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ABSTRACT. The purpose of the present work is to treat a new notion related
to linear dynamics, which can be viewed as a “localization" of the notion of
hypercyclicity. In particular, let T be a bounded linear operator acting on a
Banach space X and let x be a non-zero vector in X such that for every open
neighborhood U ⊂ X of x and every non-empty open set V ⊂ X there exists a
positive integer n such that TnU ∩V 6= ∅. In this case T will be called a J-class
operator. We investigate the class of operators satisfying the above property
and provide various examples. It is worthwhile to mention that many results
from the theory of hypercyclic operators have their analogues in this setting.
For example we establish results related to the Bourdon–Feldman theorem
and we characterize the J-class weighted shifts. We would also like to stress
that even some non-separable Banach spaces which do not support topologi-
cally transitive operators, as for example l∞(N), do admit J-class operators.
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1. INTRODUCTION

Let X be a complex (or real) Banach space. In the rest of the paper the
symbol T stands for a bounded linear operator acting on X. We first fix some
notation. Consider any subset C of X. The symbols Co, C and ∂C denote the
interior, the closure and the boundary of C respectively. The symbol Orb(T, C)
denotes the orbit of C under T, i.e.

Orb(T, C) = {Tnx : x ∈ C, n = 0, 1, 2, . . .}.
If C = {x} is a singleton and the orbit Orb(T, x) is dense in X, the operator T is
called hypercyclic and the vector x is a hypercyclic vector for T. If C = {λx : λ ∈
C} = Cx and the set Orb(T, C) is dense in X, the operator T is called supercyclic
and the vector x is a supercyclic vector for T. A nice source of examples and prop-
erties of hypercyclic and supercyclic operators is the survey article [18], see also
some recent survey articles [30], [19], [24], [8], [15], [20] and the recent book [2].
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Observe that in case the operator T is hypercyclic the underlying Banach
space X should be separable. Then it is well known and easy to show that an
operator T : X → X is hypercyclic if and only if for every pair of non-empty open sets
U, V of X there exists a positive integer n such that Tn(U) ∩V 6= ∅.

The purpose of this paper is twofold. Firstly we somehow “localize" the no-
tion of hypercyclicity by introducing certain sets, which we call J-sets. The notion
of J-sets is well known in the theory of topological dynamics, see [6]. Roughly
speaking, if x is a vector in X and T an operator, then the corresponding J-set of x
under T describes the asymptotic behavior of all vectors nearby x. To be precise
for a given vector x ∈ X we define

J(x)={y∈X : there exist a strictly increasing sequence of positive integers

{kn} and a sequence {xn}⊂X such that xn→ x and Tkn xn→y}.

Secondly we try to develop a systematic study of operators whose J-set un-
der some vector is the whole space. As it turns out this new class of operators
although different from the class of hypercyclic operators, shares some similari-
ties with the behavior of hypercyclic operators. In fact it is not difficult to see that
if T is hypercyclic then J(x) = X for every x ∈ X.

On the other hand we provide examples of operators T such that J(x) = X
for some vector x ∈ X but T fails to be hypercyclic and in general T need not
be even multi-cyclic. This should be compared with the results of Feldman in
[16] where he shows that a countably hypercyclic operator need not be multi-
cyclic. We would like to stress that some non-separable Banach spaces, such as
the space l∞(N) of bounded sequences, support J-class operators, (see Proposi-
tion 5.2), while it is known that the space l∞(N) does not support topologically
transitive operators, see [3].

The paper is organized as follows. In Section 2 we define the J-sets and
we examine some basic properties of these sets. In Section 3 we investigate the
relation between hypercyclicity and J-sets. In particular we show that T : X → X
is hypercyclic if and only if there exists a cyclic vector x ∈ X such that J(x) = X.
Recall that a vector x is cyclic for T if the linear span of the orbit Orb(T, x) is
dense in X. The main result of Section 4 is a generalization of a theorem due to
Bourdon and Feldman, see [11]. Namely, we show that if x is a cyclic vector for
an operator T : X → X and the set J(x) has non-empty interior then J(x) = X
and, in addition, T is hypercyclic. In Section 5 we introduce the notion of J-class
operator and we establish some of its properties. We also present examples of
J-class operators which are not hypercyclic. On the other hand, we show that if
T is a bilateral or a unilateral weighted shift on the space of square summable
sequences then T is hypercyclic if and only if T is a J-class operator. Finally, in
Section 6 we give a list of open problems.
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2. PRELIMINARIES AND BASIC NOTIONS

If one wants to work on general non-separable Banach spaces and in order
to investigate the dynamical behavior of the iterates of T, the suitable substitute
of hypercyclicity is the following well known notion of topological transitivity
which is frequently used in dynamical systems.

DEFINITION 2.1. An operator T : X → X is called topologically transitive if
for every pair of open sets U, V of X there exists a positive integer n such that
TnU ∩V 6= ∅.

DEFINITION 2.2. Let T : X → X be an operator. For every x ∈ X the sets

L(x) = {y ∈ X : there exists a strictly increasing sequence

of positive integers {kn} such that Tkn x → y}

and

J(x) = {y ∈ X : there exist a strictly increasing sequence of positive integers

{kn} and a sequence {xn} ⊂ X such that xn → x and Tkn xn → y}

denote the limit set and the extended (prolongational) limit set of x under T respec-
tively. In case T is invertible and for every x ∈ X the sets L+(x), J+(x) (L−(x),
J−(x)) denote the limit set and the extended limit set of x under T (T−1).

REMARK 2.3. An equivalent definition of J(x) is the following:

J(x) = {y ∈ X : for every pair of neighborhoods U, V of x, y respectively, there

exists a positive integer n, such that TnU ∩V 6= ∅}.

Observe now that T is topologically transitive if and only if J(x) = X for every
x ∈ X.

DEFINITION 2.4. Let T : X → X be an operator. A vector x is called periodic
for T if there exists a positive integer n such that Tnx = x.

The proof of the following lemma can be found in [12].

LEMMA 2.5. Let T : X → X be an operator and {xn}, {yn} be two sequences in
X such that xn → x and yn → y for some x, y ∈ X. If yn ∈ J(xn) for every n = 1, 2, . . .,
then y ∈ J(x).

PROPOSITION 2.6. For all x ∈ X the sets L(x), J(x) are closed and T-invariant.

The proof is an immediate consequence of the previous lemma.

REMARK 2.7. Note that the set J(x) is not always invariant under the op-
eration T−1 even in the case T is surjective. For example consider the operator
T = (1/2)B where B is the backward shift operator on l2(N), the space of square
summable sequences. Since ‖T‖ = 1/2 it follows that L(x) = J(x) = {0} for
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every x ∈ l2(N). For any non-zero vector y ∈ KerT we have Ty = 0 ∈ J(x) and
y ∈ X \ J(x). However, if T is invertible it is easy to verify the following.

PROPOSITION 2.8. Let T : X → X be an invertible operator. Then T−1 J(x) =
J(x) for every x ∈ X.

Proof. By Proposition 2.6 it follows that J(x) ⊂ T−1 J(x). Take y ∈ T−1 J(x).
There are a strictly increasing sequence {kn} of positive integers and a sequence
{xn} ⊂ X so that xn → x and Tkn xn → Ty, hence Tkn−1xn → y.

PROPOSITION 2.9. Let T : X → X be an invertible operator and x, y ∈ X. Then
y ∈ J+(x) if and only if x ∈ J−(y).

Proof. If y ∈ J+(x) there exist a strictly increasing sequence {kn} of positive
integers and a sequence {xn} ⊂ X such that xn → x and Tkn xn → y. Then
T−kn(Tkn xn) = xn → x, hence x ∈ J−(y).

PROPOSITION 2.10. Let T : X → X be an operator. If T is power bounded then
J(x) = L(x) for every x ∈ X.

Proof. Since T is power bounded there exists a positive number M such that
‖Tn‖ 6 M for every positive integer n.

Fix a vector x ∈ X. If J(x) = ∅ there is nothing to prove. Therefore assume
that J(x) 6= ∅. Since the inclusion L(x) ⊂ J(x) is always true, it suffices to show
that J(x) ⊂ L(x). Take y ∈ J(x). There exist a strictly increasing sequence {kn}
of positive integers and a sequence {xn} ⊂ X such that xn → x and Tkn xn → y.
Then we have

‖Tkn x− y‖ 6 ‖Tkn x− Tkn xn‖+ ‖Tkn xn − y‖ 6 M‖x− xn‖+ ‖Tkn xn − y‖

and letting n goes to infinity to the above inequality, we get that y ∈ L(x).

LEMMA 2.11. Let T : X → X be an operator. If J(x) = X for some non-zero
vector x ∈ X then J(λx) = X for every λ ∈ C.

Proof. For λ ∈ C \ {0} it is easy to see that J(λx) = X. It remains to show
that J(0) = X.

Fix a sequence of non-zero complex numbers {λn} converging to 0 and take
y ∈ J(x). Then y ∈ J(λnx) for every n and since λn → 0, Lemma 2.5 implies that
y ∈ J(0). Hence J(0) = X.

PROPOSITION 2.12. Let T : X → X be an operator. Define the set A = {x ∈ X :
J(x) = X}. Then A is a closed, connected and T(A) ⊂ A.

Proof. The T-invariance follows immediately from the T-invariance of J(x).
By Lemma 2.5 we conclude that A is closed. Let x ∈ A. Lemma 2.11 implies that
for every λ ∈ C, J(0) = J(λx) = X, hence A is connected.
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3. A CHARACTERIZATION OF HYPERCYCLIC OPERATORS THROUGH J-SETS

The following characterization of hypercyclic operators appears more or
less in [18]. However we sketch the proof for the purpose of completeness.

THEOREM 3.1. Let T : X → X be an operator acting on a separable Banach space
X. The following are equivalent:

(i) T is hypercyclic;
(ii) for every x ∈ X it holds that J(x) = X;

(iii) the set A = {x ∈ X : J(x) = X} is dense in X;
(iv) the set A = {x ∈ X : J(x) = X} has non-empty interior.

Proof. We first prove that (i) implies (ii). Let x, y ∈ X. Since the set of hyper-
cyclic vectors is Gδ and dense in X there exist a sequence {xn} of hypercyclic vec-
tors and a strictly increasing sequence {kn} of positive integers such that xn → x
and Tkn xn → y as n→ ∞. Hence y ∈ J(x).

That (ii) implies (iii) is trivial.
A consequence of Lemma 2.5 is that (iii) gives (ii).
Next we show that (iv) implies (ii). Fix x ∈ Ao and consider y ∈ X arbi-

trary. Then y ∈ J(x) = X, hence there exist a sequence {xn} ⊂ X and a strictly
increasing sequence {kn} of positive integers such that xn → x and Tkn xn → y.
Since x ∈ Ao without loss of generality we may assume that xn ∈ A for every n.
Moreover A is T-invariant, hence Tkn xn ∈ A for every n. Since Tkn xn → y and A
is closed we conclude that y ∈ A.

Let us now prove that (ii) implies (i). Fix {xj} a countable dense set of X.
Define the sets E(j, s, n) = {x ∈ X : ‖Tnx − xj‖ < 1/s} for every j, s = 1, 2, . . .
and every n = 0, 1, 2, . . . . In view of Baire’s Category Theorem and the well
known set theoretical description of hypercyclic vectors through the sets E(j, s, n),

it suffices to show that the set
∞⋃

n=0
E(j, s, n) is dense in X for every j, s. Indeed, let

y ∈ X, ε > 0, j, s be given. Since J(y) = X, there exist x ∈ X and n ∈ N such that

‖x− y‖ < ε and ‖Tnx− xj‖ <
1
s

.

The following lemma, see also Corollary 3.4, which is of great importance
in the present paper, gives information about the spectrum of the adjoint T∗ of an
operator T : X → X provided there is a vector x ∈ X whose extended limit set
J(x) has non-empty interior. The corresponding result for hypercyclic operators
has been proven by P. Bourdon in [9].

LEMMA 3.2. Let T : X → X be an operator acting on a complex or real Banach
space X. Suppose there exists a vector x ∈ X such that J(x) has non-empty interior
and x is cyclic for T. Then for every non-zero polynomial P the operator P(T) has dense
range. In particular the point spectrum σp(T∗) of T∗ (the adjoint operator of T) is empty,
i.e. σp(T∗) = ∅.
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Proof. Assume first that X is a complex Banach space. Since P(T) can be
decomposed in the form P(T) = α(T − λ1 I)(T − λ2 I) · · · (T − λk I) for some
α, λi ∈ C, i = 1, . . . , k, where I stands for the identity operator, it suffices to
show that T − λI has dense range for any λ ∈ C. If not, there exists a non-zero
linear functional x∗ such that x∗((T − λI)(x)) = 0 for every x ∈ X. The last im-
plies that x∗(Tnx) = λnx∗(x) for every x ∈ X and every n non-negative integer.
Take y in the interior of J(x). Then there exist a sequence {xn} ⊂ X and a strictly
increasing sequence {kn} of positive integers such that xn → x and Tkn xn → y
as n → +∞. Suppose first that |λ| < 1. Observe that x∗(Tkn xn) = λkn x∗(xn)
and letting n → +∞ we arrive at x∗(y) = 0. Since the functional x∗ is zero on an
open subset of X must be identically zero on X, which is a contradiction. Work-
ing for |λ| = 1 as before, it is easy to show that for every y in the interior of J(x),
x∗(y) = µx∗(x) for some µ ∈ C with |µ| = 1, which is again a contradiction since
x∗ is surjective. Finally we deal with the case |λ| > 1. At this part of the proof
we shall use the hypothesis that x is cyclic. Letting n tend to infinity in the relation
x∗(xn) = (1/λkn)x∗(Tkn xn), it is plain that x∗(x) = 0 and therefore x∗(Tnx) = 0
for every n non-negative integer. The last implies that x∗(P(T)x) = 0 for every
P non-zero polynomial and since x is cyclic the linear functional x∗ vanishes ev-
erywhere, which gives a contradiction. It remains to handle the real case. For
that it suffices to consider the case where P is an irreducible and monic polyno-
mial of the form P(t) = t2 − 2Re(w)t + |w|2 for some non-real complex number
w. Assume that P(T) does not have dense range. Then there exists a non-zero
x∗ ∈ Ker(P(T)∗). Following the proof of the main result in [5], there exists a real
2× 2 matrix A such that JAt((x∗(Tx), x∗(x))t) = R2, where the symbol At stands
for the transpose of A. By Proposition 5.5 (which holds in the real case as well)
we get x∗(Tx) = x∗(x) = 0. The last implies that x∗(Q(T)x) = 0 for every real
polynomial Q. Since x is cyclic we conclude that x∗ = 0 which is a contradiction.
This completes the proof of the lemma.

THEOREM 3.3. Let T : X → X be an operator acting on a separable Banach space
X. Then T is hypercyclic if and only if there exists a cyclic vector x ∈ X for T such that
J(x) = X.

Proof. We need only to prove that if x ∈ X is a cyclic vector for T and J(x) =
X then T is hypercyclic. Take any non-zero polynomial P. It is easy to check that
P(T)(J(x)) ⊂ J(P(T)x). By the previous lemma it follows that P(T) has dense
range and since J(x) = X we conclude that X = P(T)(X) ⊂ J(P(T)x). Therefore
J(P(T)x) = X for every non-zero polynomial P. The fact that x is a cyclic vector it
now implies that there exists a dense set D in X so that J(y) = X for every y ∈ D.
Hence, in view of Theorem 3.1, T is hypercyclic.

COROLLARY 3.4. Let T : X → X be an operator. Suppose there exists a vector
x ∈ X such that J(x) has non-empty interior. Then for every λ ∈ C with |λ| 6 1 the
operator T − λI has dense range.



J-CLASS OPERATORS AND HYPERCYCLICITY 107

For the proof of the corollary see the proof of Lemma 3.2.

REMARK 3.5. At this point we would like to comment on Theorem 3.3.
First of all under the hypothesis that x is a cyclic vector for T and J(x) = X

one cannot get a stronger conclusion than T is hypercyclic.
In particular it is not true in general that x is a hypercyclic vector. To see this,

take T = 2B where B is the backward shift operator acting on the space of square
summable sequences l2(N) over C. In [14] Feldman showed that for a given posi-
tive number ε there exists a vector x ∈ l2(N) such that the set Orb(2B, x) is ε-dense
in l2(N) (this means that for every y ∈ l2(N) there exists a positive integer n such
that Tnx is ε-close to y), but x is not hypercyclic for 2B. It is straightforward to
check that x is supercyclic for 2B and hence it is cyclic. In addition J(x) = l2(N)
since 2B is hypercyclic (see Theorem 3.1).

REMARK 3.6. Let us now show that the hypothesis x is cyclic in Theorem 3.3
cannot be omitted.

Let B : l2(N)→ l2(N) be the backward shift operator. Consider the operator
T = 2I ⊕ 2B : C⊕ l2(N) → C⊕ l2(N), where I is the identity operator acting on
C. It is obvious that 2I ⊕ 2B is not a hypercyclic operator. However we shall
show that for every hypercyclic vector y ∈ l2(N) for 2B it holds that J(0⊕ y) =
C ⊕ l2(N). Therefore there exist (non-cyclic) non-zero vectors x ∈ C ⊕ l2(N)
with J(x) = C⊕ l2(N) and T is not hypercyclic. Indeed, fix a hypercyclic vector
y ∈ l2(N) for 2B and let λ ∈ C, w ∈ l2(N). There exists a strictly increasing
sequence of positive integers {kn} such that Tkn y→ w. Define xn = (λ/2kn)⊕ y.
Then xn → 0⊕ y and Tkn xn → λ⊕ w. Hence, J(0⊕ y) = C⊕ l2(N).

4. AN EXTENSION OF BOURDON-FELDMAN’S THEOREM

In this section we establish an extension of the following striking result due
to Bourdon and Feldman [11]: if X is a separable Banach space, T : X → X an operator
and for some vector x ∈ X the orbit Orb(T, x) is somewhere dense then Orb(T, x) = X.
This theorem was an answer to a question raised by Peris in [26]. We shall prove
the following theorem.

THEOREM 4.1. Let x be a cyclic vector for T. If J(x)o 6= ∅ then J(x) = X.

In order to prove Theorem 4.1 we follow the steps of the proof of Bourdon–
Feldman’s theorem. Of course there are some extra technicalities which have to
be taken care since the orbit Orb(T, x) of x under T is replaced by the extended
limit set J(x) of x.

LEMMA 4.2. If for some non-zero polynomial P the operator P(T) has dense range
and x is a cyclic vector for T then P(T)x is cyclic for T.
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Proof. Take P(T)y for some y ∈ X. Since x is cyclic there is a sequence of
polynomials {Qn} such that Qn(T)x → y. Therefore, Qn(T)(P(T)x)→ P(T)y.

LEMMA 4.3. Assume that x is a cyclic vector for T and J(x) has non-empty inte-
rior. Then the set X \ J(x)o is T-invariant.

Proof. We argue by contradiction. Let y ∈ X \ J(x)o be such that Ty ∈ J(x)o.
By the continuity of T we may assume that y /∈ J(x). Moreover, since x is
cyclic we may find a non-zero polynomial P(T) such that P(T)x ∈ X \ J(x) and
TP(T)x ∈ J(x)o. Hence, there exist a sequence {xn} ⊂ X and a strictly increasing
sequence of positive integers {kn} such that xn → x and Tkn xn → TP(T)x. Taking
any polynomial Q we get Q(T)xn → Q(T)x and Tkn Q(T)xn = Q(T)(Tkn xn) →
Q(T)TP(T)x. So it follows that P(T)TQ(T)x ∈ J(Q(T)x) for every polynomial
Q. But J(Q(T)x) ⊂ J(TQ(T)x), hence we get P(T)TQ(T)x ∈ J(TQ(T)x) for
every polynomial Q. By Lemmata 3.2 and 4.2, Tx is a cyclic vector for T, hence
there exists a sequence of the form {Qn(T)x}, for some non-zero polynomials
Qn, such that TQn(T)x → x. Therefore it follows that P(T)TQn(T)x → P(T)x.
Observe that P(T)TQn(T)x ∈ J(TQn(T)x) and using Lemma 2.5 it follows that
P(T)x ∈ J(x) which is a contradiction.

LEMMA 4.4. Assume that x is a cyclic vector for T and J(x) has non-empty
interior. Suppose that Q(T)x ∈ X \ J(x) for some non-zero polynomial Q. Then
Q(T)(J(x)) ⊂ X \ J(x)o.

Proof. Let y ∈ J(x). There exist a sequence {xn} ⊂ X and a strictly increas-
ing sequence of positive integers {kn} such that xn → x and Tkn xn → y. Since
X \ J(x) is an open set we may assume that Q(T)xn ∈ X \ J(x) for every n and
thus Q(T)xn ∈ X \ J(x)o. By Lemma 4.3 the set X \ J(x)o is T-invariant, therefore
Tkn Q(T)x = Q(T)Tkn xn ∈ X \ J(x)o. Now it is plain that Q(T)y ∈ X \ J(x)o.

LEMMA 4.5. Assume that x is a cyclic vector for T, J(x) has non-empty interior
and let P be any non zero polynomial. Then P(T)x /∈ ∂(J(x)o).

Proof. In view of Lemma 4.4 let us define the set

A = {Q : Q is a polynomial and Q(T)x ∈ X \ J(x)}.
Note that the set {Qx : Q ∈ A} is dense in X \ J(x)o.

We argue by contradiction. Suppose there exists a non-zero polynomial P
so that P(T)x ∈ ∂(J(x)o). The inclusion ∂(J(x)o) ⊂ ∂J(x) gives that P(T)x ∈
∂(X \ J(x)). We will prove that P(T)(J(x)o) ⊂ X \ J(x)o. Since x is a cyclic vector
and J(x)o is open, it is enough to show that: if S(T)x ∈ J(x)o for some non-zero
polynomial S then P(T)S(T)x ∈ X \ J(x)o. We have P(T)x ∈ ∂(X \ J(x)). There-
fore there exists a sequence {Qn(T)x} such that Qn ∈ A and Qn(T)x → P(T)x.
Hence Lemma 4.4 yields that Qn(T)S(T)x ∈ X \ J(x)o. So, we get Qn(T)S(T)x →
P(T)S(T)x and P(T)S(T)x ∈ X \ J(x)o. Consider the set D := J(x)o ∪ {Q(T)x :
Q ∈ A} which is dense in X. By Lemma 3.2, P(T)D is dense in X. Since
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P(T)x ∈ J(x), Lemma 4.4 implies that Q(T)P(T)x ∈ X \ J(x)o for every Q ∈ A.
Hence, we have the following which is a contradiction:

P(T)D = P(T)(J(x)o) ∪ {P(T)Q(T)x : Q ∈ A} ⊂ X \ J(x)o.

Proof of Theorem 4.1. The set {P(T)x : P is a non-zero polynomial} is dense
and connected. Assume that J(x) 6= X. So we can find a non-zero polynomial P
such that P(T)x ∈ ∂(J(x)o). This contradicts Lemma 4.5.

COROLLARY 4.6. Let T : X → X be an operator. If there exists a cyclic vector
x ∈ X for T such that J(x) has non-empty interior then T is hypercyclic.

The proof follows by combining Theorems 3.3 and 4.1.

COROLLARY 4.7 (Bourdon–Feldman’s theorem). Let T : X → X be an opera-
tor. If for some vector x ∈ X the orbit Orb(T, x) is somewhere dense then it is everywhere
dense.

Proof. It is easy to see that x is a cyclic vector for T. Since Orb(T, x) is some-
where dense, it follows that L(x)o 6= ∅. Note that L(x) ⊂ J(x). Hence The-
orem 4.1 implies that J(x) = X. The set Orb(T, x) has non-empty interior so
we can find a positive integer l such that Tl x ∈ Orb(T, x)

o
. Since J(x) = X

and J(x) ⊂ J(Tl x) we arrive at J(Tl x) = X. So it is enough to prove that
Orb(T, x) = J(Tl x). Let y ∈ J(Tl x). There exist a sequence {xn} ⊂ X and a
strictly increasing sequence of positive integers {kn} such that xn → Tl x and
Tkn xn → y. Observing that Tl x ∈ Orb(T, x)

o
, without loss of generality we may

assume that xn ∈ Orb(T, x)
o

for every n. Moreover Orb(T, x) is T-invariant,
hence Tkn xn ∈ Orb(T, x) for every n. Since Tkn xn → y we conclude that y ∈
Orb(T, x).

COROLLARY 4.8. Let T : X → X be an operator. Suppose there exist a vector
x ∈ X and a polynomial P such that P(T)x is a cyclic vector for T. If the set J(x) has
non-empty interior then T is hypercyclic.

Proof. Since P(T)x is a cyclic vector for T it is obvious that x is a cyclic vector
for T. Using the hypothesis that the set J(x) has non-empty interior, Corollary 4.6
implies the desired result.

REMARK 4.9. The conclusion of Corollary 4.6 does not hold in general if x
is a cyclic vector for T and J(P(T)x) = X for some polynomial P. To see that,
consider the space X = C⊕ l2(N) and let B : l2(N) → l2(N) be the backward
shift operator. Define the operator T = 2I ⊕ 3B : X → X, where I denotes the
identity operator acting on C. Take any hypercyclic vector y for 3B and define
x = 1⊕ y. Then x is cyclic for T (in fact x is supercyclic for T) and obviously
T is not hypercyclic. In fact it holds that J(x) = ∅. Consider the polynomial
P(z) = z − 2. Then P(T)x = 0 ⊕ P(3B)y. Since y is hypercyclic for 3B, by a
classical result due to Bourdon [9], the vector P(3B)x is hypercyclic for 3B as well.
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Then using a similar argument as in Remark 3.6 we conclude that J(P(T)x) =
J(0⊕ P(3B)y) = X. In particular, the above shows that, if T is cyclic and J(x) = X
for some vector x ∈ X then T is not hypercyclic in general. On the other hand, we
have the following.

COROLLARY 4.10. Let T : X → X be an operator. Suppose P is a non-zero
polynomial such that P(T) has dense range. If x is a cyclic vector for T, P(T)x 6= 0 and
J(P(T)x)o 6= ∅ then T is hypercyclic.

Proof. Lemma 4.2 implies that P(T)x is a cyclic vector for T. Since J(P(T)x)o

6= ∅, Corollary 4.6 implies that T is hypercyclic.

5. J-CLASS OPERATORS

DEFINITION 5.1. An operator T : X → X will be called a J-class operator
provided there exists a non-zero vector x ∈ X so that the extended limit set of x
under T (see Definition 2.2) is the whole space, i.e. J(x) = X. In this case x will
be called a J-class vector for T.

The reason we exclude the extended limit set of the zero vector is to avoid
certain trivialities, as for example the multiples of the identity operator acting on
finite or infinite dimensional spaces. To explain briefly, for any positive integer n
consider the operator λI : Cn → Cn, where λ is a complex number of modulus
greater than 1 and I is the identity operator. It is then easy to check that JλI(0) =
X and JλI(x) 6= Cn for every x ∈ Cn \ {0}. However, the extended limit set of the
zero vector plays an important role in checking whether an operator T : X → X,
acting on a Banach space X, supports non-zero vectors x with JT(x) = X, see
Proposition 5.9. Let us also point out that from the examples we presented in
Section 3, see Remark 3.6, it clearly follows that this new class of operators does
not coincide with the class of hypercyclic operators.

Let us turn our attention to non-separable Banach spaces. Obviously a
non-separable Banach space cannot support hypercyclic operators. However, it
is known that topologically transitive operators may exist in non-separable Ba-
nach spaces, see for instance [7]. On the other hand in [3], Bermúdez and Kalton
showed that the non-separable Banach space l∞(N) of bounded sequences over
C does not support topologically transitive operators. Below we prove that the
Banach space l∞(N) supports J-class operators.

PROPOSITION 5.2. Let B : l∞(N)→ l∞(N) be the backward shift where l∞(N) is
the Banach space of bounded sequences over C, endowed with the usual supremum norm.
Then for every |λ| > 1, λB is a J-class operator. In fact we have the following complete
characterization of the set of J-class vectors. For every |λ| > 1 it holds that

{x ∈ l∞(N) : JλB(x) = l∞(N)} = c0(N),
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where c0(N) =
{

x = (xn)n∈N ∈ l∞(N) : lim
n→+∞

xn = 0
}

.

Proof. Fix |λ| > 1. Let us first show that if x is a vector in l∞(N) with
finite support then JλB(x) = l∞(N). For simplicity let us assume that x = e1 =
(1, 0, 0, . . .). Take any y = (y1, y2, . . .) ∈ l∞(N). Define xn = (1, 0, . . . , 0, y1/λn,
y2/λn, . . .) where 0’s are taken up to the n-th coordinate. Obviously xn ∈ l∞(N)
and it is straightforward to check that xn → e1 and (λB)nxn = y for all n. Hence,
JλB(e1) = l∞(N). Since the closure of the set consisting of all the vectors with
finite support is c0(N), an application of Lemma 2.5 gives that c0(N) is contained
in {x ∈ l∞(N) : JλB(x) = l∞(N)}. It remains to show the converse implication.
Suppose that JλB(x) = l∞(N) for some non-zero vector x = (x1, x2, . . .) ∈ l∞(N).
Then there exist a sequence yn = (yn1, yn2, . . .), n = 1, 2, . . . in l∞(N) and a strictly
increasing sequence of positive integers {kn} such that yn → x and (λB)kn yn →
0. Consider ε > 0. There exists a positive integer n0 such that ‖yn − x‖ < ε

and ‖(λB)kn yn‖ = |λ|kn sup
m>kn+1

|ynm| < ε for every n > n0. Hence for every

m > kn0 + 1 and since |λ| > 1 it holds that |xm| 6 ‖yn0 − x‖+ |yn0m| < 2ε. The
last implies that x ∈ c0(N) and this completes the proof.

REMARK 5.3. The previous proof actually yields that for every |λ| > 1,
JλB(x) = l∞(N) if and only if 0 ∈ JλB(x).

Next we show that certain operators, such as positive, compact, hyponor-
mal and operators acting on finite dimensional spaces cannot be J-class operators.
It is well known that the above mentioned classes of operators are disjoint from
the class of hypercyclic operators, see [23], [10].

PROPOSITION 5.4. (i) Let X be an infinite dimensional separable Banach space
and T : X → X be an operator. If T is compact then it is not a J-class operator.

(ii) Let H be an infinite dimensional separable Hilbert space and T : H → H be an
operator. If T is positive or hyponormal then it is not a J-class operator.

Proof. Let us prove assertion (i). Suppose first that T is compact. If T is a J-
class operator, there exists a non-zero vector x ∈ X so that J(x) = X. It is clear that
there exists a bounded set C ⊂ X such that the set Orb(T, C) is dense in X. Then
according to Proposition 4.4 in [16] no component of the spectrum, σ(T), of T can
be contained in the open unit disk. However, for compact operators the singleton
{0} is always a component of the spectrum and this gives a contradiction.

We proceed with the proof of the second statement. Suppose now that T is
hyponormal. If T is a J-class operator, there exists a non-zero vector h ∈ H so
that J(h) = H. Therefore there exists a bounded set C ⊂ H which is bounded
away from zero (since h 6= 0) such that the set Orb(T, C) is dense in X. The
last contradicts Theorem 5.10 in [16]. The case of a positive operator is an easy
exercise and is left to the reader.
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Below we prove that any operator acting on a finite dimensional space can-
not be a J-class operator.

PROPOSITION 5.5. Fix any positive integer l and let A : Cl → Cl be a linear
map. Then A is not a J-class operator. In fact J(x)o = ∅ for every x ∈ Cl \ {0}.

Proof. By the Jordan’s canonical form theorem for A we may assume that
A is a Jordan block with eigenvalue λ ∈ C. Assume on the contrary that there
exists a non-zero vector x ∈ Cl with coordinates z1, . . . , zl such that J(x)o = ∅. If
{xn} ∈ Cl is such that xn → x and zn1, . . . , znl be the corresponding coordinates
to xn then the m-th coordinate of Anxn equals to

l−m

∑
k=0

(
n
k

)
λn−kzn(m+k).

If |λ| < 1 then J(x) = {0}. It remains to consider the case |λ| > 1. Suppose
zl 6= 0. Then, for every strictly increasing sequence of positive integers {kn}
the possible limit points of the sequence {λkn znl} are: either ∞ in case |λ| > 1
or a subset of the circumference {z ∈ C : |z| = |zl |} in case |λ| = 1. This
leads to a contradiction since J(x)o 6= ∅. Therefore, the last coordinate zl of
the non-zero vector x ∈ Cl should be 0. In case |λ| = 1 and since zl = 0 the
only limit point of {λkn znl} is 0 for every strictly increasing sequence of positive
integers {kn}. So J(x)o ⊂ Cl−1 × {0}, a contradiction. Assume now that |λ| > 1.
For the convenience of the reader we give the proof in the case l = 3. Take
y = (y1, y2, y3) ∈ J(x). There exist a strictly increasing sequence {kn} of positive
integers and a sequence {xn} ⊂ C3 such that xn = (xn1, xn2, xn3)→ (z1, z2, 0) = x
and Akn xn → y. Let yn = (yn1, yn2, yn3) = Akn xn. Hence we have

yn3 = λkn xn1 + knλkn−1xn2 + kn(kn−1)
2 λkn−2xn3,

yn2 = λkn xn2 + knλkn−1xn3,
yn1 = λkn xn3.

Since yn3 = λkn xn3 → y3 then kn(kn− 1)xn3 → 0. From yn2 → y2 we get yn2/kn =
(λkn /k2

n) knxn2 + λkn−1xn3 → 0. Using the fact that λkn xn3 → y3 it follows that the
sequence {(λkn /k2

n) knxn2} converges to a finite complex number, hence knxn2 →
0. The last implies xn2 → 0, therefore z2 = 0. We have xn1 = (yn3/λkn) −
(1/λ)knxn2 − (1/2)λ2kn(kn − 1)xn3. Observing that each one term on the right
hand side in the previous equality goes to 0, since yn3 → y3, we arrive at z1 = 0.
Therefore x = 0 which is a contradiction.

REMARK 5.6. The previous result does not hold in general if we remove
the hypothesis that A is linear even if the dimension of the space is 1. It is well
known that the function f : (0, 1) → (0, 1) with f (x) = 4x(1− x) is chaotic, see
[13]. Consider any homeomorphism g : (0, 1) → R. Take h = g f g−1 : R → R.
Then it is obvious that there is a Gδ and dense set of points with dense orbits in R.
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Applying Theorem 3.1 (observe that this corollary holds without the assumption
of linearity for T) we get that J(x) = R, for every x ∈ R.

It is well known, see [22], that if T is a hypercyclic and invertible operator, its
inverse T−1 is hypercyclic. On the other hand, as we show below, the previously
mentioned result fails for J-class operators.

PROPOSITION 5.7. There exists an invertible J-class operator T acting on a Ba-
nach space X so that its inverse T−1 is not a J-class operator.

Proof. Take any hypercyclic invertible operator S acting on a Banach space
Y and consider the operator T = λIC⊕ S : C⊕Y → C⊕Y, for any fixed complex
number λ with |λ| > 1. Then, arguing as in Remark 3.6 it is easy to show that
T is a J-class operator. However its inverse T−1 = λ−1 IC ⊕ S−1 is not a J-class
operator since |λ−1| < 1.

Salas in [28] answering a question of D. Herrero constructed a hypercyclic
operator T on a Hilbert space such that its adjoint T∗ is also hypercyclic but T⊕T∗

is not hypercyclic. In fact the following (unpublished) result of Deddens holds:
suppose T is an operator, acting on a complex Hilbert space, whose matrix with respect
to some orthonormal basis, consists entirely of real entries. Then T ⊕ T∗ is not cyclic.
A proof of Deddens result can be found in the expository paper [30]. Recently,
Montes and Shkarin, see [25], extended Deddens’ result to the general setting of
Banach space operators. Hence it is natural to ask if there exists an operator T
such that T ⊕ T∗ is a J-class operator. Below we show that this is not the case.

PROPOSITION 5.8. Let T be an operator acting on a Hilbert space H. Then T⊕ T∗

is not a J-class operator.

Proof. We argue by contradiction, so assume that T⊕T∗ is a J-class operator.
Hence there exist vectors x, y ∈ H such that J(x⊕ y) = H ⊕ H and x⊕ y 6= 0.

Case I. Suppose that one of the vectors x, y is zero. Without loss of generality
assume x = 0. Then there exist sequences {xn}, {yn} ⊂ H and a strictly increas-
ing sequence of positive integers {kn} such that xn → x = 0, yn → y, Tkn xn → y
and T∗kn yn → x = 0. Taking limits to the following equality 〈Tkn xn, yn〉 =
〈xn, T∗kn yn〉 we get that ‖y‖ = ‖x‖ = 0 and hence y = 0. Therefore x ⊕ y = 0,
which yields a contradiction.

Case II. Suppose that x 6= 0 and y 6= 0. Let us show first that J(λx⊕ µy) =
H ⊕ H for every λ, µ ∈ C \ {0}. Indeed, fix λ, µ ∈ C \ {0}. Take any z, w ∈ H.
Since J(x ⊕ y) = H ⊕ H, there exist sequences {xn}, {yn} ⊂ H and a strictly
increasing sequence of positive integers {kn} such that xn → x, yn → y, Tkn xn →
λ−1z and T∗kn yn → µ−1w. The last implies that z ⊕ w ∈ J(λx ⊕ µy), hence
J(λx⊕ µy) = H ⊕ H. With no loss of generality we may assume that ‖x‖ 6= ‖y‖
(because if ‖x‖ = ‖y‖, by multiplying with a suitable λ ∈ C \ {0} we have
‖λx‖ 6= ‖y‖ and J(λx⊕ y) = H⊕ H). Then we proceed as in Case I and arrive at
a contradiction. The details are left to the reader.
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Below we establish that, for a quite large class of operators, an operator T is
a J-class operator if and only if J(0) = X. What we need to assume is that there
exists at least one non-zero vector having “regular" orbit under T.

PROPOSITION 5.9. Let T : X → X be an operator on a Banach space X.
(i) For every positive integer m it holds that JT(0) = JTm(0).

(ii) Suppose that z is a non-zero periodic point for T. Then the following are equiva-
lent:

(a) T is a J-class operator;
(b) J(0) = X;
(c) J(z) = X.

(iii) Suppose there exist a non-zero vector z ∈ X, a vector w ∈ X and a sequence
{zn} ⊂ X such that zn → z and Tnzn → w. Then the following are equivalent:

(a) T is a J-class operator;
(b) J(0) = X;
(c) J(z) = X.

In particular, this statement holds for operators with nontrivial kernel or for opera-
tors having at least one non-zero fixed point.

Proof. Let us first show item (i). Fix any positive integer m and let y ∈ JT(0).
There exist a strictly increasing sequence of positive integers {kn} and a sequence
{xn} in X such that xn → 0 and Tkn xn → y. Then for every n there exist non-
negative integers ln, ρn with ρn ∈ {0, 1, . . . , m− 1} such that kn = lnm + ρn. Hence
without loss of generality we may assume that there is ρ ∈ {0, 1, . . . , m− 1} such
that kn = lnm + ρ for every n. The last implies that Tmln(Tρxn)→ y and Tρxn → 0
as n→ ∞. Hence JT(0) ⊂ JTm(0). The converse inclusion is obvious. Let us show
assertion (ii). That (a) implies (b) is an immediate consequence of Lemma 2.11.
We shall prove that (b) gives (c). Suppose that N is the period of the periodic point
z. Fix w ∈ X. Assertion (i) yields that JTN (0) = X. Hence there exist a strictly
increasing sequence of positive integers {mn} and a sequence {yn} in X such that
yn → 0 and TNmn yn → w− z. It follows that yn + z → z and TNmn(yn + z) → w,
from which we conclude that JT(z) = X. This proves assertion (ii). We proceed
with the proof of assertion (iii). It only remains to show that (b) implies (c). Take
any y ∈ X. There exist a sequence {xn} ⊂ X and a strictly increasing sequence
{kn} of positive integers such that xn → 0 and Tkn xn → y− w. Our hypothesis
implies that xn + zkn → z and Tkn(xn + zkn)→ y. Hence y ∈ J(z).

In the following proposition we provide a construction of J-class operators
which are not hypercyclic.

PROPOSITION 5.10. Let X be a Banach space and let Y be a separable Banach
space. Consider an operator S : X → X so that σ(S) ⊂ {λ : |λ| > 1}. Let also
T : Y → Y be a hypercyclic operator. Then

(i) S⊕ T : X⊕Y → X⊕Y is a J-class operator but not a hypercyclic operator and
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(ii) the set {x ⊕ y : x ∈ X, y ∈ Y such that J(x ⊕ y) = X ⊕ Y} forms an infinite
dimensional closed subspace of X⊕Y and in particular

{x⊕ y : x ∈ X, y ∈ Y such that J(x⊕ y) = X⊕Y} = {0} ⊕Y.

Proof. We first prove assertion (i). That S⊕ T is not a hypercyclic operator
is an immediate consequence of the fact that σ(S) ⊂ {λ : |λ| > 1}. Let us
now prove that S ⊕ T is a J-class operator. Fix any hypercyclic vector y ∈ Y
for T. We shall show that J(0 ⊕ y) = X ⊕ Y. Take x ∈ X and w ∈ Y. Since
σ(S) ⊂ {λ : |λ| > 1} it follows that S is invertible and σ(S−1) ⊂ {λ : |λ| < 1}.
Hence the spectral radius formula implies that ‖S−n‖ → 0. Therefore S−nx → 0.
Since y is hypercyclic for T there exists a strictly increasing sequence of positive
integers {kn} such that Tkn y → w. Observe now that (S ⊕ T)kn(S−kn x ⊕ y) =
x⊕ Tkn y → x⊕ w and S−kn x⊕ y → 0⊕ y. We proceed with the proof of (ii). Fix
any hypercyclic vector y ∈ Y for T. From the proof of (i) we get J(0⊕ y) = X⊕Y.
Since for every positive integer n the vector Tny is hypercyclic for T, by the same
reasoning as above we have that J(0 ⊕ Tny) = X ⊕ Y. Using Lemma 2.5 and
that y is hypercyclic for T we conclude that J(0⊕ w) = X ⊕ Y for every w ∈ Y.
To finish the proof, it suffices to show that if x ∈ X \ {0} then for every w ∈ Y,
J(x ⊕ w) 6= X. In particular we will show that J(x ⊕ w) = ∅. Suppose there
exists h ∈ J+(x) = J(x) (see Definition 2.2). Propositions 2.9 and 2.10 imply that
x ∈ J−(h) = L−(h) (since S−1 is power bounded). On the other hand ‖S−n‖ → 0
and therefore x ∈ L−(h) = {0}, which is a contradiction.

Let us point out that Proposition 5.10 shows that the cyclicity assumption is
indeed necessary in Corollary 4.8 and Lemma 3.2. We next provide some informa-
tion on the spectrum of a J-class operator. Recall that if T is hypercyclic then every
component of the spectrum σ(T) intersects the unit circle, see [23]. Although the
spectrum of a J-class operator intersects the unit circle ∂D, see Proposition 5.12
below, it may admit components not intersecting ∂D. For instance consider the J-
class operator 2B⊕ 3I, where B is the backward shift on l2(N) and I is the identity
operator on C.

PROPOSITION 5.11. Let T : X → X be an operator on a complex Banach space
X. If r(T) < 1, where r(T) denotes the spectral radius of T, or σ(T) ⊂ {λ : |λ| > 1}
then T is not a J-class operator.

Proof. If r(T) < 1 then we have ‖Tn‖ → 0. Hence T is not a J-class operator.
If σ(T) ⊂ {λ : |λ| > 1} the conclusion follows by the proof of Proposition 5.10.

PROPOSITION 5.12. Let X be a complex Banach space. If T : X → X is a J-class
operator, it holds that σ(T) ∩ ∂D 6= ∅.

Proof. Assume, on the contrary, that σ(T) ∩ ∂D = ∅. Then we have σ(T) =
σ1 ∪ σ2 where σ1 = {λ ∈ σ(T) : |λ| < 1} and σ2 = {λ ∈ σ(T) : |λ| > 1}. If at
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least one of the sets σ1, σ2 is empty, we reach a contradiction because of Proposi-
tion 5.11. Assume now that both σ1, σ2 are non-empty. Applying Riesz decompo-
sition theorem, see [27], there exist invariant subspaces X1, X2 of X under T such
that X = X1 ⊕ X2 and σ(Ti) = σi, i = 1, 2, where Ti denotes the restriction of T
to Xi, i = 1, 2. It follows that T = T1 ⊕ T2 and since T is J-class it is easy to show
that at least one of T1, T2 is a J-class operator. By Proposition 5.11 we arrive again
at a contradiction.

PROPOSITION 5.13. Let T : l2(N) → l2(N) be a unilateral backward weighted
shift with positive weight sequence {αn} and consider a vector x = (x1, x2, . . .) ∈ l2(N).
The following are equivalent:

(i) T is hypercyclic;
(ii) J(x) = l2(N);

(iii) J(x)o 6= ∅.

Proof. It only remains to prove that (iii) implies (i). Suppose J(x)o 6= ∅.
Then there exists a vector y = (y1, y2, . . .) ∈ J(x) such that y1 6= 0. Hence we may
find a strictly increasing sequence {kn} of positive integers and a sequence {zn}
in l2(N), zn = (zn1, zn2, . . .), such that zn → x and Tkn zn → y. We have

|(Tkn zn)1 − y1| =
∣∣∣( kn

∏
i=1

αi

)
zn(kn+1) − y1

∣∣∣→ 0.

Observe that |zn(kn+1)| 6 |zn(kn+1) − xkn+1|+ |xkn+1| 6 ‖zn − x‖+ |xkn+1|. The

above inequality implies zn(kn+1) → 0 and since y1 6= 0 we arrive at
kn
∏
i=1

αi → +∞.

By Salas’ characterization of hypercyclic unilateral weighted shifts, see [29], it
follows that T is hypercyclic.

REMARK 5.14. We would also like to mention that (ii) implies (i) in the pre-
vious proposition, is an immediate consequence of Proposition 5.3 in [16]. Let us
stress that in case T is a unilateral backward weighted shift on l2(N), the condi-
tion J(0) = l2(N) implies that T is hypercyclic. For a characterization of J-class
unilateral weighted shifts on l∞(N) in terms of their weight sequence see [12].

PROPOSITION 5.15. Let T : l2(Z) → l2(Z) be a bilateral backward weighted
shift with positive weight sequence {αn} and consider a non-zero vector x = (xn)n∈Z in
l2(Z). The following are equivalent:

(i) T is hypercyclic;
(ii) J(x) = l2(Z);

(iii) J(x)o 6= ∅.

Proof. It suffices to show that (iii) implies (i). In view of Salas’ Theorem 2.1
in [29], we shall prove that there exists a strictly increasing sequence {kn} of pos-

itive integers such that for any integer q,
kn
∏
i=1

αi+q → +∞ and
kn−1
∏
i=0

αq−i → 0.
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Since x is a non-zero vector, there exists an integer m such that xm 6= 0. Without
loss of generality we may assume that m is positive. Suppose J(x)o 6= ∅. Then
there exists a vector y = (yn)n∈Z in l2(Z) such that y1 6= 0. Hence we may find
a strictly increasing sequence {kn} of positive integers and a sequence {zn} in
l2(Z), zn = (znl)l∈Z, such that zn → x and Tkn zn → y. For simplicity reasons
we assume that q = 0. Arguing as in the proof of Proposition 5.13 we get that
kn
∏
i=1

αi → +∞. On the other hand observe that

|(Tkn zn)m−kn − ym−kn | =
∣∣∣( m

∏
i=0

αi

)( kn−m+1

∏
i=1

α−i

)
znm − ym−kn

∣∣∣→ 0.

Since xm 6= 0 there exists a positive integer n0 such that |znm| > |xm|/2 for every

n > n0. We also have (Tkn zn)m−kn → 0. The above imply that
kn−1
∏
i=0

α−i → 0.

6. OPEN PROBLEMS

Below we give a list of open problems.

Problem 1. Let T : X → X be an operator on an infinite dimensional Banach
space X. Suppose there exists a vector x ∈ X such that J(x)o 6= ∅. Is it true that
J(x) = X?

Ansari [1] and Bernal [4] gave a positive answer to Rolewicz’ question if ev-
ery separable and infinite dimensional Banach space supports a hypercyclic oper-
ator. Observe that we showed that the non-separable Banach space l∞(N) admits
a J-class operator, while on the other hand Bermúdez and Kalton [3] showed that
l∞(N) does not support topologically transitive operators. Hence it is natural to
raise the following question.

Problem 2. Does every non-separable and infinite dimensional Banach space
support a J-class operator?

D. Herrero in [21] established a spectral description of the closure of the set
of hypercyclic operators acting on an infinite dimensional and separable Hilbert
space. Below we ask a similar question for J-class operators.

Problem 3. Is there a spectral description of the closure of the set of J-class
operators acting on a separable and infinite dimensional Hilbert space?

Problem 4. Let X be a separable and infinite dimensional Banach space and
T : X → X be an operator. Suppose that J(x)o 6= ∅ for every x ∈ X. Does it
follow that T is hypercyclic?

Grivaux in [17] showed that every operator on a complex infinite dimen-
sional Hilbert space can be written as a sum of two hypercyclic operators. We
consider the following
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Problem 5. Is it true that any operator on l∞(N) can be written as a sum of
two J-class operators?
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