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We generalize the concept of coarse hypercyclicity, introduced by Feldman in [13],
to that of coarse topological transitivity on open cones. We show that a bounded
linear operator acting on an infinite dimensional Banach space with a coarsely dense
orbit on an open cone is hypercyclic and a coarsely topologically transitive (mixing)
operator on an open cone is topologically transitive (mixing resp.). We also “localize”
these concepts by introducing two new classes of operators called coarsely J-class
and coarsely D-class operators and we establish some results that may make these
classes of operators potentially interesting for further studying. Namely, we show
that if a backward unilateral weighted shift on l2(N) is coarsely J-class (or D-class)
on an open cone then it is hypercyclic. Then we give an example of a bilateral
weighted shift on l∞(Z) which is coarsely J-class, hence it is coarsely D-class, and
not J-class. Note that, concerning the previous result, it is well known that the
space l∞(Z) does not support J-class bilateral weighted shifts, see [10]. Finally, we
show that there exists a non-separable Banach space which supports no coarsely
D-class operators on open cones. Some open problems are added.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and basic concepts

N.S. Feldman in [13] introduced the concept of coarse hypercyclicity under the name “d-density”.
A bounded linear operator T : X → X acting on a separable Banach space X is called coarsely hyper-
cyclic if it has an orbit within a bounded distance by a positive constant d of every vector (the name
“d-density” in [13] came from the constant d). Feldman showed that such an orbit may not be dense in X

although an operator with a coarsely dense orbit is always hypercyclic, i.e. T has a dense orbit, see [13,7,14].
Coarsely dense orbits appear naturally by looking at perturbations of a dense orbit by a vector with bounded
orbit [13]. In [1] we studied, together with H. Abels, a similar problem for finitely generated abelian sub-
semigroups of GL(V ), where V is a finite dimensional complex (or real) vector space. We showed that if
such a semigroup has a coarsely dense orbit on an open cone of V then, for the complex case, this orbit is
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actually dense in V . Recall that an open cone on a Banach space X is an open subset C of X such that
λx ∈ C for every λ > 0.

Motivated by the previous mentioned concepts and results we introduce and study the concept of coarse
topological transitivity on open cones. This concept can be seen as a generalization of coarse hypercyclicity
introduced by Feldman in [13]. An advantage of coarse topological transitivity comparing to coarse hyper-
cyclicity is that coarsely topologically transitive operators may exist also on non-separable Banach spaces
like topologically transitive operators do. Recall that a bounded linear operator T : X → X acting on a
Banach space X is called topologically transitive if for every non-empty open subsets U, V of X there exists
a non-negative integer n such that TnU ∩ V �= ∅.

Definition 1.1. Let X be an infinite dimensional Banach space. A bounded linear operator T : X → X is
called coarsely topologically transitive on an open cone C ⊂ X (with respect to a positive constant d) if
for every non-empty open set U ⊂ X and for every x ∈ C there exists a non-negative integer n such that
TnU ∩B(x, d) �= ∅, where B(x, d) denotes the open ball centered at x ∈ X with radius d. If C = X we say
that T is coarsely topologically transitive.

A bounded linear operator T : X → X acting on a Banach space X is called topologically mixing if for
every non-empty open subsets U, V of X there exists a positive integer N such that TnU ∩ V �= ∅ for every
n � N . One can define a coarse analogue concept in the following way.

Definition 1.2. Let X be an infinite dimensional Banach space. A bounded linear operator T : X → X is
called coarsely topologically mixing on an open cone C ⊂ X (with respect to a positive constant d) if for
every non-empty open set U ⊂ X and for every x ∈ C there exists a non-negative integer N such that
TnU ∩B(x, d) �= ∅ for every n � N . If C = X, T is called coarsely topologically mixing.

Our main result is the following theorem. Its proof will be given in several steps in Section 2.

Theorem 1.3. Let T : X → X be a bounded linear operator acting on an infinite dimensional Banach
space X. Then the following hold.

(i) If T has a coarsely dense orbit on an open cone then T is hypercyclic.
(ii) If T is coarsely topologically transitive on an open cone then T is topologically transitive on X.
(iii) If T is coarsely topologically mixing on an open cone then T is topologically mixing on X.

In [11], together with G. Costakis, we “localized” the concept of a topologically transitive operator by
introducing the J-class operators. In a similar way, in Section 3, we “localize” the concept of a coarsely
topologically transitive operator by introducing two new classes of operators called coarsely D-class oper-
ators and coarsely J-class operators. Since we do not want to repeat ourselves, we establish some results
that may make these classes of operators potentially interesting for further studying. Firstly we show that
if a backward unilateral weighted shift on l2(N) is coarsely J-class (or D-class) on an open cone C ⊂ X

then it is hypercyclic. Then we give an example of a bilateral weighted shift on l∞(Z) which is coarsely
J-class, hence it is coarsely D-class, and not J-class. Note that, it is well known that the space l∞(Z) does
not support J-class bilateral weighted shifts, see [10]. Finally, we show that there exists a non-separable
Banach space which supports no coarsely D-class operators on open cones. In Section 4, we give some final
remarks and we raise three open problems.

Note that from now on when we say “a linear operator” we always mean a bounded linear operator on a
complex Banach space. The closure of a subset A of a Banach space X is denoted by A and its boundary
by ∂A. The open ball centered at x ∈ X with radius d is denoted by B(x, d).
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The use of various limit sets, like in [7,10,11,15], and their coarse variations will help us to make the
proofs simpler and clearer for the reader. So let us introduce some notation.

Let T : X → X be a linear operator acting on a Banach space X and let x ∈ X. The orbit of x under T

is the set O(x, T ) = {Tnx: n � 0}. The coarse orbit of x under T with respect to a positive constant d is
the set

O(x, T, d) =
{
y ∈ X: there exists a non-negative integer n such that

∥∥Tnx− y
∥∥ < d

}

=
⋃

y∈O(x,T )

B(y, d).

The orbit O(x, T ) is coarsely dense on an open cone C ⊂ X with respect to a positive constant d if
C ⊂ O(x, T, d).

The extended (prolongational) limit set of x under T is the set

J(x, T ) =
{
y ∈ X: there exist a strictly increasing sequence of positive integers {kn}

and a sequence {xn} ⊂ X such that xn → x and T knxn → y
}

and describes the asymptotic behavior of the orbits of vectors nearby to x. The corresponding coarse set is

J(x, T, d) =
{
y ∈ X: there exist a strictly increasing sequence of positive integers {kn}

and a sequence {xn} ⊂ X such that xn → x and
∥∥T knxn − y

∥∥ < d for every n ∈ N
}
.

Note that in the definition of J(x, T, d) we do not require the convergence of the sequence {T knxn}n∈N! Note
also that

⋃
y∈J(x,T ) B(y, d) ⊂ J(x, T, d). The converse inclusion does not hold in general. It may happen

that J(x, T, d) = X and J(x, T ) = ∅, see the example in Remark 3.4.
The extended mixing limit set of x under T is the set

Jmix(x, T ) =
{
y ∈ X: there exists a sequence {xn} ⊂ X such that xn → x and Tnxn → y

}

and the corresponding coarse set is

Jmix(x, T, d) =
{
y ∈ X: there exists a sequence {xn} ⊂ X such that xn → x and

∥∥Tnxn − y
∥∥ < d for every n ∈ N

}
.

The prolongation of the orbit O(x, T ) is the set D(x, T ) := O(x, T ) ∪ J(x, T ) and the correspond-
ing coarse set is D(x, T, d) := O(x, T, d) ∪ J(x, T, d). The mixing prolongation of the orbit O(x, T )
is the set Dmix(x, T ) := O(x, T ) ∪ Jmix(x, T ) and the corresponding coarse set is Dmix(x, T, d) :=
O(x, T, d) ∪ Jmix(x, T, d).

Remark 1.4. Given a vector x ∈ X the sets J(x, T ), Jmix(x, T ) and D(x, T ) are T -invariant and closed
in X, see [10,11].

Remark 1.5. It is plain to check that an operator T : X → X is topologically transitive if and only
if J(x, T ) = D(x, T ) = X for every x ∈ X and T is topologically mixing if and only if Jmix(x, T ) =
Dmix(x, T ) = X for every x ∈ X. In view of the previous notation, it is also easy to see that an operator
T : X → X is coarsely topologically transitive on an open cone C with respect to a positive constant d if
and only if C ⊂ D(x, T, d), for every x ∈ X and it is coarsely hypercyclic on C if and only if C ⊂ O(x, T, d).
Similarly for a coarsely mixing operator we have that C ⊂ Dmix(x, T, d), for every x ∈ X. Note that if an
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operator T is coarsely topologically transitive on an open cone C and since the coarse orbit O(x, T, d) has
always non-empty interior we cannot deduce that C ⊂ J(x, T, d) for every x ∈ X. Hence, coarse D-sets
come naturally into play in the place of coarse J-sets.

The following proposition relates the various limit sets with their corresponding coarse sets.

Proposition 1.6. Let T : X → X be a linear operator acting on an infinite dimensional Banach space X.
Let x, y ∈ X, d be a positive real number and let {tk} ⊂ R be a strictly increasing sequence of positive real
numbers with tk → +∞. Then the following hold.

(i) If tky ∈ O(tkx, T, d) for every k ∈ N, then y ∈ O(x, T ).
(ii) If tky ∈ D(tkx, T, d) for every k ∈ N, then y ∈ D(x, T ).
(iii) If tky ∈ J(tkx, T, d) for every k ∈ N, then y ∈ J(x, T ).
(iv) If tky ∈ Jmix(tkx, T, d) for every k ∈ N, then y ∈ Jmix(x, T ).
(v) If tky ∈ Dmix(tkx, T, d) for every k ∈ N, then y ∈ Dmix(x, T ).

Proof. We will only give the proof of item (iv) since the other items follow in a similar way. Assume that
tky ∈ Jmix(tkx, T, d) for every k ∈ N. Then, for each positive integer k ∈ N there exist a positive integer Nk

and a sequence {xk
n}n∈N ⊂ X such that ‖xk

n − x‖ < 1
k and ‖tkTnxk

n − tky‖ < d for every n � Nk. The
sequence {Nk}k∈N can be chosen to be strictly increasing. For Nk � n < Nk+1, k = 1, . . . , set yn := xk

n

and sn := tk. Fix an ε > 0, a positive real number M > 0 and m ∈ N such that 1
m < ε, tm > M and

d
tm

< ε. Now for every n � Nm there exists a positive integer k � m such that Nm � Nk � n < Nk+1. So,
‖yn − x‖ = ‖xk

n − x‖ < 1
k � 1

m < ε and sn = tk � tm > M since {tk} is increasing. On the other hand,
‖snTnyn − sny‖ = ‖tkTnxk

n − tky‖ < d. Therefore, ‖Tnyn − y‖ < d
sn

= d
tk

� d
tm

< ε, for every n � Nm.
Since m was fixed then y ∈ Jmix(x, T ). �
2. Coarsely hypercyclic and coarsely topological transitive operators on open cones

This section is devoted to the proof of our main result Theorem 1.3. Unfortunately the intersection
of two open coarsely dense subsets of a Banach space X may be empty. So, even if X is separable, we
cannot deduce, by applying a Baire’s category type theorem, that a coarsely topological transitive operator
is coarsely hypercyclic, although by Theorem 1.3 the operator is actually hypercyclic. Thus, one must
consider the two cases separately.

The proof of the following proposition follows the line of the proof of Feldman’s theorem [13, Theorem 2.1].

Proposition 2.1. Let T : X → X be a linear operator acting on an infinite dimensional Banach space X

with a coarsely dense orbit O(x, T, d) on an open cone C ⊂ X with respect to a positive constant d. Then
the following hold.

(i) The vector x is a cyclic vector for T .
(ii) The open cone C is contained in O(Md x, T,M) for every M > 0.
(iii) Let y be a vector in C such that the ball B(y, 3d) is contained in C. Then, the set O(x, T ) ∩ B(y, 3d)

contains infinitely many points.
(iv) The operator T has dense range, and so all of its powers.

Proof. (i) Fix a vector y ∈ C and a positive integer n ∈ N. Since ny ∈ C ⊂ O(x, T, d), there exists a
non-negative integer k such that ‖T kx − ny‖ < d. Hence, ‖ 1

nT
kx − y‖ < d/n → 0. Therefore, the closed

linear span of the orbit O(x, T ) contains C, so it is the whole space X.
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(ii) For every y ∈ C the vector d
M y ∈ C. Hence, there exists a non-negative integer n such that ‖Tnx−

d
M y‖ < d. Thus, ‖Tn(Md x) − y‖ < M and the proof is finished.

(iii) Since X is infinite-dimensional, the boundary of the open ball B(y, 2d) is not compact. Hence,
there exists an infinite sequence {yn} in the boundary of B(y, 2d) with the property whenever n �= k then
B(yn, d) ∩ B(yk, d) = ∅. Since O(x, T ) ∩ B(yn, d) �= ∅ the set O(x, T ) ∩ B(y, 3d) contains infinitely many
points.

(iv) It is enough to show that the open cone C is contained in the closure of the range of T . Take a
non-zero vector y ∈ C and fix a positive integer n ∈ N. Then, by item (ii), for M = 1

n , there exists a
non-negative integer kn such that ‖T kn( 1

ndx)− y‖ < 1
n . Since y is non-zero we may assume that kn > 0 for

every n ∈ N and the proof is finished. �
Theorem 2.2. Let T : X → X be a linear operator acting on an infinite dimensional Banach space X with
a coarsely dense orbit O(x, T, d) on an open cone C ⊂ X with respect to a positive constant d. Then T is a
hypercyclic operator.

Proof. The proof is given in two steps. Firstly we show that C is contained in J(y, T ) for every y ∈ C.
Then we show that C contains a cyclic vector for T and hence we may apply an extended Bourdon–Feldman
theorem [11, Theorem 4.1 and Corollary 4.6] to deduce that T is hypercyclic.

Let y ∈ C. We will show that C ⊂ J(y, T ). Take a point w ∈ C and let U ⊂ C, V ⊂ C be open
neighborhoods of y and w respectively. Let M > 0 be such that B(y, 3M) ⊂ U and B(w, 3M) ⊂ V . By
Proposition 2.1(ii) C ⊂ O(Md x, T,M). Thus, by item (iii) of the same proposition, the sets O(Md x, T ) ∩
B(y, 3M) and O(Md x, T ) ∩ B(w, 3M) contain infinite many points. Hence, there exist a positive integer n

such that Tn(Md x) ∈ U and a positive integer m > n such that Tm(Md x) ∈ V . So, Tm−nU ∩ V �= ∅, hence
w ∈ J(y, T ).

The coarse orbit O(x, T, d) intersects the open cone C infinitely many times. Hence, there exists a positive
integer N such that TNx ∈ C. By Proposition 2.1(i), x is a cyclic vector for T and from item (iv) of the
same proposition the operator TN has dense range. Hence, by [11, Lemma 4.2], the vector TNx is a cyclic
vector for T and, since C ⊂ J(TNx, T ), the extended limit set J(TNx, T ) has non-empty interior. Then, by
the main result of [11, Theorem 4.1 and Corollary 4.6], T is a hypercyclic operator. �

The proof of the next lemma is quite similar to the proof of [15, Corollary 2.3(i) and Corollary 2.5] and
is omitted.

Lemma 2.3. Let X be a completely metrizable space and let T : X → X be a continuous map acting on X.
Assume that there are a countable set A and an open ball B(y, ε), for some y ∈ X and ε > 0, such that
x ∈ D(w, T ) for every x ∈ A and w ∈ B(y, ε). Then, there is a dense Gδ subset E of B(y, ε) such that
A ⊂ O(z, T ) for every z ∈ E.

Remark 2.4. In the second step of the proof of Theorem 2.2 we used an extended Bourdon–Feldman theorem
[11, Theorem 4.1 and Corollary 4.6]. We may show that T is hypercyclic using the original Bourdon–Feldman
theorem [9], i.e. that a somewhere dense orbit is dense in X. Indeed, by the first step of the proof of
Theorem 2.2, we get that C ⊂ J(y, T ) for every y ∈ C. By Proposition 2.1(i), the operator T is cyclic, thus
X is separable. So C is also separable, that is C can be written as the closure of a countable subset of C.
Therefore, by Lemma 2.3, there exists a vector in C such that the closure of its orbit contains C. Hence,
by [9], the operator T is hypercyclic.

As we mentioned in the Introduction, Feldman in [13] showed that a coarsely hypercyclic operator
T : X → X is actually hypercyclic but a coarsely dense orbit may not be dense in X. In the following
proposition we give a simple criterion under which a coarsely dense orbit on an open cone is dense in X.
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Proposition 2.5. Let T : X → X be a linear operator acting on an infinite dimensional Banach space X with
a coarsely dense orbit O(x, T, d) on an open cone C ⊂ X for some x ∈ X, d > 0. Then, the orbit O(x, T )
is dense in X if and only if λx ∈ O(x, T ) for some |λ| < 1.

Proof. If λx ∈ O(x, T ) for some |λ| < 1 then λnx ∈ O(x, T ), for every positive integer n. Indeed, since
λx ∈ O(x, T ) there exists an increasing sequence of non-negative integers {kn} such that T knx → λx.
Note that T kn(λx) → λ2x and since λx ∈ O(x, T ) and O(x, T ) is T -invariant then λ2x ∈ O(x, T ). Now,
proceeding by induction, we get that λnx ∈ O(x, T ) for every positive integer n.

Take a vector y ∈ C. We will show that y ∈ O(x, T ). Since the orbit O(x, T ) is coarsely dense on the
open cone C ⊂ X, i.e. C ⊂ O(x, T, d), then for every n ∈ N there exists a non-negative integer kn such that
‖T knx − 1

λn y‖ < d. Thus, ‖T kn(λnx) − y‖ < λnd and since |λ| < 1 then T kn(λnx) → y. Now, note that
λnx ∈ O(x, T ) and since O(x, T ) is T -invariant then T kn(λnx) ∈ O(x, T ) for every n ∈ N, so y ∈ O(x, T ).
Thus, C ⊂ O(x, T ), hence by [13], O(x, T ) = X. �

In the following we proceed with the proof of the second and the third part of Theorem 1.3. The second
part of Theorem 1.3 will follow as a corollary of a more general statement, see Theorem 2.8 below.

Proposition 2.6. Let T : X → X be a linear operator acting on an infinite dimensional Banach space X

such that the set
⋂

x∈X D(x, T ) has non-empty interior. Then, the operator P (T ) has dense range for every
non-zero polynomial P over the complex numbers.

Proof. It suffices to show that the operator T − λI has dense range, where I : X → X denotes the identity
operator and λ ∈ C. Assume the contrary, hence, by the Hahn–Banach theorem, there exists a non-zero
linear functional x∗ such that x∗((T −λI)(x)) = 0 for every x ∈ X. Therefore, x∗(Tnx) = λnx∗(x) for every
x ∈ X and n > 0. Since we assumed that

⋂
x∈X D(x, T ) has non-empty interior there exists a non-empty

open set U ⊂ D(x, T ) = O(x, T ) ∪ J(x, T ) for every x ∈ X. Therefore, U ⊂
⋂

x∈X J(x, T ) since X has no
isolated points.

Assume that |λ| � 1. Take an arbitrary vector y ∈ U and fix a vector x ∈ X. Since y ∈ U ⊂⋂
x∈X J(x, T ) ⊂ J(x, T ) there exist a sequence xn → x and a strictly increasing sequence {kn} of posi-

tive integers such that T knxn → y. So, if |λ| < 1 then x∗(y) = 0 since x∗(T knxn) = λknx∗(xn). Thus,
x∗(U) = {0} which contradicts the open mapping theorem. Now, if |λ| = 1 then x∗(y) ∈ {λnx∗(x) | n > 0}.
Hence, x∗(U) ⊂ {λnx∗(x) | n > 0} which again contradicts the open mapping theorem.

Now assume that |λ| > 1. Since x∗ is non-zero there exists a vector x ∈ X such that x∗(x) �= 0. Take
a vector y ∈ U ⊂

⋂
x∈X J(x, T ) ⊂ J(x, T ). Hence, there exist a sequence xn → x and a strictly increasing

sequence {kn} of positive integers such that T knxn → y. Since x∗(xn) = 1
λkn

x∗(T knxn) then x∗(x) = 0
which is a contradiction. �
Lemma 2.7. Let T : X → X be a linear operator acting on an infinite dimensional Banach space X. If
y ∈ X is an interior point of

⋂
x∈X D(x, T ) then P (T )y ∈

⋂
x∈X D(x, T ) for every non-zero polynomial P

over the complex numbers.

Proof. Since y ∈
⋂

x∈X D(x, T ) then, P (T )y ∈
⋂

x∈X D(P (T )x, T ), for every P non-zero polynomial.
By Proposition 2.6 the set {P (T )x | x ∈ X} is dense in X and using an argument similar to that in
[10, Lemma 2.5] we get that P (T )y ∈

⋂
x∈X D(x, T ). �

Theorem 2.8. Let T : X → X be a linear operator acting on an infinite dimensional Banach space X such
that the set

⋂
D(x, T ) has non-empty interior. Then T is topologically transitive on X.
x∈X
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Proof. Recall that T : X → X is topologically transitive if D(x, T ) = X, for every x ∈ X. Fix two vectors
x, y ∈ X. We will show that y ∈ D(x, T ). By an argument similar to that in [10, Lemma 2.5] it is enough
to show that for every open neighborhood U of y there exists a vector v ∈ U such that v ∈ D(x, T ). Fix
an open neighborhood U of y and consider a vector s1 in the interior S of the set

⋂
x∈X D(x, T ). Then,

by Lemma 2.3, there is a vector v ∈ U such that s1 ∈ O(v, T ). Let Wv be the closed linear span of the
orbit O(v, T ), then s1 ∈ Wv ∩ S �= ∅. Therefore, using again Lemma 2.3, there exists a vector s ∈ S such
that Wv ∩ S ⊂ O(s, T ). So s1 ∈ Wv ∩ S ⊂ Ws, where Ws denotes the closed linear span of the orbit
O(s, T ). Note that the set Wv ∩ S is a non-empty relatively open subset of Wv and since Wv ∩ S ⊂ Ws we
get that Wv ⊂ Ws. The vector s ∈ S is an interior point of the set

⋂
x∈X D(x, T ). Thus, by Lemma 2.7,

P (T )s ∈ D(x, T ) for every non-zero polynomial P over the complex numbers, so Ws ⊂ D(x, T ) since the
set D(x, T ) is closed in X. Therefore, v ∈ Wv ⊂ Ws ⊂ D(x, T ) and the proof is finished. �
Theorem 2.9. Let T : X → X be a linear operator acting on an infinite dimensional Banach space X. Then
the following hold.

(i) If T is coarsely topologically transitive on an open cone C ⊂ X, then T is topologically transitive on X.
(ii) If T is coarsely topologically mixing on an open cone C ⊂ X, then T is topologically mixing on X.

Proof. (i) Since T is coarsely topologically transitive on the open cone C ⊂ X then, by Proposition 1.6(ii),
C ⊂ D(x, T ) for every x ∈ X. Now the proof follows directly from Theorem 2.8.

(ii) If T is coarsely topologically mixing on an open cone C ⊂ X then, by Proposition 1.6(v), C ⊂
Dmix(x, T ) for every x ∈ X. Since X has no isolated points then C ⊂ Jmix(x, T ) for every x ∈ X.
Especially, 0 ∈ Jmix(x, T ) for every x ∈ X, since Jmix(x, T ) is a closed subset of X. It is also plain to see
that Jmix(0, T ) is a closed linear subspace of X and since C ⊂ Jmix(0, T ) then Jmix(0, T ) = X. Now fix
a vector x ∈ X. We will show that Jmix(x, T ) = X. Since 0 ∈ Jmix(x, T ) there exists a sequence xn → x

such that Tnxn → 0. Take a vector y ∈ X = Jmix(0, T ). Thus, there exists a sequence yn → 0 such
that Tnyn → y. Hence, Tn(xn + yn) → y while xn + yn → x. Therefore, y ∈ Jmix(x, T ) and the proof is
finished. �
Corollary 2.10. Let T : X → X be a linear operator acting on an infinite dimensional Banach space X. The
following hold.

(i) If T is coarsely topologically transitive then it is topologically transitive.
(ii) If T coarsely topologically mixing then it is topologically mixing.

Proof. Both of the items follow directly from Theorem 2.9 but they can also be derived from Proposition 1.6.
Indeed, let T be coarsely topologically transitive (or coarsely topologically mixing) operator with respect
to a positive constant d, then D(x, T, d) = X (or Dmix(x, T, d) = X respectively), for every x ∈ X. Hence,
by Proposition 1.6 items (ii) and (v), D(x, T ) = X (or Dmix(x, T ) = X respectively), for every x ∈ X. �
3. Coarsely J -class and D-class operators

There is a “standard” way to “localize” a concept given via a global property of one of the various
concepts of limit sets of a linear operator and this is to ask for the existence of a non-zero vector with the
same limit set property. As an example, in [11] together with G. Costakis, we “localized” the concept of
topologically transitive operators by introducing the J-class operators. Recall that an operator T : X → X

acting on a Banach space is called J-class if there exists a non-zero vector x ∈ X such that J(x, T ) = X.
Note that if T is topologically transitive then D(x, T ) = O(x, T ) ∪ J(x, T ) = X for every x ∈ X and since



722 A. Manoussos / J. Math. Anal. Appl. 413 (2014) 715–726
X has no isolated points this is equivalent to J(x, T ) = X for every x ∈ X. For the coarse case things differ
since a coarse orbit has always non-empty interior. So, we may define two new classes of operators, the
coarsely J-class and the coarsely D-class operators by requiring the existence of a non-zero vector x ∈ X

with J(x, T, d) = X or D(x, T, d) = X respectively for some positive constant d. Coarsely J-class operators
can also be derived by looking at perturbations of a J-vector, i.e. a vector x ∈ X with J(x, T ) = X by
a vector with bounded orbit and similarly for D-class operators. As we mentioned in the Introduction, in
this section we establish some results that may make these classes of operators potentially interesting for
further studying. Namely:

• A backward unilateral weighted shift on l2(N) is coarsely J-class (or D-class) on an open cone then it
is hypercyclic.

• There is a bilateral weighted shift on l∞(Z) which is coarsely J-class, hence it is coarsely D-class, and
not J-class. Note that, it is well known that the space l∞(Z) does not support J-class bilateral weighted
shifts, see [10].

• There exists a non-separable Banach space which supports no coarsely D-class operators on open cones.

Remark 3.1. In [6] Azimi and Müller constructed a linear operator T : l1 → l1 so that J(0, T ) has non-empty
interior and J(0, T ) �= l1. Since when x ∈ J(0, T ) then λx ∈ J(0, T ) for every λ > 0, it is plain to see that in
this case the extended limit set J(0, T ) contains an open cone and at the same time J(0, T ) �= l1. Hence, by
[6, Remark], there is a linear operator L : X → X acting on a Banach space and a non-zero vector x ∈ X

such that J(x, L) contains an open cone and J(x, L) �= X.

Proposition 3.2. Every coarsely J-class (or D-class) backward unilateral weighted shift on l2(N) on an open
cone C ⊂ l2(N) is hypercyclic.

Proof. Let T : l2(N) → l2(N) be a backward unilateral weighted shift which is coarsely J-class (or D-class)
on an open cone C ⊂ l2(N) with respect to a positive constant d. That is there exists a non-zero vector
x ∈ l2(N) such that C ⊂ J(x, T, d) (or C ⊂ D(x, T, d) resp.). Fix a point y ∈ C and a positive integer N .
Then, there exist a strictly increasing (or increasing resp.) sequence of positive (or non-negative resp.)
integers {kn} and a sequence {xn} such that xn → x and ‖T knxn − Ny‖2 < d for every n ∈ N. Hence,
‖T kn xn

N − y‖2 < d
N . Using a diagonal procedure we can find a strictly increasing (or increasing resp.)

sequence of positive integers mn and a sequence yn → 0 such that Tmnyn → y. Therefore, C ⊂ J(0, T ) (or
C ⊂ D(0, T ) = J(0, T ) ∪ O(0, T ) = J(0, T ) resp.), thus by [11, Proposition 5.13], T is hypercyclic. Note
that we have not used that the vector x is non-zero. �
Proposition 3.3. There exists a backward bilateral weighted shift on l∞(Z) which is coarsely J-class and not
J-class.

Proof. Let T : l∞(Z) → l∞(Z) be the backward bilateral weighted shift with weight sequence (αn)n∈Z,
αn = 2 for n � 1 and αn = 1 for n � 0. As we showed, with G. Costakis, in [10, Remark 3.5], J(0, T ) = l∞(Z)
and T is not a J-class operator. Now, consider the vector y = {y(n)}n∈Z ∈ l∞(Z) with y(n) = 0 for every
n �= 0 and y(0) = 1. Obviously ‖Tny‖∞ = 1 for every n ∈ N. We will show that J(y, T, 2) = l∞(Z). Take a
vector x ∈ l∞(Z). Since J(0, T ) = l∞(Z) there exist a strictly increasing sequence of positive integers {kn}
and a sequence {xn} such that xn → x and T knxn → x. It is plain to see that ‖T kn(xn + y)− x‖∞ < 2, for
n ∈ N big enough, so J(y, T, 2) = l∞(Z). �
Remark 3.4. Note that, in the above example, J(y, T, 2) = l∞(Z) but J(y, T ) = ∅. Indeed, let us assume the
contrary, that is there exists a vector w = {w(n)}n∈Z ∈ J(y, T ). Hence, there exist a sequence yn → y and
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a strictly increasing sequence of positive integers {kn} such that T knyn → w. Thus, there exists a positive
integer n0 such that ‖yn − y‖∞ < 1

4 and ‖T knyn − w‖∞ < 1
4 for every n � n0. For the economy of the

proof, let us denote the vector yn = {y(n, k)}k∈Z. Now, since the 0-th coordinate of y is 1 and all the rest
coordinates are 0, then |w(−kn1)−y(n1, 0)| < 1

4 and |y(n1, 0)−1| < 1
4 . Therefore, |w(−kn1)−1| < 1

2 (1). On
the other hand ‖T kn0 yn0−w‖∞ < 1

4 , hence |w(−kn1)−y(n0, kn0−kn1)| < 1
4 . Note that |y(n0, kn0−kn1)| < 1

4 .
So, |w(−kn1)| < 1

2 which if it is combined with (1) leads to a contradiction.

Theorem 3.5. There exists a non-separable Banach XA space which supports no coarsely D-class operators
on open cones.

In [16] A. Bahman Nasseri gave a negative answer to a question, we asked together with G. Costakis
in [11], whether every non-separable Banach space supports a J-class operator. He used the complexification
of a non-separable Banach space XA constructed by S.A. Argyros, A.D. Arvanitakis and A.G. Tolias in [4]
which has the property that every bounded linear operator on XA is of the form T = zI + S, where
S : XA → XA is a strictly singular operator on XA with separable range, I : XA → XA denotes the identity
map on XA and z ∈ C. We claim that such an operator can not be coarsely D-class on an open cone (hence
it cannot be a coarsely J-class operator on an open cone). Of course one may think to use the famous
Argyros–Haydon space [5] in which all bounded linear operators are of the form T = zI + K where K is
a compact operator, but this space is separable and by a theorem proved independently by Ansari [3] and
Bernal-González [8] such a space supports a mixing, hence hypercyclic operator. Before we proceed with
the proof of our claim let us say a few words about strictly singular operators. A strictly singular operator
S : X → Y between two Banach spaces X and Y is a bounded linear operator such that there is no infinite
dimensional closed subspace Z of X such that S : Z → S(Z), the restriction of S to Z, is an isomorphism.
For example, every compact operator is strictly singular. If X = Y then the spectrum of S is countable
and 0 is the only possible accumulation point (for more information about strictly singular operators see
e.g. [2]).

The proof of our claim is given in several steps.

Proposition 3.6. Let T : X → X be a linear operator acting on a Banach space X. Then the following hold:

(i) If the spectrum σ(T ) of T is contained in the open unit disk D ⊂ C then B(0, d) ⊂ J(x, T, d) ⊂ B(0, d)
for every x ∈ X and d > 0.

(ii) If σ(T ) ⊂ C \D then J(x, T, d) = ∅ for every non-zero vector x ∈ X and d > 0. Moreover, J(0, T, d) =
Jmix(0, T ) = X.

(iii) If D(x, T, d) contains an open cone for some non-zero vector x ∈ X and d > 0. Then σ(T ) ∩ ∂D �= ∅.

Proof. (i) Assume that σ(T ) ⊂ D. Then by the spectral radius formula of Gelfand ‖Tn‖ → 0. Let y ∈
J(x, T, d) for some x ∈ X, d > 0. Hence, there exist a strictly increasing sequence of positive integers
{kn} and a sequence xn → x such that ‖T knxn − y‖ < d for every n ∈ N. Since ‖Tn‖ → 0 and xn → x

then T knxn → 0, thus y ∈ B(0, d) and so J(x, T, d) ⊂ B(0, d). Let now y ∈ B(0, d). Since Tnx → 0 then
‖Tnx− y‖ → ‖y‖ < d, hence y ∈ J(x, T, d).

(ii) If σ(T ) ⊂ C \ D then T is invertible and ‖T−n‖ → 0. We argue by contradiction. Assume that there
exists a vector y ∈ J(x, T, d) for some non-zero vector x ∈ X and some d > 0. Thus, there exist a strictly
increasing sequence of positive integers {kn} and a sequence xn → x such that ‖T knxn − y‖ < d for every
n ∈ N. Hence, ‖xn − T−kny‖ � ‖T−kn‖ · ‖T knxn − y‖ < ‖T−kn‖ · d. Since ‖T−kn‖ → 0 then T−kny → 0
and since ‖xn − T−kny‖ < ‖T−kn‖ · d then xn → 0. Thus, x = 0 which is a contradiction. Let us now show
that J(0, T, d) = Jmix(0, T ) = X. Since Jmix(0, T ) ⊂ J(0, T, d) it is enough to show that Jmix(0, T ) = X.
This follows easily by noticing that x = Tn(T−nx) = x while T−nx → 0 for every x ∈ X.
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(iii) We argue by contradiction. Assume that D(x, T, d) contains an open cone C ⊂ X for some non-zero
vector x ∈ X and d > 0 and that σ(T ) ∩ ∂D = ∅. Thus we may apply the Riesz Decomposition theorem
and decompose X into two closed T -invariant subspaces X1 and X2 of X such that X = X1 ⊕X2, σ(T1) =
{λ ∈ σ(T ) | |λ| < 1} and σ(T2) = {λ ∈ σ(T ) | |λ| > 1}, where T1, T2 denote the restriction of T on
X1 and X2 respectively. Let x = x1 + x2 with x1 ∈ X1 and x2 ∈ X2. It is easy to see that D(x, T, d) ⊂
D(x1, T1, d) + D(x2, T2, d). Note that, by item (i), the set J(x1, T1, d) is bounded and since ‖Tn

1 ‖ → 0, the
coarse orbit O(x1, T1, d) is also bounded. Take a vector c = c1 + c2 ∈ C where c1 ∈ X1 and c2 ∈ X2. Since
C ⊂ D(x, T, d) and D(x1, T1, d) = O(x1, T1, d) ∪ J(x1, T1, d) is bounded, then for large λ > 0, λc1 = 0
hence c1 = 0. Thus, C ⊂ D(x2, T2, d) ⊂ X2, therefore, X2 = X and so T2 = T . In that case, by item (ii),
J(x, T, d) = ∅, hence C ⊂ O(x, T, d). Then, by Theorem 2.2, the operator T is hypercyclic. Since σ(T ) ⊂ C\D
this leads to a contradiction (see e.g. [14, Proposition 5.3]). �
Proposition 3.7. let X be a non-separable Banach space and let T : X → X be a linear operator of the form
T = U + S, where U : X → X is power bounded and S : X → X is an operator with separable range. Then
T cannot be a coarsely D-class operator on an open cone of X.

Proof. Note that the multiplication of an operator on the left or on the right by an operator with separable
range gives an operator with separable range too. Hence, for every n ∈ N, the operator Tn can be written
as a sum of the form Tn = Un +Sn where Sn : X → X is a linear operator with separable range. We argue
by contradiction. Assume that there exists an open cone C of X such that C ⊂ D(x, T, d) for some x ∈ X,
d > 0 and let y ∈ C. Thus, there exist an increasing sequence of non-negative integers {kn} and a sequence
xn → x such that ‖T knxn − y‖ < d for every n ∈ N. Since T kn = Ukn + Skn

for every n ∈ N then T knxn =
Uknxn −Uknx+Uknx+Skn

xn. Since U is power bounded and xn → x we get that Uknxn −Uknx → 0. So
if we fix some ε > 0 then T knxn ∈ B(0, ε) +O(x, U) +

⋃
n∈N

Skn
(X). The set O(x, U) +

⋃
n∈N

Skn
(X) has a

countable dense subset hence it can be covered by a countable family {B(wn, ε)}n∈N of open balls of radius
ε > 0. Hence, T knxn ∈ B(0, ε) +O(x, U) +

⋃
n∈N

Skn
(X) ⊂

⋃
n∈N

B(wn, 2ε). Note that y ∈ B(T knxn, d) for
every n ∈ N. Therefore, C ⊂ D(x, T, d) ⊂

⋃
n∈N

B(wn, d + 2ε). We will show that the open cone C has a
countable base hence it is separable. In this case every open ball of X is separable and since X is connected
then X is separable which is a contradiction. Let us now show that the family {B(wn

k , d+2ε
k )}n,k∈N forms

a (countable) base for C. To see that, take an open ball B(v,R) centered at a vector v ∈ C with radius
R > 0 and a positive integer k such that d+2ε

k < R
2 . Since kv ∈ C ⊂

⋃
n∈N

B(wn, d + 2ε) there exists a
positive integer n ∈ N such that kv ∈ B(wn, d + 2ε). Thus, v ∈ B(wn

k , d+2ε
k ) and since d+2ε

k < R
2 then

B(wn

k , d+2ε
k ) ⊂ B(v,R) and the proof is finished. �

Proof of Theorem 3.5. Recall that a linear operator T : XA → XA on XA is of the form T = zI +S, where
S : XA → XA is a strictly singular operator on XA with separable range, I : XA → XA denotes the identity
map on XA and z ∈ C. We argue by contradiction. Assume that there exists an open cone C of X such
that C ⊂ D(x, T, d) for some non-zero vector x ∈ XA and d > 0. We consider two cases depending on the
modulus of z ∈ C.

The case |z| � 1 follows directly from Proposition 3.7, since S has dense range.
Let |z| > 1. Since z is the only possible accumulation point of the spectrum σ(T ) of T and |z| > 1 then we

can write σ(T ) as a disjoint union of the closed sets σ1 = {λ ∈ σ(T ) | |λ| � 1} and σ2 = {λ ∈ σ(T ) | |λ| > 1}
and then apply the Riesz Decomposition theorem. Therefore, there exist two closed T -invariant subspaces X1
and X2 of XA such that XA = X1⊕X2 and if T1, T2 denote the restriction of T on X1 and X2, respectively,
then σ(T1) = σ1 and σ(T2) = σ2. Note that by Proposition 3.6(iii), σ(T ) ∩ ∂D �= ∅, hence X1 �= {0}.
We claim that X1 is a finite dimensional vector space. If not then the restriction S : X1 → S(X1) of the
strictly singular operator S on X1 is again strictly singular, hence it cannot be a linear isomorphism. Thus,
0 ∈ σ(S|X1) therefore z ∈ σ(T1) = z + σ(S|X1), a contradiction. Thus, X1 is finite dimensional. Write the
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vector x = x1+x2 with x1 ∈ X1 and x2 ∈ X2 and note that C ⊂ D(x, T, d) ⊂ D(x1, T1, d)+D(x2, T2, d). The
projection of the open cone C on X1 �= {0} is again an open cone in X1 which is contained in D(x1, T1, d).
This implies, by [12], that x1 = 0 and σ1 ⊂ C \ D which is a contradiction since σ1 ⊂ D. �
4. Final remarks and open problems

4.1. One of the most important theorems in the theory of hypercyclic operators is the Bourdon–Feldman
theorem [9]. Bourdon–Feldman theorem says that whenever an orbit O(x, T ) is somewhere dense in X then
it is dense in X. Since every coarse orbit O(x, T, d) has always non-empty interior, and in view of our main
result Theorem 1.3, it is natural to ask the following question.

Question 1. If a coarse orbit O(x, T, d) contains an open cone C ⊂ X is it true that O(x, T, d) = X?

As the referee noticed, the answer to the previous question is negative. The referee, to whom we are
grateful, also provided us with the following counterexample.

Example 4.1. The example is a slight modification of the example of Feldman given in [13, Theorem 2.6]:
Let A := {w ∈ C: |w| � 1 or Re(w) � 0}, where Re(w) denotes the real part of w. We easily have
that, if y = (y0, . . . , yn) ∈ C

n+1 with Re(y0) � 0 then there is a vector z = (z0, z1/2, . . . , zn/2n) such
that ‖z − y‖ � 1/2

√
3 and zk ∈ A, k = 0, . . . , n. Let B : l2(N) → l2(N) denote the backward shift

on l2(N). By following the argument in the proof of [13, Theorem 2.6], for any d > 1/2
√

3 (e.g., for
d := 1/2

√
2 ) one can find a vector x ∈ l2(N) such that the coarse orbit O(x, 2B, d) contains the open

cone C := {y = (y0, y1, . . .) ∈ l2(N): Re(y0) > 0}, but the point z := (−1/2, 0, 0, . . .) does not belong to
O(x, 2B, d).

A question related to Question 1 is the following.

Question 2. Obviously a coarsely J-class operator is coarsely D-class. Is the inverse implication true?

4.2. Let T : X → X be a linear operator acting on a Banach space X. If X is finite dimensional then⋃
y∈J(x,T ) B(y, d) = J(x, T, d). If X is infinite dimensional this is not longer true. In Proposition 3.3 we

showed that there exists a backward bilateral weighted shift on l∞(Z) which is coarsely J-class and not
J-class and we found a vector y ∈ l∞(Z) such that J(y, T, 2) = X and J(y, T ) = ∅, see Remark 3.4. Hence
it is natural to ask the following question.

Question 3. Let T : X → X be a linear operator acting on an infinite dimensional Banach space X. Assume
that

⋃
y∈J(x,T ) B(y, d) = X. Is then true that J(x, T ) = X?
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