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Abstract. In this short note we give an answer to the following question. Let X be a
locally compact metric space with group of isometries G. Let {gi} be a net in G for which
gix converges to y, for some x, y ∈ X. What can we say about the convergence of {gi}?
We show that there exist a subnet {gj} of {gi} and an isometry f : Cx → X such that
gj converges to f pointwise on Cx and f(Cx) = Cy , where Cx and Cy denote the pseudo-
components of x and y respectively. Applying this we give short proofs of the van Dantzig-van
der Waerden theorem (1928) and Gao-Kechris theorem (2003).

The main result and some applications

A few words about the notation we shall be using. In what follows, X will
denote a locally compact metric space with group of isometries G. If we endow
G with the topology of pointwise convergence then G is a topological group
[2, Ch. X, §3.5 Cor.]. On G there is also the topology of uniform convergence
on compact subsets which is the same as the compact-open topology. In the
case of a group of isometries these topologies coincide with the topology of
pointwise convergence, and the natural action of G on X with (g, x) 7→ g(x),
g ∈ G, x ∈ X , is continuous [2, Ch. X, §2.4 Thm. 1 and §3.4 Cor. 1]. For
F ⊂ G, let K(F ) := {x ∈ X | the set Fx has compact closure in X}. The
sets K(F ) are clopen [6, Lem. 3.1].

Lemma 1. Let Γ = {gi} be a net in G and x ∈ K(Γ) such that gix converges to
y for some y ∈ X. Then a subnet of Γ converges to an isometry f : K(Γ) → X

on K(Γ).

Proof. Let gi|K(Γ) denote the restriction of gi on K(Γ). Arzela-Ascoli theorem
implies that the set {gi|K(Γ) : K(Γ) → X} has compact closure in the set of
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all continuous maps from K(Γ) to X . Thus, there exist a subnet {gj} of {gi}
and an isometry f : K(Γ) → X such that gj → f on K(Γ). �

In [4] S. Gao and A. S. Kechris introduced the concept of pseudo-compo-
nents. These are the equivalence classes Cx of the following equivalence rela-
tion: x ∼ y if and only if x and y, as also y and x, can be connected by a
finite sequence of intersecting open balls with compact closure. The pseudo-
components are clopen [4, Prop. 5.3]. We call X pseudo-connected if it has
only one pseudo-component. An immediate consequence of the definitions is
that gCx = Cgx for every g ∈ G. Another notion, that will be used in the
proofs, is the radius of compactness ρ(x) of x ∈ X [4]. Let Br(x) denote
the open ball centered at x with radius r > 0. Then ρ(x) := sup{r > 0 |
Br(x) has compact closure}. If ρ(x) = +∞ for some x ∈ X then every ball
has compact closure (i.e., X has the Heine-Borel property), hence ρ(x) = +∞
for every x ∈ X . If ρ(x) is finite for some x ∈ X then the radius of compactness
is a Lipschitz map [4, Prop. 5.1]. Note that ρ is G-invariant.

Lemma 2. Let x, y ∈ X and {gi}I be a net in G with gix → y. Then there is
an index i0 ∈ I such that Cx ⊂ K(F ), where F := {gi | i ≥ i0}.

Proof. Since X is locally compact there exists an index i0 such that the set
F (x) has compact closure, where F := {gi | i ≥ i0}. We claim that for every
z ∈ Cx the set F (z) also has compact closure, hence Cx ⊂ K(F ). The strategy
is to start with an open ball Br(x) with radius r < ρ(x) and prove that F (z)
has compact closure for every z ∈ Br(x). Then our claim follows from the
definition of Cx. To prove the claim take a sequence {gnz} ⊂ F . Since the
closure of F (x) is compact we may assume, upon passing to a subsequence,
that gnx → w for some w in the closure of F (x). Assume that ρ(x) is finite
and take a positive number ε such that r + ε < ρ(x). Then for n big enough

d(gnz, w) ≤ d(gnz, gnx) + d(gnx, w) = d(z, x) + d(gnx, w) < r + ε < ρ(x).

Recall that the radius of convergence is a continuous map, and since gnx → w

then ρ(x) = ρ(w). So, the sequence {gnz} is contained eventually in a ball of
w with compact closure, hence it has a convergence subsequence. The same
also holds in the case where ρ(x) = +∞. �

Theorem 3. Let X be a locally compact metric space with group of isometries
G and let {gi} be a net in G for which gix converges to y, for some x, y ∈ X.
Then there exist a subnet {gj} of {gi} and an isometry f : Cx → X such that
gj converges to f pointwise on Cx and f(Cx) = Cf(x)

Proof. By Lemma 2 there is an index i0 ∈ I such that Cx ⊂ K(F ), where
F := {gi | i ≥ i0}. Hence, by Lemma 1, there exists a subnet {gj} of {gi}
which converges to an isometry f : K(F ) → X on K(F ). Therefore, gj → f on

Cx. Let us show that f(Cx) = Cf(x). Since d(x, g−1
j f(x)) = d(gjx, f(x)) → 0

it follows that g−1
j f(x) → x. Hence, by repeating the previous procedure, there

exist a subnet {gk} of {gj} and an isometry h : Cf(x) → X such that g−1
k → h
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pointwise on Cf(x) and h(f(x)) = x. Note that gkx ∈ Cf(x) eventually for every
k, since gkx → f(x) and Cf(x) is clopen. Therefore, gkCx = Cgkx = Cf(x).
Take a point z ∈ Cx. Then, gkz → f(z) and since Cf(x) is clopen then
f(z) ∈ Cf(x), so f(Cx) ⊂ Cf(x). By repeating the same arguments as before, it
follows that hCf(x) ⊂ Cx. Take now a point w ∈ Cf(x). Then h(w) ∈ Cx, hence

g−1
k (w) ∈ Cx eventually for every k. So, w = gkg−1

k (w) → f(h(w)) ∈ f(Cx)
from which follows that Cf(x) ⊂ f(Cx). �

A few words about properness. A continuous action of a topological group
H on a topological space Y is called proper (or Bourbaki proper) if the map
H × Y → Y × Y with (g, x) 7→ (x, gx) for g ∈ H and x ∈ Y , is proper, i.e., it
is continuous, closed and the inverse image of a singleton is a compact set [1,
Ch. III, §4.1 Def. 1]. In terms of nets, a continuous action is proper if and only
if whenever we have two nets {gi} in H and {xi} in Y , for which both {xi}
and {gixi} converge, then {gi} has a convergent subnet. For isometric actions,
it is easy to see that a continuous action is proper if and only if whenever we
have a net {gi} in H for which {gix} converges for some x ∈ Y , then {gi}
has a convergent subnet. If H is locally compact and Y is Hausdorff, then H

acts properly on Y if and only if for every x, y ∈ Y there exist neighborhoods
U and V of x and y, respectively, such that the set {g ∈ H | gU ∩ V 6= ∅}
has compact closure in H [1, Ch. III, §4.4 Prop. 7]. Observe that if H acts
properly on a locally compact space Y then H is also locally compact.

A direct implication of Theorem 3 is the van Dantzig-van der Waerden
Theorem [3]. The advantage of our proof, comparing to the proofs given in the
original work of van Dantzig-van der Waerden or in [5, Thm. 4.7, pp. 46–49],
is that it is considerably shorter.

Corollary 4. (van Dantzig-van der Waerden theorem 1928) Let X be a con-
nected locally compact metric space with group of isometries G. Then G acts
properly on X and is locally compact.

Another application of Theorem 3 is that we can rederive the results of Gao
and Kechris in [4, Thm. 5.4 and Cor. 6.2].

Corollary 5. (Gao-Kechris theorem 2003) Let X be a locally compact metric
space with finitely many pseudo-components. Then the group of isometries G

of X is locally compact. If X is pseudo-connected, then G acts properly on X.

Proof. Let C1, C2, . . . , Cn denote the pseudo-components of X and take points
x1 ∈ C1, x2 ∈ C2, . . . , xn ∈ Cn and open balls Br(xm) ⊂ Cm, m = 1, 2, . . . , n,
r > 0 such that all Br(xm) have compact closures. We will show that the set
V :=

⋂n

m=1{g ∈ G | gxm ∈ Br(xm)} is an open neighborhood of the identity
in G with compact closure. Indeed, take a net {gi} in V . Since each Br(xm)
has compact closure there exist a subnet {gj} of {gi} and points y1 ∈ C1, y2 ∈
C2, . . . , yn ∈ Cn such that gjxm → ym for every m = 1, 2, . . . , n. Theorem 3
implies that there exist a subnet {gl} of {gj} and isometries fm : Cm → X

such that gl → fm on Cm and fm(Cm) = Cm for all m. The last implies that
{gl} converges to an isometry on X , hence V has compact closure.

Münster Journal of Mathematics Vol. 3 (2010), 209–212



212 Antonios Manoussos

If X is pseudo-connected the proof of the statement follows directly from
Theorem 3. �

Remark 6. Note that in Corollary 5 we do not require that X is separable as
in [4, Thm 5.4 and Cor. 6.2]. This is not a real improvement since if X has
countably many pseudo-components then it is separable. Indeed, we define
a relation on X by xSy if and only if there exist separable balls Br(x) and
Bl(y) with y ∈ Br(x) and x ∈ Bl(y). Let U(x) be the equivalence class of x in
the transitive closure of the relation S. Then, each U(x) is a separable clopen
subset of X [5, Lem. 3 in App. 2]. By construction Cx ⊂ U(x), therefore X is
separable.
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