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NORMAL INVARIANTS OF MANIFOLD PAIRS

AND ASSEMBLY MAPS

A. Bak, Yu. V. Muranov

Abstract. This article constructs the structure set of a manifold pair, describes
its normal invariants, and develops exact sequences and braids of exact sequences
comparing the structure set and its normal invariants to those of the manifold and
the submanifold.

1. Introduction.

Let Xn be a connected closed n-dimensional topological manifold with funda-
mental group π1 = π1(X) and orientation character w : π1 → {±1}. A funda-
mental problem of geometric topology is to describe all possible connected closed
n-dimensional topological manifolds which are homotopy (simple homotopy) equiv-
alent to X .

Let h : M → X be an orientation preserving simple homotopy equivalence, where
M is a connected closed n-manifold in the category TOP of topological manifolds.
Two such maps fi : Mi → X(i = 1, 2) are said to be equivalent if there is an
s-cobordism W between them together with a map from W to X extending the
maps fi(i = 1, 2) on the boundary [11, page 542]. The set of equivalence classes
forms the structure set Ss

n(X) and fits into the surgery exact sequence (see, for
example, [10, page 278] and [11, page 559])

· · · → [ΣX, G/TOP ]
σn+1

→ Ln+1(π1) → Ss
n(X) → [X, G/TOP ]

σn→ Ln(π1).

The elements of the set [X, G/TOP ] are called normal invariants. To describe
the set Ss

n(X) we must know the set of normal invariants, the surgery obstruction
groups Ln(π1) = Ls

n(π1), and the assembly map σ. There has been much progress
computing L-groups (see [1], [2], [4], and [15]) and there are many results concerning
normal invariants and assembly maps (see, for example, [3], [12], and [14]), but still
the description obtained of Ss

n(X) is in general unsatisfactory. One significant
reason for this is the difficulty of analyzing assembly maps. The goal of this paper
is to obtain information about assembly maps by examining their relationship to
submanifolds of X .
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Let Y ⊂ X be a submanifold of codimension q in X . A homotopy equivalence
f : M → X splits along the submanifold Y if by definition it is homotopy equivalent
to a map g transversal to Y , such that for N = g−1(Y ) the restrictions

g|N : N → Y, g|(M\N) : M \ N → X \ Y

are simple homotopy equivalences. By definition (see [14, page118]) M\N (similarly
X \Y ) is the closure of the complement of a tubular neighborhood of N . According
to [11, 7.2] there exists a group LSn−q(F ) of obstructions to splitting which depends
only on n − q mod 4 and a pushout square

F =





π1(∂U) → π1(X \ Y )
↓ ↓

π1(U) → π1(X)



 (1)

of fundamental groups with orientations, where ∂U is the boundary of a tubular
neighborhood U of Y in X . If f : M → X is a normal map then by [11, 7.2] there
exists a group LPn−q(F ) of obstructions to surgery on pairs of manifolds (X, Y )
which depends as well only on n − q mod 4 and the square F . The groups LS∗(F )
and LP∗(F ) are closely related to the surgery obstruction groups L∗(π1(X)) and
L∗(π1(Y )), and are related to the classical surgery exact sequence by the commu-
tative diagram

· · · → Ss
n(X) → [X, G/TOP ]

σ
→ Ln(π1(X))

↓ ↓ vξ ↓=

· · · → LSn−q(F ) → LPn−q(F )
p0
→ Ln(π1(X)) →

↓= ↓p1
↓

· · · → LSn−q(F ) → Ln−q(π1(Y )) → Ln(π1(X \ Y ) → π1(X)) →,

(2)

in which all rows are exact [11, 7.2] and [14, page 136].
The maps pi in the diagram are the forgetful maps and the map vξ is defined in

a natural way such that the composition p0vξ is the assembly map σ in the classical
surgery exact sequence. It is necessary to remark that the map p1vξ in diagram
(2) has the natural geometrical description. Each normal map h ∈ [X, G/TOP ]
gives by restriction to the submanifold Y a normal map from [Y, G/TOP ]. The
obstruction to surgery of the restricted map is exactly p1vξ(h) ∈ Ln−q(π1(Y )).

In [11, page 571] Ranicki introduced a set Sn(X, Y, ξ) of s-triangulations of a pair
of manifolds (X, Y ), where ξ denotes the normal bundle of Y in X . This set consists
of concordance classes of Y -split maps f : (M, N) → (X, Y ) where N = f−1(Y )
and fits into an exact sequence

· · · → Sn(X, Y, ξ) → [X, G/TOP ]
vξ
→ LPn−q(F ) → . . . (3)

This sequence extends to the right and to the left and the set Sn(X, Y, ξ) has a
group structure. In [11, Proposition 7.2.6] there is a description of properties of
the groups Sn(X, Y, ξ), including an exact sequence which is compared with the
surgery exact sequences for the manifolds X and Y .

In the current paper, we introduce the structure set NS∗(X, Y ) and show that
it fits into an exact sequence

· · · → Ln−q+1(π1(Y )) → NSn(X, Y ) → [X, G/TOP ]
p1vξ
→ Ln−q(π1(Y )), (4)
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where, as usual, exactness at Ln−q+1(π1(Y )) and NSn(X, Y ) is defined in terms of
the group action Ln−q+1(π1(Y )) on NSn(X, Y ). This is Theorem 1 of the paper.
The definition of NS∗(X, Y ) is a natural straightforward extension of mixed type
of structure [14, p. 116] for a manifold with the boundary, in which Y plays the
role of ∂X .

Letting L• denote the 1-connected cover of the algebraic L-theory spectrum of a
point and letting L(π1(Y )) denote the algebraic L-theory spectrum of the manifold
Y (see [3, page 28], [10], and [11, page 544]), we construct a map Ωq(X+ ∧ L•) →
L(π1(Y )) of spectra, identify the homotopy group πn−q(F) of its fiber F with the
structure sets NSn(X, Y ), and show that there is an isomorphism

→ πn−q+1L(π1(Y )) → πn−q(F) → πn−q(Ω
q(X+ ∧ L•)) → πn−qL(π1(Y ))

↓= ↓∼= ↓∼= ↓=
→ Ln−q+1(π1(Y ))) → NSn(X, Y ) → [X, G/TOP ] → Ln−q(π1(Y ))

of the long exact sequence of homotopy groups of the map Ωq(X+∧L•) → L(π1(Y )),
beginning at level n − q, with the exact sequence (4) above. This is Theorem 2 of
the paper. As a trivial consequence of the theorem, one obtains that NSn(X, Y )
has a group structure making (4) an exact sequence of groups. Five other theorems
are developed which provide exact rectangular and braid diagrams of homotopy
groups of spectra, relating in various ways all of the groups introduced above.

The rest of the paper is organized as follows. In section 2, we recall general
constructions and properties of algebraic L-theory spectra relating a manifold with
a submanifold. In section 3, we prove Theorem 1 and Theorem 2 and in section 4,
we provide our exact diagrams relating the groups introduced above.

2. Spectra and L-groups.

Let R be a ring with involution. According to [6, §7] and [14, page 253], there
exists an Ω-spectrum L(R) = {L−k(R) : k ∈ Z} such that Lm+1(R) ≃ ΩLm(R)
and Ln(R) = πn(L(R)) = πn(L0(R)). For every morphism i : R → T of rings with
involution, there exists a cofibration of spectra

· · · → L(R) → L(T ) → L(R → T ) → · · · (5)

whose homotopy long exact sequence is the relative exact sequence of L-groups of
the map i [6, §7]:

· · · → Ln(R) → Ln(T ) → Ln(R → T ) → . . .
|| || ||

→ πn(L(R)) → πn(L(T )) → πn(L(R → T )) → . . .

If π denotes a group equipped with a homomorphism w : π → {±1}, usually called
the orientation homomorphism, and if Zπ denotes the integral group ring supplied
with the involution defined by the rule

Σagg 7→ Σagw(g)g−1, ag ∈ Z, g ∈ π

then it is customary to denote the spectrum L(Zπ) by L(π). If it necessary to
make the orientation homomorphism w explicit then we shall write L(π, w) instead
of L(π).
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Let
(Dq, Sq−1) → (U, ∂U)

p
→ Y

denote a disk bundle over a closed manifold Y . Since the transfer map of L-groups is
defined on the spectra level (see [6, §7] and [14, page 253]), we have the commutative
diagram

L(π1(Y ))
p♯

→ ΩqL(π1(∂U) → π1(U))
ց ↓ δ

Ωq−1L(π1(∂U)),

(6)

where δ is the connecting map in the cofibration sequence (5) of spectra for the
natural map of fundamental groups π1(∂U) → π1(U).

Now let Y ⊂ X be a codimension q submanifold of a connected closed manifold
X . A tubular neighborhood U of Y in X with boundary ∂U is a disk bundle over
the submanifold Y , and the square F in (1) of fundamental groups is defined. There
is a homotopy commutative diagram of spectra

L(π1(Y ))
p♯

→ ΩqL(π1(∂U) → π1(U))
α
→ ΩqL(π1(X \ Y ) → π1(X))

ց ↓ δ ↓ δ1

Ωq−1L(π1(∂U))
β
→ Ωq−1L(π1(X \ Y )),

(7)

where the left triangle is that in (6) and the horizontal maps of the right hand
square are induced by the horizontal maps of F .

We define the spectrum

LS(F ) = homotopy cofiber
[

Ω(αp♯) : ΩL(π1(Y )) → Ωq+1L(π1(X \ Y ) → π1(X))
]

where α and p♯ are as in (7). We define the spectrum

LP(F ) = homotopy cofiber
[

Ω(βδp♯) : ΩL(π1(Y )) → ΩqL(π1(X \ Y ))
]

where β, δ, and p♯ are as in (7). (See [5], [8], and [9] for the special case of
submanifolds).

Recall that in the homotopy category of spectra the concepts pullback and
pushout squares are equivalent. A homotopy commutative square of spectra is
a pullback iff the fibres (and hence cofibres) of any two parallel maps are naturally
homotopy equivalent.

Proposition 1. The homotopy commutativity of (7) induces up to homotopy a
map LS(F ) → LP(F ) of spectra such that the diagram

ΩL(π1(Y )) −−−−→ Ωq+1L(π1(X \ Y ) → π1(X)) −−−−→ LS(F )

=





y





y





y

ΩL(π1(Y )) −−−−→ ΩqL(π1(X \ Y )) −−−−→ LP(F )

of spectra is homotopy commutative, the horizontal rows are cofibrations and the
right square is pushout. Moreover if LSn(F ) and LPn(F ) denote respectively the
surgery obstruction groups to splitting and to surgery on on (X, Y ), defined by
Ranicki in [11, 7.2] then there are isomorphisms

πn(LS(F )) ∼= LSn(F ), πn(LP(F )) ∼= LPn(F )
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which are functorial in F .

Proof. The assertions for the diagram are routine (cf. [13]). The isomorphisms for
the obstruction groups follow from the five-lemma and the definition of the LS∗

and LP∗ groups. �

Remark. Let C = π1(X \ Y ) and D = π1(X). Then the homotopy long exact
sequences of the maps in the pushout square of Proposition 1 fit together to form
a braid of exact sequences

Ln+q(C) → Ln+q(D)
Θ
−→ LSn−1(F )

ր ց ր ց ր
Ln+q+1(C → D) LPn(F ) Ln+q(C → D)

ց ր ց ր ց
LSn(F ) → Ln(B) −→ Ln+q−1(C)

(8)

due to Wall [14, page 264].

3. Surgery exact sequence of a manifold pair.

Let L• denote the 1-connected cover of the surgery Ω-spectrum L(Z) such that
L•0 ≃ G/TOP . For any topological space X such that π1(X) = π, there exists an
algebraic surgery exact sequence (see [10, page 278], [11, page 559], and [14, page
116])

· · · → Lm+1(π) → Sm+1(X) → Hm(X ;L•) → Lm(π) → · · · (9)

By definition, (9) is the homotopy long exact sequence of the cofibration

X+ ∧ L• → L(π).

of spectra with homotopy fiber S(X) where

Sm+1(X) = πm(S(X))
Hm(X ;L•) = πm(X+ ∧ L•)

Lm(π) = πm(L(π)).

If X is a closed n-dimensional topological manifold then the exact sequence (9)
corresponds for m ≥ n to the surgery exact sequence, because Hn(X ;L•) =
[X, G/TOP ] and Sn+1(X) = Ss

n(X).

Let Y n−q ⊂ Xn be a submanifold of codimension q of the n-dimensional topo-
logical manifold X . Then the square F in (1) of fundamental groups is defined.
From diagram (2) and the algebraic surgery exact sequence (9) (see [14, page 136])
we obtain the commutative diagram

· · · → Sm+1(X) → Hm(X ;L•) → Lm(π1(X)) → · · ·
↓ ↓ ↓

· · · → LSm−q(F ) → Lm−q(π1(Y )) → Lm(π1(X \ Y ) → π1(X)) → · · ·
(10)
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Proposition 2. There is a homotopy commutative square

Ωq(X+ ∧ L•)
A
→ ΩqL(π1(X))

↓ ↓
L(π1(Y )) → ΩqL(π1(X \ Y ) → π1(X))

(11)

of spectra such that the commutative diagram in (10) is that obtained by canonically
mapping the homotopy long exact sequence of the top map in (11) to that of the
bottom map in (11).

Proof. Let U be a tubular neighborhood with the boundary ∂U of the submanifold
Y and let Z = X \ Y . Define the commutative diagram

Hm−q(Y ;L•) → Lm−q(π1(Y ))
↓ ↓

Hm(U, ∂U ;L•) → Lm(π1(∂U) → π1(U))
↓ ↓

Hm(X, Z;L•) → Lm(π1(X \ Y ) → π1(X))

(12)

such that the horizontal maps correspond to assembly maps, the top vertical maps
are transfer maps (see [11, page 579]), and the bottom vertical maps are the canon-
ical ones. The square F induces the homotopy commutative diagram of spectra
[13]

∂U+ ∧ L• → Z+ ∧ L•

↓ i ↓ j

U+ ∧ L• → X+ ∧ L•

↓ ↓
Cof i

r
→ Cof j,

(13)

whose vertical columns are cofibrations. For all m, we have the commutative dia-
gram

πm(Cof i)
πm(r)
→
∼=

πm(Cof j)

|| ||
Hm(U, ∂U ;L•) → Hm(X, Z;L•)

(13′)

where the equalities are given by the definition of Hm( ; ) and the bottom hori-
zontal map is an isomorphism by excision. Hence the map πm(r) is an isomorphism
and the map r is a weak homotopy equivalence. Now it follows from [11] that r is
a homotopy equivalence. By [11, page 579], the upper square of diagram (12) is
realized on the spectra level by the homotopy commutative diagram of spectra

Y+ ∧ L•→ L(π1(Y ))

∼↓ s ↓

ΩqCof i→ΩqL(π1(∂U) → π1(U)),

(14)

in which the left vertical map is a weak homotopy equivalence [11, page 579] and
hence by [13] a homotopy equivalence. Because of the naturality of the assem-
bly map, the lower square of diagram (12) is realized on the spectra level by the
homotopy commutative diagram of spectra

Cof i → L(π1(∂U) → (π1(U))
∼↓ ↓
Cof j → L(π1(X \ Y ) → π1(X))

(14′)
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and by (13′), the left vertical map is a homotopy equivalence. From diagrams (14)
and (14′), we obtain a homotopy commutative diagram

Y+ ∧ L• → L(π1(Y ))
∼↓ ↓

ΩqCof j → ΩqL(π1(X \ Y ) → π1(X)),
(15)

in which the left vertical map is a homotopy equivalence. Because of the naturality
of the assembly map, there is a homotopy commutative diagram of spectra

ΩqX+ ∧ L• → ΩqL(π1(X))
↓ ↓

ΩqCof j → ΩqL(π1(X \ Y ) → π1(X)).
(16)

By (15), the bottom horizontal map factors up to homotopy through L(π1(Y )).
This establishes the proposition. �

Recall the definition of a normal map into a closed topological manifold X [11, p.
604]. Suppose X has dimension n. Then a topological normal map (f, b) : M → X
consists of the following.

i) an n-dimensional manifold M with a normal topological block bundle

νM = νM⊂Sn+k : M → BTOP (k),

ρM : Sn+k → Sn+k/Sn+k − E(νM ) = T (νM )

ii) an n-dimensional manifold X with a topological block bundle

νX : X → BTOP (k),

ρX : Sn+k → T (νX)

iii) a degree one map f : M → X
iv) a map of topological block bundles b : νM → νX covering f , such that

T (b)∗(ρM ) = ρX ∈ πn+k(T (νX)).

The topological normal structure set of the manifold X is the set of concordance
classes of normal maps (f, b) : M → X . For n ≥ 5 this set coincides with the set
[X, G/TOP ] (see [11, pp. 553–559]).

Let f : M → X be a normal map which is transversal to a submanifold Y . Let
N = f−1(Y ). Suppose that the restriction f |N : N → Y is a simple homotopy
equivalence. Two such normal maps fi : Mi → X (i = 1, 2) with Ni = f−1

i (Y ) will
be considered equivalent if there exists a normal cobordism F : W → X with the
following properties.

i) ∂W = M1 ∪ M2 and F |Mi
= fi (i = 1, 2).

ii) F is transversal to Y with F−1(Y ) = V and ∂V = N1 ∪ N2.
iii) the restriction F |V is an s-cobordism between F |Ni

= fi (i = 1, 2).
Denote the equivalence classes of such maps by NSn(X, Y ) where n = dimX .

The set NSn(X, Y ) has a base point which is given by a representative f :
(M, N) → (X, Y ), where f |M : M → X is a homeomorphism.
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There exists a natural map

φ : NSn(X, Y ) → [X, G/TOP ].

defined by composition of the forgetful map

NSn(X, Y ) → T TOP (X)

with the map T TOP → [X, G/TOP ], where T TOP (X) is the set of concordance
classes of t-triangulations (f, b) : M → X (see [11, pages 553–555]).

We define a map (action)

λ : Ln−q+1(π1(Y )) → NSn(X, Y )

in the following way. Let f : (M, N) → (X, Y ) represent some class a ∈ NSn(X, Y ).
For any element x ∈ Ln−q+1(π1(Y )), there is an action of x on the restriction
f |N : N → Y such that if f1 = x(f |N ) : N1 → Y is the result of this action then f1

is a simple homotopy equivalence (see [12, page 196], [14; 5.6, 6.5, and §10 ]).
The construction of this action in [14] produces a normal map of manifolds with

boundaries G : V → Y × I with ∂V = N ∪ N1, G|N = f |N : N → Y × {0}, and
G|N1

= f1 : N1 → Y × {1}. The surgery obstruction for the map G relative to
boundary ∂V is x ∈ Ln−q+1(π1(Y )).

Let Eξ be a tubular neighborhood of the submanifold Y in X and ∂Eξ its
boundary. The map f is transversal to the submanifold Y and F |N : N → Y is a
simple homotopy equivalence. Hence f |N induces a simple homotopy equivalence
of tubular neighborhoods and their boundaries. We denote the equivalence by

g0 = f
∣

∣

(Eν ,∂Eν) : (Eν , ∂Eν) → (Eξ, ∂Eξ)

(see for example [14, p. 8] and [11, p. 579]) where Eν is a tubular neighborhood of
the submanifold N in M and ∂Eν its boundary. The transfer map p♯ of spectra in
diagram (6) induces a transfer map of L-groups

p! : Ln−q+1(π1(Y )) → Ln+1(π1(∂Eξ) → π1(Eξ)).

and a transfer map
p♭ : Sn−q(Y ) → Sn(Eξ, ∂Eξ)

of structure sets.
The geometrical definition of the map p!(x) (see [11, pp. 562–565] and [14, 133])

gives a normal map of manifolds with boundaries H : Ω → (Eξ, ∂Eξ)× I such that
H is transversal to Y × I, H−1(Y × I) = V , and H |V = G. The restriction of the
map H to the bottom boundary is g0 = f

∣

∣

(Eν ,∂Eν) . The restriction of H to the
top boundary is a simple homotopy equivalence of pairs

g1 : (Eη, ∂Eη) → (Eξ, ∂Eξ)

which is by definition the result of the action of p!(x) on the simple homotopy
equivalence (f

∣

∣

(Eν ,∂Eν) ). The restriction g1|N1
is f1. In particular, the element

p♭(f1 : N1 → Y ) ∈ Sn(Eξ, ∂Eξ)
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is represented by a simple homotopy equivalence of pairs

g1 : (Eη, ∂Eη) → (Eξ, ∂Eξ)

which is transversal to the submanifold Y with g−1
1 (Y ) = N1. The cobordism Ω and

the map f : M → X are extended to a normal cobordism F : W → X with ∂W =
M ∪ M1 [7, page 45]. The restriction F |M1

defines an element x(a) ∈ NSn(X, Y ).
Note that for x 6= 1 the map F does not define an equivalence between f = F |M
and F |M1

, in the sense above, because V is not an s-cobordism.

Lemma 1. The definition of λ is well defined and is an action of the group
Ln−q+1(π1(Y )) on the set NSn(X, Y ).

Proof. Let G′ : V ′ → Y denote another normal cobordism constructed as above
such that ∂V ′ = N ∪ N ′

1, G′|N = f |N , and G′|N ′
1

= f ′
1. Let F ′ : W ′ → X denote

a normal cobordism extending G′ and f : M → X such that ∂W = M ∪ M ′
1

[7, page 45]. The restriction F |M ′
1

is another representative of the element x(a) ∈
NSn(X, Y ). We shall prove that the representatives F |M1

and F ′|M ′
1

are equivalent
in NSn(X, Y ). From [14, 10.4], it follows that there is a normal cobordism map
Ψ : Λ → Y whose bottom is f |N × I : N × I → Y , whose left side is G : V → Y ,
whose right side is G′ : V ′ → Y , and whose top is a normal s-cobordism from
G|N1

: N1 → Y to G′|N ′
1

: N ′
1 → Y . Let W ∪τ M × I ∪τ ′ W ′ denote the space got

from the obvious attaching maps τ : M × {0} → W and τ ′ : M × {1} → W ′. Let

H = F ∪ (f × I) ∪ F ′ : W ∪τ M × I ∪τ ′ W ′ → X.

Let
ρ : V ∪τ |N×{0}

N × I ∪τ ′|N×{1}
W ′ → W ∪τ M × I ∪τ ′ W ′

denote the canonical embedding and use ρ to attach Λ to W ∪τ M × I ∪τ ′ W ′ to
get the space

Λ̃ := Λ ∪ρ (W ∪τ M × I ∪τ ′ W ′)

and a map
Ψ ∪ρ (H) : Λ̃ → X.

By [7, p. 45] we can extend Ψ ∪ρ (H) to a normal cobordism Θ : Ω → X whose
bottom is f × I : M × I → X and whose top is an equivalence in the sense defined
above between f1 : M1 → X and f ′

1 : M ′
1 → X . Using the same line of argument

as in the definition of the map λ we can arrange that the restriction of the map Θ
on the top boundary is transversal to the submanifold Y . The proof that we have
a group action follows routinely from the fact that the action of Ln−q+1(π1(Y )) on
Sn−q(Y ) is a group action [14, §10]. �

There exists a natural geometric map

α1 : [X × D1, X × S0; G/TOP, ∗] → Ln−q+1(π1(Y ))

got by composing the restriction map

[X × D1, X × S0; G/TOP, ∗] → [Y × D1, Y × S0; G/TOP, ∗]

with the map

[Y × D1, Y × S0; G/TOP, ∗] → Ln−q+1(π1(Y )).

Similarly, one has a natural geometric map α : [X ; G/TOP ] → Ln−q+1(π1(Y )).
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Theorem 1. The sequence

· · · → [X × D1, X × S0; G/TOP, ∗]
α1→ Ln−q+1(π1(Y )) →

λ
→ NSn(X, Y )

φ
→ [X, G/TOP ]

α
→ Ln−q(π1(Y ))

(17)

is exact.

Proof. Exactness at [X, G/TOP ]. There is a natural map NSn(X, Y ) → Sn−q(Y )
got by restricting to Y . The diagram

NSn(X, Y )
φ

−→ [X, G/TOP ]
↓ ↓ ցα

Sn−q(Y ) −→ [Y, G/TOP ]
σ
−→ Ln−q(π1(Y ))

commutes and the bottom row is exact by [11, Proposition 7.1.4]. Thus αφ = 0.
Let f : M → X denote a normal map defining a class in [X, G/TOP ] such that
α(f) = 0. Then σ(f |N ) = 0 and so f |N is normal cobordant, say by G : V → Y , to
a normal map g : N1 → Y which is a simple homotopy equivalence. By [7, p. 45]
we can extend f ∪ G : M ∪ V → X by a normal cobordism F : W → X such that
F |N1

= g is a simple homotopy equivalence. Using the same line of argument as in
the definition of the map λ we can arrange that the restriction of the map F |M1

on the top boundary is transversal to the submanifold Y . By definition the class
F |M1

lies in the image of φ.
Exactness at NS(X, Y ). If x ∈ Ln−q+1(π1(Y )) and f : (M, N) → (X, Y )

represents an element of NS(X, Y ) then the normal map x(f) is by definition
normal cobordant to f and so f and x(f) have the same image in [X, G/TOP ].
This shows by definition that φλ = 0. Let

fi : (Mi, Ni) → (X, Y ) (i = 1, 2)

denote normal maps representing elements of NSn(X, Y ). If the fi’s represent the
same element of [X, G/TOP ] then there is by definition a normal cobordism F ′ :
W ′ → X from f1 to f2. Since f1|N1

and f2|N2
are obviously the same in [Y, G/TOP ],

there is by [14, §10] an element x ∈ Ln−q+1(π1(Y )) such that x(f1|N1
) is normal

s-cobordant to f2|N2
. Let F : W → X be the normal cobordism constructed in

the definition of x(f1). We want to show x(f1) is equivalent, in the sense defined
prior to Lemma 1, to f2. Let Ψ : Λ → Y be the normal cobordism corresponding
to the picture given by [14, §10]. This corresponds to the normal cobordism Ψ :
Λ → Y in the proof of Lemma 1. Now as in the proof of this lemma, there is a
normal cobordism Θ : Ω → X extending Ψ. The top of this cobordism is a normal
cobordism J from x(f1) to f2 such that J |J−1(Y ) is a normal s-cobordism from
x(f1|N1

) to f2|N2
. As in the definition of the map λ we can arrange that the map

J is transversal to the submanifold Y .
Exactness at Ln−q+1(π1(Y )). Let x ∈ image(α1) and let f : (M, N) → (X, Y )

represent an element of NSn(X, Y ). Let G denote the normal cobordism in the
definition of x(f). By definition, the bottom map in G is f |N and the top x(f)|N1

.
Since the diagram

[X × D1, X × S0; G/TOP ]
↓ ցα1

[Y × D1, Y × S0; G/TOP ]
σ
−→ Ln−q+1(π1(Y )) −→ Sn−q(Y )
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commutes and the bottom row is exact by [11, Proposition 7.1.4] and [14, Proposi-
tion 10.8], it follows that G is an s-cobordism by [14, Proposition 10.4]. Thus the
cobordism F in the definition of x(f) is an equivalence, in the sense defined prior
to Lemma 1, between f and x(f). Let x ∈ Ln−q+1(π1(Y )) and f ∈ NSn(X, Y )
such that f is equivalent to x(f). Let F : (W, V ) → (X, Y ) × I denote the normal
map constructed in the definition of the action of x on f : (M, N) → (X, Y ) and let
f1 : (M1, N1) → (X, Y ) denote the top map of F . Let G : V → Y ×I denote the re-
striction of F to F−1(Y ). Let F ′ : (W ′, V ′) → (X, Y )×I denote a normal map defin-
ing an equivalence from x(f) to f . Here the bottom map is f1 : (M1, N1) → (X, Y )
and the top map f : (M, N) → (X, Y ). Let G′ : V ′ → Y × I denote the restriction
of F ′ to (F ′)−1(Y ). By definition (F ′)−1(Y ) = V ′ is an s-cobordism. We iden-
tify the top boundary of W with the bottom boundary of W ′ and obtain a new
normal map H : (Ω, Λ) → (X, Y ) × I whose bottom and top maps coincide with
f : (M, N) → (X, Y ). Hence the normal map H lies in [X×D1, Y ×S0; G/TOP, ∗].
The normal map H |Λ : Λ → Y × I is evidently the union of the normal maps given
by G and G′ and has the element x ∈ Ln−q+1(π1(Y )) as obstruction to surgery rel-
ative boundary, because of the additivity of surgery obstructions. Thus α1(H) = x.
�

Let F denote the homotopy fiber of the map

Ωq(X+ ∧ L•) → L(π1(Y ))

in square (11). Let NS(X, Y ) denote the q’th delooping of F and identify F =
ΩqNS(X, Y ). Let

NSm(X, Y ) = πm(NS(X, Y )),

and let
· · · → NSm(X, Y ) → Hm(X ;L•) → Lm−q(π1(Y )) → · · · (18)

denote the long homotopy exact sequence of

Ωq(X+ ∧ L•) → L(π1(Y )).

Theorem 2. Use the group homomorphism

Ln−q+1(π1(Y )) → NSn(X, Y )

in (18) to give NSn(X, Y ) a left action by multiplication of Ln−q+1(π1(Y )). We
assert that there is an isomorphism

NSn(X, Y ) → NSn(X, Y )

of Ln−q+1(π1(Y ))-actions making the diagram

· · · → Ln−q+1(π1(Y )) → NSn(X, Y ) → Hn(X ;L•) → Ln−q(π1(Y ))
↓= ↓∼= ↓∼= ↓=

→ Ln−q+1(π1(Y )) → NSn(X, Y ) → [X, G/TOP ] → Ln−q(π1(Y ))

commute. In particular there is a group structure on NSn(X, Y ) making (17) an
exact sequence of groups.
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Proof. By [14, pp. 116-117, 136] and [11, §7.2] there are commutative squares

Hn+1(X ;L•) → Ln−q+1(π1(Y ))
↓∼= ↓=

[X × D1, X × S0; G/TOP ] → Ln−q+1(π1(Y ))

and
Hn(X ;L•) → Ln−q(π1(Y ))

↓∼= ↓=
[X ; G/TOP ] → Ln−q(π1(Y )).

It is now an elementary exercise using the above and exact sequences in (18) and
(17) to construct the desired isomorphism of Ln−q+1(π1(Y ))-actions. The final
assertion of the theorem is trivial. �

4. Algebraic properties of the groups NSn(X, Y ).

Define the spectrum ΩqS(X, Y, ξ) as the homotopy fiber of the natural map

ΩqS(X) → LS(F ).

Since S(X) has been defined as the homotopy fiber of X+ ∧ L• → L(π1(X)), it
follows that ΩqS(X) is the fiber of the top map in the square (11). The spectrum
LS(F ) is the homotopy fiber of the bottom map in the square in (11) by [13, §8.32].
We obtain a cofibration sequence

ΩqS(X, Y, ξ) → ΩqS(X) → LS(F ).

By [11, §7] we have an isomorphism

πm(S(X, Y, ξ)) = Sm+1(X, Y, ξ),

and the groups Sm(X, Y, ξ) fit into an exact sequence [11, Proposition 7.2.6]

· · · → Sm+q+1(X, Y, ξ) → Sm+q+1(X) → LSm(F ) → · · · (19)

We can extend by [13, §8.31] and [8, Lemma 1] the homotopy commutative square
in (11) to a biinfinite homotopy commutative diagram of spectra

...
...

...




y





y





y

· · · −−−−→ ΩqS(X, Y, ξ) −−−−→ ΩqNS(X, Y ) −−−−→ ΩqL(π1(X \ Y )) −−−−→ · · ·




y





y





y

· · · −−−−→ ΩqS(X) −−−−→ Ωq(X+ ∧ L•) −−−−→ ΩqL(π1(X)) −−−−→ · · ·




y





y





y

· · · −−−−→ LS(F ) −−−−→ L(π1(Y )) −−−−→ ΩqL(π1(X \ Y ) → π1(X)) −−−−→ · · ·




y





y





y

...
...

...
(20)

in which each row and column is a cofibration sequence.
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Theorem 3. Applying π0 to (20) we obtain the biinfinite commutative complex of
groups

...
...

...




y





y





y

· · · −−−−→ Sm+1(X, Y, ξ) −−−−→ NSm(X, Y ) −−−−→ Lm(π1(X \ Y )) −−−−→ · · ·




y





y





y

· · · −−−−→ Sm+1(X) −−−−→ Hm(X ;L•) −−−−→ Lm(π1(X)) −−−−→ · · ·




y





y





y

· · · −−−−→ LSm−q(F ) −−−−→ Lm−q(π1(Y )) −−−−→ Lm(π1(X \ Y ) → π1(X)) −−−−→ · · ·




y





y





y

...
...

...
(21)

in which all rows and columns are exact.

Proof. Since the complex in (20) is homotopy commutative, it follows that the
complex in the theorem is commutative. Since all columns and rows in (20) are
cofibration sequences, it follows that all rows and columns in the theorem are exact.
�

Lemma 2. Let
•
↓ ց

• → • → •
ց ↓

• ,

denote a homotopy commutative diagram of spectra in which the row and column
are cofibrations. Then the cofibres of the sloping maps are naturally homotopy
equivalent.

Proof. See [8]. �

The biinfinite homotopy commutative diagram (20) contains a homotopy com-
mutative diagram of spectra

ΩLS(F ) −−−−→ ΩL(π1(Y )) −−−−→ Ωq+1L(π1(X \ Y ) → π1(X))




y





y





y

ΩqS(X, Y, ξ) −−−−→ ΩqNS(X, Y ) −−−−→ ΩqL(π1(X \ Y ))




y





y





y

ΩqS(X) −−−−→ Ωq(X+ ∧ L•) −−−−→ ΩqL(π1(X))

(22)

in which all rows and columns are cofibrations. By Lemma 2, the cofiber of the
map

ΩqS(X, Y, ξ) → Ωq(X+ ∧ L•)



14 A. BAK, YU. V. MURANOV

obtained from diagram (22) is naturally homotopy equivalent to the cofiber of the
map

ΩL(π1(Y )) → ΩqL(π1(X \ Y ))

obtained from diagram (22). But the last cofiber is the spectrum LP(F ), by defi-
nition. Thus we obtain a homotopy commutative diagram of spectra

ΩqNS(X, Y ) → ΩqL(π1(X \ Y ))
↓ ↓

Ωq(X+ ∧ L•) → LP(F ).
(23)

Since the homotopy fiber of the top and bottom maps in (23) are the same, namely
ΩqS(X, Y, ξ), it follows that (23) is a pullback and therefore a pushout homotopy
commutative square of spectra.

Theorem 4. Let NSm+q = NSm+q(X, Y ), Sm+q(ξ) = Sm+q(X, Y, ξ). Then the
braid of exact sequences defined by the pushout square (23) is

→ Lm+1(π1(Y )) −→ Lm+q(π1(X \ Y )) → Sm+q(ξ) →
ր ց ր ց ր ց

NSm+q LPm(F )
ց ր ց ր ց ր

→ Sm+q+1(ξ) −→ Hm+q(X ;L) −→ Lm(π1(Y )) →

.

(24)

�

The biinfinite diagram (20) contains the homotopy commutative subdiagram of
spectra

Ωq+1L(π1(X)) −−−−→ ΩqS(X) −−−−→ Ωq(X+ ∧ L•)




y





y





y

Ωq+1L(π1(X \ Y ) → π1(X)) −−−−→ LS(F ) −−−−→ L(π1(Y )).

Since each row in this diagram is a cofibration sequence, it follows that the right
hand vertical map Ωq(X+∧L•) → L(π1(Y )) in this diagram factors up to homotopy
through the homotopy cofiber of the map Ωq+1L(π1(X)) → LS(F ). But by Lemma
2 and the biinfinite diagram (20),

homotopy cofiber
[

Ωq+1(L(π1(X)) → LS(F )
]

∼
∼ homotopy cofiber [Ωq(S(X, Y, ξ) → Ωq(X+ ∧ L•] ∼

∼ homotopy cofiber [Ω(L(π1(Y )) → ΩqL(π1(X \ Y ))] =
(by definition) = LP(F ).

Thus we obtain a homotopy commutative diagram of spectra

Ωq(X+ ∧ L•)
↓ ց

LP(F ) → L(π1(Y )).

However the definition of the map Ωq(X+ ∧L•) → L(π1(Y )) is given under (16) in
the proof of Proposition 2 and is the composition of 4 maps

Ωq(X+ ∧ L•) → ΩqCof j
∼
→ Y+ ∧ L• → L(π1(Y )).
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Thus we can extend the diagram above to a homotopy commutative diagram of
spectra

Ωq(X+ ∧ L•) → Y+ ∧ L•

↓ ↓
LP(F ) → L(π1(Y )).

(25)

As in the proof of Theorem 3, we can associate to (25) (rather than [11]) a biinfinite
homotopy commutative diagram and apply π0 to this diagram to get the biinfinite
commutative diagram of groups

...
...

...




y





y





y

· · · −−−−→ Hm(X \ Y ;L•) −−−−→ Hm(X ;L•) −−−−→ Hm−q(Y ;L•) −−−−→ · · ·




y





y





y

· · · −−−−→ Lm−q+1(π1(X \ Y )) −−−−→ LPm−q(F ) −−−−→ Lm−q(π1(Y )) −−−−→ · · ·




y





y





y

· · · −−−−→ Sm(X \ Y ) −−−−→ Sm(X, Y, ξ) −−−−→ Sm−q(Y ) −−−−→ · · ·




y





y





y

...
...

...,
(26)

whose rows and columns are exact. This is the diagram of [11, Proposition 7.2.6]
and the homotopy commutative square (25) serves to realize the biinfinite commu-
tative diagram (26) on the level of spectra.

Theorem 5. As in the proof of Theorem 4, we can associate to the homotopy
square (25) (rather than [11]) a biinfinite homotopy commutative diagram whose
rows and columns are cofibration sequences and derive from the diagram a homotopy
pushout square which in the current situation is

Y+ ∧ L• → Ωq−1((X \ Y )+ ∧ L•)
↓ ↓

L(π1(Y )) → Ωq−1SN(X, Y ).
(27)

The braid of exact sequences defined by (27) is

→ Sm−q+1(Y ) −→ Hm−1(X \ Y ;L•) → Hm−1(X ;L) →
ր ց ր ց ր ց

Hm−q(Y ;L•) NSm−1(X, Y )
ց ր ց ր ց ր

→ Hm(X ;L•) −→ Lm−q(π1(Y )) −→ Sm−q(Y ) → .

�
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Theorem 6. As in the proof of Theorem 4, we can associate to the homotopy
square (25) (rather than [11]) a biinfinite homotopy commutative diagram whose
rows and columns are cofibration sequences and derive from the diagram a homotopy
pushout square which in the current situation is

S(X \ Y ) → S(X, Y, ξ)
↓ ↓

Z ∧ L• → NS(X, Y ).
(28)

The braid of exact sequences defined by (28) is

→ Lm(π1(X\Y )) → Sm(X,Y,ξ) → Sm−q(Y ) →

ր ց ր ց ր ց

Sm(X\Y ) NSm−1(X,Y )

ց ր ց ր ց ր

→ Sm−q−1(Y ) → Hm−1(X\Y ;L•) → Lm−1(π1(X\Y )) →.

�

Let Y ⊂ X ⊂ W be a triple of closed topological manifolds such that n is the
dimension of X , q is the codimension of Y in X , and q′ is the codimension of X in
W . We shall suppose that every submanifold is locally flat in the ambient manifold
and satisfies the conditions on a manifold pair given in [12,page 570]. In this case
we can describe relations between the groups NS∗(W, Y ), NS∗(W, Y ), and the sets
of normal invariants of the manifolds X , W , and W \ X .

Theorem 7. There exists a braid of exact sequences

→ Ln−q−1(π1(Y )) −→ NSn(X,Y ) → Hm−1(W\X;L•) →

ր ց ր ց ր ց

NSm(W,Y ) Hn(X;L•)

ց ր ց ր ց ր

→ Hm(W\X;L•) −→ Hm(W ;L•) −→ Ln−q(π1(Y )) →

(29)

where m = n + q′ is the dimension of the manifold W .

Proof. Consider the homotopy commutative square of spectra

Ωq′+q(W+ ∧ L•) → L(π1(Y ))
↓ ↓=

Ωq(X+ ∧ L•) → L(π1(Y )),

(30)

where the left vertical map is a realization on the spectra level of the composition
of the map

Hm(W ;L•) → Hm(W, W \ X ;L•)

in the homology long exact sequence of the pair (W, W \ X) and the isomorphism

Hm(W, W \ X ;L•) → Hm−q′(X ;L•).

This is similar to the situation in Proposition 2. The vertical maps in square (30)
induce a map between the homotopy fibers of the horizontal maps [13] and we
obtain a homotopy commutative square

Ωq+q′

NS(W, Y ) → Ωq+q′

(W+ ∧ L•)
↓ ↓

ΩqNS(X, Y ) → Ωq(X+ ∧ L•).
(31)

It is a pushout, since the cofibers of the horizontal maps are naturally homotopy
equivalent to the spectra L(π1(Y )). The braid of exact sequences defined by (31)
is given in diagram (29). �
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