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In this paper we extend the notion of a locally hypercyclic operator to that of a locally
hypercyclic tuple of operators. We then show that the class of hypercyclic tuples of
operators forms a proper subclass to that of locally hypercyclic tuples of operators. What
is rather remarkable is that in every finite dimensional vector space over R or C, a pair of
commuting matrices exists which forms a locally hypercyclic, non-hypercyclic tuple. This
comes in direct contrast to the case of hypercyclic tuples where the minimal number of
matrices required for hypercyclicity is related to the dimension of the vector space. In
this direction we prove that the minimal number of diagonal matrices required to form a
hypercyclic tuple on R

n is n + 1, thus complementing a recent result due to Feldman.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Locally hypercyclic (or J -class) operators form a class of linear operators which possess certain dynamic properties. These
were introduced and studied in [5]. The notion of a locally hypercyclic operator can be viewed as a “localization” of the
notion of hypercyclic operator. For a comprehensive study and account of results on hypercyclic operators we refer to the
book [1] by Bayart and Matheron.

Hypercyclic tuples of operators were introduced and studied by Feldman in [6–8], see also [12]. An n-tuple of operators is
a finite sequence of length n of commuting continuous linear operators T1, T2, . . . , Tn acting on a locally convex topological
vector space X . The tuple (T1, T2, . . . , Tn) is hypercyclic if there exists a vector x ∈ X such that the set

{
T k1

1 T k2
2 . . . T kn

n x: k1,k2, . . . ,kn ∈ N ∪ {0}}
is dense in X . The tuple (T1, T2, . . . , Tn) is topologically transitive if for every pair (U , V ) of non-empty open sets in X there
exist k1,k2, . . . ,kn ∈ N ∪ {0} such that T k1

1 T k2
2 . . . T kn

n (U ) ∩ V �= ∅. If X is separable it is easy to show that (T1, T2, . . . , Tn)

is topologically transitive if and only if (T1, T2, . . . , Tn) is hypercyclic. Following Feldman [8], we denote the semigroup
generated by the tuple T = (T1, T2, . . . , Tn) by FT = {T k1

1 T k2
2 . . . T kn

n : ki ∈ N ∪ {0}} and the orbit of x under the tuple T
by Orb(T , x) = {Sx: S ∈ FT }. Furthermore, we denote by HC((T1, T2, . . . , Tn)) the set of hypercyclic vectors for the tuple
(T1, T2, . . . , Tn).
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In this article we extend the notion of a locally hypercyclic operator (locally topologically transitive) to that of a locally
hypercyclic tuple (locally topologically transitive tuple) of operators as follows. For x ∈ X we define the extended limit set
J (T1,T2,...,Tn)(x) to be the set of y ∈ X for which there exist a sequence of vectors {xm} with xm → x and sequences of

non-negative integers {k( j)
m : m ∈ N} for j = 1,2, . . . ,n with

k(1)
m + k(2)

m + · · · + k(n)
m → +∞ (1.1)

such that

T k(1)
m

1 T k(2)
m

2 . . . T k(n)
m

n xm → y.

Note that condition (1.1) is equivalent to having at least one of the sequences {k( j)
m : m ∈ N} for j = 1,2, . . . ,n containing a

strictly increasing subsequence tending to +∞. This is in accordance with the well-known definition of J -sets in topological
dynamics, see [9]. In Section 2 we provide an explanation as to why condition (1.1) is reasonable. The tuple (T1, T2, . . . , Tn)

is locally topologically transitive if there exists x ∈ X \ {0} such that J (T1,T2,...,Tn)(x) = X . Using simple arguments it is easy
to show the following equivalence. J (T1,T2,...,Tn)(x) = X if and only if for every open neighborhood Ux of x and every non-

empty open set V there exist k1,k2, . . . ,kn ∈ N ∪ {0} such that T k1
1 T k2

2 . . . T kn
n (Ux) ∩ V �= ∅. In the case when X is separable

and there exists x ∈ X \ {0} such that J (T1,T2,...,Tn)(x) = X , the tuple (T1, T2, . . . , Tn) will be called locally hypercyclic.
In a finite dimensional space over R or C, no linear operator can be hypercyclic (see [13]) or locally hypercyclic (see

[5]). However, it was shown recently by Feldman in [8] that the situation for tuples of linear operators in finite dimensional
spaces over R or C is quite different. There, it was shown that there exist hypercyclic (n + 1)-tuples of diagonal matrices
on Cn and that no n-tuple of diagonal matrices is hypercyclic. We complement this result by showing that the minimal
number of diagonal matrices required to form a hypercyclic tuple in Rn is n + 1. We also mention at this point that in [3]
it is proved that non-diagonal hypercyclic n-tuples exist on Rn , answering a question of Feldman.

In the present work we make a first attempt towards studying locally hypercyclic tuples of linear operators on finite
dimensional vector spaces over R or C. We show that if a tuple of linear operators is hypercyclic then it is locally hypercyclic
(see Section 2). We then proceed to show that in the finite dimensional setting, the class of hypercyclic tuples of operators
forms a proper subclass of the class of locally hypercyclic tuples of operators. What is rather surprising is the fact that
the minimal number of matrices required to construct a locally hypercyclic tuple in any finite dimensional space over R

or C is 2. This comes in direct contrast to the class of hypercyclic tuples where the minimal number of matrices required
depends on the dimension of the vector space. Examples of diagonal pairs of matrices as well as pairs of upper triangular
non-diagonal matrices and matrices in Jordan form which are locally hypercyclic but not hypercyclic are constructed. We
mention that some of our constructions can be directly generalized to the infinite dimensional case, see Section 4.

2. Basic properties of locally hypercyclic tuples of operators

Let us first comment on the condition (1.1) in the definition of a locally hypercyclic tuple. This comes as an extension to
the definition of a locally hypercyclic operator given in [5]. Recall that a hypercyclic operator T : X → X is locally hypercyclic
and furthermore J T (x) = X for every x ∈ X . In the definition of a locally hypercyclic tuple, one may have been inclined to
demand that k( j)

m → +∞ for every j = 1,2, . . . ,n. However this would lead to a situation where the class of hypercyclic
tuples would not form a subclass of the locally hypercyclic tuples. To clarify this issue, we give an example. Take any
hypercyclic operator T : X → X and consider the tuple (T ,0) where 0 : X → X is the zero operator defined by 0(x) = 0
for every x ∈ X . Obviously, this is a hypercyclic tuple (Orb(0, x) = {x,0}). On the other hand, for every pair of sequences of
integers {nk}, {mk} with nk,mk → +∞ and for every sequence of vectors xk tending to some vector x we have T nk 0mk xk → 0
and so (T ,0) would not be a locally hypercyclic pair.

Let us now proceed by stating some basic facts which will be used in showing that the class of hypercyclic tuples is
contained in the class of locally hypercyclic tuples.

Lemma 2.1. If x ∈ HC((T1, T2, . . . , Tn)) then J (T1,T2,...,Tn)(x) = X.

Proof. Let y ∈ X , ε > 0 and m ∈ N. Since the set Orb(T , x) is dense in X it follows that the set{
T k1

1 T k2
2 . . . T kn

n x: k1 + k2 + · · · + kn > m
}

is dense in X (only a finite number of vectors is omitted from the orbit Orb(T , x)). Hence, there exist (k1,k2, . . . ,kn) ∈ Nn

with k1 + k2 + · · · + kn > m such that∥∥T k1
1 T k2

2 . . . T kn
n x − y

∥∥ < ε. �
The proof of the following lemma is an immediate variation of the proof of Lemma 2.5 in [4].

Lemma 2.2. If {xm}, {ym} are two sequences in X such that xm → x and yn → y for some x, y ∈ X and ym ∈ J (T1,T2,...,Tn)(xm) for
every m ∈ N then y ∈ J (T1,T2,...,Tn)(x).
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Lemma 2.3. For all x ∈ X the set J (T1,T2,...,Tn)(x) is closed and T j invariant for every j = 1,2, . . . ,n.

Proof. This is an easy consequence of Lemma 2.2. �
Proposition 2.4. (T1, T2, . . . , Tn) is hypercyclic if and only if it is locally hypercyclic and J (T1,T2,...,Tn)(x) = X for every x ∈ X.

Proof. Assume first that (T1, T2, . . . , Tn) is hypercyclic. By Lemma 2.1 it follows that (T1, T2, . . . , Tn) is locally hyper-
cyclic. Denote by A the set of vectors {x ∈ X: J (T1,T2,...,Tn)(x) = X}. By Lemma 2.1 we have HC((T1, T2, . . . , Tn)) ⊂ A. Since
HC((T1, T2, . . . , Tn)) is dense (see [8]) and A is closed by Lemma 2.2, it is plain that A = X . For the converse implication let
us consider x ∈ X . Since J (T1,T2,...,Tn)(x) = X then for every open neighborhood Ux of x and every non-empty open set V

there exist k1,k2, . . . ,kn ∈ N ∪ {0} such that T k1
1 T k2

2 . . . T kn
n (Ux) ∩ V �= ∅. Therefore (T1, T2, . . . , Tn) is topologically transitive

and since X is separable it follows that (T1, T2, . . . , Tn) is hypercyclic. �
3. Locally hypercyclic pairs of diagonal matrices which are not hypercyclic

In [8], Feldman showed that there exist (n + 1)-tuples of diagonal matrices on Cn and that there are no hypercyclic
n-tuples of diagonalizable matrices on Cn . In the same paper, Feldman went a step further to show that no n-tuple of
diagonal matrices on Rn is hypercyclic while, on the other hand, there exists an (n + 1)-tuple of diagonal matrices on Rn

that has a dense orbit in (R+)n . We complement the last result by showing that there is an (n + 1)-tuple of diagonal
matrices on Rn which is hypercyclic. Throughout the rest of the paper for a vector u in Rn or Cn we will be denoting by ut

the transpose of u.

Theorem 3.1. For every n ∈ N there exists an (n + 1)-tuple of diagonal matrices on Rn which is hypercyclic.

Proof. Choose negative real numbers a1,a2, . . . ,an such that the numbers

1,a1,a2, . . . ,an

are linearly independent over Q. By Kronecker’s theorem (see Theorem 442 in [10]) the set{
(ka1 + s1,ka2 + s2, . . . ,kan + sn)t : k, s1, . . . , sn ∈ N ∪ {0}}

is dense in Rn . The continuity of the map f : Rn → Rn defined by f (x1, x2, . . . , xn) = (ex1 , ex2 , . . . , exn ) implies that the set{((
ea1

)k
es1 ,

(
ea2

)k
es2 , . . . ,

(
ean

)k
esn

)t
: k, s1, . . . , sn ∈ N ∪ {0}}

is dense in (R+)n . An easy argument (see for example the proof of Lemma 2.6 in [3]) shows that the set⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

(ea1)k(−√
e )s1

(ea2)k(−√
e )s2

...

(ean )k(−√
e )sn

⎞
⎟⎟⎟⎠ : k, s1, . . . , sn ∈ N ∪ {0}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

is dense in Rn . Let

1 =

⎛
⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝

ea1

ea2

. . .

ean

⎞
⎟⎟⎠ ,

B1 =

⎛
⎜⎜⎝

−√
e

1
. . .

1

⎞
⎟⎟⎠ , . . . , Bn =

⎛
⎜⎜⎝

1
1

. . .

−√
e

⎞
⎟⎟⎠ .

Then the set{
Ak Bs1

1 . . . Bsn
n 1: k, s1, . . . , sn ∈ N ∪ {0}}

is dense in Rn , which implies that the (n + 1)-tuple (A, B1, . . . , Bn) of diagonal matrices is hypercyclic. �
All of the results mentioned at the beginning of this section as well as the one proved above show that the length of

a hypercyclic tuple of diagonal matrices depends on the dimension of the space. It comes as a surprise that this is not the
case for locally hypercyclic tuples of diagonal matrices. In fact, we show that on a vector space of any finite dimension n � 2
one may construct a pair of diagonal matrices which is locally hypercyclic.



232 G. Costakis et al. / J. Math. Anal. Appl. 365 (2010) 229–237
Theorem 3.2. Let a,b ∈ R such that −1 < a < 0, b > 1 and ln |a|
ln b is irrational. Let n be a positive integer with n � 2 and consider the

n × n matrices

A =

⎛
⎜⎜⎜⎜⎝

a1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a3 . . . 0
...

...
...

. . . 0
0 0 0 . . . an

⎞
⎟⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎜⎝

b1 0 0 . . . 0
0 b2 0 . . . 0
0 0 b3 . . . 0
...

...
...

. . . 0
0 0 0 . . . bn

⎞
⎟⎟⎟⎟⎠

where a1 = a, b1 = b, a j,b j are real numbers with |a j| > 1 and |b j | > 1 for j = 2, . . . ,n. Then (A, B) is a locally hypercyclic pair
on Rn which is not hypercyclic. In particular, we have

{
x ∈ Rn: J (A,B)(x) = Rn} = {

(x1,0, . . . ,0)t ∈ Rn: x1 ∈ R
}
.

Proof. Note that

Ak Bl =

⎛
⎜⎜⎜⎜⎜⎝

akbl 0 0 . . . 0
0 ak

2bl
2 0 . . . 0

0 0 ak
3bl

3 . . . 0
...

...
...

. . . 0
0 0 0 . . . ak

nbl
n

⎞
⎟⎟⎟⎟⎟⎠

.

Let x = (1,0,0, . . . ,0)t ∈ Rn . We will show that J (A,B)(x) = Rn . Fix a vector y = (y1, . . . , yn)t . By [3, Lemma 2.6], the
sequence {akbl: k, l ∈ N} is dense in R. Hence there exist sequences of positive integers {ki} and {li} with ki, li → +∞ such
that aki bli → y1. Let

xi =
(

1,
y2

aki
2 bli

2

, . . . ,
yn

aki
n bli

n

)t

.

Obviously xi → x and

Aki Bli xi = (
aki bli , y2, . . . , yn

)t → y.

In [8, Theorems 3.4 and 3.6] Feldman showed that there exists a hypercyclic (n + 1)-tuple of diagonal matrices on Cn ,
for every n ∈ N but there is no hypercyclic n-tuple of diagonal matrices on Cn or on Rn . Feldman actually showed that
there is no n-tuple of diagonal matrices on Cn or Rn that has a somewhere dense orbit [8, Theorem 4.4]. So the pair
(A, B) is not hypercyclic. To finish, note that for every λ ∈ R \ {0} it holds that J (A,B)(λx) = λ J (A,B)(x) = Rn . In view of
Lemma 2.2 it follows that J (A,B)(0) = Rn . On the other hand, by the choice of a j,b j for j = 2, . . . ,n it is clear that for any
vector u = (u1, u2, . . . , un)t with u j �= 0 for some j ∈ {2,3, . . . ,n} we have J (A,B)(u) �= Rn . This completes the proof of the
theorem. �

A direct analogue to the previous theorem also holds in the complex setting. We will make use of the following result
in [8] due to Feldman.

Proposition 3.3.

(i) If b ∈ C \ {0} with |b| < 1 then there is a dense set �b ⊂ {z ∈ C: |z| > 1} such that for any a ∈ �b, we have that {akbl: k, l ∈ N}
is dense in C.

(ii) If a ∈ C with |a| > 1, then there is a dense set �a ⊂ {z ∈ C: |z| < 1} such that for any b ∈ �a, we have that {akbl: k, l ∈ N} is
dense in C.

Theorem 3.4. Let a,b ∈ C such that {akbl: k, l ∈ N} is dense in C. Let n be a positive integer with n � 2 and consider the diagonal
matrices A and B as in Theorem 3.2 where a1 = a, b1 = b, a j,b j ∈ C with |a j | > 1 and |b j | > 1 for j = 2, . . . ,n. Then (A, B) is a
locally hypercyclic pair on Cn which is not hypercyclic. In particular, we have

{
z ∈ Cn: J (A,B)(z) = Cn} = {

(z1,0, . . . ,0)t ∈ Cn: z1 ∈ C
}
.

Proof. The proof follows along the same lines as that of Theorem 3.2. �
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4. Locally hypercyclic pairs of diagonal operators which are not hypercyclic in infinite dimensional spaces

In this section we slightly modify the construction in Theorem 3.2 in order to obtain similar results in infinite dimen-
sional spaces. As usual the symbol lp(N) stands for the Banach space of p-summable sequences, where 1 � p < ∞ and by
l∞(N) we denote the Banach space of bounded sequences (either over R or C).

Theorem 4.1. Let a,b ∈ C such that {akbl: k, l ∈ N} is dense in C and let c ∈ C with |c| > 1. Consider the diagonal operators
T j : lp(N) → lp(N), 1 � p � ∞, j = 1,2, defined by

T1(x1, x2, x3, . . .) = (ax1, cx2, cx3, . . .),

T2(x1, x2, x3, . . .) = (bx1, cx2, cx3, . . .),

for x = (x1, x2, x3, . . .) ∈ lp(N), 1 � p � ∞. Then (T1, T2) is a locally hypercyclic, non-hypercyclic pair in lp(N) for every 1 � p < ∞
and (T1, T2) is a locally topologically transitive, non-topologically transitive pair in l∞(N). In particular we have{

x ∈ lp(N): J (T1,T2)(x) = lp(N)
} = {

(x1,0,0, . . .): x1 ∈ C
}

for every 1 � p � ∞.

Proof. Fix 1 � p � ∞ and consider a vector y = (y1, y2, . . .) ∈ lp(N). There exist sequences of positive integers {ki} and {li}
with ki, li → +∞ such that aki bli → y1. Let

xi =
(

1,
y2

cki+li
,

y3

cki+li
, . . .

)
.

Obviously xi → x = (1,0,0, . . .) and

T ki
1 T li

2 xi = (
aki bli , y2, y3, . . .

) → y.

Therefore J (T1,T2)(x) = lp(N). For p = 2 the pair (T1, T2) is not hypercyclic by Feldman’s result which says that there are
no hypercyclic tuples of normal operators in infinite dimensions, see [8]. However, one can show directly that for every
1 � p < ∞ the pair (T1, T2) is not hypercyclic and (T1, T2) is not topologically transitive in l∞(N). Indeed, suppose that
x = (x1, x2, . . .) ∈ lp(N) is hypercyclic for the pair (T1, T2), where 1 � p < ∞. Then necessarily x2 �= 0 and the sequence {cn}
should be dense in C which is a contradiction. For the case p = ∞, assuming that the pair (T1, T2) is topologically tran-
sitive we conclude that the pair (A, B) is topologically transitive in C2, where A(x1, x2) = (ax1, cx2), B(x1, x2) = (bx1, cx2),
(x1, x2) ∈ C2. The latter implies that (A, B) is hypercyclic. Since no pair of diagonal matrices is hypercyclic in C2, see [8],
we arrive at a contradiction. It is also easy to check that {x ∈ lp(N): J (T1,T2)(x) = lp(N)} = {(x1,0,0, . . .): x1 ∈ C} for every
1 � p � ∞. �
Remark 4.2. Theorem 4.1 is valid for the lp(N) spaces over the reals as well. Concerning the non-separable Banach
space l∞(N) we stress that this space does not support topologically transitive operators, see [2]. On the other hand there
exist operators acting on l∞(N) which are locally topologically transitive, see [5].

5. Locally hypercyclic pairs of upper triangular non-diagonal matrices which are not hypercyclic

We first show that it is possible for numbers a1,a2 ∈ R to exist with the property that the set{
ak

1al
2

k
a1

+ l
a2

: k, l ∈ N

}

is dense in R and at the same time the sequences on both the numerator and denominator stay unbounded. For our
purposes we will show that the set above with a2 = −1 and a1 = a is dense in R for any a ∈ R with a > 1. Actually we
shall prove that the set{ k

a − l

ak(−1)l
: k, l ∈ N

}

is dense in R for any a ∈ R with a > 1. From this it should be obvious that the result above follows since the image of a
dense set in R \ {0} under the map f (x) = 1/x is also dense in R.

Lemma 5.1. The set{ k
a − l

ak(−1)l
: k, l ∈ N

}

is dense in R for any a > 1.
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Proof. Let x ∈ R and ε > 0 be given. We want to find k, l ∈ N such that
∣∣∣∣

k
a − l

ak(−1)l
− x

∣∣∣∣ < ε.

There are two cases to consider, namely the cases x > 0 and x < 0, and we consider them separately (the case x = 0 is trivial
since keeping l fixed we can find k big enough which does the job).

Case I (x > 0): There exists k ∈ N such that 1/ak < ε/2. We will show that there exists a positive odd integer l = 2s − 1
for some s ∈ N for which∣∣∣∣

k
a − l

ak(−1)l
− x

∣∣∣∣ =
∣∣∣∣2s

ak
− 1

ak
− k

ak+1
− x

∣∣∣∣ < ε.

But note that this is true since consecutive terms in the sequence {2s/ak: s ∈ N} are at distance 2/ak < ε units apart and
so, for some s ∈ N it holds that 2s

ak − 1
ak − k

ak+1 ∈ (x − ε, x + ε).

Case II (x < 0): There exists k ∈ N such that 1/ak < ε/2. We will show that there exists a positive even integer l = 2s for
some s ∈ N for which∣∣∣∣

k
a − l

ak(−1)l
− x

∣∣∣∣ =
∣∣∣∣ k

ak+1
− 2s

ak
− x

∣∣∣∣ < ε.

But note that this is true since consecutive terms in the sequence {2s/ak: s ∈ N} are at distance 2/ak < ε units apart and
so, for some s ∈ N it holds that k

ak+1 − 2s
ak ∈ (x − ε, x + ε). �

Lemma 5.2. Let x ∈ R \ {0}, a > 1 and consider sequences {ki}, {li} of natural numbers with ki, li → +∞ such that

ki
a − li

aki (−1)li
→ x.

Then both the numerator and denominator stay unbounded.

Proof. This is trivial since the denominator grows unbounded and so it forces the numerator to keep up. �
Remark 5.3. The case where x = 0 is the only one for which one has the freedom of having the denominator grow un-
bounded and keep the numerator bounded. However, if one requires both numerator and denominator to stay unbounded
then the numerator can also be made to grow unbounded (growing at a slower rate than the denominator).

Let us now proceed with the construction of a locally hypercyclic pair of upper triangular non-diagonal matrices on Rn

which is not hypercyclic.

Theorem 5.4. Let n be a positive integer with n � 2 and consider the n × n matrices

A j =

⎛
⎜⎜⎜⎜⎝

a j 0 0 . . . 1
0 a j 0 . . . 0
0 0 a j . . . 0
...

...
...

. . . 0
0 0 0 . . . a j

⎞
⎟⎟⎟⎟⎠

for j = 1,2 where a1 > 1 and a2 = −1. Then (A1, A2) is a locally hypercyclic pair on Rn which is not hypercyclic. In particular, we
have {

x ∈ Rn: J (A1,A2)(x) = Rn} = {
(x1,0, . . . ,0)t ∈ Rn: x1 ∈ R

}
.

Proof. It easily follows that

Ak
1 Al

2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ak
1al

2 0 0 . . . ak
1al

2(
k

a1
+ l

a2
)

0 ak
1al

2 0 . . . 0

0 0 ak
1al

2 . . . 0
...

...
...

. . . 0
k l

⎞
⎟⎟⎟⎟⎟⎟⎠

.

0 0 0 . . . a1a2
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Let x �= 0. We want to find a sequence xi = (xi1, xi2, . . . , xin)t , i ∈ N which converges to the vector (x,0, . . . ,0)t and such
that for any vector w = (w1, w2, . . . , wn)t there exist strictly increasing sequences {ki}, {li} of positive integers for which
Aki

1 Ali
2xi → w . Without loss of generality we may assume that wn �= 0. This is equivalent to having

aki
1 ali

2xi1 + aki
1 ali

2

(
ki

a1
+ li

a2

)
xin → w1

and

aki
1 ali

2xij → w j

for j = 2, . . . ,n. By Lemma 5.1 there exist sequences {ki} and {li} of positive integers such that ki, li → +∞ and

aki
1 ali

2
ki
a1

+ li
a2

→ − wn

x
.

We set

xi1 = x − w1x

wn(
ki
a1

+ li
a2

)
, xij = − w jx

wn(
ki
a1

+ li
a2

)

for j = 2, . . . ,n − 1, and

xin = − x
ki
a1

+ li
a2

.

Note that, because of Lemma 5.2, xi1 → x and xij → 0 for j = 2, . . . ,n. Substituting into the equations above we find

aki
1 ali

2xi1 + aki
1 ali

2

(
ki

a1
+ li

a2

)
xin = aki

1 ali
2

(
− w1x

wn(
ki
a1

+ li
a2

)

)
→ w1

and

aki
1 ali

2xij = aki
1 ali

2

(
− w jx

wn(
ki
a1

+ li
a2

)

)
→ w j

for j = 2, . . . ,n − 1 as well as

aki
1 ali

2xin = aki
1 ali

2

(
− x

ki
a1

+ li
a2

)
→ wn.

The pair (A1, A2) is not hypercyclic. The reason is that if it is hypercyclic then there is a vector y = (y1, y2, . . . , yn)t ∈ Rn

such that the set {Ak
1 Al

2 y: k, l ∈ N ∪ {0}} is dense in Rn . Hence the set of vectors

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

ak
1al

2 y1 + ak
1al

2(
k

a1
+ l

a2
)yn

ak
1al

2 y2
...

ak
1al

2 yn

⎞
⎟⎟⎟⎠ : k, l ∈ N ∪ {0}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

is dense in Rn . If yn = 0 then it is clear that the last coordinate cannot approximate anything but 0. If yn �= 0 then, since
a1 > 1 and a2 = −1 the sequence {|ak

1al
2 yn|: k, l ∈ N ∪ {0}} = {|a1|k|yn|: k ∈ N ∪ {0}} is geometric and so cannot be dense

in R+ . It is left to the reader to check that{
x ∈ Rn: J (A1,A2)(x) = Rn} = {

(x1,0, . . . ,0)t ∈ Rn: x1 ∈ R
}
. �

In what follows we establish an analogue of Theorem 5.4 in the complex setting.

Lemma 5.5. Let a, θ be real numbers such that a > 1 and θ an irrational multiple of π . Then the set

{ k
aeiθ − l

akeikθ (−1)l
: k, l ∈ N

}

is dense in C.
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Proof. Let w = |w|eiφ ∈ C \ {0} and ε > 0. By the denseness of the irrational rotation on the unit circle and by the choice
of a, there exists a positive integer k such that

∣∣e−ikθ − eiφ
∣∣ <

ε

4|w| and
k

ak−1
<

ε

4
.

By the proof of Lemma 5.1 there exists a non-negative odd integer l = 2s − 1 for some s ∈ N such that∣∣∣∣ −l

ak(−1)l
− |w|

∣∣∣∣ =
∣∣∣∣2s

ak
− 1

ak
− |w|

∣∣∣∣ <
ε

2
.

Using the above estimates it follows that

∣∣∣∣
k

aeiθ − l

akeikθ (−1)l
− |w|eiφ

∣∣∣∣ �
∣∣∣∣

k
aeiθ

akeikθ (−1)l

∣∣∣∣ +
∣∣∣∣ −l

akeikθ (−1)l
− |w|eiφ

∣∣∣∣
� k

ak−1
+

∣∣∣∣ −l

ak(−1)l
− |w|

∣∣∣∣ + |w|∣∣e−ikθ − eiφ
∣∣

<
ε

4
+ ε

2
+ ε

4
= ε. �

We now construct a pair of upper triangular non-diagonal matrices which is locally hypercyclic on Cn and not hyper-
cyclic.

Theorem 5.6. Let n be a positive integer with n � 2 and consider the n × n matrices

A j =

⎛
⎜⎜⎜⎜⎝

a j 0 0 . . . 1
0 a j 0 . . . 0
0 0 a j . . . 0
...

...
...

. . . 0
0 0 0 . . . a j

⎞
⎟⎟⎟⎟⎠

for j = 1,2 where a1 = aeiθ for a > 1, θ an irrational multiple of π and a2 = −1. Then (A1, A2) is a locally hypercyclic pair on Cn

which is not hypercyclic. In particular, we have{
z ∈ Cn: J (A1,A2)(z) = Cn} = {

(z1,0, . . . ,0)t ∈ Cn: z1 ∈ C
}
.

Proof. The proof follows along the same lines as the proof of Theorem 5.4 where use is made of Lemma 5.5 instead of
Lemma 5.1. �
Remark 5.7. Note that for n = 2 the upper triangular matrices we obtain in Theorems 5.4 and 5.6 are in Jordan form. This
gives an example of a locally hypercyclic pair of matrices in Jordan form which is not hypercyclic.

6. Concluding remarks and questions

We stress that all the tuples considered in this work consist of commuting matrices/operators. Recently, in [11] Javaheri
deals with the non-commutative case. In particular, he shows that for every positive integer n � 2 there exist non-
commuting linear maps A, B : Rn → Rn so that for every vector x = (x1, x2, . . . , xn) with x1 �= 0 the set{

Bk1 Al1 . . . Bkn Aln x: k j, l j ∈ N ∪ {0}, 1 � j � n
}

is dense in Rn . In other words the 2n-tuple (B, A, . . . , B, A) is hypercyclic.
The following open question was kindly posed by the referee.

Question. Suppose (T1, T2, . . . , Tm) is a locally hypercyclic tuple of (commuting) matrices such that J (T1,T2,...,Tm)(x) = Rn

for a finite set of vectors x in Rn whose linear span is equal to Rn . Is it true that the tuple (T1, T2, . . . , Tm) is hypercyclic?
Similarly for Cn .
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