, denoted S(n̄)=(S0, S1, S2, ...) as
follows: S0={0}, S1={n1} and generally

Sk+1=3nk+1+mk+j : j ¥ 0
k

i=0
Si 4

where m0=0 and mk=nk+2mk−1.

The sets in S(n̄) will be needed in the proof of Lemma 5: they are the
indices of f occurring in the simplification of the inductive sequence of
products given by P1=Un1 g and Pk=Pk−1(Unk (g/2

k−1)) Pk−1. We should
also point out that 1i Si is an IP-set (see [6, Section 8.4]) and the next
lemma is a variant on [6, Theorem 2.17].

Recall SJ denotes {(n1, n2, ..., nd): nj ] 0 for all j ¥ J}. Let DJ be the
subset of SJ with entries in the directions of Jc identically zero.

Lemma 7. Let x be in X, J be a subset of {1, 2, ..., d}. Suppose that
limk fpk (x)=x, where (pk) is a sequence whose restriction to J is strictly
increasing while its restriction to Jc is constant.
For each open neighbourhood V of x and each k ¥N, there is nk ¥ DJ and
xk ¥ V with

fs(xk) ¥ V for all s ¥ 0
k

i=0
Si,

whereS(n̄)=(S0, ...) is the family of indices associated to the sequence (nk).
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Proof. We inductively find indices n1, n2, ..., as above, open sets
V ` V1 ` V2 ` · · · and points x1, x2, ... with xi ¥ Vi and xi=fki (x) for some
index ki, so that

fs(Vi) ı V for all s ¥ Si.

This will prove the lemma, for if k ¥N and s ¥ Si for some i [ k then, since
xk ¥ Vk ı Vi it will follow that fs(xk) ¥ fs(Vk) ı fs(Vi) ı V.

Since limk fpk (x)=x ¥ V, there is pi1 with x1=fpi1
(x) ¥ V. Let k1=pi1 .

Using limk fpk (x)=x ¥ V and the form of the pk, it follows that there is
n1 ¥ DJ so that fn1+k1 (x) ¥ V. Now

fn1 (x1)=fn1 (fk1 (x))=fn1+k1 (x) ¥ V,

and so there is V1 ı V, an open neighbourhood of x1, so that fn1 (V1) ı V.
Since S1={n1}, this establishes the base step.

For the inductive step, assume we have chosen indices n1, n2, ..., nq, open
subsets of V, V1 ` V2 ` · · · ` Vq and points x1, x2, ..., xq, with xi ¥ Vi and
xi=fki (x), so that, for i=1, ..., q, we have

fs(Vi) ı V for all s ¥ Si. (1)

Since limk fpk (xq)=fkq (limk fpk (x))=xq ¥ Vq, there is kq+1=piq so that
xq+1=fkq+1

(xq) ¥ Vq. Notice that mq (as in Definition 6) is in DJ. It follows
that there exists nq+1 ¥ DJ such that fnq+1+mq+kq+1

(xq) ¥ Vq and so fnq+1+mq

(xq+1) ¥ Vq. Hence there exists an open neighbourhood Vq+1 of xq+1, con-
tained in Vq, so that

fnq+1+mq
(Vq+1) ı Vq. (2)

It remains only to show that fs(Vq+1) ı V for all s ¥ Sq+1. An element s
in Sq+1 is of the form s=nq+1+mq+j for some j ¥1q

i=0 Si. Assuming j ¥ Si
for some i, we have

fs(Vq+1)=fj(fnq+1+mq
(Vq+1)) ı fj(Vq) by (2)

ı fj(Vi) ı V by (1)

completing the induction. L

Proof of Lemma 5. Assume that f(x) ] 0 for some J-recurrent point x.
We will find B ¥A such that BUqf has nonzero spectral radius. We may
scale f so that there exists a relatively compact open neighbourhood V of x
such that |f(y)| \ 1 for all y ¥ V. Since Uq |f|2=(Uqf) fg ¥ Rad A when
Uqf ¥ Rad A, we may also assume that f \ 0.
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Since x is J-recurrent, there exists a sequence (pk) which is strictly
increasing in the directions of J such that limk fpk (x)=x. Deleting some
initial segment, we may assume that fpk (x) ¥ V for all k ¥N.

If (pk) has all entries going to infinity, then we may apply Lemma 7 with
J={1, 2, ..., d}, to find a strictly increasing sequence (nk) such that nk > q
for all k and points xk ¥ V such that fs(xk) ¥ V for all s in 1k

i=0 Si.
If not, enlarging J and passing to a subsequence if necessary, we may

assume that the restriction of (pk) to Jc takes only finitely many values.
Passing to another subsequence, we may further assume that this restriction
is constant. Applying Lemma 7, we may find a strictly increasing sequence
(nk) in Zd

+ with nk ¥ DJ and points xk ¥ V such that fs(xk) ¥ V for all s in
1k

i=0 Si. We may suppose that nk−q ¥ SJ for all k. Thus Unk −q is an
admissible term in the formal power series of an element of C0(X)×f Z

d
+.

Fix a nonnegative function h ¥ C0(X) such that h(fq(y))=1 for all y ¥ V
and consider

B=C
.

k=1
Unk −q

h
2k−1 .

This is an element of A since the series converges absolutely. To complete
the proof, it suffices to show that the spectral radius of A — BUqf is strictly
positive. Note that

A=C Unk

g
2k−1 ,

where g is f.(h p fq), a nonnegative function satisfying g(y) \ 1 for all
y ¥ V. Thus each Fourier coefficient En(Am) of Am is a finite sum of non-
negative functions, and hence its norm dominates the (supremum) norm of
each summand. Since ||A2k−1|| \ ||En(A2k−1)||, it suffices to find e > 0 such
that for each k there exists n such that the norm of some summand of
En(A2k−1) exceeds e2

k−1.
If we let P1=Un1 g, then trivially P1 is a term in A. In the next product,
A3=A(; Unk

g
2k−1) A=; A(Unk

g
2k−1) A, we have the term

P2=Un1 g 1Un2

g
2
2 Un1 g.

Generally, one term in the expansion of A2k−1=A2k−1−1AA2k−1−1 is

Pk=Pk−1
1Unk

g
2k−1
2 Pk−1.
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Claim. If l1=1 and lk+1=l
2
k/2

k, then Pk=Umk
lk <s g p fs where mk

is as in the definition ofS(n̄) and the product is over all s in (1k
i=0 Si)0{mk}.

Proof of Claim. For k=1, the claim holds trivially as (S0 2 S1)0{m1}
={0}. Assuming the claim is true for some k, we have

Pk+1=Pk 1Unk+1

g
2k
2 Pk

=Umk
lk 1D

s
g p fs
21Unk+1

g
2k
2 Umk

lk 1D
t
g p ft
2

(where s, t range over (1k
i=0 Si)0{mk})

=Umk

l2k
2k
1D

s
g p fs
2 Unk+1+mk

(g p fmk
) 1D

t
g p fs
2

=U2mk+nk+1

l2k
2k
1D

s

g p fs+nk+1+mk
2 (g p fmk

) 1D
t

g p ft
2

=U2mk+nk+1

l2k
2k
1D

sŒ
g p fsŒ
21D

tŒ
g p ftŒ
2 ,

where s − ranges over {nk+1+mk+s}, for s ¥ (1k
i=0 Si)0{mk}, and t − ranges

over (1k
i=0 Si). Therefore

Pk+1=Umk+1
lk+1
1D

s

g p fs
2

for s in (1k+1
i=0 Si)0{mk+1}, proving the claim.

Recall that for each k ¥N there exists xk ¥ V such that fs(xk) ¥ V for all
s ¥1k

i=0 Si. Since g|V \ 1, we have <s g(fs(xk)) \ 1 where s ranges over
(1k

i=0 Si)0{mk} and hence ||<s g p fs || \ 1. From the claim, it follows that
||Pk || \ lk and so, by the earlier remarks,

||A2k−1|| \ ||Emk
(A2k−1)|| \ ||Pk || \ lk.

Thus the proof will be complete if we show that lk \ (
1
2)

2k−1 or equivalently
log2 l

−1
k [ 2k−1 for all k. Setting mk=log2 l

−1
k , the recurrence relation for

lk becomes mk+1=2mk+k and m1=0, which has solution mk=2k−k−1.
L
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2. WANDERING SETS AND SEMISIMPLICITY

We characterise semisimplicity of analytic crossed products and show
this is equivalent to being semiprime. Part of this characterisation is of
course a special case of our main result, Theorem 18, but we will need the
preliminary results in any case.

A wandering open set is an open set V …X so that f−1n (V) 5 V=”
whenever n ¥ Zd

+ is nonzero. A wandering point is a point with a wandering
neighbourhood.

We will need the following variant: let J ı {1, ..., d}. An open set V ıX
is said to be wandering in the directions of J, or J-wandering, if f−1n (V)
5 V=” whenever n is in SJ. It is easily seen that, if XJw denotes the set of
all J-wandering points (those with a J-wandering neighbourhood), then
XJw is open and its complement is invariant and contains the set XJr of
J-recurrent points.

Note, however, that it is possible for a recurrent point (in the usual
sense) to have a neighbourhood that is J-wandering (for some J). For
example, if X=R2 and f1(x, y)=(x+1, y) while f2(x, y)=(x, 3y), then
the origin is recurrent for the dynamical system (X, (f1, f2)), but it also
has a {1}-wandering neighbourhood.

The idea of the following Lemma comes from [16, Theorem 4.2].

Lemma 8. Suppose V ıX is an open set which is J-wandering and
g ¥ C0(X) is a nonzero function with support contained in V. If eJ denotes the
characteristic function of J, then B=UeJ g generates a nonzero ideal ABA
whose square is 0.

Proof. Let C ¥A be arbitrary and h=Ek(C). Then

BUkEk(C) B=UeJ gUkhUeJ g=Uk+2eJ (ak+eJ (g) aeJ (h) g),

which is zero since g is supported on V and ak+eJ (g) is supported on the
disjoint set f−1k+eJ (V). This shows that all Fourier coefficients of BCB will
vanish, and hence BCB=0. It follows that all products (C1BC2)(C3BC4)
vanish and hence (ABA)2=0. On the other hand, choosing functions
h1 ¥ C0(X) equal to 1 on f−1eJ (V) and h2 equal to 1 on V, we find EeJ (h1Bh2)
=aeJ (h1) gh2=g ] 0, so the ideal ABA is nonzero. L

The following proposition is known for the usual notions of recurrence
and wandering in the case d=1; see [6, Theorem 1.27].

Proposition 9. Suppose X is a locally compact metrisable space. If
(X, F) has no nonempty J-wandering open sets, then the J-recurrent points
are dense.
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Proof. Let V ıX be a relatively compact open set. We wish to find a
J-recurrent point in V.

Since V is not J-wandering, there exists n1 ¥ SJ such that f−1n1 (V) 5 V
]”. Hence there is a nonempty, relatively compact, open set V1 with
diam(V1) < 1 such that V1 ı f

−1
n1 (V) 5 V.

Since V1 contains no J-wandering subsets, a similar argument shows that
there exists n2 such that f−1n2 (V1) 5 V1 ]” and the jth entry of n2 is greater
than that of n1 for every j ¥ J.

Inductively one obtains a sequence of open sets Vk and nk strictly
increasing in the directions of J with Vk ı f

−1
nk (Vk−1) 5 Vk−1 and diam(Vk)

< 1/k all contained in the compact metrisable space V0. It follows from
Cantor’s theorem that the intersection 4n \ 1 Vn is a singleton, say x. Since
x ¥ Vk ı f

−1
nk (Vk−1) we have fnk (x) ¥ Vk−1 for all k and so fnk (x)Q x; hence

x ¥XJr. L

Theorem 10. If X is a metrisable, locally compact space, then the
following are equivalent:

1. the strongly recurrent points are dense in X,
2. C0(X)×f Z

d
+ is semisimple, and

3. C0(X)×f Z
d
+ is semiprime.

Proof. If the strongly recurrent points are dense in X, then by Lemma 5
there are no nonzero monomials in the Jacobson radical of C0(X)×f S.
But we have already observed that an element A is in the Jacobson radical
if and only if each monomial UnEn(A) is. Thus C0(X)×f S is semisimple
and hence semiprime.

Suppose that C0(X)×f S is semiprime. Then Lemma 8 shows that there
are no nonempty J-wandering open sets for J={1, 2, ..., d}. Thus, by
Proposition 9, the strongly recurrent points are dense. L

3. CENTRES AND THE JACOBSON RADICAL

In order to describe the Jacobson radical of an analytic crossed product,
we need to characterise the closure of the J-recurrent points, for a dynam-
ical system (X, F) with X a locally compact metrisable space.

Lemma 11. (i) If Y ıX is a closed invariant set, the set YJr of
J-recurrent points for the dynamical system (Y, F) equals XJr 5 Y.

(ii) The set XJr is the largest closed invariant set Y ıX such that
(Y, F) has no J-wandering points.
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Proof. (i) To see that YJr ıXJr, note that if y ¥ YJr then for every
neighbourhood V of y (in X) the set V 5 Y is a neighbourhood of y in the
relative topology of Y, so there exists n ¥ SJ such that fn(y) ¥ V 5 Y. Thus
fn(y) ¥ V showing that y ¥XJr. On the other hand if y ¥ Y 5XJr then for
each relative neighbourhood V 5 Y of y, since V is a neighbourhood of y
in X there exists n ¥ SJ such that fn(y) ¥ V. Since y ¥ Y and Y is invariant,
fn(y) ¥ V 5 Y establishing (i).

(ii) Given a closed invariant set Y ıX, if (Y, F |Y) has no
J-wandering points, then YJr is dense in Y by Proposition 9, and hence
Y ıXJr. On the other hand, (XJr, F) clearly has no J-wandering open
sets. L

The set XJr is found by successively ‘‘peeling off’’ the J-wandering parts
of the dynamical system. This construction and Lemma 13 generalise the
well known concept of the centre of a dynamical system (X, f) [7, 7.19].

If V ıX is the union of the J-wandering open subsets of X, then let XJ, 1

be the closed invariant set X0V. Consider the dynamical system
(XJ, 1, FJ, 1), where FJ, 1 — F |XJ, 1

. Let XJ, 2 be the complement of the union
of all J-wandering open sets of (XJ, 1, FJ, 1). Again we have a closed
invariant set, and we may form the dynamical subsystem (XJ, 2, FJ, 2) where
FJ, 2 — F |XJ, 2

. By transfinite recursion, we obtain a decreasing family
(XJ, c, FJ, c) of dynamical systems: indeed, if (XJ, c, FJ, c) has been defined,
we let XJ, c+1 ıXJ, c be the set of points in (XJ, c, FJ, c) having no
J-wandering neighbourhood and we define FJ, c+1=F |XJ, c+1

; if b is a limit
ordinal and the systems (XJ, c, FJ, c) have been defined for all c < b, then
we set XJ, b=4c < b XJ, c and FJ, b=F |XJ, b

. (We write XJ, 0=X and
FJ, 0=F.) This process must stop, for the cardinality of the family {XJ, c}
cannot exceed that of the power set of X.

Definition 12. By the above argument, there exists a least ordinal c
such that XJ, c+1=XJ, c. The set XJ, c is called the strong J-centre of the
dynamical system, and c is called the depth of the strong J-centre.

Lemma 13. If X is metrisable, then the strong J-centre of the dynamical
system is the closure of the J-recurrent points.

Proof. As a J-recurrent point cannot be J-wandering, XJr ıXJ, 1. If
XJr ıXJ, c for some c, then by Lemma 11 the set (XJ, c)Jr of J-recurrent
points of the subsystem (XJ, c, FJ, c) equals XJr 5XJ, c, so (XJ, c)Jr=XJr;
but (XJ, c)Jr ıXJ, c+1, and so XJr ıXJ, c+1. Finally, if c is a limit ordinal
and we assume that XJr ıXJ, d for all d < c then XJr ı4d < c XJ, d=XJ, c.
This shows that XJr ı4c XJ, c and so XJr ı4c XJ, c since the sets XJ, c are
closed.
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But on the other hand, if c0 is the depth of the strong J-centre we have
4c XJ, c=XJ, c0 , a closed invariant set. Since XJ, c0+1=XJ, c0 , the dynamical
system (XJ, c0 , FJ, c0 ) can have no J-wandering points. Thus it follows from
Lemma 11 that XJ, c0 ıXJr and hence equality holds. L

Remark. If X is a locally compact (not necessarily metrisable) space
and {fn: n ¥ Zd} is an action of an equicontinuous group of homeo-
morphisms (with respect to a uniformity compatible with the topology
of X) then XJr=X0XJw (see [14, Proposition 4.15]).

Lemma 14. For any ordinal d, any f ¥ Cc(X
c
J, d+1) (i.e., f has compact

support disjoint from XJ, d+1) can be written as a finite sum f=; fk where
each fk has compact support contained in a set Vk such that Vk 5XJ, d is
J-wandering set for (XJ, d, FJ, d).

Proof. If K is the support of f then K 5XJ, d ıXJ, d 0XJ, d+1; in other
words the compact set K 5XJ, d consists of J-wandering points for
(XJ, d, FJ, d). This means that each x ¥K 5XJ, d has an open neigh-
bourhood Vx so that the (relatively open) set Vx 5XJ, d is J-wandering for
(XJ, d, FJ, d). Each y ¥K0XJ, d has an open neighbourhood Vy such that
Vy 5XJ, d is empty (and so J-wandering).

The family {Vx: x ¥K} is an open cover for K. Thus, there is a partition
of unity for f, i.e., a finite subcover, {Vk: 1 [ k [ m}, and functions fk,
1 [ k [ m, with supp(fk) a compact subset of Vk, so that f=f1+·· ·
+fm. L

Definition 15. We denote by RJ, c the closed ideal generated by all
monomials of the form Unf where n is in SJ and f ¥ C0(X) vanishes on
the set XJ, c and by SJ, c the set of all elements of the form Bf where
B ¥RJ, c and f has compact support disjoint from XJ, c.

Note that a monomial Unf ¥RJ, c may be written in the form CUeJ f
with C ¥A, since n ¥ SJ.

Also observe that SJ, c is dense in RJ, c. Indeed if Unf ¥RJ, c, then f can
be approximated by some g ¥ Cc(X

c
J, c); now Un g is in SJ, c and approxi-

mates Unf.

Proposition 16. For each ordinal c and each J ı {1, 2, ..., d}, the set
SJ, c is contained in RadA. Hence RJ, c is contained in RadA.
If PRadA is closed, then RJ, c is contained in PRadA.

Proof. Since SJ, c is dense in RJ, c, it suffices to prove that any A=
Bf ¥SJ, c is contained in Rad A.
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Suppose c=1. By Lemma 14 we may write A as a finite sum A=;k Bfk
where each fk is supported on a compact set that is J-wandering. Since
Ak — Bfk=DUeJ fk for some D ¥A as observed above, by Lemma 8 we
have (AAkA)2=0 and so Ak ¥ PRad A. Thus A ¥ PRad A ı Rad A.

Suppose the result has been proved for all ordinals less than some c.
Let c be a limit ordinal. If supp f=K ıXc

J, c, we have K ıXc
J, c=

1d < c Xc
J, d; hence K can be covered by finitely many of the Xc

J, d, hence
(since they are decreasing) by one of them. Thus f has compact support
contained in some Xc

J, d (d < c) and so Bf ¥SJ, d. Therefore A=Bf
¥ Rad A by the induction hypothesis.

Now suppose that c is a successor, c=d+1. By Lemma 14, we may
write f=; fk where the support of fk is compact and contained in an
open set Vk such that Vk 5XJ, d is J-wandering for (XJ, d, FJ, d), i.e.,

f−1n (Vk 5XJ, d) 5 (Vk 5XJ, d)=”

when n ¥ SJ. This can easily be seen to imply f−1n (Vk) 5 Vk ıXc
J, d.

Let C ¥A be arbitrary. Writing Ak=DUeJ fk as above, it follows as in
the proof of Lemma 8 that for each k all Fourier coefficients of AkCAk are
supported in Vk 5 f−1n (Vk) (for some n ¥ SJ) which is contained in Xc

J, d by
the previous paragraph.

Thus AkCAk ¥RJ, d. By the induction hypothesis, AkCAk must be con-
tained in Rad A. Thus (AkC)2 is quasinilpotent, hence so is AkC (by the
spectral mapping theorem). Since C ¥A is arbitrary, it follows that
Ak ¥ Rad A for each k, so that A ¥ Rad A.

Finally, we suppose that PRad A is closed. Then the argument above
can be repeated exactly up to the previous paragraph, changing Rad A to
PRad A. The previous paragraph can be replaced by the following
argument.

Thus AkCAk ¥RJ, d. By the induction hypothesis, AkCAk must be con-
tained in PRad A. Thus all products (C1AkC2)(C3AkC4) are in PRad A
and so the (possibly non-closed) ideal Jk generated by Ak satisfies JkJk ı

PRad A. For every prime ideal P, we have JkJk ıP and so Jk ıP.
Hence Jk ı PRad A, and therefore Ak ¥ PRad A for each k, so that
A ¥ PRad A. L

One cannot conclude that RJ, c ı PRad A in general, even for finite c, as
the following example shows. Thus the prime radical is not always closed.
Note that Hudson has given examples of TAF algebras in which the prime
radical is not closed [11, Example 4.9].

Example 17. We use a continuous dynamical system (X, {ft}t ¥ R)
based on [3, Example 3.3.4, p. 20] and look at the discrete system given by
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the maps {ft} for t ¥ Z+. The space X is the closed unit disc in R2. For the
continuous system, the trajectories consist of: (i) three fixed points, namely
the origin O and the points A(1, 0) and B(−1, 0) on the unit circle, (ii) the
two semicircles on the unit circle joining A and B and (iii) spiraling trajec-
tories emanating at the origin and converging to the boundary.

Let f=f1. The recurrent points for the (discrete) dynamical system
(X, f) are Xr={A, B, O} and the set of wandering points is the open unit
disc except the origin. Hence X2=Xr and so the depth of the dynamical
system is 2.

Now choose small disjoint open neighbourhoods VA, VB, VO around the
fixed points and let f ¥ C(X) be a nonnegative function which is 1 outside
these open sets and vanishes only at A, B and O. Then the element Uf ¥A
is clearly not nilpotent, so Uf ¨ PRad A. However Uf ¥ Rad A by the
next theorem.

Theorem 18. Let (X, F) be a dynamical system with X metrisable. The
Jacobson radical, Rad(C0(X)×f Z

d
+), is the closed ideal generated by all

monomials Unf (n ] 0) where f vanishes on the set XJr of J-recurrent points
corresponding to the support J of n.
Moreover, PRadA=RadA if and only if PRadA is closed.

Proof. Let Unf be a monomial contained in Rad A and let J be the
support of n. Then Lemma 5 shows that f must vanish on XJr.

On the other hand, let Unf be as in the statement of the Theorem, so
that f vanishes on XJr (where J=supp n). We will show that Unf is in
Rad A. It is enough to suppose that the support K of f is compact. Since
K is contained in (XJr)c=1c Xc

J, c, it is contained in finitely many, hence
one, Xc

J, c. It follows by Proposition 16 that Unf ¥ Rad A.
In the final statement of the theorem, one direction is obvious. For

the other, suppose PRad A is closed. Then by the final statement of
Proposition 16, we have RJ, c ı PRad A. L

This theorem leaves open the possibility that the closure of the prime
radical is always equal to the Jacobson radical.
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