
Journal of Pure ind Applied Algebra 14 (1979) l-20. 

@ North-Holland Publishing Company 

ARF’S THEOREM 
OTHER RINGS 

Anthony BAK 

FOR TRACE NOETHERIAN 

Faculty of Mathematics, University of Bielefeld, 48 Bielefeld, Postfach 8640, Germany 

Communicated by H. Bass 

Received 25 April 1977 

1. Introduction and statement of main results 

The purpose of the paper is to extend Arf’s Theorem below to 

rings. 

AND 

a larger class of 

Arf’s Theorem [2, Satz 131. Let k be a field of characteristic 2 such that the similarity 
classes of central simple k-algebras of dimension 4 form a group under Ok. Then the 
isomorphism class of a nonsingular quadratic form q over k is determined by three 
invariants; the rank r(q)E Z, the Clifford algebra C(q)E Br(k)= Brauer group (k), 
and the Arf invariant A(q)E k/(c + c21c E k}. 

A consequence of the extension will be that one can remove Arf’s restriction on 

the similarity classes of central simple k-algebras. This is accomplished by replacing 

the invariants C(q) and A(q) by a single invariant p(q) with values in 

k Ok2 k/(a 0 b = b 0 a, a 0 b -a 0 b’a}. 
We describe now the extension. The key idea will be to replace k in the tensor 

product above by a quotient T/A of two form parameters. 

Let A be a ring with involution a H a; thus ab = t%i and d = a for all a, b E A. Let 

A E center A such that Ah = 1. A form parameter A is an additive subgroup of A such 

that 

(1) {a-AaIaEA}cAc{a\aEA,a=-AZ}, 
(2) aAa c A for all a E A. 

The minimum and maximum choice of the form parameter are denoted respectively 

by min and max. A A-quadratic module is a pair (M, rk,) where M is a right A-module 

and (L is a sesquilinear form on M. Associated to (M, 4) are a A -quadratic form 
q,:M+ A/A, m H [$(m, m)], and an even A-hermitian form (m, n)* = 
$(m, n)+A$(n, m). A morphism (M, JI)-+ (M’, 1,4’) of A-quadratic modules is an 

A-linear map M + M’ which preserves the A -quadratic and A -hermitian forms. 

Define the product (M, $)I (M’, 4’) = (M @ M’, $0 t+V). Call (M, $) nonsingular if 

M is a finitely generated projective A-module and the map M -+ HomA(M, A), 

1 



2 A. Bak 

m H (m, )+, is bijective. An example of a nonsingular module is the hyperbolic 

module H(P)= (P@Hom,(P, A), +p) such that P is a finitely generated projective 

right A-module and r,&(p, f), (4, g)) = f(s). H om,(P, A) is given a right A-module 

structure via the rule (fu)(p) = $(p). 

W(A)=(AOA, (:’ ::>) 

is called the hyperbolic plane (if (u, U) and (x, y)~ A @A, and if 

then 

Let r be another form parameter such that A c I7 If a, b E r then the ~1 -quadratic 

modules 

IA- (4 3) 
are called quasi hyperbolic planes and will play an important part in our work. Basic 

facts concerning A -quadratic modules can be found in [ 131 and [B], and a mini 

introduction to the subject can be found in [9, Section 21. 

If the involution on A is trivial then a O-quadratic module is the classical definition 

of a quadratic form. If the involution is arbitrary then it follows from lemma 1 below 

that a max-quadratic module is the classical definition of an even A -hermitian form. if 

A is an integral group ring Hn, A = + 1, and /4 = min, then one obtains the kind of 

form which arises in geometric surgery. 

Lemma 1. Let Mand M’ be right A-modules and f: M * M’ an A-linear map. Then 

f defines a homomorphism (M, 4) -+= (M’, 4’) f o max-quadratic modules B f preser- 

ves the associated even A -hermitian forms. 

The proof is given in Section 3. 

For fields k of characteristic 2 with trivial involution, we shall show that the 

isomorphism class of a nonsingular O-quadratic module (V, IJ?), i.e. classical quadratic 

form qti, is determined by the rank V and an invariant p(V, 4)~ 

k C&z k/{a 0 b = b 0 a, a 0 b = a 0 b*a}. An easy exercise [16; XIV, Section 91 

shows that the isomorphism class of the max-quadratic module (V, 4) is determined 

by the rank V. Thus, two nonsingular O-quadratic modules (V, $) and (V’, CL’) are 

isomorphice( V, I++,) and (V’, 4’) are isomorphic as max-quadratic modules and 

p( V, ~4) = p( V’, 4’). The extension of Arf’s Theorem shall take this form. 
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Fix two form parameters A and r such that A c l7 If x E r, then the rule x ++ axti 

(resp. x HGXU) induces a left (resp. right) action of A on r/A. Let 

S(T/il)=T/AOAT/A/{aOb=bOa,aOb=aObab). 

The letter S is used to remind the reader that S(r/A) is a quotient of the symmetric 

tensor product of r/A. If k is as above, and if A = k, A = 0, and r= k then 

S(r/A) = k Ok2 kl{a 0 b = b 0 a, a 0 b = a 0 b2a}. 

Call two nonsingular A -quadratic modules (A4, I&) and (M’, 4’) stably isomorphic if 

I? 
(M, $)I%U(A)I.. .IW(A)z(M’, I,Y)L’!H(A)I. .“.UH(A) 

for some n. 

Let Q(A, A) = category with product of nonsingular A -quadratic modules 

Theorem 1. Assume that A has a family 0 cg 1 c ’ . * cgn of involution invariant 

ideals with the following properties. Zf Ai = A/g,, Ai = image A + Ai and r, = 

image Z-+Ai then for each i such that 1 <i<n - 1 either gi+l/gi cannih- 

ilatorA,(Tl/ii,) or Ai is gi+l/gi-adically complete, and A, is semisimple of charac- 

teristic 2 (if Z,+, = An_lr then A, = 0). Then there is a surjective function 

which is well defined on isomorphism classes, respects products (i.e. B((M, q!~)-l 

(M’, (I/‘)) = p(M, +I) + P(M’, I/J’)), and has the property that two nonsingular A- 

quadratic modules (M, I+%) and (M’, 4’) are stably isomorphic e(M, I++) and (M’, 4’) 

are stably isomorphic as r-quadratic modules and p (M, $) = 0 (M’, (cl’). 

Furthermore, without any restriction on A,,, the canonical map: below is an 

isomorphism 

W/A): S(T”/A”). 

Note that any semisimple ring A with involution satisfies the hypotheses of 

Theorem 1. 

Call A truce neotherian if A is a noetherian module over the subring generated 

additively by 1 and all c + C such that c E center A. For example, any order A over a 

Dedekind ring of characteristic # 2 is a trace noetherian. On the other hand, an 

infinite ring with characteristic 2 and trivial involution is not trace noetherian. 

Proposition 1. Trace noetherian rings satisfy the hypotheses of Theorem 1. 

Remark 1. If two nonsingular A -quadratic modules (M, tk) and (M’, (cl’) are stably 

isomorphic, then it turns out that under suitable hypotheses on A and (M, $) one can 

assert that (M, (cr) and (M’, I+V) are isomorphic. The phenomenon is called cancel- 

lation. If A is a field (resp. local ring), then cancellation holds for all nonsingular 

A-quadratic modules by a theorem of E. Witt [19] (resp. the author [3]). More 

generally [3] shows the following (a,rCsumC of [3] is found in [4]). If A is finitely 

generated as a module over its center and if the maximal ideal space of the center is 

noetherian of finite dimension d thencancellation holds for nonsingular A -quadratic 
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modules whose h-rank > d; if h-rank (A4,1,4) G d, then (M, @) stably 

(M’, @‘) implies that 

(M, t&)ikU(A)~. : 44(A)=(M’, +V)1’W(A)I. sn. _LW(A) 

isomorphic to 

for any n 3 d + 1 - (h-rank(M, 4)). If one takes into account the size of A, then H. 

Bass [12] has shown that some technical improvements in the size of n are obtainable 

in certain circumstances. 

Remark 2. If g is the ideal of A generated by all c + C such that c E center A then 

gc annihilatorA(T/A) and A/g has characteristic 2. 

Next we record some consequences of Theorem 1. 

Let rr be a group. Let x: rr --, {+l} be an homomorphism and let the integral group 

ring krr have the involution a ++ d such that (7 = pa-’ for all (T E n-. Let A = * 1 

and let rr* = subgroup of rr generated by all (T E r such that w = -Aa. Note that 

u=-Aa j f_r2=1. 

Corollary 1. Let ii-’ G r be a normal subgroup of r such that the mixed commutator 

group [ rr’, nA] = 1. Let A E I be form parameters on Zr defined with respect to A and 

the involution above, and let A’ G r’ denote respectively their images under the 

canonical map Zr + i2(7r/7r’). Then the canonical map below is an isomorphism 

S(I-/A > 2. S(r’/A ‘). 

Proof. By Theorem 1 it suffices to show that the kernel (Zrr + L(n/x’))~ 

AnnHn(r/A). The kernel is generated as an ideal by all 1 -u such that u E n’ and r/A 

is generated additively by elements x = xi aioi such that ci E v,, and ai E Z. The 

hypothesis [rr’, ~-x] = 1 implies that (T commutes with x. Thus (1 -(~)x(l -(T)= 

(x+,y(m)x)-(m+@)x=(modA)2x+(rr+c?)xEA. 

The next result was announced in [5, Theorem 61. 

Corollary 2. Let r be a group. If nk is nilpotent, then 

Z/22 generated by [l 0 l] 
S(max(Z7r)/min(.Zr)) s { o 

ifA = -1, 

ifh = 1. 

Proof. Consider the canonical commutative diagram. 

S(max(Z7r,)/min(&r, )) 
f 

P S(max(Z7r)/min(Zn)) 

\ /i 

S(max(Z)/min(Z)) 
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Since 7~ is nilpotent, rr* has a sequence of normal subgroups 1 = y. E y1 E * * + E -yn = 

rA such that -yJyi-i c center (‘~~J~~-i)for all 1 G i s n. Applying Corollary 1 IZ times, 

one obtains that p1 is an isomorphism. One must apply the full force of Corollary 1 

because the image of max(ZrrA) in Z(rA/ri) is not necessarily max(Z(7rJyi)) for i # 0 
or n. The map f is surjective because the map max(ZrrA)-+ max(Z’7r)/min(Zr) is 

surjective. Thus, from the commutativity of the diagram, one deduces that f and pz 
are isomorphisms. If A = 1, then max(Z) = min(E) = 0; thus S(max(Z)/min(Z)) = 0. 

If A = -1, then max(h) = Z, min(Z) = 22, and one computes easily that 

S(max(Z)/min(iZ)) = Z/22 and is generated by [ 10 11. 

Let 

p:A-+A, aHa+aci, 

s:A--+A, a++a+a. 

Corollary 3. Let D be a characteristic 2 division ring with involution. Suppose that 
max/min has dimension 1 over D, e.g. D = k is a perfect field of characteristic 2 with 
trivial involution. If x is a basis element for max/min, then the map below is an 
isomorphism 

S(max/min)-+ D/{s(D)+p(D)}, [xa 0 bx] H [ab]. 

The proof of Corollary 3 is an easy exercise. 

C. Clauwens [C] has some overlap with the following result in the case A is the 

integral group ring En of a finite group rr. In fact the number r below is the number of 

conjugacy classes found in [14, Section 41. 

Corollary 4. Suppose the hypotheses of Theorem 1. Suppose in addition that A,, is finite 

(e.g. A is a iI!-order). Factor the center (A,) into a product center (A,) = ni ki such 
that ki is either an involution invariantfield or ki is a product of two fields exchanged by 
the involution. 

(a) Let r = number of fields ki with trivial involution. If A = - 1, then 

S(max/min)= (H/2h)’ 

(b) Let rr (resp. r,,) = number offields ki with trivial involution such that ki c image 

r -+ A, (resp. ki c image A + A,). Then 

Note. If A = -1 (resp. A # -l), then it is necessarily (resp. not necessarily) true that 

the image in A, of the maximal form parameter for A is the maximum form 

parameter for A,,. 
A detailed proof of Corollary 4 can be found in [lo]. The commutative case is an 

easy exercise. 
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Theorem 1 will be proved in the framework of algebraic K-theory. Next we 

translate Theorem 1 into an equivalent result in algebraic K-theory. 

Recall that if C is a category with a commutative associative product I then 

K,,C = the free abelian group on the isomorphism classes [M] of objects M of C 

modulo the relations [M IN] = [M] + [N]. One can check easily that two objects M 

and N have the same class [M] = [N] E K&e there is an object P such M i P = N i 

P. Let 

Q(A, A ) = category with product of nonsingular .4 -quadratic modules, 

KQo(A, ‘4) = KoQW .I). 
W&(A, A) = KQ,,(A, A)/{H(P)lP finitely generated projective}. 

It follows from Lemma 2 (in Section 3) that two nonsingular .A -quadratic modules 

have the same class in KQ,(A, ‘4) e they are stably isomorphic. From this fact it 

follows that Theorem 2 below implies Theorem 1. 

Theorem 2. Suppose the hypotheses of Theorem 1 are satisfied. Then there are split 

exact sequences 

0 + S(P/4 > + ( 
KQ,(A, 4) + KQo(A, r) 

WQ,,(A, .4 ) -+ WQo(A, 0 1 
~ O 

’ 

a Ob ++ [ABA, (4 :)I-[H(A)1 

and the canonical map below is an isomorphism 

s(r/n ): s(r”/A,). 

The next result is an easy consequence of Theorem 2. The proof is left to the 

reader. 

Corollary 5. If A is a commutative semilocal ring which has characteristic 2, trivial 

involution, and is (Jacobson radical (A))-adically complete then WQ: (A, .4 ) z 

S (max/A). In particular WQ:,(A, 0) =A OA2A/{a @b = b 0 a, a 0 b = a 0 b’a}. 

If X is an involution invariant subgroup of K1(A) then one has the concept of a 

discr-based-XA -quadratic module. For a precise definition see [7] or [9, Section 21. 

Let QW, A )~lscr-~ase~-~ denote the category with product of all such modules. Let 

and 

KQu(At A )discr-based-X= K"Q(A, 14 )discr-based-X 

WQ&%A) dmcr-based-X= KQo(A, A )discr-based-X/H(A )bared. 

It is worth noting that the surgery obstruction groups L;,(n), L:,(V), and Ls”(rr) are 
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defined as follows: 

Ly,(rr) = WQ~P1’2(E7r, min), 

Lk(‘T)= w&” 

n 

@r, min)discr-based-[*?r,. 

Theorem 3. Suppose the hypotheses of Theorem 1 are satisfied. Then there are split 

exact sequences 

aOb++[AOA,(y z)]-[A@A,(i ::)3 

where A 0 A has the prescribed basis (1, 0), (0, 1). 

The Proof is analogous to that of Theorem 2 and will be omitted. 

Corollary 6. Recall the notation prior to Corollary 1. Let rr be a group such that rA is 

nilpotent. LetXbe an involution invariant subgroup of K,(Zrr). Let Kdenote one of the 

fUnCtOrS KQo, WQo, KQo( )discr-based-X, WQo( )discr-based-X. Then 

zz 

K(Zn, min)+ K(.Zr, max) ifh = 1, 

and if A = -1 the sequence below is split exact 

0 -+ Z/22 + K(Zr, min) --, K(Er, max) -+ 0, 

1 H Z%-@Z7r, (: $1 -[L7r@Zrr. (:’ i)]. 
[ 

Corollary 6 follows easily from Corollary 2, Theorems 2 and 3, Corollary 7 in 

Section 2, and the analogy of Corollary 7 for discr-based-X quadratic modules. 

2. Proofs 

Proof of Proposition 1. Let k denote the subring of A generated additively by 1 and 

all c + C such that the c E center A. Let p denote the idea1 of k generated additively by 

all c + C above. Let g1 = pA and g2 = inverse image in A of the Jacobson radical of 

A/g,. Since p c Ann,(I’/A) it follows that gr c Anna(I’/A). Since k/p= 0 or Z/2H it 

follows that A 1 = A/g1 is finite. Thus A I is (g*/gr)-adically complete and A2 = A/g:! 
is semisimple. A2 has characteristic 2 because 2 up. 
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Proof of Theorem 2. We recall briefly the group KQI(A, A ). If LY is a matrix, let 

6 = transpose conjugate cy. Let GQz”(A, A) denote the subgroup of GLz,(A) of all 

such that 

and the diagonal coefficients of jk and $6 lie in A. Let EQr,(A, A) denote the 

subgroup of GQ2,,(A, A) generated by all 

such that F is a product of elementary matrices and by all 

(:, 3 and c: :‘) 
such that p = -A/?, y = -G, and the diagonal coefficients of p and r lie in A. There is 

a natural map GQz,(A, A)- GQz(~+,)(A, A), 

a P ( a 9- 1 0 

Y 6 i-l-1 Y s ’ 

0 1 

and one sets GQ(A, A) =&GQz,OA, A) and EQ(A, A)=~JEQz”(A, A). 

From Lemma 3 (in Section 3) it follows that EQ(A, A) is the commutator subgroup 

of GQ(A, A). We let KQI(A, A) = GQ(A, A)/EQ(A, A). 

Let Kb (F) &note the relative group [12, VII] associated to the connal functor 

F: Q(A, A) + Q(A, r). According to [12; VII, Section 51, there is an exact sequence 

KQ,(A, A) -+ KQ,(A, r): KI (5’) + KQo(A, A )- KQdA r>. 

The surjectivity of KQ,(A, A) --* KQ,(A, r) follows from the definition of A - and 

r-quadratic modules. The rest of the proof has essentially three steps 

(i) K& (F)= S(r/A) (valid for arbitrary A), 

(ii) a = 0, 

(iii) S(r/A) % S(r,,/A,) (valid for arbitrary A,,). 

(i)-(iii) establish the exactness of 0 + S(r/A) -+ KQo(A, A>-+ KQo(A, r) + 0. 

From the exactness of 0 + S(T,/A,) ---, KQdA,, A,) + KQdA,, I’,) --+ 0, one 
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deduces easily the exactness of 0 ---* S(I’nlA,) + WQdAn, An> -+ 

WQdAn, rn) + 0. The exactness of 0 -+ S(rJ.4,) -+ WQo(A, A) -+ 

WQ,(A, r) .+ 0 follows from (iii) and the exactness of the preceding sequence. Since 

A, has characteristic 2 it follows by Lemma 2 (in Section 3) that WQ,(A,, A,) has 

exponent 2. Thus the sequence 0 -+ S(I’,/A,) + WQo(A,, A,) * WQo(A,, m) --+(I 

is split. The splitting assertions in the theorem follows from (iii) and the splitting 

assertion for the sequence above. 

Proof of (i). Let a, b E ZY Let (a, b) denote the A-quadratic module 

6% b)=(AOA, (‘f i)). 

The A-quadratic and A-hermitian forms associated to (a, b) depend only on the 

classes of a and b modulo A. (0,O) is the hyperbolic plane W(A). If a,, bi E r 

(i = 1,. . . , n), let 

1 al 

I -. 

j_ (q, bi)= (A”@A”, 
i=l 

- ). 1 
Let Q(A, A, r) denote the category with product whose objects are symbols 

( i_Jl (ui, bi), iil (ci, di)) 
The product is defined by (M, N)I (M’, N’) = (M IM’, N i N’). A morphism 

(M, N) + (M’, N’) is an A-linear isomorphism A” @A” += A” @A” which induces 

isomorphisms M + M’ and N + N’ of A -quadratic modules. Let 

KQdA, A, r> = &Q(A, A, THM, Nl+ [N PI = [M, PI. 

There is a canonical map KQo(A, A, IJ + Kb (F), [M, N] H [M, identity map on 

A”@A”, IV], and using the proof of [ll, 10.21 ( see also [9, Section 31) one can show 

easily that the above map is an isomorphism. Next one shows straight forward that 

the rules ((a, b), (c, d)) H a 0 b -c 0 d and a 0 b ++ ((a, b), (0,O)) induce mutually 

inverse homomorphisms KQo(A, A, r) -+ S(T/A) and S(I’/A) -+ KQ,(A, A, r). 
Proof of (iii). Clearly the map S(r/A) += S(r,/A,) is surjective. Suppose that 

g1 c Ann*(r/A). If a, b E r and b E g1 then the relation a 0 b = a 0 hub shows that 

a 0 b represents 0 in S(r/A). Thus S(J’/A) -+ S(r,/.4 r) is an isomorphism. Suppose 

that A is gr-adically complete. Let 
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and consider the exact sequences 

WQ,(A. .t)-+WQ,(A, I‘)-+ .S(l’/n )-. KQ,,(A. .t ) +KQ,,(A. 0 

q <j 1 If,, j~scj 

WQ,(A,,.l,)+ WQ,(A,. I’,)-S(f’,l.1,)-KQ,,(A,. ,I,)-KQ,,(A,, 1’1) 

f, and g, (j = 0, 1) are isomorphisms by Lemmas 4 and 5 (in Section 3). Thus 

S(T/. 1) + S(Ti/.l i) is an isomorphism. 

Proof of (ii). (iii) allows one to reduce to the case A is semisimple. Since KQ, 

respects finite products one can reduce to the case A is simple. Using some easy 

Morita theory, one can reduce to the case A = D is a division ring. KQ,(D, r) is 

generated by 2 x 2 matrices 

which lift back to KQ,(D, ‘1). One could,do the simple case directly and avoid the 

Morita argument. 

Corollary 7 below is partly a restatement of Theorem 2 and partly a summing up of 

certain results obtained in the proof of Theorem 2. To round out the results, we 

introduce a little more notation. Let y and 0 denote matrices such that y = -hy, 

p = -A/?, and the diagonal coefficients of 7 and p lie in 1: If the diagonal coefficients 

of 7 + $y lie in .l, define 

Let EQ(A, -1. r) denote the multiplicative group generated by all (y, p) and their 

transpose conjugates. Let EQ(A. .t ) denote the subgroup of EQ(A, .I, ZJ generated 

by all (y. p) and their transpose conjugates such that the diagonal coefficients of 7 

andp lie in -1. One has EQ(A, !I)= EQ(A, .,I, r)c GQ(A, _,I). In R. Sharpe’s paper 

[ 171 the group EQ(A, min) is denoted EU(A). In [ 17, Section S] there is a certain 

normal form of elements of EU(A). If one examines the proof, one sees that it can be 

used verbatim to establish a normal form for EQ(A, ‘1). (We give in [8, Section 51 a 

shorter version of Sharpe’s proof for arbitrary form parameter.) The normal form 

says that every element of EQ(A, -1) can be written as a product 

such that the diagonal coeflicients of 7, 7’. and p lie in 1, F is a product of elementary 
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matrices, and 

Since 

lie in EQ(A, fl) for any 0, one deduces easily an exact sequence 

o + EQ(A, .4, T)/EQ(A, ii I--+ KQl(A. A f - KQIJA, I?. 

Proposition 2. If A is any ring with involution, then (y, P)‘E (EQ(A, ,I). Further- 

more, if the diagonal coeficients of p lie in .4, then (y, J3)” E EQ(A, .I). 

C. Clauwens has told me that he can prove a result similar to Proposition 2. 

Remark 3. If A is a commutative L-order which has a certain technical condition 

satisfied for example by group rings and maximal real orders then by arithmetic 

methods one can show that (y, 6)” E EQ(A, ,,I). In the case of a group ring Z7r, we 

have computed precisely the group EQ(Zr, min, max)/EQ(Z-rr, min) in [6, 

Theorems 10 and 15). 

Corollary 7. If A is any ring with involution, then there is an exact sequence 

KQo(A, 1%) - KQo(A, r) - 0 

such that 

where x1, . . , x, (resp. yl, . . . , y,,) are the diagonal coeficients of j& (resp. @). 

Furthermore, if A satisfies the hypotheses of Theorem 1, then 3 = 0. 

It was indicated already that Corollary 7 follows from the proof of Theorem 2. 

Proof of Proposition 2. Since (y, 0)’ = (r, 2~3) and the diagonal coefficients of 2/3 lie 

in A, it suffices to prove the second assertion in the proposition. The idea of the proof 
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is as follows. (y, 0)” = (y, 4p). Write 

li- 
1 I 0 -20 

1 1 -2p 0 

---r-1---- 

I 1 1 

Conjugate the above by 

and begin simplifying by multiplying on the left and right by elements of EQ(A, A). 

The process shows that 

3. Six lemmas 

Lemma 1. Letikfand M’ be right A-modules and f: A4 + M’ an A-linear map. Then 

f defines a homomorphism (h4, 4) - (M’, IJ%‘) o max-quadratic modules e f preser- f 

ves the associated even A -hermitian forms. 
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Proof. The assertion + follows by definition. Conversely, it must be shown that if f 

preserves the associated A -hermitian forms, then f preserves the associated quadra- 

tic forms as well. Suppose that +(m, n)+A4( II7 m)=~‘(f(m),f(n))+h~‘(f(n),f(m>) 
for all m, n EM. We must show that +(m, m)= @(f(m), f(m)) mod max for all 

m EM, i.e. 

4(m, ml-$‘(f(m>,f(m))E mw 

i.e. 

~(m,m)-~‘(f(m),f(m))=-A(~r(m,m)-clr’(f(m),f(m)), 

i.e. 

G(m, m) + Aif%, m ) = G’(f(m ), f (m )I + W’(f Cm ), f(m 1). 

But this is the first equation above with m = n. 

Lemma 2. If (M, $) is a nonsingular A -quadratic module then (M, $)l (M, -+)z 

NM). 

Proof. Let (N, cp) = (MOM, $,O-I&). Let Ml = {(m, m) 1 m EM} and M; = 

{(m, 0) 1 m E M}. N = M1 OM\ and M1 is a totally isotropic subspace of (N, cp), i.e. 

qq(x) = 0 and (x, y), = 0 for all x, y E M1. Since N -+ N*, n ++ (n, ), is bijective, one 

can define a function h:Mi + Ml via -Q(x, y)=(hx, y), for all x, y EM;. If 

Mz={(m,O)+h(m,O)I m E M}, then M2 is also totally isotropic and N = Ml 0 M2. If 

f: M2-, MT, x-(x, ),,thenthemapMrOM 2-+MiOMT, (ml, mA*(ml,ftm2)), 

defines an isomorphism (N, cp)+ W(M1). Since M1 = M, it follows that (N, cp)= 

W(M). 

Lemma 3 (Quadratic Whitehead Lemma). If 

then the following equation holds in GQdn (A A > 

Proof. By direct computation. 
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Lemma 4. If g is an involution invariant ideal of A such that A is g-adically complete 

then the canonical functor Q(A, A) - Q(A/g, A/g fl A ) induces a bijection from the 

isomorphism classes of Q(A, .4) to the isomorphism classes of Q(A/g, .,1/g fl .i ). 

The proof can be read verbatim from the proof given by C. T. C. Wall [18] Lemma 

1 and Theorem 2 for the special case .I = min. Walls’ remark that the result is “far 

from being true for hermitian forms” can be disregarded. A proof of Lemma 4 and a 

related result for not necessarily even hermitian forms will appear in [8, Section 31. 

Lemma 5. If g is an involution invariant ideal of A such that A is g -adically complete, 

then the canonical map KQl(A, .I) + KQ1(A/g, A/g n .I) is surjective, and the 

canonical map WQ1(A, A) - WQ,(A/ g. A/g n ‘4) is an isomorphism. 

Proof. The proof of Lemma 4 above shows that if (M, CCI) and (IV, V)E Q(A, .1) then 

any isomorphism (M/gM, 4) + (N/g N, cp) can be lifted to an isomorphism 

(M, +) + (N, ~0). The first assertion of Lemma 5 follows from the special case 

(M, I,?) = W(A”) = (N, cp) and the fact that GQ,,(A, -I) = Aut(W(A”)). By definition 

WQI(A,_I)=KQ~(A._1)/( (; k’+GL(A)}. 

Thus, it is clear that WQ,(A, -4) - WQ,(A/g, A/g n -4 ) is surjective. An element in 

the kernel can be represented by a matrix 

E GQ(A, z,t ) 

such that (Y and 6 = 1 mod g and 0 and y = 0 mod g. Thus cy is invertible and one 

deduces easily that 

which vanishes in WQl(A, .I). 
The following lemma is not needed in the paper, but is useful in applying the results 

of the paper. 

Lemma 6. Let ‘4 c Ibe two form parameters in A. Assume that A, :I, and Isatisfy the 

hypotheses in Theorem 1. If -1 = T,c rl t . . c r, = r is a sequence of form 

parameters, then S(r/n)= S(Tr/T,,)O. *OS(I’,/T,_I). 

Proof. It suffices to consider the case s = 2. From Theorem 2 it follows that all the 
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maps in the commutative diagram 

S(I’,lf,J - KQo(A, rd 

are injective. Thus there is an exact sequence 

0 + S(T,/T”) --;, S(T,/T”) + S(T,/Ti) + 0. 

Since all the groups have exponent 2, the sequence splits. 

4. Construction of /3 

The purpose of this section is to construct @: Q(A, A)-+ S(r/A) first under the 

hypotheses of Theorem 1, and then in the special case that A is a commutative, 

characteristic 2, complete local ring with trivial involution and r = max. In the later 

case a particularly nice construction is obtained. 

We begin with the general situation. Here /3 was constructed already in the proof 

of Theorem 2, but the details were a little sketchy. Below /3 is constructed as the 

composite of a number of functors and maps. Begin by taking the canonical functor 

Q(A, A) --+ Q(A,, A,). Factor A, as a product A, = A,!, X. . . x AL of rings A’, such 

that An is either a simple ring with involution or a product An = B x B” of simple 
rings B and B” = ~~~~~~~~~ such that the involution takes (x, y) H (y. x). The form 

parameter .4, has a corresponding decomposition A, = A I X. . . X A f, where A L= 

eiA,ei and e’ is the central idempotent which defines A’,. r, has an analogous 

decomposition r, = r!, X. . . x r’,. Let A!, x. . . xA”, denote the product of all the 

AL such that AL is simple and the involution on the center An is trivial. Next take the 

canonical functor Q(A,, A,)+Q(AA, AA)x. . . x Q(Af,, A”,). Write A’, as a matrix 

ring A; = MO,, (Oi) over the division ring Di. Let - denote the involution on Af,. By a 

theorem of A. Albert [ 1; X, Theorem 121 D, has an involution d ++ d which is trivial 

on the center Di, and from the Skolem-Noether theorem it follows that there is an 

element Cri E M,,(Di) such that for all x E M,,(Di) ai.fa,l = X where X = transpose - 
(xkl) and XkI is the (k, l)‘th coefficient of x. If Af,- and ALP denote A, with 

respectively the involution - and - then the functor Q(Af,-, A,)-, Q(Ah-,-, a,Af,) is 

an equivalence of categories with product. If Ai = ai/l L n Di, then there is a Morita 

equivalence [ 151, [8, Section 7] Q(AL-, (YiA I) + Q(Di, A,). Stringing together the 

functors above, one obtains a product preserving functor Q(A, A) -+ Q(Dl, A 1) x 

. . . x Q(D,, A,). Similarly, one obtains a product preserving functor 

Q(A, r>-, Q(Dl, T,)x. . . x Q(D,, G). Next, take the canonical map 

Q(Di, Ai) + WQo(Di, Ai), (M, $) e= [M, 41. Since Di has characteristic 2, it follows 
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from Lemma 2 that WQo(Di, Aj) has exponent 2, and hence the exact sequence 

0 + S(C/Ai) + WQO(Di, Ai)- wQO(Di, C) --+ 0 has a retract pi. Thus, one obtains 

a diagram 

S(r/A ) Q(A A ) 

PI I I P 

s(~,/A,)x.. .xS(Z;/A,~) - WQo(D,,A,)x...xWo,,(o,,A,). 

The map pr is an isomorphism by Theorem 2, and p is constructed as the composite 

P=PT1(P1x~~~xPs)P. 
Next is a construction of p in the special circumstances indicated at the beginning 

of the section. 

Proposition 3. Suppose that A is a commutative, characteristic 2, (Jacobson radical 

A)-adically complete, local ring with trivial involution. If (M, 4) E Q(A, A), then Mis 

a free A-module and has a basis el, . * . , e2,,, such that the 2m x 2m matrix 

(He,, e,>)= 

The class [Cz, ai 0 bi] E S(A/A) does not depend on the choice of el, . . , ez,,, and 

one can define fl by 

P: Q(A A)- SWA), [M @I+-+ [ ;cl ai 0 bi]. 

Proof. Any finitely generated projective module over a local ring is free. See for 

example [12, III (2.13)]. Any nonsingular max-quadratic module over a charac- 

teristic 2 complete local ring with trivial involution is a product of hyperbolic planes. 

For the case of a field see [ 16; XIV, Section 91. Then lift the result to A via Lemma 4. 

Let (M, q?) be as in the proposition. One can always replace (M, 4) by (M, 4 + cp -A+) 

where $(m, n) = cp(n, m), because the A -quadratic (or A -hermitian) forms associ- 

ated to I+G and $ +q -A+ are the same. Let ei, . , e, be a basis for M and let (akl) 
denote the matrix whose (k, 1)‘th coefficient is ti(ek, el). After replacing 4 by 

r+k+q -A@ for a suitable cp, one can assume that a kt = 0 for all (k, 1) such that k < 1. 

Since all nonsingular max-quadratic modules are a product of hyperbolic planes one 
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can choose at the outset el, . . . , e, such that 

0 A ( ) -I - 
0 

1 0 

(~,,)+A(transpose(a~,))= 
. 

. 
0 A 

0 
( ) 1 0 1. 

It follows that 

The homomorphism 

(Y : SW/A ) + WCMA, A ), [aOblu[AOA, (f ;)] 

is injective by Theorem 2, and bijective by the above. It follows that the element 

[XL, ai 0 bi] E S(A/A) IS independent of the choice of el, . . * , e2m=n. Clearly /3 

defines an inverse to (Y. 

5. Cancellation for quasi hyperbolic planes 

Let A be a ring with involution. Let A and A be two form parameters in A such 

that A c r. Recall that a quasi A -hyperbolic plane of level r is a A -quadratic module 

W)=(AOA, (4 ;)) 
such that a, b E I7 If ai, bi E r (1 s i s r) let 

Theorem 4. Let A be a ring with involution. Let A c r be two form parameters in A. 

Assume that A has a family of involution invariant ideals 0 c g1 c ’ . . Cg,, which 

satisfy the hypotheses of Theorem 1. 

(a) Let (h4,1+4) be a nonsingular A -quadratic module. If 
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then 

i (ai, bi)i(O, 0)~ i (c,, di)l(O, 0). 
i=l i=l 

(b) Let A,, = A/g,. Factor A,, as a product A,, = AA x . . ’ x AL of rings such that AL 

is either a simple ring with involution or A; is a product AL = B x Bopposite of two simple 

rings B and BoPposife such that the involution takes (x, y ) H (y, x). Assume that if A> is 

simple and if the involution on k’ = center(Al) is trivial, then k’is a perfectfield and AI, 

is a matrix ring over k’. Let (M, 4,) be a nonsingular .I-quadratic module. If 

then 

i (ai, bi)r i (c,, di). 
i=l i=l 

Proof. (b) Identify 

,i,(ai,bi)l (A’IA’, 

Let F and G denote the images of _I_ :=I (a,, b,) and I:=, (cl, di) in @(A,, .I,) 

(A, = image 11 -+ A,). Since 

it follows from Witt cancellation [ 191 (plus a Morita equivalence if some of the (AL)‘s 

are matrix rings of rank > 1) that F = G. The idea of the rest of the proof is to 

pick an isomorphism F+G which one can lift to an isomorphism 

I:=, (~i, b,)+ I:=, (ci, d,). 

Corresponding to the decomposition A, = AA X. . . X AL there are decom- 

positions n, = ‘1 L X . X .4 L and r:=rAx...xri such that .Ih=e’ll,e’, r,,= 

e’J’,e’, and e’ is the central idempotent which defines AL. Let F’ and G’ denote the 

images of F and G in Q(AL, Ah). If A L = r:,, then the identity map on ALO. @A: 

defines an isomorphism F’ -+ G’. If :I: f rk then we know that there exists an 

isomorphism pi: F’ + G’. p’ defines an element of GQ2,(Ai, C,) because as r:- 

quadratic modules F’ = G’ = W((AL)‘). Since ‘1: f rb it is necessary that AA is a 

simple factor such that the involution on k’ = center(AL) is trivial. Thus, by the 

hypotheses in (b) k’ is perfect, and AL is a matrix ring over k’. Since rl # min, it 
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fohows that k’ c m. From this it follows that GQz,(A& rh) = EQ*,(AL, rt) (try first 

the case AL = k’). Thus, there is an isomorphism F --, G which defines an element 

P E EQzrC4, J’,). 

It suffices now to assume that n = 1 and to show that if p E EQz,(A 1, f 1) such that p 

defines an isomorphism F + G, then there is a u E EQ,,(A, r) covering v such that 

cr defines an isomorphism 1 :=I (Ui, bi) -+ 1 I= I (cl, d;). The canonical map 

EQ2,(A, ZJ --f EQ2,(A 1, rl) is surjective. In order to use this fact we have insisted 

that p E EQ,,(A I, r,) rather than in GQ2,(A ,, r,).) After picking a representative 

7~ EQ2,(A, IJ for p and applying T to I:=, (Ui, bi), one can assume that p = 1. 

Choose pI and q, in gl such that a, = c, +p, and bi = d, +cJ,. Let g = gi. 

Suppose that g c Ann,(r/4). Then 

define respectively isomorphisms (ai, bi) + (Ui, di) and (ai, di) -+ (Ci, di) (remember 

that the n-quadratic and A -hermitian forms associated to (c, d) depend only on the 

classes of c and d in r/A). It follows that there is a VE EQz,(A, r) such that 

(T= 1 mod g and (T defines an isomorphism II=, (a,, 6,)-t I:=1 (ci, di). 

Suppose that A is g-adically complete. let 4 = 4,. Let yl = &zq and define 

inductively yi(i > 1) by y, = jj_ I ay,_ 1. Since A is g-adically complete, it makes sense 

to define cy = Cp”= i yiuyi and y = Cp”= I yi. Since j%y E I’ and since it is checked easily 

that LY - j%y E min, it follows that cy E IY Since 4 = bi -d,, it is also true that 4 E IY The 

matrix 

( 1 0 

--q-C 1 ) 
E EQz(A, 0 

and defines an isomorphism (Ui, 6,) -+ (ai, di). Similarly one can find a 

( 1 -P-P 

0 1 1 
E EQz(A, r) 

which defines an isomorphism (ai, d,)-+ (c;, di). It follows that there is a u E 

EQ*,(A, T’) such that u= 1 mod g and u defines an isomorphism 

I:=1 (Ui, bi)* I’=, (cz, di). 
(a) is proved similarly to (b). One uses the extra hyperbolic plane (0,O) in the 

following way. Let F and G be as in (b). One knows that there is an isomorphism 

F -+ G and that this isomorphism can be represented by an element pzr E 

GQ*,(A,, T,), By stability [3], one can write p2, = TE such that T E GQ,(A,, I-,,) and 

E E EQ2,(&, rn). If 

and TV= 
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then by Lemma 3 the element p =TET~~ E GQ2(,+1)(A,, I’,,) actually lies in 

EQ2(r+l~(An, I-,,). p defines an isomorphism F I(0, 0) + G I (0, 0) and one can lift as 

in (b) p to an isomorphism 

CT: i (Ui,6,)1(0,0)+ i (Ci,d,)1(0*0). 
i=l i=l 
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