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Abstract. A functorial filtration GL n = S-1L n 2 S~ - ' ' �9 2 SiLn 2" �9 �9 2 E n of the general linear group 
GLn, n >/3, is defined and it is shown for any algebra A, which is a direct limit of module finite algebras, 
that S-1L.(A)/S~ is abelian, that S~ _ SILn(A) 2 . . -  is a descending central series, and that 
SiLn(A) =E#(A) whenever if> the Bass-Serre dimension of A. In particular, the K-functors 
K1SILn ,= SiL./En are nilpotent for all i ~> 0 over algebras of finite Bass-Serre dimension. Furthermore, 
without dimension assumptions, the canonical homomorphism SiL~(A)/Si+ILn(A)--*SgL.+I(A)/ 
S ~+ ~L~ + l(A) is injective whenever n ~> i + 3, so that one has stability results without stability condi- 
tions, and if A is commutative then S~ agrees with the special linear group SL.(A), so that the 
functor S~ generalizes the functor SL~ to noncommutative rings. Applying the above to subgroups H 
of GL~(A), which are normalized by En(A), one obtains that each is contained in a sandwich 
GL~,(A, q) 2 H 2 E~(A, q) for a unique two-sided ideal q of A and there is a descending S~ 
series GL~,(A, q) 2 S~ q) 2 S1L~(A, q) 2 " "  2 SiLn(A, q) 2 - . .  2 E,,(A, q) such that S~L#(A, q) = 
E,(A, q) whenever i/> Bass-Serre dimension of A. 
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1. Introduction 

Let  R denote  a commuta t i ve  r ing with ident i ty ,  let A denote  an  associat ive  

R-a lgeb ra ,  and  let GLn(A),  n />  3, denote  the general  l inear  g roup  o f  r ank  n. 

Beginning with  the p ioneer ing  p a p e r  ' K - T h e o r y  and  Stable  A l g e b r a '  [2] o f  H. Bass, 

publ i shed  a qua r t e r  cen tury  ago,  the p rob l em o f  loca t ing  and analyz ing  near  n o r m a l  

subgroups  o f  G L . ( A )  for  finite R-a lgebras  A has  received cons iderab le  a t tent ion .  

The  combined  results  o f  H.  Bass [2], [3, w J. S. Wi l son  [ 17], and  L. Vasers te in  [16] 

show tha t  a g roup  H _ GLn(A)  is no rmal i zed  by the e lementa ry  subgroup  E.(A)  o f  

G L . ( A )  i f  and  only  i f  for  some (unique)  two-s ided  ideal  q o f  A, H fits in to  a 

sandwich  En(A, q) - H _ GL;,(A, q), where  En(A, q) denotes  the relat ive e lementa ry  

subg roup  o f  level q and  GL~,(A, q) the kernel  o f  the canonica l  h o m o r p h i s m  

G L . ( A )  ~ GL.(A/q) /center(GLn(A/q)) .  The unique  ideal  q is cal led the level o f  H. 

The  p roper t i e s  and  s t ructure  o f  subgroups  o f  level q depends  obvious ly  on  those  o f  

E.(A,  q) and  the coset  space GL;,(A, q)/E~(A, q). Bass [2], [3, w showed tha t  this 
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coset space is a group whenever n is in the 'stable range' of A and that for such n, 
GLn(A ) acts trivially via conjugation on the subquotient GL.(A, q)/E,,(A, q) where 
GL.(A, q) = ker(GL~(A)--. GL~(A/q)). Thus, for n in the stable range of A, every 
H of level q has a filtration H ~_ H n G L n ( A  , q) ___ E,,(A, q) such that the quotients 
H/H n GL.  (A, q) and H n GL.  (A, q)/E. (A, q) are abelian and the action of GLn(A) 
on them, via conjugation, is trivial. Moreover, stability results of Bass [2], [3, V] 
and later Vaserstein [15] show that the quotient GL.(A, q)/E.(A, q) is canonically 
isomorphic to the stable K-group/s (A, q).'= GL~ (A, q)/E~ (A, q) providing n is in 
the stable range of A. Thus, one can use stable K-theory to study the consecutive 
quotients H/HnGln(A, q) and H nGL~(A, q)/En(A, q) in the sandwich theorem 
above. 

The current article will show that the coset space GLn(A , q)/En(A, q) is a group 
providing n/> 3 (without stable range assumptions) and A is quasi-finite (a direct 
limit of algebras which are module finite over their centers) and will investigate the 
group GLn(A , q)/En(A , q) by constructing a functorial filtration 

GL.(A, q) = S-1L.(A, q) _ S~ q) ___ �9 �9 �9 ~ SiLn(A, q) ~_"'~E,,(A, q) 

of GL.  (A, q) such that 

(i) S'Ln(A, q) (i ~> - 1) is normal in GL.(A), 
(ii) the action of S~ on SiL.(A, q)/S i+ 1L.(A, q) (i > - 1) via conjugation is 

trivial. 
(iii) the canonical homomorphisms 

S'Ln(A , q)/S i+ 'Ln(A , q) --~ SiLn+ l(A, q)/S i+ 1Ln+ I(A, q) 

are injective for all n >~ i + 3, 
(iv) SiL.(A, q) = E.(A, q) whenever i/> the Bass-Serre dimension of A, 
(v) the nilpotent class of S~ q)/En(A, q) relative to S~ is ~ infimum 

(6(A), [6(A) + 2 - n]) whenever the Bass-Serre dimension 6(A) of A is finite, 
and 

(vi) if A is commutative then S~ q ) =  SL.(A, q), where SL.(A, q) denotes 
the q-congruence subgroup of the special linear group SL.(A). 

The result (iii) uncouples injective stability from stability conditions on A and 
allows one to use stable K~ to compute the quotients S;L.(A, q)/S i+ ~L.(A, q) of 
consecutive layers of the filtration above when - 1 ~< i ~< n + 2; namely, defining the 
stable K-groups K] (A, q),= S;L~ (A, q)/E~ (A, q), one obtains from (iii) a canonical 
injection 

S"L. (A, q)/S i + 1L n (A, q) ---+ K~ (A, q)/K~ + I(A, q) for - 1 ~< i ~< n + 2. 

Results (ii) and (iv) show that the filtration 

GL.(A, q) = S-~L.(A, q) ~ S~ q) _ -  �9 �9 ___ S~A)L.(A, q) = En(A, q) 

is a descending S~ series of finite length. Results (ii) and (v) put an 
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upper bound on the S~ class of the (nonstable) K-groups 

K1S'Ln (A, q) ,= S;L. (a, q)/E n (A, ~) (i >t - 1), 

which can be much smaller than that given by the functorial filtration above. The 
result (vi) shows that the functor S~ is a natural extension of the functor SL. to 
noncommutative rings. 

Applying the results above to subgroups H of GL. (A), which are normalized by 
E.(A), one obtains for each H of level q a canonical filtration 

H = HnGL'n(A,  q) ___ HnS-1L . (A ,  q) ___... ~ H n S ; L . ( A ,  q) ___... ~E~(Aq) 

such that any quotient formed by consecutive layers of the filtration is abelian and 
such that any subgroup of S~ which normalizes H, acts trivially via conjuga- 
tion on these quotients. This is the nilpotent sandwich classification theorem of 
Section 6. Moreover, for - 1  <~i<~n+2, there is a canonical injection 
H n SiL,(A, q)/H n S i+ 1L,(A, q) ~ K~ (A, q)/K~ + I(A, q). All of the above concerns 
the nilpotent structure of the lattice of subgroups of GLn(A) normalized by the 
elementary subgroup En(A). Results on the nilpotent structure of lattices of 
subgroups of GLn(A) normalized by congruence or relative elementary subgroups 
of GL,(A) are found also in Section 6. 

In a sequel to the current paper, the results above will be extended to classical 
and Kac-Moody groups by introducing higher 'nonabelian' K-functors and using 
Mayer-Vietoris sequences for these functors to replace some of the computations 
in this article. In another article, it will be shown that similar results hold for 
nonabelian analytic K-groups. 

The remainder of the paper is organized as follows. In Section 2, basic notation 
is fixed and standard commutator formulas are recalled. In Section 3, quasi-finite 
algebras are introduced and S~ (A) is defined. In Section 4, the principal tools of 
the paper are forged. In Section 5, the filtration 

S-~L.(A)___S~ . . . ~ S a L . ( A ) ~ _ . . .  

is defined and its basic properties are established. In Section 6, the relative filtration 

S-1Lo( A, q) --- S~ A, q) =-'" " -  SdL.( A, q) - - " "  

is defined and its properties are deduced from the corresponding ones of the 
absolute filtration. Results on the absolute and relative nilpotent structure of GL. 
are proved, including the nilpotent sandwich classification theorem. One important 
consequence of the results in Sections 4 -6  are upper bounds on the nilpotent class 
of S~ q)/E.(A, q). In Section 7, S~ is tied to noncommutative 
homotopy theory and the latter is used to establish lower bounds on the nilpotent 
class of this group. The results show that the group SL.(R)/E.(R)  can be nonabe- 
lian for commutative rings R of finite Bass-Serre dimension 6(R) and allow one to 
construct nonnormal subgroups, as one expects, of GL.(R) which are normalized 
by E~(R). The latter settles positively a question posed by Bass. 
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2. Notation 

Let G denote a group. If a, p e G, let ~p = apcr - ~ denote the a-conjugate of p and 
let [a, p] = apo--~p-  ~ denote the commutator of ~r and p. The following formulas 
will be used frequently. 

(2.1) (a) [a, pz] = [~r, p](OEa, T]), 

(b) [ap, v] = (~Lo, zl)[a, ~1. 

Let H and K denote subgroups of G. Let [H, K] denote the subgroup of G 
generated by all commutators [~r, p] such that a e H and p e K. [H, K] is called the 
mixed commutator group generated by H and K. Define inductively D ~  K 
and for i > 0, Dill(K) = [H, D~- I(K)]. If  G = H, we shall write Di(K) in place of 

i DI(G) = D2(G) = DG(K). D~ ~ "'" is the descending central series of G. G is 
nilpotent if Di(G)= 1 for some i. The smallest i such that Di(G)= 1 is the 
nilpotent class of G. If  U and V are subsets of  G, let ~:V denote the set 

I~ V,p v}. 
Let A denote an associative ring with identity 1. Let n denote a natural number 

and let G(A)= GL,(A) denote the general linear group of  rank n over A. By 
definition it is the group of  all n x n invertible matrices over A, i.e. the units in 
the ring Mn(A) of  all n • n matrices over A. Let q denote a subgroup of  A, closed 
under multiplication. (q is not necessarily an ideal of  A.) Let i C j  be natural 
numbers such that 1 ~< i ~< n, 1 ~<j ~< n. A q-elementary matrix e~j(q) is an n x n 
matrix whose diagonal coefficients are 1, whose (i , j) th coefficient is q where q e q, 

and whose other nondiagonal coefficients are zero. ( I f  n = 1, then 1 is the only 
elementary matrix.) Let G(q) denote the subgroup of G(A) of  all invertible 
matrices whose diagonal coefficients are of the form 1 + q where q e q and whose 
nondiagonal coefficients lie in q. G(q) is not necessarily normal in G(A). Let E(q) 
denote the subgroup of G(q) generated by all q-elementary matrices. If  q is a 
two-sided ideal in A, then G(q) is a normal subgroup of G(A), because 
G(q) = Ker(G(A)---> G(A/q)). For such q's, let E(A, q) denote the normal subgroup 
of E(A) generated by E(q). Clearly E(q) c E(A, q) = G(q). Let L denote a non- 
negative integer. For q arbitrary, let EL(q) denote the subset of E(q) consisting of  
all products of L or fewer q-elementary matrices. Thus, E~(q) is the set of  all 
q-elementary matrices and, by convention, E ~  1. The letter L stands intu- 
itively for word length. The following formulas for elementary matrices will be 
used frequently. 

(2.2) (a) eij(a)sij(b) = ~ij(a -+- b). 

(b) [e~j(a), ~kz(b)] = 1 providing i ~ l, j ~ k. 

(c) [~ij(a), ejk(b)] = eik(a) providing i ~ k. 

From (2.2)(c), it follows that E(A) is perfect whenever n ~>3, i.e. E ( A ) =  
[E(A), E(A)]. 
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3. Quasi-Finite Algebras and the Special Linear Group SLn/> 2 

The goal of this section is to introduce the notions of quasi-finite algebra and of 
special linear group over such an algebra. It will be shown that the latter notion 
generalizes the usual one over commutative rings. 

Let R denote a commutative associative ring with identity 1. An R-algebra is an 
associative ring A with identity and a fixed ring homomorphism R-~ center(A). A 
homomorphism A1 ~A2  of Ri-algebras (i = 1, 2) is a pair of ring homomorphisms 
R~ ~ R2 and A1---> A2 which commute with the canonical homomorphisms Re ~ Ae 
(i = 1, 2). 

Suppose A is an R-algebra and I is an index set. By a direct system of subalgebras 
Ae/Re (i s I) of A, we shall mean a set of subrings Re of R and a set of subrings A i 
of A such that each A e is naturally on Re-algebra and such that given i , j  ~ I, there 
is a k ~ I such that Re ~- Rk, Rj ~_ Rk, A i G Ak, and Ay ~_ A k. 

An R-algebra A is called module finite or simply finite over R if A is finitely 
generated as an R-module. 

DEFINITION-PROPOSITION (3.1). An R-algebra A is called quasi-finite over R 
if it satisfies one of the following equivalent conditions: 

(i) There is a direct system of finite R-subalgebras Ai of  A such that lira Ai = A. 
i 

(ii) There is a direct system of subalgebras Ae/Re of A such that each Ae is finite 
over Re and such that lira Re = R and ~ Ai = A. 

i i 

(iii) There is a direct system of subalgebras Ai/Re of A such that each A i is finite 
over Re and each Ri is finitely generated as a Y_-algebra and such that 
lim Ri = R and lira A e = A. 

i i 

Proof The proof that conditions (i), (ii), and (iii) are equivalent is straightfor- 
ward and is left to the reader. 

If  A is a ring and q a two-sided ideal of A then the smash product A ~ q is the 
ring whose elements are all pairs (a, q) such that a ~ A and q e q and whose 
addition and multiplication are given, respectively, by 

(a, q) + (a', q') = (a + a',  q + q') 

and 

(a, q)(a', q') -= (aa', aq" + qa" + qq'). 

The next corollary is surprising, since it is not valid for finite R-algebras, and 
justifies replacing the category of finite algebras by the bigger category of quasi- 
finite algebras. Most of the results in Section 6 depend on the corollary including, 
for example, the results (i)-(vi) in the introduction and the nilpotent sandwich 
classification theorem. 

COROLLARY (3.2). I f  A is quasi-finite over R and q is a two-sided ideal of  A, then 
A ~ q is quasi-finite over R. 
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Proof The proof  is straightforward, providing one uses the formulation (3.1) 
(iii) of  a quasi-finite algebra. 

Let f-algebra and q-f-algebra denote respectively the categories of  finite algebras 
and of quasi-finite algebras. It is routine to check that q-f-algebra is closed under 
direct limits, whereas f-algebra is not. 

LEMMA (3.3). I f  c is a category with direct limits and F: f-algebra ~ c is a functor 
then F has a unique-up-to-isomorphism extension to a functor if: q-f-algebras ~ c such 
that ff commutes with direct limits. Moreover, ff is universal among all extensions of 
F to q-f-algebras, i.e. if if" is another extension, not necessarily commuting with direct 
limits, then there is a unique natural transformation ff ~ff" of functors such that if 
A = lim Ai (Ai ~f-algebra) then the diagram below commutes for each i 

i 

P(A) , P'(A) 
\ Z 

F(Ai) 

Proof The proof  is routine. One begins by noting that if {Ai l i  E I} and 
{Aj I j ~ J }  are direct systems of finite subalgebras of  a such that ~ A i =  

A = l i~ A j,  then each system is cofinal in the other, i.e. given i ~ / ,  3j ~ J such that 
J 

Ai = A j, and conversely. Thus, lira F(AI) and lim F(Aj) are canonically isomorphic. 
i j 

Define i f (A)= l imF(A~) where A~ runs over all finite subalgebras of  A. The 
k 

remaining details of the proof  are straightforward and are left to the reader. 

D E F I N I T I O N  (3.4). Suppose n ~> 2. If A is a finite algebra, define the special linear 
group SL,(A) = {o- Io- ~ G(A) ( = GL,(A)), image of a under G ( f ) :  G(A) ~G(B)  
lies in E(B) (=E,(B)), f :  A ~ B  a homomorphism of  finite algebras, B semilocal 
[3, p. 86]}. Extend the definition of  SL, to all quasi-finite algebras, via Lemma 

(3.3). 

Let SG(A) = SLn(A). It is clear that SG defines a functor q-f-algebras ~groups. 
It will be shown next that the B's in Definition (3.4) can be restricted to a certain 
set of  semilocal rings and then it will be shown that for A commutative, the 
definition of SL, above agrees with the usual one. 

Suppose A is a finite R-algebra and B'  is a semilocal ring which is finite over its 
center. Suppose B is another semilocal ring which is finite over its center. If  an 
algebra homomorphism f ' :  A ~ B '  can be factored as a composite of  algebra 
homomorphisms A Y, B ~ B'  then clearly the condition that Gf(a) ~ E(B) im- 
plies the condition that Gf'(tr) ~ E(B'). It will be shown that an arbitrary f '  can be 
factored as above where B belongs to a certain set of semitocal rings which are finite 
over their centers. Let R ' =  center(B'). Let q denote the Jacobson radical (B') 
[3, II w Let R" = center(B'/q). Since B'/q is semisimple, R" is a finite product of  
fields and is, therefore, semilocal. Let p ' ~ , . . . ,  p~ denote the maximal ideals of R" 
and let Pl . . . . .  Pk and p'l . . . . .  p~ denote, respectively, their inverse images in R 
and R'. Let Ro~ .. . . .  ~k denote the localization of R at the multiplicative set 
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R - P l  w" �9 "upk and similarly R~,...,pp Since an element of B'  is invertible if and 
only if its image in B'/q is invertible, it follows that the elements of 
R ' - p ' l  w . . . u  p~ are invertible in B'. Thus, there is a canonical isomorphism 

R'~i,...,o, k | R, B" , B', x Q b" ~--r xb', 

and f ' :  A ~ B' factors canonically as the composite 

A --*R~l,...,o k |  A ~R'~i,...,~, k |  

On the other hand, if m ~ , . . . ,  mk are maximal ideals of R containing, respectively, 
Pl . . . . .  Pk, then the homomorphism A ~Rpl,...,, k | A factors canonically as the 

composite 

A ~Rml ...... k |  ~R~1,..-,~k | 

R,,~ ...... k is semilocal and thus, R,,~ ...... k | A is semilocal, because it is finite over 
Rml ...... k (cf. [3, III(2.5)]). Thus, the following lemma has been shown. 

LEMMA (3.5). Suppose A is a finite R-algebra. Then SG(A) = {~ [ ~ e G(A), value 
o f  ff in G(Rml ...... k |  lies in E(Rml ...... k |  ml,"' ,mk any finite set of  

maximal ideals of R }. 

LEMMA (3.6). SG(A) is a normal subgroup of G(A) containing [G(A), G(A)]. 
Proof. Whenever B is semilocal, E(B) is a normal subgroup of G(B) containing 

[G(B), G(B)], by [3, IV (9.1)]. The lemma follows. 

LEMMA (3.7). I f  A is commutative then SG(A) = Ker(det: G(A)--, GLl(A)) where 

det denotes the usual determinant map. 
Proof. Let D(A) = Ker(det: G(A) ~ GL~ (A)). It suffices by Lemma (3.5) to show 

that if A is finite over R then 

D(A) = (~ Ker(G(A) ~ G(R~ ...... k @R A)/E(Rml ...... k |  A)) 
(ral ,...,ink) 

where m ~ , . . . ,  mk runs through all finite sets of maximal ideals of R. But, since the 
canonical homomorphism 

A ~ I-I R-,l ...... k | A 
(m I ,-..,ink ) 

is injective, it follows that 

D(A) = Ker(G(A) -~ l~ G(R,.~ ...... k | A)/D(Rm~ ...... ~ | A)) 
(ml ,...,ink) 

= (~ Ker(G(A) --* G(R~ ...... k |  A ) / D ( R , ~  ..... k @R A)) 
(ml ,...,rak) 

= (by [3, IV(9.2)]) N Ker(G(A) 
(m~ ,...ink) 

G(R,,~ ...... k | A)/E(Rm~ ...... k | A)). 
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4. The First  Results on GLn/> 3 

Let A denote an associative R-algebra with identity 1. Let n denote a fixed natural 
number t> 3 and let G = GLn, E = En, and SG = SL,, as in Sections 2 and 3. If  
z e Z, let [z] denote the smallest nonnegative integer /> z. 

The main result of the section is the following: 

THEOREM (4.1). Suppose that the space of maximal ideals of R, with the usual 
topology is a finite union of irreducible Noetherian subspaces of dimension < d (finite) 
[3,111w Suppose that A is quasi-finite over R. Then D 1 +td+ 2-nlSG(A) = E(A). 

COROLLARY (4.2). Assume the hypotheses of (4.1). Then E(A) is the largest 
perfect subgroup of SG(A) and the quotient SG(A)/E(A) is nilpotent of class 
~<1 + [ d +  2 - n ] .  

Proof The corollary follows directly from (2.2) and (4.1) 

COROLLARY (4.3). Assume the hypotheses of (4.1). Then E(A) is the largest 
perfect subgroup of G(A) and the quotient G(A)/E(A) is solvable of degree 
<<, 2 + [d + 2 - n]. 

Proof By (3.4), SG(A) = [G(A), G(A)]. By (2.2) and (4.1), 

Dl+td+2-n] t~(A),G(A)~ ( [6(A) ,  6 (A)] )  = e ( A ) .  

The corollary follows. 

COROLLARY (4.4). A natural transformation G ~ G  or S G ~ S G  over q-f- 
algebras induces a natural transformation E ~ E over q-f-algebras. 

Proof I shall prove only the case SG. The proof for G is similar and is left to the 
reader. 

Let a: SG ~ S G  denote the natural transformation. It suffices to show that 
aa(E(A)) = E(A) for any q-f-algebra A. Suppose A = lira A i. Define 

i 

D~SG(A ") = N D~SG(A'). 
k = 0  

Clearly, 

aAe(DkSG(Ai)) = DkSG(Ai). 

Thus, 

a ~i(D~SG(Ai)) = D ~SG(Ai). 

If one knew that D~ = E(Ai), it would follow that aai(E(Az)) = E(Ai) and 
thus, that a A (E(A)) c E(A), because E commutes with direct limits. It is not difficult 
to show that there is a direct system of finite Ri-subalgebras A; of A such that 
A = l i~ Ae and such that each Ri is finitely generated as an algebra over its prime 

i 

ring. If  Ri is generated by gi elements over its prime ring, then its space of prime 
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ideals is Noetherian of  dimension ~gi  + 1. (This follows from the fact that Ri is 

Noetherian of  Krull dimension ~<gi + 1, cf. [3, III w It follows that the space of 
maximal ideals of R~ is Noetherian of dimension ~<g~ + 1. Thus, by (2.2) and (4.1), 

D ~ = E(Ai). 

COROLLARY (4.5). A natural transformation G ~ G over q-f-algebras induces a 
natural transformation SG ~ SG over q-f-algebras. 

Proof. By (4.4), the natural transformation G ~ G induces a natural transforma- 
tion E ~ E. A straightforward functorial argument will show that the pair G ~ G, 
E - ~ E  of natural transformations induces a natural transformation SG ~ S G .  
Details are left to the reader. 

The proof  of Theorem (4.1) will be based on several lemmas. An important 
aspect of Lemmas (4.6), (4.7), and (4.11) is the control between certain coefficients. 
This control is based on the principle that if o- and p are two matrices such that 
is t-adically small and p s-adically small, then the commutator  [a, p] is st-adically 
small. 

If  s e R, let ( s )  denote the multiplicative set 1, s, S 2 . . . .  defined by s. If  t ~ R, let 
(t/s)A denote the subgroup of  ( s ) - l A  consisting all quotients ta/s, where a ~ A. 

The letters K, L, M, k, l, and m denote nonnegative integers. 

L E M M A  (4.6). Let (t/s)A be as above and let smtA denote the subgroup of  (t/s)A 
consisting of  all s'~ta, where a ~ A. l f  K, L and m are given, there are k and M, e.g. 

k = ( m + l ) 4 K + 4  K - 1 + . . . + 4  and M = 1 4 K L ,  

such that eK((t/~)A)EL(sktA) c EM(smtA). 

Proof. The case K = 0  or L = 0  is trivial. Suppose K > 0  and L > 0 .  Since 
eK((t/~)a)EZ(sktA) is the set of all products of  L or fewer elements of 
eK(~ it follows that the assertion of the lemma is true for a pair (K, L) 
whenever it is true for the pair (K, 1). Thus, it suffices by induction to show that 

El((t/s)Z)El(s(m + 1)4tA ) c E14(SmtA) 

and that for K > 1, 

EX((t/s)A)El(S((m + 1)4x- 1 + 4x- 2 +...  + l~4tA ) 

EK- l((t/s)A)E14(s(m + 04K- 1 + 4K- 2 +.. .  + 4tA). 

To prove the latter inclusion, it suffices to show that 

E'((t/s)A)EI(s(m" + 1)4tA) c E(sm'tA) 

where 

m' = (m + 1)4 K-1 + 4 K - 2 + . - - + 4 .  

But this is just a special case of  the former inclusion. The former inclusion is proved 
as follows. The formulas in (2.2) will be used repeatedly in the proof. 
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Let  

p = ~iJ~ta/s)eiT,(sktb ) (k  = (m + 1)4). 

I f  i # j '  o r  j ~ i ' ,  then p = erj,(sktb). I f  i ~ j ' ,  bu t  j = i ' ,  then 

p = eij.(S k -  lt2ab)eiT,(sktb). 

I f  i = j ' ,  bu t  j va i ' ,  then 

P = eiT( - s  k -  ltZba)eiT.(sktb). 

I f  i = j '  a n d j  = i ' ,  choose  h ~a i , j .  Then  

p m_ eij(ta/s)[ejh(Sk/2), em(sk/Etb)] 

= eih (s~k/2) - 1)ta)ejh (Sk/2)ehj( -- S~k/2) - 1)t 2ba) • 

• ghi(sk/Ztb)gih (--S(('~/2) - Ota)ejh ( --Sk/2)ehj(S ((k/2) -1)t2ba)ehi ( - -sk /2tb) .  

But, 

and  

ejh (s k/2)ehj ( -- s ~*/2) -1) t  2ba)ejh ( -- s k/2) 

= (set t ing k ' =  ( k /2  - 1))'J h o*a)[ehi ( - s k ' / 2 t ) ,  eij(sk'/Ztba)] 

= [gji( -- s (k + k'/z)t)ghi( _ sk'/2t), gih ( -- S (k + k.)/2tba)eij(sk./Ztba) ] 
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ejh (Sk/2)ehi( S k/2tb )eih ( -- S ((k/2) - O ta)ejh ( _ ski2) 

= Eji(sktb)g, hi(sk/2tb)gjh( --S ((k/2) -1) ta) .  

Thus,  p ~ E14(smtA). 

I f  U and  V are subsets o f  some group,  let ]U, V[ denote  the set o f  all 

c o m m u t a t o r s  [u, v] such tha t  u e U, v e V. Let  p and  q denote  nonnega t ive  integers.  

L E M M A  (4.7). Le t  s, t ~ R.  Le t  ( t l /s)A,  (ski t )A,  and  sPtqA denote the subgroups o f  
( s t ) - I A  consisting, respectively, o f  all quotients (ills)a, (sk/t)a, and  (sPtq/1)a, where 

a ~ A.  I f  K, L,  p and  q are given, there are k,  l, and  M ,  e.g. 

k = ( p + l ) 4 ~ : + 1 + 4 x + . . . + 4 ,  / = (q + 1 ) 4 L + 1 + 4 L + .  �9 �9 + 4 ,  

and M = 14 K+ L + 2KL ' such that 

Proof .  The case K = 0 or  L = 0 is trivial.  Suppose  K > 0 and  L > 0. I f  U is a 

subset  o f  a g roup  and  N is a nonnega t ive  integer,  let ProdU(U) denote  the set o f  all 

p roduc t s  o f  N or  fewer e lements  o f  U. Let  S = (sk / t )A and  T = (f l /s)A. F r o m  the 
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commutator  formulas (2.1), it follows that 

]EK(T), EL(S)[ c (EK-I(T)]EI(T), EL(S)D . . .  (Eo(r)IE,(T), EL(S)D 

and 

Thus 

]El(T),  EL(S)[ = (E~ E'(S)D " '"  (E L-  I(S)]EI(T), El(S)D �9 
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]EK( T), EL(S)[ c ProdKL( EK- '(T)EL- I(S)]E,( T), EI(S)D" 

I shall show that 

]El(T),  El(S)[ c E144(s (p + 1)4K-  1 + 4K--2  + " +  4t(q + 1)4L --1 + 4L- -2  + ... + 4 A ) .  

The assertion of the lemma will then follow from (4.6). 

Let 

S k 

and suppose that k and l are as in the statement of  the lemma. The formulas of 
(2.2) will be used repeatedly to evaluate p. I f j  r i" or i r  then p = 1. If  i r  but 
j = i then p = ~u', ( sk -  l t t -  lab) �9 I f j  r i', but i =j ' ,  then p = ei)-( - s  k -  it1- lab). The 

remaining case to consider is i = j '  and j = i'. Choose h r i, j and let 8 = eu((tt/s)a). 
Then 

I /'sk/2 \ 7  
= ( b y  (2.1)) e ,  ~.jh~Tb)J(eJ*((sk/2/t)b)[g.,Ehi(Sk/2)])X 

X (ejh((sk/xlOb)Shi(sk/2) [~., F.jh((--sk/Z/t)b)]) x 

= eih(t t -  lsk/2- lab) x 

X ( ajh ((skl2/t)b)~hj ( - - t ls  ((k12) -1)a)) �9 (~jh ((~ki2/Ob)'h,(~kl2)ei h ( __ t l -  l s ( (k /2 ) -  l )ab ) )  x 

X (~jh ((sk/2/t)b)~m (sk/z)ejk ( ( -  sk/z/t)b)shj(tlse/2 - 1)a)) E 

(letting p ' = ( p + l ) 4 K - - ~ + 4 r - - Z + ' ' ' + 4 ,  q ' = ( q + l ) 4 L - ~ + 4 Z - 2 + . ' ' + 4 ,  
and applying (4.6) to each of  the four factors above) 

E(sP'tq" A)E14(sP'tq" A)E142(sP'tq" A)E~43(se'tq" A) = El44(sP'tq" A). 

L E M M A  (4.8). Let q be a two-sided ideal of  A. Then E(A, q) is generated as a group 
by the elements ~M~) eu(q) such that i # L a ~ A, and q ~ q. 
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Proof. If  i, j, k are distinct natural numbers and a, b ~ A and q ~ q, then one can 
check by straightforward multiplication that 

(4.8') eiJ(a)eji(b)~ij(q ) 

= ekj( - q(1 + ba))eki(qb)eik ( - abqb)eej(abq) • 

x (~Jk(b)ekj(q))eu(q)eik((ab -- 1)qb)ejk(bqb)(~,i(~)eji(-bqb)) x 

x (~ki(~)eik(qb))ekj(qba)eij(qba). 

By definition, E(A, q) is generated by the elements %~j(q) such that i ~ j ,  e ~ E(A), 
and q ~ q. If  e is the identity matrix, let l(e) = 0 and otherwise, let l(e) denote the 
least number of elementary matrices required to write e as a product of elementary 
matrices. The proof is by induction on l(e). If  l(g) = 0, there is nothing to prove. 

Suppose l(e)= 1. Then e =ekt(a) for some elementary matrix ekz(a). If  
(k , l )  = ( j , i ) ,  there is nothing to prove. If ( k , l ) r  then by (2.2), 
"kt(a)~ij(q ) = either eij(q) or e~7.(q')e~j(q) for an elementary matrix e~.j,(q') such that 
q ' ~ q .  

Suppose l(e)/> 2. Write ~ = ~'em,(b)ekl(a) where l(e') = l(e) -- 2. If  (k, l) ~ (L i), 
then applying the paragraph above, one can finish by induction on l(e). Sup- 
pose (k, l) = (L i). If  (m, n) = (i , j)  then applying (4.8'), one can finish by induc- 
tion on l(e). Suppose (re, n ) r  If m r  and n r  then by (2.2) 
~mn(b)eji(a) = ~ji(a)gmn(b). It is not possible that (m, n) = (L i), because then it would 
follow that e = e'eji(b + a) and thus, that l(e)~< l (e ' )+ 1. Since (m, n ) r  (j, i), it 
follows from (2.2) that 

~m"(b)gij(q ) = either eij(q ) or ei7,(q')eij(q ) 

for an elementary matrix e~7.(q' ) such that q' ~ q and one is done again by induction 
on l(e). There remain now two cases to check; namely, (m, n) = (m, j )  with m ~ i 
and (m, n) = (i, n) with n Cj. In the first case, 

~mJ(b)~Ji(~)gij(q ) 

= (by (2.2)) ~mi (b~)~j,(~)~j (b)~j(q) 

= (by (2.2))emi(ba)~ji(a)gij(q) 

= (by (2.2)) "J'(")"'~ (b~)e~j(q) 

= (by (2.2))~J'(~)(emj(baq)eij(q)). 

Thus, one can finish by induction on l(e). The second case is checked similarly. 

COROLLARY (4.9). (a) (G. Habdank) I f  q is a two-sided ideal o f  A then 
E(A, q2) = E(q). 

(b) Suppose A is semilocal. I f  m >~ 2 then for  any h ( l <~ h <, n), 
G(smA) = Ah(SmA)E(s[m/~1A), where Ah(smA) denotes all diagonal matrices whose hth 
coefficient lies in 1 + smA and whose other coefficients are 1. 
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Proof. (a) By (4.8), E(A, q2) is generated as a group by all matrices ~Ji(a)8ij(qlq2) 

such that a e A and ql, q2 ~ q. I f  k ~ i , j  then by (2.2), 

~ji (a)Sij(ql q2) = ,ji (a)[13i k (ql ), ekj(q2)] 

= [~J,(a)eik(ql) , ~JAa)ekj(q2) ] 

= [ejk(aql)eik(ql), eki( -- q2a)ekj(q2)]. 

(b) By conjugating both sides of  the inclusion in (b) by a suitable permutat ion 

matrix, one can reduce to the case h = l .  By [3, V(3.3)(1)], G(smA) = 

Ah(smA)E(A, smA) and, by part  (a), E(A, smA) c E(s[m/21A). 

L E M M A  (4.10). Suppose R is Noetherian and A is finite over R. Then given s ~ R, 
there is a nonnegative integer k such that the homomorphism G(skA)--*G( ( s ) - l A )  
induced by the canonical homomorphism A --* (s ) -  l A is injeetive. 

Proof Clearly G( sk A ) ~ G( ( s ) -1A  ) is injective whenever sk A ~ ( s ) -  l A is injec- 

tive. For  i/> 0, let ai = {a ] a ~ A, s~a = 0}. Clearly, ao c a l c  a2 c �9 �9 �9 Since R is 

Noetherian and A is finite over R, there is a k such that ak = ak + 1 = ak + 2 . . . .  �9 
Suppose a E A such that ska vanishes in ( s ) - l A .  Then sJska vanishes in A for some 

j. Thus, a ~ ai+k = ak. Thus, ska = 0. Thus, skA ~ ( s ) - l A  is injective. 

L E M M A  (4.11). Suppose A is quasi-fnite over R. Let smA denote the subgroup of 
(1/s)A consisting of all sma where a ~ A. Let "G"(skA) denote the image of G(skA) 
(=G(A))  in G ( ( s ) - I A ) .  Given K and m, there is a k, e.g. 

k = 2((m + 1)4 K+2 + 4  K + 1 + 4 x + 1  + . . .  +4) ,  

such that 

Proof. Since k does not depend on R or A and since 

E K ( ! _ _ ) ,  "G" ( s  k ) and E(s m ) 

commute with direct limits, one can reduce to the case A is finite over R and R is 
finitely generated as an algebra over its prime ring (i.e. image ( 7 / ~ R ) )  and is, 

therefore, Noetherian. 

I shall show that 

I E I ( ~ A ) , ' a G " ( s k A ) I ~ E ( S ( m + I ) 4 K - I + 4 K - 2 + ' " + 4 A ) .  

I t  will then follow that [EK((1/s)A), "G"(sk(A)] ~ (by (2.1)) 

EK-- I((1/s)A)E(s( m + 1)4K-- l + 4 K - 2  + ... + 4 A  ) c ( b y  (4.6)) E(smA). 
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Let m'  = (m + 1)4 K- 1 + 4 K- e + . . .  + 4. Suppose it has been shown that for each 

maximal ideal m of R, there is an element tm in the multiplicative set R -- m and a 
nonnegative integer l,, such that 

8ij~T), ~E(S(m'+l)4A) 
for any a ~ A. There is a finite set t in1,- . . ,  t,, r of  tm's such that the ideal they 
generate is all of  R. Choose Xl . . . . .  xr ~ R such that 

xl t~? +.. .  + xrtt~; = 1. Then 

=[~ij(t~l(~la)) "" "~ij~'{t~r(Xra)~'aC7" I S  )' 
(by (2.1) and supposition above) e~l/~)a~E(s~'~'+ 1)4A) 

(by (4.6)) E(sm'A). 

It remains to verify the supposition above. Let cr ~ G(skA) and let " a "  denote its 
image in "G"(skA). Let A,, denote the localization of A at the multiplicative set 
R -  m. Since Rm is a local ring and A,. is finite over R.,, it follows that A.~ is 
semilocal [3, III(2.5), (2.11)]. Over A,,, one can factor by Corollary (4.6)a as a 
product 6 ' d  where 5' ~ E(sk/ZAm) and 6' is a diagonal matrix all of  whose diagonal 
coefficients are 1, except possibly the hth diagonal coefficient, and h can be chosen 
arbitrarily. There is an element t e R - m such that over ( t ) - 1 A ,  a can be factored 
as a product 6"e" where 

/ski 2 \ 
e" ~E~-7-A ) 

and 6" is a diagonal matrix all of  whose diagonal coefficients are 1, except possibly 
the hth coefficient which lies in (1/t)A, and h can be chosen arbitrarily. Let 8, 6, and 
g denote, respectively, the images of a, c5", and 5" in G((st)-IA). Thus, 8 = 5g. Let 
eij(a/s)~E~((1/s)A) and let gij(a/s) denote its image in G( (st )-lA). Let 
p = ( m ' +  1)4. Choose, using Lemma (4.10), a nonnegative integer q such that 
G(tq(s)-lA) maps injectively to G((st)-~A). Let l>>.q. Since G(tq(s)-~A) is 
normal in G((s)-lA), it follows that 

I [t'a, ,,cr,,]~G(tq(s)_lA).  i tT/, 
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Thus, it suffices to show that there is an l >~ q such that 

I"a' 1 ~ij~--Z) , ~ ~ E(SPtqA) ( c G(<st)-IA)). 

Choose h ~ i,j, so that ~ commutes with gij(tta/s). Thus, 

By Lemma (4.7), there is an l such that [g~j(t~a/s), e-] E E(sPt q+ ~A), because 

t/ S k/2 ~ k 
g * E ~ - ~ - A ) , - ~ = ( p + 1 ) 4 2 + 4  and K = I .  

Thus, 

gF ['t'a'~ I + IA) 

A. Suslin [13] has proved the following result when A is commutative and 
A. Suslin (cf. [14,w and L. Vaserstein [16] have proved it when A is finite 
over R. 

THEOREM (4.12). I f  A is quasi-finite, then E(A) is a normal subgroup of G(A). 
Proof. The theorem follows trivially from Lemma (4.11) by setting s = 1. 

If s e R and V is an R-module, let l~ = li_m V/s p V. 
p N 0  

Suppose {Ai I i e I} is the set of all finite Ri-subalgebras of A, where Ri ranges 
over all subrings of R which contain s and are finitely generated as algebras over 
their prime rings, i.e. over image (7/--.Ri). Each Ri and A; is Noetherian, 
R = lim Ri, and if A is quasi-finite over R, then A = lim A~. There is a canonical 

i i 

homomorphism lira (d~)~ ~ A",, but it is, in general, neither injective nor surjective. 

In order to be able to reduce problems in which the ring As normally plays a role 
to the Noetherian situation, I shall need to replace As by the ring ~ (A~)~. For this 
reason, the following definition is introduced, i 

DEFINITION (4.13). Suppose A is a quasi-finite R-algebra and let {A~ [ i ~ I} be 
as above. Define K~ = ~(/~z)~ and ~s = ~ (di)s. 

i i 

DEFINITION (4.14). Suppose A is a quasi-finite R-algebra. Define 

G(s - ~, A) = Ker(G(A) ~ G( ( s ) -  1A)/E( ( s ) -  ~A)) 

and 

G(s A) = Ker(G(A) ~ G(-4s)/E(As)). 
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COROLLARY (4.15). Let {Ai I i ~ I} be as in (4.13). Then 

G ( s - I , A ) = ~  G(s-~,Ai) and G(~,A) = ~  G(s,A~). 
i i 

Proof The functors G and E commute with direct limits. 

THEOREM (4.16). Suppose A is quasi-finite over R. Then 

[G(s 1, A), G(~, A)] = E(A). 

Proof One reduces by (4.15) to the case A is finite over R and R is Noetherian. 

Let a ~ G(s -1, A) and p E G(~, A). From (2.2)b), it follows that 

Thus, the value of a in G((s ) - IA)  lies in EK((1/s)A) for some K. By Lemma (4.10), 
there is an m such that the canonical homomorphism G(smA)~G( ( s ) - lA )  is 
injective. Let 

k =2((m + 1)4 K + z + 4  K+~ + . . - + 4 ) .  

Since 

p ~ Ker(G(A) ~ G(A/skA)/E(A/skA))), 

there is an e ~ E(A) such that pe ~ G(skA). Since E(A) is normal in G(A) (by 
Theorem (4.12)), it follows that [a, p] ~ E(A) if and only if [a, pc] ~ E(A). Since 
pe ~ G(skA) = G(smA) and G(smA) is normal in G(A), one has that [a, pc] E G(smA). 
The proof follows now from the fact that the homomorphism G(smA) ---r G((s)-1A)  
is injective and [a, p~] lies in image(E(smA)---rG((s)-iA)), by Lemma (4.11). 

A topological space is called irreducible if it is not the union of two nonempty 
proper closed subsets. A topological space is called Noetherian if its closed subsets 
satisfy the descending chain condition. Trivially, any subspace of a Noetherian 
space is Noetherian. The dimension of a topological space X is the length m of the 
longest chain Xo ~ X~ ~ �9 �9 �9 ~ X m of nonempty closed irreducible subsets X~ of X. If  
there is no nonnegative integer m as above, then dimension(X) is infinity. Define 
5(X) to be the smallest nonnegative integer d such that X is a finite union of 
irreducible Noetherian subspaces of dimension ~<d. If there is no nonnegative 
integer d as above, then 5(X) is infinity. 

Let Spec(R) denote the space of all prime ideals of R and let Max(R) denote the 
subspace of all maximal ideals of R. Give Spec(R) its usual topology, i.e. a subset 
W is closed if and only if there is an ideal a in R such that W =  
{p [ p ~ Spec(R), p ~ a}, and give Max(R) the subspace topology. Define 
6(R) = 5(Max(R)). There are examples where 6(R) < dimension(Max(R)) 
[3, 11I(3.13)]. We call 6(R) the Bass-Serre dimension of R. If  A is a quasi-finite 
R-algebra then we define the Bass-Serre dimension of A (as an R-algebra) to be 
that of R. 
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INDUCTION LEMMA (4.17). Suppose 6(R) is finite. Let X l W ' "  "wXr be a 

decomposition of  Max(R) into irreducible Noetherian subspaces of  dimension <<. 6(R). 

I f  s ~ R such that for each X k ( 1 <<. k <<. r), s does not lie in some member of  X k then 
< 

Proof. I shall show first that s/~s c Jacobson radical(/~). Let the index set I be as 
in Definition (4.13). Let a e/~s. For some i e I ,  a e (R,.)s. The element 1 - s a  is 
invertible in (/~/)~, its inverse being the element 1 + Z~=l(sa)L Thus, 1 -  sa is 
invertible in R~. Thus, by Nakayama's lemma [3, III(2.2)], sRs c Jacobson radical 

Each element of M a x ( ~ )  contains the Jacobson radical(/~). Thus, Max(/~) is 
canonically homeomorphic to Max(/~s/s_R~). But, 

Rs/sRs ~ ~ (fii)s/s(Ri)s ~ ~ (Ri/sRi) ~ R/sR.  
i i 

Thus, 

Max(/~) -~ Max(/~/sRs) ~ Max(R/sR).  

Max(R/sR)  is canonically homeomorphic to the closed subset 
{m ] rtt ~ Max(R), m ~ sR} of Max(R). Let Yk = Xk ~ Max(R/sR).  The hypotheses 
of the lemma show that Yk is a proper closed subset of Xk. Since Xk is Noetherian, 
so is Yk. Thus, by [3, III(3.7), (3.8)], Yk has only finitely many closed irreducible 
components Ykl . . . . .  Yk~k and Yk = Ykl w . . . w  Ykc~. Since Xg and Ykj are irre- 
ducible, and since Yki is closed in Xk and Ykj ~ Xk, it follows that dimen- 
sion(Yxj) < dimension(Xk) <~ 6(R). Since 

Max(R/sR)  = U Ykj, 
k = l j = l  

it follows that 6(R/sR) < 6(R). Thus, 6(R~) = 6(R/sR) < 6(R). 

Proof of  Thoerem (4.1). We must show that if A is quasi-finite over R and 8(R) 
is finite then D~+r~(m+2-"ISG(A)=E(A).  The proof is by induction on 
[8(R) + 2 -- n]. 

Since D ~ + r~(m + 2 - "~SG and E commute with direct limits of quasi-finite algebras 
over R, one can reduce to the case that A is finite over R. 

If  [6(R) + 2 - n] = 0 then by [3, V(3.5)] and [15, (3.5)], [G(A), G(A)] = E(A). 

Thus, D ~SG(A) = E(A), because SG(A) ~ E(A) and E(A) is perfect. 
Suppose p = [6(R)+ 2 -  n] > 0. It is a simple exercise using (2.1) to show that 

D 1 +PSG(A) ~ E(A) if and only if for each sequence 

a, ~r 1 . . . . .  % e SG(A), [a, p] �9 E(A), 

where 

0 = [a~ . . . . . .  [%_ ~, % _ , ,  %]]. . .] .  

Let X1 w . . .  w Xr be a decomposition of Max(R) into irreducible Noetherian 
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subspaces of dimension ~< 6(R). Let m; ~ Xi (1 ~< i ~< r). Let R '  and A'  denote, 
respectively, the localizations of  R and A at the multiplicative set 
R - m~ w. �9 �9 w mr. A'  is semilocal, because A'  is finite over R '  and R '  is semilocal 
[3, III(2.5), (2.11)]. Since a ~ SG(A), its value in G(A') lies in the subgroup E(A'). 
There is an element s e R - ml w. �9 �9 w mr such that the value of o- in G ( ( s ) -  1A) lies 
in E( ( s ) -~A) .  Thus, a ~ G(s -1, A). Since the element s satisfies the hypotheses of  
the Induction Lemma (4.17), 6(/~) < 6(R). Thus, by induction on [6(R) + 2 - n], 
the value of p in G(A~) lies in E(A~). thus, p ~ G(~, A). The assertion of the theorem 
follows now from Theorem (4.16). 

QUESTION (4.18). If A is quasi-finite, is E(A) the largest perfect subgroup of 
G(A)? 

5. Super Special Linear Groups SdLn >i 2 and the Nilpotent Class of K1 

Super special linear groups SaLn>~2(A) are defined over quasi-finite R-algebras A 
and it is shown that the sequence 

SL,(A) = S~ ~ S1L,(A) ~ S2Ln(A) 2 " "  

of super special linear groups is a descending central series for n/> 3 and 
Sa(mL,(A) = E,(A) whenever 6(R) is finite and n ~> 3. 

Throughout  the section, it will be assumed that A is quasi-finite. 6(R) is defined 
as in Section 4. 

D E F I N I T I O N  (5.1). Suppose n ~> 2 and d ~> 0. I f A  is a finite R-algebra, define the 
dth super special linear group SaL, (A)=  {a]a  ~ G(A) (=G L, (A ) ) ,  value of a 

under G ( f ) :  G(A) ~ G(A') lies in E(A') (= En(A')), f : A ~ A' a homomorphism of 
finite algebras, A'  a finite R'-algebra, 6(R') <<. d}. Extend the definition of  SaL, to 
all quasi-finite algebras, via Lemma (3.3). Define S-1Ln = GL, .  

In order to bring the notation above in line with that in the previous sections, let 

SaG(A) = SaL,(A). 
It is clear that SaG defines a functor q-f-algebras ~groups. 

COROLLARY (5.2). S~ = SG(A). 
Proof The assertion follows from Lemma (3.5) and its proof. 

COROLLARY (5.3). I f  n >>. 3 then SaG(A) is a normal subgroup of S-~G(A). 
Proof The assertion follows from Theorem (4.12). 

COROLLARY (5.4). I f  n >>. 3 then a natural transformation SaG ~ S a G  induces 
natural transformations S a+ 1G ---> S a+ 1G and E ~ E. 

Proof The proof  of Corollary (4.4) shows that a natural transformation 
SaG ~ SaG induces a natural transformation E ~ E .  It is straightforward to show 
that the pair SaG--, SaG, E w E  of natural transformations induces a natural 
transformation S a+ ~G ~ S a+ 1G. 
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THEOREM (5.5). I f  n>~3 then the sequence S G ( A ) = S ~  
~ .  �9 �9 ~ SdG(A) ~ .  . . is a descending central series in SG(A) and SaG(A) = E(A) 

whenever 6(R) is finite and d >1 6(R). 
Proof. The latter assertion is true by definition. 

The former assertion for quasi-finite algebras follows from that for finite alge- 
bras. Suppose A is a finite R-algebra. Let a ~ SG(A) and p E SdG(A). We want to 
show that [a, p] ~ S d+ 1G(A). 

Let Ao be a finite R0-algebra such that 6(R0) ~< d + 1. If  f :  A ~A0 is an algebra 
homomorphism, we must show that [Gf(a), Gf(p)] ~ E(Ao). If  suffices to show that 
if 6(R) ~< d + 1 then [a, p] ~ E(A). The proof is similar to that of Theorem (4.1) and 
goes as follows. 

Let X t w " ' ~ X r  be a decomposition of Max(R) into irreducible Noetherian 
subspaces of dimension .N< d + 1. Let mk ~ Xk ( 1 ~< k ~< r). Let R '  and A' denote, 
respectively, the localizations of R and A at the multiplicative set R - ml w. �9 �9 w mr. 
A'  is semilocal. Since a ~ SG(A), its value in G(A') lies in E(A').  There is an 
element s e R - m ~ w ' " w m r  such that the value of a in G ( ( s ) - I A )  lies in 
E ( ( s ) - ~ A ) .  Thus, a ~ G(s-  1, A). Since the element s satisfies, by construction, the 
hypotheses of the Induction Lemma (4.17), 6(Rs) < 6(R) ~< d + 1. Thus, c~(_gs) ~< d. 
Thus, the value of p in G(As) lies in E(.~s). Thus, p e G(g, A). Thus, [a, p] e E(A), 

by Theorem (4.16). 
Let G,(A) = GL,(A) and SaG,(A) = SaL,(A). The canonical homomorphism 

induces for each d a canonical homomorphism SaG~(A)~  SdG,+ ~(A). Although 
for n ~> 6(R)+  2, the quotient SG~(A)/E~(A) is already abelian, the descending 
sequence SG~(A) = S~ ~ S~G~(A) ~ . . .  of subgroups is still interesting since 
it gives a functorial filtration of the quotient SG~(A)/E~(A). Moreover, the stability 
theorems of Bass [3, V(4.2), (4.5)] and Vaserstein [15, (3.2), (3.3)] showing that 
whenever A satisfies Bass' stable range condition SRN(A) [3, V, w the canonical 
homomorphism G~(A) ~ G~ + 1 (A)/E~ + 1 (A) is surjective for n ~> N - 1 and has 
kernel E~(A) for n >/N, have the following consequences for the homomorphism 
SAG,(A) --" SdG, +I(A)/Sa+ ~G, +1 (A). 

THEOREM (5.6). Let i denote an integer >~0. I f  A satisfies SRN(A ) then the 
canonical homomorphism SdG,(A) ~ SaG, + 1 (A) /S  d+ iG, + I(A) is surjeetive for 
n ~> max(N - 1, d + 2, 2) and has kernel S a+ ~G,(A) whenever n/> max(d + i + 2, 2). 

Proof. The proof is a straightforward, tormal functorial argument making use of 
the stability theorems of Bass and Vaserstein. Details are left to the reader. 

Remark (5.7). Bass has shown that if A is finite over R and 6(R) is finite then A 
satisfies SRa~m+z(A) [3, V(3.5)]. It is easy to show that this result extends to the 
case A is quasi-finite over R. 

Note that Theorem (5.6) above includes stability isomorphisms for n = N -  1 
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which is less than the stable range N of A. Without any stable range conditions on 
A, the quotients SaGn(A)/Sd+iGn(A) still enjoy the following injective stability 
result. 

THEOREM (5.8). (a) l f n  >>. max(d + i + 2, 2), then the canonical homomorphism 

SaG, (A) / S a + iG n (A) ~ SaG, + t (A) / S a + iG, +1 (A) 

is injective. 
Proof The theorem is deduced easily from (5.7) and the stability results cited 

above of Bass and Vaserstein. 

DEFINITION (5.9). Let q denote a two-sided ideal of A. For d > ~ - 1 ,  define 
SaG(q) = SaG(A) ~ G(q). 

COROLLARY (5.10). I f  n >~ 3 then SaG(q) is a normal subgroup of G(A). 
Proof G ( q ) =  Ker(G(A)~G(A/q))  is obviously normal in G(A) and SaG(A) is 

normal in G(A) by Corollary (5.3). 

6. Nilpotent Structure of GL./> 3: Nilpotent Sandwich Classification Theorem 

In this section, the results of Sections 4 and 5 will be extended to the relative case 
and applied to classifying subgroups of G normalized by congruence, elementary, 
and relative elementary subgroups. 

Throughout this section, it will be assumed that A is quasi-finite, that q is a 
two-sided ideal of A and that n t> 3. Let G = GLn, SaG = SdLn, and E = En. Define 
G(q), E(q), and E(A, q) as in Section 2 and SaG(q) as in Section 5. Define 6(R) as 
in Section 4, and if z is an integer, let [z] denote the smallest nonnegative integer 
>/z. 

THEOREM (6.1). Suppose A is quasi-finite over R. I f  3(R) is finite then 
D1 + [~(R) + 2- n] s~<A) SG(q) = E(A, q). 

The proof of Theorem (6.1) will be given after Corollary (6.4). 

Suppose J denotes a group and H a normal subgroup. H is called J-perfect if 
[J, H] = H. H is called J-nilpotent if Dds(H) = 1 for some d. The smallest d such 
that Das(H) = 1 is called the J-nilpotent class of H. 

COROLLARY (6.2). Assume the hypotheses of (6.1). Then E(A, q) is the largest 
SG(A)-perfect subgroup of SG(q) and the quotient SG( q) /E(A, q) is SG(A)-nilpotent 
of class ~< 1 + [6(d) + 2 - n]. 

Proof The corollary follows directly from (6.1) and the fact, which is easily 
deduced from (2.2), that E(A, q) is E(A)-perfect. 

COROLLARY (6.3). Assume the hypotheses of (6.1). Then E(A, q) is the largest 
G(A)-perfect subgroup of G(q) and the quotient G(q)/E(A, q) is solvable of degree 
~< 2 + [3(R) + 2 -- n]. 
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Proof. By (3.4), [G(A), G(q)] c SG(A) :~ G(q) = SG(q). By (6.2), I--/)IsG(A) + I f ( R ) +  2 --  n] X 

[G(A), G(q)] = E(A, q). The assertions of  the corollary follow. 

COROLLARY (6.4). A natural transformation a: SaG ~ SaG (d >>. - 1 )  induces for 
all i >~ 0 natural transformation ai: S a+ ~G ~ S a+ ~G and p: E ~ E with the property 

that (ai)A(S a+ ~G(q)) = S a+ ;G(q) and pA(E(A, q)) ~ E(A, q) fo r  all two-sided ideals 

q o f  A. 
Proof. Let a: SaG ~ SaG denote a natural transformation. By (5.4), a induces a 

natural transformation a~:Sa+iG--> S a+ ~G. From the commutative diagram 

S a + 'G(A) , S ~+ iG(A/q) 

S a+ 'G(A) > S a+ 'G(A/q) 

and the fact that 

S d+ iG(q) = Ker(S d+ iG(A) --, Sa+ iG(A/q)), 

it follows that (ai)A ( S~ + iG(q)) c S a + iG(q). 

Let a: SaG ~ SaG denote a natural transformation. By (5.4), o- induces a natural 
transformation p: E ~ E. Let A ~< q denote the smash product of A and q. By (3.2), 
A D< q is quasi-finite. Let f :  A ~< q--+ A, (a, q) ~ a. The homomorphism f is split by 
the homomorphism A ---> A ~< q, a ~ (a, 0). Use this homomorphism to identify E(A) 
with its image in E(A ~< q). The group E(A ~< q) is the semidirect product  E(A) ~< 

K e r ( E ( f ) )  and K e r ( E ( f ) )  = E(A ~< q, 0 ~< q). From the commutative diagram 
E(f )  

E(AD<q) ,E(A) 

E(A ~< q) , E(A) 
E( f )  

it follows that 

p,, ~ q(E(A D< q, 0 ~< q ) ) c  E(A ~< q, 0 ~< ~). 

Let g: A ~< q --> A, (a, q) ~ a + q. E(g) maps E(A ~< q, 0 ~< q) bijectively onto 
E(A, q). Thus, from the commutative diagram 

E(g) 
E(A D< q) > E(A) 

E(A ~< q) , E(A) 
E(g) 

it follows that PA (E(A, q)) c E(A, q). 

Proof of  Theorem (6.1). Le tp  = [6(R) + 2 - n]. The proof  is by induction o n p  and 
is similar to that of  Theorem (4.1). 

Suppose p = 0. By (5.7), [3, V(4.2)], and [15, (3.2)], [G(A), G(q)] = E(A, q). Thus, 
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[SG(A), SG(q)] = E(A, q), because SG(A) ~ E(A), SG(q) ~ E(A, q), and by (2.2) 
[E(A), E(A, q)] = E(A, q). 

Suppose p > 0 .  Let a, al . . . .  , a p ~ S G ( A )  and let ~ S G ( q ) .  Let p =  
[o'1, �9 �9 �9 [%_ 1, [%, v]] "" "]. One must show that [~r, p] ~ E(A, q). Let X1 w . - .  w Xr 
be a decomposition of Max(R) into irreducible Noetherian subspaces of dimension 

6(R). Let mk ~ Xk (1 ~ k ~< r). Let R '  and A' denote, respectively, the localiza- 
tions of R and A at the multiplicative set R - ml w. �9 �9 vo mr. A'  is semilocal. Since 
a ~ SG(A), its value in G(A') lies in the subgroup E(A'). There is an element 
s ~ R - m l v o . . . w m r  such that the value of a in G ( ( s ) - I A )  lies in E ( ( s ) - I A ) .  
Thus, a ~ G(s-1, A). Since the element s satisfies by construction the hypotheses of 
the Induction Lemma (4.17), 6(-~s) < 6(R). Thus, by induction on p, the value of p 
in G(.gs) lies in E(.g,, ?t~) where ?t~ denotes the ideal of .g~ generated by the image of 
q in As. Let A ~< q be as in the proof of (6.4). Let 

f : A  ~<q-+A,(a ,q)~-+a+q and f.'XsD<~--+.gs, (~,~)~-- ,~+~.  

f i s  split by 4: A --+A ~< q--+A, a -+ (a, 0). One shows easily that Gfmaps  G(0 ~< q) 
bijectively onto G(q). Let 4' denote the inverse of this isomorphism. I shall show 
that [(Gr ~'(p)] ~ E(A ~< q, 0 ~< q). Clearly, Gg(~r) E G(s-  1, A ~< q). From the 
commutative diagram 

G(A ~< q) , G(.4s D< 7~) 

G(A) , G(.4s) 

and the fact that G(j  z) maps E(.~ ~< fi~, 0 ~< fi,) isomorphically onto E(,4~, fis), it 
follows that the image of g'(p) in G(2~ ~< fi~) lies in E(.g~ D< fi~, 0~< ~).  Thus, 
g'(p) ~G(s  ~< q). Now, by Theorem (4.16), [Gg(a),g'(p)] E E(A ~< q). But, 
g'(p) ~ G(O ~< q) and thus, 

[Gg(a), g'(p)] ~ G(0 ~< q) c~ E(A ~< q) = E(A ~< q, 0 ~< q). 
Moreover, 

(Gf)(Gg)(a) = a, (Gf)g'(p) = p and Gf(E(A ~< q, 0 ~< q)) = E(A, q). 

Thus, [a, p] ~ E(A, q). 
Suppose J denotes a group and H a normal subgroup. Call a sequence 

H = Ho = H1 = H2 = �9 �9 �9 of subgroups of H a descending J-central series if for each 
i, [J~ Hi] o H / +  1. 

THEOREM (6.5). Suppose A is quasi-finite over R. Then the sequence 

SG(q) = S~ ~ S1G(q) = . - .  = SaG(q) = . . -  

is a descending SG(A)-central series in SG(q) and [G(q), SaG(q)] c E(A, q) whenever 
6(R) is finite and d >~ 6(R). 

Proof. Let a e SG(A) and p ~ SaG(q). Clearly, [a, p] e G(q) and by Theorem 
(5.5), [a, p] e S a+ 1G(A). Thus, [or, p] ~ S a+ 1G(A) ~ G(q) = S a+ 1G(q). 
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By Theorem (5.5), SaG(q) c SaG(A) = E(A) whenever d >~ 6(R) and by the next 
theorem [G(q), E(A)] = E(A, q). Thus, [G(q), SaG(q)] ~ E(A, q) whenever d >>, 6(R). 

T H E O R E M  (6.6). [E(A), G(q)] = E(A, q). 

The proof  of Theorem (6.6) and other results use the following lemma. 

L E M M A  (6.7). Let f: A ~< q--*A, (a, q) ~ a + q. Then: 
(a) The homomorphism Gf: G(A ~< q)--*G(A) is split surjective and maps 

G'(0 ~< q) bijeetively onto G'(q), G(0 ~< q) bijeetively onto G(q), and E(A ~< q, 0 ~< q) 
bijectively onto E(A, q). 

(b) E(A ~< q) = E ( A  D< A, A D< q) and E(A ~< q) n G ( 0  ~< q) = E ( A  ~< q, 0 ~< q). 

Proof. Straightforward. 

Proof of Theorem (6.6). From (2.2) it follows that E(A, q) is E(A)-perfect. Thus, 

[E(A), G(q)] = [E(A), E(A, q)] = E(A, q). 

It remains to show that [E(A), G(q)] c E(A, q). By Theorem (4.12), 

[E(A ~ q), G(0 ~< q)] c E(A ~ q) n G(0 ~< q). 

The theorem follows now from the 1emma above. 

C O R O L L A R Y  (6.8). E(A, q) is a normal subgroup of G(A). 

Proof. The result follows from Theorems (4.12) and (6.6). 

DEFINITION (6.9). Make an exception to the premises of this section by letting 
n ~> 2. Let d ~> 0. If  A is a finite R-algebra define SaG(A, q) = {or [ cr ~ SaG(q), value 
of  a under Gf: G(A) --* G(A') lies in E(A', q'), f :  A --, A" a homomorphism of finite 
algebras, q ' =  A'f(q)A',  A' quasi-finite over R', 6(R') finite, 6(R') <~ d}. Extend the 
definition of SaG(A, q) to all quasi-finite algebras via Lemma (3.3). Define 
S-*G(A, q) = G(q). 

C O R O L L A R Y  (6.10). SaG(A, q) is a normal subgroup of  G(A). 
Proof. The assertion for d = - 1  is clear. For d ~> 0, the assertion follows from 

the fact, given in (6.8), that E(A', q') is a normal subgroup of G(A') for any 
quasi-finite algebra A' and any two-sided ideal q' of A'  

C O R O L L A R Y  (6.11). A natural transformation or: SaG --, SaG induces for all i >>, O, 
natural transformations ai: S a+ iG---r S a+ iG with the property that (r a+ ~G(A, q) 

S a+ iG(A, q)for  all quasi-finite algebras A and all two-sided ideals q of  A. 
Proof. The corollary follows from (6.4). 

T H E O R E M  (6.12). 

[G(A), G(q)] c Sn-2G(A, q) and [SaG(A), G(q)] ~ SaG(A, q). 
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Proof Recall that G = GL, .  To prove the first assertion, it sufficies to show that 
if A is finite over R and 6(R) ~< n - 2 then [G(A), G(q)] = E(A, q). But, this is an 
immediate consequence of results of Bass [3, V(4.2),(4.5)] and Vaserstein 
[15, (3.2), (3.3)]. 

The first assertion of the theorem infers the cases d = - 1, 0 and 1 of the second 
assertion, since n/> 3. The case d >7 0 of the second assertion follows from Theorem 

(6.6). 

T H E O R E M  (6.13). Suppose A is quasi-finite over R. Then the sequence S G (q )=  
S~ ~ S~ q) ~ SaG(A, q) ~ . . .  ~ SaG(A, q) ~"  �9 �9 is a descending SG(A)- 
central series and SaG(A, q) = E(A, q) whenever 6(R) is finite and d >1 6(R). 

The proof  of  Theorem (6.13) will use the following lemma. 

LEMMA (6.14). The homomorphism A ~< q ~ A, (a, q) ~ a + q, induces an isomor- 
phism SaG(A ~< q, 0 ~< q) ~ SaG(A, q). 

Proof The result follows from (6.8). 

Remark (6.15). For  d/> 0, it is probably not true in general that the homomor- 

phism SaG(O ~< q ) ~ S a G ( q )  is surjective. 

Proof of  Thoerem (6.13). By Theorem (6.12), [SG(A), S~ c S~ q) and 
by definition, SaG(A, q) = E(A, q) whenever 6(R) <<. d. It remains to prove that for 
d >>. O, [SG(A), SaG(A, q)] c S d+ 1G(A, q). The proof  is similar to that of Theorem 

(5.5). 

As in the proof  of  Theorem (5.5), one reduces to showing that if a e SG(A), 
p e SaG(A, q), and 6(R) ~< d + 1 then [a, p] e E(A, q) and next, one constructs an 

element s e R such that a ~ G(s- 1, A) and the value of  p e G(-~s) lies in E(As, fis). 

Let 

f : A ~ < q ~ A ,  (a,q)~--~a+q a n d g : A ~ A ~ < q ,  a~--~(a,O). 

Let g'  denote the inverse of  the isomorphism Gf: G(O ~< q) ~. G(q) in (6.7a). It is 
clear that Gg(a) e G(s -1, A ~< q) and by (6.7a), that g'(p) e G(~, A ~< q). Thus, by 
Theorem (4.16), [Gg(cr), g'(p)] e E(A D< q). Since g'(p) e G(0 ~< q), [Gg(tr), g'(p)] E 

G(0 ~< q). Thus 

[Gg(a), g'(p)] e E(A ~< q) c~ G(0 ~< q) = (by (6.7b)) E(A ~< q, 0 ~< q). 

Thus, by (6.7a), [a, p] = Gf([Gg(a), g'(p)]) e E(A, q). 

T H E O R E M  (6.16). Let i denote an integer >>.0. I f  A satisfies Bass' stable range 
condition SRN(A) then the canonical homomorphisms 

SaG.(q) ~ SaGn+ l(q)/Sa+iG.+ l(q), SaG.(q) ~SaG.+ 1(q)/Sa+'G.+ I(A, q), 

and 

SaG.(A, q) ~ SaG. +1 (A, q)/S a+ iG. +1 (A, q) 
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are surjeetive for n >>. max(N -- 1, d + 2, 2) and have, respectively, kernels 
S d+ iG,(q), S d+ iG,(A, q), and S d+ ~G,(A, q) for n >~ max(d + i + 2, 2). 

Proof The proof is similar to that of Theorem (5.6). Details are left to the 
reader. 

Without any stable range conditions on A, one still has the following injective 
stability result. 

THEOREM (6.17). Let i denote an integer >>.0. I f  n >~ max(d + i + 2, 2) then the 
kernels of the homomorphisms in (6.16) are as in the conclusion of (6.16). 

Proof. The proof is similar to that of Theorem (5.8). Details are left to the 
reader. 

I turn now to classifiying subgroups of G(A) normalized by relative elementary 
subgroups or congruence subgroups. The following definitions are taken from 
[ 1, w 

DEFINITION (6.18). Let a, b, and q denote two-sided ideals of A. Define a <4 b 
if for some i/> 0, q;a + aq ~ c b. Define a ~0 b if a <4 b and b <q a. Clearly, ~q is 
an equivalence relation on the set of all two-sided ideals of A. 

DEFINITION (6.19). Let H and K denote subgroups of G(A) which are normal- 
ized by E(A, q). Define H <4 K i f  for some i >10, D~(A.q)(H) c K .  Define H <)4K 
if H <q K and K <4 H. Clearly, ~4 is an equivalence relation on the set of all 
subgroups of G(A) which are normalized by E(A, q). 

Let ( a : q ) = { x l x ~ A ,  x q + q x ~ a } .  

THEOREM (6.20) (F.-A. Li and M.-L. Liu [8]). Suppose A is commutative and q 
is a fixed ideal of A. Then: 

(a) The rule a ~-+ E(A, a) induces an order preserving isomorphism of the <)q-equiv- 
alence classes of ideals of A onto the ~4-equivalence classes of subgroups of G(A) 
normalized by E(A, q). 

(b) For any i >t O, E(A, q;a) ~4 E(A, a) ~4 G(a) 0 4 G'(a) ~4 G'(a: qi). Further- 
more, if H is normalized by E(A, q) then H ~ 4 E(A, a) if  and only if for some i >1 O, 
E(A, q~a) = H = G'(a: q~). 

Instead of considering ~q-equivalence classes of subgroups of G(A) normalized 
by the relative elementary subgroup E(A, q), it is sometimes more natural to 
consider ~q-equivalence classes of subgroups of G(A) normalized by the congru- 
ence subgroup SG(q), where <54 is defined as follows. 

DEFINITION (6.21). Let H and K denote subgroups of G(A) which are normal- 
ized by SG(q). Define H < q K if for some i/> 0, i DsG(q~(H) c K. Define H ~ K if 
H < q K a n d  K < q H .  

Clearly, ~ q is an equivalence relation on the set of all subgroups of G(A) which 
are normalized by SG(q). 
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THEOREM (6.22) Suppose A is commutative and q is a fixed ideal of A. I f  6(A) is 
finite then: 

(a) The rule a ~ SG( a) induces an order preserving isomorphism of the ~ q-equiva- 
lence classes of ideals of A onto the �9 classes of subgroups of G(A) 
normalized by SG(q). 

(b) For any i >>, 0, 

E(A, qia) ~q E(A, a) ~q SG(a) ~q G(o) �9 G'(a) (>q G'((n: qi)). 

Furthermore, if H is normalized by SG(q) then H @q SG(a) if  and only if for some 
i >~ O, E(A, q;a) ~ H c G'(a: qi)). 

Proof. Theorem (6.22) will follow from Theorem (6.21), once it is established 
that the equivalence relation ~q restricted to subgroups of G(A) which are 
normalized by SG(q) is the same as the equivalence relation ~".  This is the 
assertion of Lemma (6.24) below. 

LEMMA (6.23). Suppose that A is quasi-finite and that n and q are two-sided ideals 
of A. Then [G(a), G(q)] c SG(aq + qa). 

Proof. One shows in a straightforward manner that [G(a), G(q)] c G(aq + qa). 
The result then follows f rom (3.6). 

LEMMA (6.24). Suppose A is commutative and 6(A) is finite. Then the equivalence 
relation ~q restricted to subgroups of G(A) normalized by SG(q) is the same as the 
equivalence relation ~q. 

Proof. Let H and K be subgroups of G(A) normalized by SG(q). It is clear that 
i H < q K  implies H <qK,  because D~(A.q)(H)cDsa(q)(H). Thus, it remains to 

show that H < q K implies H < q K. By Theorem (6.20), there are ideals a and b of 
A such that 

E(A, q~a) ~ H c G'((a: q~)) and E(A, q%) c K c G:((b: q~)). 

It suffices to show that G'((b: qi)) <q E(A, q~a). By Theorem (6.20), there is a 
natural number j such that c((b: q~) ~ qZa. It is enough to prove the following: If  a 
and b are ideals of A such that for some j, qJb c a, then G'(b) <qE(A, a). By 
induction on j, it suffices to show that G'(b) <q E(A, qb). 

Clearly, [SG(q),G'(b)] c SG(b). By the previous lemma, [SG(q),SG(b)] 
SG(qb) and by Theorem (6.13), ~+~(A) b Dsa(q ) (SG(q))  E(A, qb). 

Let G'(A, q) = ker(G(A) --> G(A/q)/center(G(A/q)). 

NILPOTENT SANDWICH CLASSIFICATION THEOREM (6.25). Let H be a 
subgroup of G(A). Then H is normalized by E(A) if and only if for a (unique) 
two-sided ideal q of A, Hil ts  into a sandwich E(A, q) c__ H ~_ G'(A, q). Furthermore, 
the canonical filtration H = H n G'(A, q) ~_ H n S -  1G(A, q) ~_ H n S~ q) ~_" �9 �9 
~_ H c~ E(A, q) = E(A, q) has the property that each quotient of consecutive members 
of the filtration is abelian and any subgroup of S~ which normalizes H, acts 
trivially on each of the quotients above via conjugation. 
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Proof. It is routine to reduce the proof of the sandwiching assertion to the case 
of finite algebras, where it follows from [16, Cor. 5, Lemma 8]. The assertions 
concerning the filtration follow from Theorem (6.13). 

COROLLARY (6.26). Let H be a subgroup of  G(A). 
(a) I f  6(R) is finite then H is normalized by E(A) if and only if for some (unique) 

two-sided ideal q of A, / ' ~ 6 ( R ) + 2 t / 4 ~  = E(A, q). L~ S G ( A  ) k.tJt l 

(b) I f  6(R) is finite then H is normalized by SG(A) if and only if for some (unique) 
two-sided ideal q of  A, there is a filtration 

H = Hc~G'(A, q) _ Hc~S-1G(A, q) ~_ H n S ~  q) 

~_ . �9 �9 ~_ H c~ S~(mG(A, q) = E(A, q) 

such that the action of  SG(A) on each quotient of  consecutive members of the filtration 
above is trivial. 

Proof. (a) follows straightforward from Theorems (6.13) and (6.25) and the fact, 
cf. [1, (3.17)], that if N is a subgroup of G(A) then [E(A), N] _~ G(q) if and only if 
N~_ G'(A, q). (In fact, one can show using Theorem (6.16) that the exponent 
6(R) + 2 in the corollary can be replaced by the exponent 2 + [6(R) + 2 - n].) 

(b) is an immediate consequence of (a). 

7. Connections to Noncommutative Homotopy Theory: Lower Bounds for the 
Nilpotent Class of K1 

Whereas the results of Section 4 establish upper bounds for the nilpotent class of 
S~ the current section concentrates on lower bounds for this class. The 
main goal is to provide families of commutative rings R of finite Bass-Serre 
dimension 6(R), such that one can compute a nontrivial lower bound to the 
nilpotent class of K1SLn(R):= SLn(R)/En(R). The lower bound will be obtained by 
exhibiting a topological space X and a canonical homomorphism KISLn(R)--. 
IX, SLy(F)], where F denotes the real or complex numbers and [X, SLn(F)] the 
group of homotopy classes of continuous maps from X to SLn(F), such that the 
nilpotent class of the image of this homomorphism has a computable lower bound. 
This bound shows that the groups SL,(R)/E~(R) can be nonabelian and is used to 
construct examples of nonnormal subgroups of SLn(R) which are normalized by 
E~(R). 

Let G denote an H-Group [12], e.g. a topological group, with a closed, nonde- 
generate base point [12] representing an identity element of G. Later, G will be 
specialized to SLn(F). 

DEFINITION (7.1). I f  for some nonnegative integer k and for all topological spaces 
X with a nondegenerate point [12] (e.g. X a CW-complex), the group IX, G] of 
homotopy classes of continuous maps from X to G has nilpotent class <<.k then by 
definition the global homotopical nilpotent class 7(G) of G is the smallest such k; 
otherwise, 7(G) = ~ .  
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Below, classical results of R. Bott, W. Browder, I. James and E. Thomas on the 
homotopy commutivity of compact, connected Lie groups will be used to show the 
following result. 

T H E O R E M  (7.2). Suppose G is a compact, connected Lie group. Then 

7(G) = if  G = a torus, 

1, otherwise. 

Before proving the theorem, I shall apply it to prove the results for K1SLn described 
in the first paragraph. 

Let A be any commutative topological ring containing the real numbers ~ with 
the usual topology. Let Mn(A) denote the ring of all n x n-matrices with coefficients 
in A with the product topology and give SLn(A) the subspace topology. 

LEMMA (7.3) En(A) is contained in the path component o f  the identity matrix in 

SL,(A). 
Proof. Let [0, 1] denote the real closed interval {t [ t ~ ~, 0 ~< t ~< 1}. If 

a l , .  �9 �9 ak ~ A then the function 

co: [0, 1] --* En(A), t ~ ei , j , ( tal)  . . . eikjk(tak) 

is a path from 1 to eilJl(al) . . .  eikik(ak). 

Let X be a topological space. If  F is a commutative topological ring containing 
~, let F ( X )  denote the ring of continuous functions f on X with values in F with 
the compact-open topology. Let (X, SL,(F))  denote the group of all continuous 
maps from X to SLn(F). There is a canonical isomorphism 

SLn(F(X)) ~ (X, SLy(F)), ((fj)~--~ (x ~ (f~j(x))) 

of topological groups and by Lemma (7.3) the kernel of the composite homomor- 

phism 

SLn(F(X)) ~ (X, SLn(F)) - -  [X, SLn(F)] 

contains the subgroup E , ( F ( X ) ) .  Thus, for any subring R ~ F ( X ) ,  there is a 
canonical homomorphism/s  ~ [X, SLn(F)]. 

Suppose now that F = ~ or C so that SL, (F)  is a compact, connected Lie group. 
By Theorem (7.2), 7(SLn(F)) > 1 providing n I> 3. Let k be a natural number such 
that 1 < k ~< 7(SL,(F)).  Choose X such that the nilpotent class of [X, SL,(F)] is ~>k 
and let ~l . . . . .  ~k be matrices in SL,(F(X))  such that the value of the (k - 1)-iter- 
ated commutator [~k, [~k-1 . . . .  , [~z, ~1] '"]]  in [X, SLy(F)] is not trivial. If  R 

denotes the subring of F ( X )  generated over F by the coefficients of ~1, �9 . . . .  ~k then 
clearly the image of the ( k -  1)-iterated commutator above in K~SL,(R) is not 
trivial and since R is finitely generated as an F-algebra by kn 2 elements, it follows 
that 3(R) ~< kn 2. Thus, we have shown: 
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COROLLARY ( 7 . 4 ) L e t  n and k be natural numbers such that n >>. 3 and 

1 < k ~< y(SLn(F)) (F = ~ or C). Then there are commutative rings R of  dimension 

6(R) <<. kn 2 such that the nilpotent class o f  K1SLn(R ) is >~k. 

CONJECTURE.  For a compact, connected Lie group G with finite fundamental 

group, y(G) is finite and y(G) ~ ~ as rank (G) ---r ~ .  

A reader, who is familiar with classical results on homotopy commutativity, will 
see quickly that Theorem (7.2) is a consequence of  a theorem of  I. James [6, (1.1)]. 
The proof  below is intended for the noninitiate and will recall some standard 
constructions and facts that are well known to experts. 

Suppose X has a nondegenerate point and let such a point be the base point of 
X. Let G be a connected H-group and let a homotopy identity element in G be the 
base point for G. There is a canonical homomorphism [X, G] .  ~ [X, G] where 
[X, G] .  denotes the group of equivalence classes under base point preserving 
homotopy of  base point preserving continuous maps X ~ G and [X, G] denotes as 
above the group of  equivalence classes under homotopy of continuous maps X ~ G. 
By a well known result, cf. [12, Chap. 7, Sec. 3, Theorem 5], the canonical 
homomorphism above is an isomorphism, because G is a connected H-space. This 

isomorphism will be used to identify the two groups above and for the rest of  this 
paper, it will be assumed that all continuous maps and homotopies are base point 
preserving. 

Let 00: G - G  denote the identity map e ~ ~ on G, let ~1: G x G ~ G  denote the 
commutator  map 

(g2, gl) ~ [g2, gl] = g2glg21g ,  1, 

and for any k > 0 let 

~Ok:~G • " "  • G)~ G denote the k-iterated commutator  map 
Y 

k + l  

( g k + l , - - . , g , )  ~ [gk+l, [ g k , - . . ,  [g2, g l ] . - . ] ] .  

Obviously, ~9 k (k ~> 0) is an element of the H-group ~G • �9 �9 �9 z Gt G) of all base 

k + l  

point preserving continuous maps ~G •  • G p  G where ~G •  • Gj has as base 
Y y 

k + l  k + l  

point the (k + 1)-tuple (e, . . . ,  e) where e is the base point of  G. An important 
observation is the following: If 

pi :~G •  G;-,G (1 ,.<i~<k+ l) 

denotes the projection map on the ith coordinate then each pi is a member of the 
H-group (G x . . . •  G,G)  and ffk is the k-iterated commutator  [Pk+~, 
[Pk, � 9  [P2, P~]" " "]]. If  for some k, ~k is homotopic to the constant map, let 7'(G) 
denote the smallest such k; otherwise, let 7'(G) = ~ .  
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LEMMA (7.5). Let G be a connected H-group with nondegenerate base point. Then 

y(G) = 7"(G). 
Proof. Trivially, 7(G) >~ 7'(G)- Conversely, if 7'(G) = 0, then the base point of G 

is a strong deformation retract of G. Thus, 7(G) = 0. Suppose 7'(G) is finite and 
>0. Let k = 7'(G). If fk+l  . . . . .  f l:  X--+G are base point preserving continuous 
maps, one must show that the k-iterated commutator map 

c: X ~ G, x ~ [fk+l(X), [ f k ( x ) , . . . ,  [f2(x),fl(x)] . . .  ]] 

is homotopic to the constant map. But c factors as a product ~0kf where 

f :  X ~ G  x " "  x Gj, x ~ ( f k + l ( X ) , . . .  , f l(x)).  
Y 

k + I  

Since Ok is homomotopic to the constant map, so is Ckf. Thus, ?(G) ~< 7'(G). 
Let k ~> 0. Let A ~ + I X  denote the (k + 1)-fold smash product of X. By defini- 

tion, A k+ 1X is the quotient of the (k + 1)-fold product 

Xx...xXj 
k 

Y 
k : + l  

obtained by identifying the subspace V k+~ x =  {(xk+ ~, x k , . . . ,  x~)[ at least one 
x; (1 <<.j <~ k + 1) is the base point of X} to a point. The map 

G x'"xGj~G 
/ k :  k Y 

k §  

restricted to V k § ~ G is homotopic to the constant map. Since the base point of G 
is closed and nondegenerate, it follows (cf. [12, Chap. 1, Exercise E7]) that Ck is 
homotopic to a map which induces naturally a map ~bk: A k + 1 G ~ G. If  for some 
k, q5 k is homotopic to the constant map, let 7"(G) denote the smallest such k; 
otherwise, let 7"(G) = ~ .  

LEMMA (7.6). Let G be a connected H-group with a nondegenerate, closed base 

point. Then (9 k is homotopic to the constant map if  and only i f  ~1 k is. In particular, 

"(G) = ~ ' ( a ) .  

Proof. This is an immediate consequence of the cofibre sequence [10]. 

Proof of  Theorem (7.2). By Lemmas (7.5) and (7.6), 7(G) = y"(G) and by I. James 
[6, (1.1)], ~"(G) is as in the assertion of Theorem (7.2). 

There is only one compact, simply connected Lie group G, namely S 3, whose 
y-class 7(G) is known. The result is given below and follows essentially from work 
of P. Hilton [5]. I am indebted to H. Baues for explaining to me Samelson and 
Whitehead products which play a role in the computation of 7($3). 

PROPOSITION (7.7). I f  S 3 denotes the real 3-sphere then y(S 3) = 3. 

The demonstration of Proposition (7.7) is made, as in the case of Theorem (7.2), 
with the nonexpert in mind. 
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Let X and Y be pointed, topological spaces. Let Z Y = S I/x Y denote the reduced 
suspension of Y and let f~ Y = ($1, y)  denote the loop space of Y. Z and f~ define 

functors from the category of point topological spaces to the category of pointed 

topological spaces. The exponential law, cf. [12], establishes a homeomorphism ex: 
(I~X, Z Y) ~ , (X, f~E Y) of H-groups such that for any diagram 

f ZX , ZY 

ZZ  

the diagram 
ex(f) 

X , ~ Z Y  

ex(gf)~ [ f~(g) 
f~ZZ 

commutes. In particular, 

(7.8) Any map G: X--*f~EY, G =ex(g),  factors as a product ~(g) ex(lxx) where 
f~(g) is an H-map (i.e. map of H-spaces), and 

(7.9) the diagram 
(x, exOxr)) 

(X, Y) , (X, f~Z Y) 

(ZX, ZY) 

commutes. 

Let H denote the quaternions with the usual norm. Thus, S 3 can be identified 
with the elements of norm 1 in H and the group operation on S 3 is given by 

multiplication in H. Let 

H E k + l = H  x ' - ' x H  k I 

with the usual norm and let HS k denote the elements of norm 1 in HE k+ 1. S 3 
operates on HS k by scalar multiplication and by definition, quaternionic projective 
space HP k is the orbit space of S 3 acting on HS k. The embedding 

~Ek+l% [H]E k+2, (al , . . . ,  ak+l)~--~ (al . . . . .  ak+l,  0), 

preserves scalar multiplication and induces embeddings 

HS k ~  HSk+l  and HP ~ HP k+~. 

Let 

HS ~ = l i m H S  k and HP ~ 1 7 6  k. 
T T 
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The action of  S 3 on HS  ~ is principal, its orbit  space is H P  ~ and the canonical  
map H S ~  H P  ~176 is locally trivial with fibre S 3, i.e. H S ~  H P  ~176 is a principal 
S3-bundle. Since HS ~176 is contractible, there is by a theorem of  Samelson [11, 
Theorem I], an H - m a p  s: S 3 ~ f ~ H P  ~~ which is a weak homotopy  equivalence (cf. 
[12]) and therefore, a homotopy  equivalence (cf. [9, Theorem (3, 3)]), since S 3 and 
~ H P  ~176 are CW-spaces. Fo r  any k-sphere S k, let z k �9 S k i S  k denote  the identity 
map. By the cellular approximat ion  theorem (cf. [12] or [9]), one can deform s to 
a map s': S 3 ---~ ~~S 4 =  f t H P  ~ ( c f t H P  ~176 and by (7.8), s '  factors as a product  

3 3 ex04) s" 
;, ~ '~S 4 ) ~ S  4 

for  some H - m a p  s". Thus, one obtains the following well known fact: 

L E M M A  (7.10). The H-map h =s  ~s": ~ ' ~ $ 4 - - - ~ S  3 is split (but not H-split [10]) by 
the map ex(t4): S 3---} ~ S  4 =  ~Y~S 3. 

Next,  the definitions of  Samelson and Whitehead products  are recalled. Let  X be 
a pointed topological  space and G an H-group�9  The k-iterated SameIson product 

s~. [x, a ]  • - - -  x IX, G]-~ [X A . . .  ^ X, a l  
k ) k ) 

Y 
k ~ l  k + l  

is defined by 

S k ( f k + l , . . .  , f l )  = {J~+l, [ J ~ , . - . ,  [ f2 , f l ]  "" "1] 

where 

fi = fiPi, Pi X • "'" • X--e X ) 

is the projection on the ith coordinate,  and [,  ] is the s tandard commuta to r  bracket,  

cf. Baues [4]. Sk depends on the bracketing, e.g. [J~, [ f2 , f l ] ]  is not  in general equal 

to [[f3,f2],fl], and if X is the suspension EX'  of  some space X '  then Sk is 
(k + 1)-multiplicative. Let Y be a pointed topological  space. The k-iterated White- 

head product 

Wk' [ZX,  Y] x . . . x [ Z X ,  Y ] ~ [ Z ( X A - ' ' A X ) ,  Y] 
k ) k _ _ ~ '  y- 

k + l  k ~ l  

is defined as the composi te  
ex 

S k 
[EX, Y] x . . .  x [EX, Y] _-_ [X, frY] x . . .  x [X, f t Y ] - - ~  [X/x - . .  /x X, f tY] 

ex 

[z(x ^ . - -  A x), Yl, 

cf. Baues [4]. As above, Wk depends on the bracketing and if X is a suspension then 
Wk is (k + 1)-multiplicative. 

Since the map ex(t4): S ) - - ~ S  4 is not  an H-map ,  the following result is a bit 

surprising. 
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L E M M A  (7.11). For k >~ 2, the diagram below is commutative 

Wk 
7"~4 ( S  4) X " ' "  X ' /g4(S 4) ;, TC(k_ b 1 ) 4 _ k ( S  k) 

7~3(S 3) X " ' "  X 7~3(8 3) , 7~(k + I ) 3 ( S  3) 
Sk 

and the suspension homomorphisms 2 are injective. 
Proof Let h: f~S4--*S 3 denote the H-map in Lemma (7.10) and consider the 

diagram 

Wk 
~ 4 ( S  4) x -"  �9 x 7~4(84)  ;' 7~(k + 1)4 - k ( S 4 )  

,' exl~ ~l  ox "-, 
I Sk 

4 \ Z  5" It ' / ~ 3 ( ~ 8  4) x �9 �9 �9 x 7 r 3 ( ~ 5  4) ) ~ ( k +  i)3(  ~'~S ) ]  

',, h* l lh* / /  
~" 713 ( S  3) x x 7/;3(8 3) sk " "  . . . , /I(k + 1 )3 (S  3) 

By (7.9) and (7.10), the homomorphism ex E splits h . .  Thus, E splits h.ex.  Thus, 
the suspension homomorphisms Z are injective. 

To complete the proof  of the lemma, it suffices in view of the commutativity of 
the solid arrows in the diagram above and the fact that E splits h , ex  to show that 
image(Wk) c image(E). Since Wk is (k + 1)-additive and rc4(S 4) is generated by t4, 
it suffices to show that Wk(t4 . . . . .  t4) e image(E). But, for k/> 2, this follows from 
[5, Corollaries (2.4) and (2.5)]. 

Proof of Proposition (7.7). By Lemmas (7.5) and (7.6), it suffices to show that 
y"(S 3) = 3. Thus it is enough to show that the homotopy class [r of Ck is trivial 
for k > 2 and nontrivial for k = 2. Clearly, [q~k] = Sk(t3 . . . . .  t3). By Lemma (7.17), 
the diagram below is commutative 

0 4  . . . . .  /4)  {"4" W k ( l  4 . . . . .  /4)  

I 
(13, ' " " ,  /3)  ~ S k ( 1 3 ,  �9 �9 - , /3)  = Eq~k] 

and Sk03 . . . . .  z3) = 0 if and only if W k ( l  4 . . . . .  /4) = O. But, by [5, Corollaries 
(2.4) and (2.5)], W k 0 4 , . . . ,  h) is trivial or not according to whether k > 2 or =2. 

C O R O L L A R Y  (7.12). ~)(SL4(~))/> 3. 
Proof Since SO4(N) is a deformation retract of SL,,(N), cf. [7, w it suffices to 

show that 7(SO4(R))~> 3. By well known results, the action of SO4(R) on S 3 
induces a semidirect decomposition SO4(N)=  $ 3 ~  SO3(N). Thus, 7(SO4(N))>~ 
7(S 3) and by Proposition (7.7), v(S 3) = 3. 

Remark. It is reasonable to hope that with some work, one can compute 
7(SO3 (R)) and then using the semidirect decomposition above, compute 7(SO4(R)). 
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This might give one sufficient insight to guess and then prove the value of 
7(SOn(~)) for arbitrary n. In a similar vein, using the observation that $3_~ Sp~, 
one might try by ad-hoc methods to compute y(SU3) (resp. 7(Sp2)) and then, 
assuming one has been successful, apply the experience gained to compute 7(SUn) 
(resp. ~(Spn)) for arbitrary n. 

The next corollary answers a question of H. Bass concerning the existence of 
nonnormal subgroups of GLn(A) which are normalized by E,(A). 

COROLLARY (7.13). There are commutative finitely generated Y_-algebras R such 
that SL4(R ) contains nonnormal subgroups normalized by En(R). 

Proof. Suppose for some R as above, there are elements 0-, p ~ SL4(R ) such that 
the order of a in/s SL4(R) is infinite and such that the commutator [p, a] does not 
vanish in K1SLa(R ). The subgroup H of SL4(R ) generated by ~r and Ea(R ) is 
normalized by E4(R), because E4(R) is normal in SLa(R ). I shall show that H is not 
normalized by p. Each element of H can be written as a product ~r ie for some i E 2~ 
and e ~ E4(R). If H were normalized by p then [p, 0-] =-o-;mod Ea(R) for some 
i ~ 0. Thus, for any k >~ 1, the k-iterated commutator [p, [p . . . .  , [p, a]- - -] 
o-kimodEa(R). But, since the Bass-Serre dimension 6(R) is finite, K~SL~(R) is 
nilpotent by Theorem (4.1) and thus, for some k ~> 1, o-ki- = 1 modEa(R). This 
contradicts the fact that o- has infinite order in K1 SLa(R). 

Next, I shall construct R, a, and p satisfying the assumptions above. Let o-" and 
p": S 3 • S 3 • $ 3 ~  S 3 denote the projections on the third and second coordinates, 
respectively, and let o-' and p'  denote the composition of o-" and p", respectively, 
with the canonical map $3~SO4(~)  given by the semidirect decomposition 
SO4(~) = S 3 ~< SO3(~). The proof of Proposition (7.7) shows that the commutator 
[p t  at] ~ [S 3 • S 3 )< S 3, 5 0 4 ( ~ )  ] is nontrival (in fact, if z': S 3 x S 3 • $3 ---). 504(  ~) 

denotes the composite of projection on the first coordinate followed by the 
canonical map 53 ---)- 504(  ~) then the proof of Proposition (7.7) shows that 
[z', [p', a']] is still nontrivial). Furthermore, a '  has infinite order in [S 3 • S 3 • S 3, 
8 0 4 ( ~ ) ]  , because the canonical map S3----~53MS3• 3, x F---+(I, i , x ) ,  and the 
canonical map S O 4 ( N ) ~ S  3 induce a homomorphism [S3x $3•  S 3, SO4(R)]~ 
[S 3, S 3] which takes ~r' ~--~ ls3 and it is well known that [S 3, S 3] = rc3(S 3) is iso- 
morphic to 7/ with generator ls3. Using the fact that SO4(N) is a deformation 
retract of SL4(N) [7, w identify [S 3 x S 3 x S 3, SO4(~)] ~ [S 3 • S 3 x S 3, SL4(N)] 
and identify the elements 0-' and p'  with their images in [S3x S3x  S 3, SL4(N)]. 
Consider now the canonical surjective homomorphism 

KISL4(~(S 3 • S 3 • $3)) ---~ [S 3 • S 3 • S 3, SL4(~)] , 

described prior to (7.4). Let o- and p be preimages, respectively, of 0-' and p'. If  R 
denotes the subring of ~(S 3 • S 3 • S 3) generated by the coefficients of a and p then 
it is cle~tr that R, 0-, and p satisfy the assumptions in the first paragraph of the 
proof. 
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