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Abstract. Let G denote a finite group and n = 2k ≧ 6 an even integer. Let X denote a
simply connected, compact, oriented, smooth G-manifold of dimension n. Let L denote
a union of connected, compact, neat submanifolds in X of dimension ≦ k. We invoke the
hypothesis that L is a G-subcomplex of a G-equivariant smooth triangulation of X and
contains the singular set of the action of G on X . If the dimension of the G-singular set
is also k then the ordinary equivariant self-intersection form is not well defined, although
the equivariant intersection form is well defined. The first goal of the paper is to eliminate
the deficiency above by constructing a new, well defined, equivariant, self-intersection
form, called the generalized (or doubly parametrized) equivariant self-intersection form.
Its value at a given element agrees with that of the ordinary equivariant self-intersection
form when the latter value is well defined. Let F denote a finite family of immersions with
trivial normal bundle of k-dimensional, connected, closed, orientable, smooth manifolds
into X . Assume that the integral (and mod 2) intersection forms applied to members of F
and to orientable (and nonorientable) k-dimensional members of L are trivial. Then the
vanishing of the equivariant intersection form on F ×F and the generalized equivariant
self-intersection form on F is a necessary and sufficient condition that F is regularly
homotopic to a family of disjoint embeddings, each of which is disjoint from L. This
property, when F is a finite family of immersions of the k-dimensional sphere Sk into
X , is just what is needed for constructing an equivariant surgery theory for G-manifolds
X as above whose G-singular set has dimension less than or equal to k. What is new
for surgery theory is that the equivariant surgery obstruction is defined for an almost
arbitrary singular set of dimension ≦ k and in particular, the k-dimensional components
of the singular set can be nonorientable.

1. Introduction

Equivariant surgery solves the following problem. Let G denote a finite group and

n = 2k ≧ 6. Let f : X → Y denote a k-connected, degree-one, G-framed map of one-

connected, compact, n-dimensional, smooth G-manifolds such that the fixed point set of

X satisfies the following assumption.

(A1) Any connected component of a fixed point set Xg, where g ∈ G r {1}, has di-

mension ≦ k and no connected component of dimension (k − 1) of a fixed point
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set XH , H j G, is totally contained in a connected component of dimension k of

some fixed point set XK , K j G.

Assume further

(A2) ∂f (:= f |∂X) : ∂X → ∂Y is a homology equivalence, and

(A3) fH (:= f |XH) : XH → Y H is a homology equivalence for each nontrivial hyperele-

mentary subgroup H j G.

Since f is G-framed, it comes equipped with a G-vector bundle isomorphism b : T (X) ⊕

f ∗η → f ∗(ξ ⊕ η), where T (X) denotes the tangent bundle over X with its natural G-

action and η and ξ are G-vector bundles over Y . Let εY (Rn) = (Y × Rn → Y ) denote

the product G-vector bundle on Y where G acts trivially on Rn. After replacing η by

η ⊕ εY (Rn), it can be assumed and will be assumed throughout the paper that

(A4) η contains the product bundle εY (Rn) as a G-vector subbundle.

The problem of equivariant surgery is finding necessary and sufficient conditions when

(f, b) is G-framed cobordant rel ∂X ∪Xsing to a G-framed map (f ′, b′) such that f ′ : X ′ →

Y is a homotopy equivalence, where Xsing denotes the singular set
⋃

g∈Gr{1}X
g of X.

This problem is solved along the usual lines by constructing a group W (G, Y,Xsing)free

called the surgery obstruction group and an element σ(f, b) in W (G, Y,Xsing)free called the

surgery obstruction of (f, b), having the property that σ(f, b) = 0 if and only if (f, b) is

G-framed cobordant rel ∂X ∪Xsing to a G-framed map (f ′, b′) such that f ′ : X ′ → Y is a

homotopy equivalence. However the construction of the group W (G, Y,Xsing)free and the

surgery obstruction σ(f, b) is much more intricate than those of previous theories, because

the singular set is now much more general.

We summarize next the literature on equivariant surgery and then state our main

surgery results.

The best results to date in the literature are in [6] and [30]. They are obtained when

Assumption (A1) above is strengthened (considerably) by adding the conditions that each

k-dimensional connected component of XH , H j G, is orientable, that for each g ∈ G

the translation XH → XgGg−1
, x 7→ gx, is orientation preserving, and that 3 further

technical assumptions [6, (2.1.2)–(2.1.4)] are satisfied. The surgery theory in [25] and [26]

is obtained when the assumptions above are further strengthened by adding the condition

dimXg ≦ k − 1 for all g ∈ G r {1}. Finally the surgery theories of T. Petrie [39], [40],

[12], [41] and W. Lück–I. Madsen [19], [20] are obtained when the assumptions above are

strengthened again by adding either the condition dimXg ≦ k − 2 for all g ∈ G r {1}

or the condition that G has odd order. Applications of the surgery results above to

transformation groups are found in [4], [7], [16], [17], [22], [24], [27], [28], [32], [33], [40],

[41] and have motivated all of the work above on equivariant surgery theory. Applications

of results of the current paper will be forthcoming.

Our main surgery results are as follows.



EQUIVARIANT INTERSECTION THEORY AND SURGERY THEORY 3

Theorem 1.1. Let X and Y be compact, connected, oriented, smooth G-manifolds of

dimension n = 2k ≧ 6. Suppose X satisfies (A1) and Y is simply connected. Let fff = (f, b)

be a degree-one G-framed map satisfying (A2)–(A4), where f : (X, ∂X) → (Y, ∂Y ) and

b : T (X) ⊕ f ∗η → f ∗(ξ ⊕ η). Then one can perform G-surgery rel ∂X ∪ Xsing on fff to

obtain a G-framed map fff ′ = (f ′, b′) with f ′ : (X ′, ∂X ′) → (Y, ∂Y ) and b′ : T (X ′)⊕f ′∗η →

f ′∗(ξ ⊕ η) such that f ′ : X ′ → Y is a homotopy equivalence if and only if the element

σ(fff) in W (G, Y,Xsing)free is trivial.

This follows from Theorem 7.8.

The subscript free on W (G, Y,Xsing)free signifies that the underlying modules used in

constructing the Witt group W (G, Y,Xsing)free are free (or stably free) over the integral

group ring Z[G]. Under a weaker assumption than (A3), namely

(A3′) fP : XP → Y P is a Z(p)-homology equivalence for each prime p and any nontrivial

p-subgroup P of G,

we get also an equivariant surgery theory, except the modules used in constructing the

surgery obstruction group here are only projective over Z[G]. Accordingly, the surgery

obstruction group here is denoted by W (G, Y,Xsing)proj.

Theorem 1.2. Let X and Y be as in the previous theorem. Let fff = (f, b) denote a

degree-one G-framed map satisfying (A2), (A3′) and (A4), where f : (X, ∂X) → (Y, ∂Y )

and b : T (X)⊕ f ∗η → f ∗(ξ ⊕ η). If the element σ(fff) in W (G, Y,Xsing)proj is trivial, then

one can perform G-surgery rel ∂X ∪ Xsing on fff to obtain a G-framed map fff ′ = (f ′, b′)

where f ′ : (X ′, ∂X ′) → (Y, ∂Y ) and b′ : T (X ′) ⊕ f ′∗η → f ′∗(ξ ⊕ η) such that f ′ : X ′ → Y

is a homotopy equivalence.

This follows from Theorem 6.3.

It is worth noting that there is a canonical homomorphism

W (G, Y,Xsing)free →W (G, Y,Xsing)proj

so that a part of Theorem 1.1 follows directly from Theorem 1.2. Moreover the homo-

morphism is injective, according to Lemma 3.34.

We describe how the rest of the paper is organized, while at the same time providing

insight how the surgery obstruction groups W (G, Y,Xsing)ε, ε = free or proj, and the

surgery obstruction σ(fff) are constructed.

The key to constructing an equivariant, smooth, surgery theory on 2k-dimensional

(k ≧ 3) G-manifolds X is having good equivariant, geometric, intersection tools. This

means the following: Given a finite set F of smooth immersions with trivial normal

bundle of 1-connected, k-dimensional, closed, oriented manifolds into X, the tools should

provide necessary and sufficient conditions that F is regularly homotopic to a set of

equivariantly disjoint embeddings, each of which is disjoint from the G-singular set Xsing

of the action of G on X. The usual tools for doing this are the equivariant, geometric,

intersection form #G and the equivariant, geometric, self-intersection form µG. However
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since Xsing can have k-dimensional components, µG is not always defined. To get around

this problem, we construct in Section 4 a generalized, equivariant, self-intersection form

♮G, which is always defined and agrees with µG whenever it is defined. The construction of

♮G uses 2 parameters instead of just one form parameter as in the case of µG. The forms

#G and ♮G are related by certain equalities which generalize the relationship between

#G and µG and the pair (#G, ♮G) defines a so-called doubly parametrized form on the

surgery kernel Kk(X) := Ker[f∗ : Hk(X) → Hk(Y )] of a G-framed map fff = (f, b)

such that f : X → Y is k-connected. Section 2 develops for reference purposes, several

algebraic concepts including that of doubly parametrized forms on modules. Section 5

constructs the surgery module Mfff of fff , the surgery obstruction σ(fff) of fff , and the surgery

obstruction group W (G, Y,Xsing)ε, ε = proj or free. By definition, σ(fff) is the class of

Mfff in W (G, Y,Xsing)ε. To define Mfff , we need to take into account additional structure

on Kk(X), arising from Xsing. This is done as follows. Let Θ̃ (resp. Θ2) denote the

G-set of all connected, k-dimensional, oriented (resp. nonoriented) components of Xsing.

There are canonically defined a G × {±1}-map θ : Θ̃ → Kk(X) and a G-map θ2 :

Θ2 → Kk(X)/2Kk(X) called positioning maps, making Kk(X) into a so-called positioning

module. Section 2 also develops the algebraic concepts of positioning module and doubly

parametrized positioning module. The 5-tuple Mfff = (Kk(X),#G, ♮G, θ, θ2) is an example

of a doubly parametrized positioning module and is by definition the surgery module

of fff . One might at this point that the surgery obstruction group is the Witt group of

all nonsingular doubly parametrized positioning modules, but this is not the case. It

turns out that a subtle invariant ∇ is playing a role here. This invariant vanishes on

all surgery modules Mfff and the correct definition of the surgery obstruction group is

the Witt group of all nonsingular, doubly parametrized positioning modules with trivial

∇-invariant. (This vanishing of ∇ affects the concept of Lagrangian and gives a distinctly

different Witt group.) The algebraic concepts underlying ∇ are developed in Section 3, as

well as the algebraic constructions of the kinds of Witt groups needed in surgery theory.

Our main surgery result Theorem 1.2 is proved in Section 6. The cobordism invariance

of the surgery obstruction and Theorem 1.1 are proved in Section 7.
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2. Doubly parametrized forms on positioning modules

This section introduces the concepts of doubly parametrized form and positioning mod-

ule and develops their elementary K-theory. Both concepts are motivated by and needed

in the surgery theory developed in Sections 5–7.

The concept of a doubly parametrized form is a nonobvious synthesis of the concepts

of Λ-quadratic form and Λ-Hermitian form in [2]. Both older concepts are special cases of

the new one and the K-theory developed in this section for the new concept generalizes

that in Section 2 and Sections 5–6 of [2] for the older ones. The geometry in Sections 5–7

requires that the underlying modules of our doubly parametrized forms contain positioning

information. So we shall develop, right from the beginning, our K-theory of doubly

parametrized forms, over positioning modules rather than just ordinary modules. We

shall see that ordinary modules are the special case when the positioning information

is empty. This has the consequence that our results for doubly parametrized forms on

positioning modules are also valid for doubly parametrized forms on ordinary modules.

For functorial reasons, it is better to define our forms over associative algebras rather

than associative rings, because in practice a ground ring in the center of our ring will

play a special role and it will be necessary to restrict ring homomorphisms to those which

preserve the ground rings. By definition, an associative algebra A will mean an associative

ring A with identity together with a fixed commutative ring R j Center(A), called the

ground ring of A. An R-algebra is an associative algebra whose ground ring is R. An

algebra homomorphism A → A′ is any ring homomorphism f : A → A′ which preserves

the identity and has the property that f(R) j R′ where R and R′ are the ground rings

of A and A′, respectively. Throughout this article, we shall use the word algebra to mean

associative algebra in the sense above.

An involution on an R-algebra A is a map A → A, a 7→ a, such that r ∈ R for all

r ∈ R and such that a = a and ab = ba for all a, b ∈ A. An antistructure in the sense

of Wall [44] on an R-algebra A is a pair (−, λ) consisting of a map A → A, a 7→ a, and

a unit λ ∈ A, which we shall call the symmetry of the antistructure, such that r ∈ R

for all r ∈ R and such that a = λ−1aλ and ab = ba for all a, b ∈ A. A morphism

(A, (−, λ)) → (A′, (−, λ′)) of algebras with antistructure is an algebra homomorphism

f : A→ A′ such that f(a) = f(a) for all a ∈ A and f(λ) = λ′.

Let A be an R-algebra with antistructure (−, λ). The additive subgroups

minλ(A) = {a− λa | a ∈ A},

maxλ(A) = {a ∈ A | a = −λa}

are introduced in Section 1 of [2].
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Definition 2.1. A (−, λ)-form parameter in the sense of [2, §13, p.255] on the R-algebra

A is an additive subgroup Λ j A such that

(2.1.1) minλ(A) j Λ j maxλ(A),

(2.1.2) axa ∈ Λ for all x ∈ Λ and a ∈ A, and

(2.1.3) R0Λ j Λ, where R0 = {r ∈ R | r = r}.

One checks easily that minλ(A) and maxλ(A) satisfy the closure conditions (2.1.2–3)

so that both minλ(A) and maxλ(A) are form parameters.

Note that if (−, λ) is an antistructure on the R-algebra A then (−,−λ) is also an

antistructure on A.

Definition 2.2. We define a (−, λ)-symmetric parameter on the R algebra A to be a

(−,−λ)-form parameter on A.

The next definition is motivated by geometric considerations in Sections 4–5.

Definition 2.3. A prepared algebra is a quadruple (A, (−, λ), G,As) where

(2.3.1) A is an R-algebra with antistructure (−, λ),

(2.3.2) G is a multiplicative subset of A such that A is generated over R by G and for

each g ∈ G, there are elements r ∈ R and g′ ∈ G with the property that g = rg′,

and

(2.3.3) As is an R-submodule of A which is closed under the operations a 7→ λa and

a 7→ gag for all a ∈ As and g ∈ G.

A morphism (A, (−, λ), G,As) → (A′, (−, λ′), G′, A′
s) of prepared algebras is a homomor-

phism f : (A, (−, λ)) → (A′, (−, λ′)) of algebras with antistructure such that f(G) j G′

and f(As) j A′
s.

In the geometric situation, each element a ∈ As has the property a = λa, i.e. is

λ-symmetric. This is our justification for introducing the notation As.

Let (A, (−, λ), G,As) be a prepared algebra. Define

maxλ,As(A) = {a ∈ A| a ≡ −λa mod As}.

Since the operations a 7→ λa and a 7→ gag(g ∈ G) on A preserve As, they induce

operations on the quotient module A/As. This fact is used in making the following

definition.

Definition 2.4. Let (A, (−, λ), G,As) be a prepared algebra. A generalized form param-

eter or ((−, λ), G,As)-form parameter on A is an additive subgroup Λ of A such that

(2.4.1) As + minλ(A) j Λ j maxλ,As(A),

(2.4.2) gxg ∈ Λ for all x ∈ Λ and g ∈ G, and

(2.4.3) R0Λ j Λ, where R0 = {r ∈ R| r = r}.
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One checks easily that As + minλ(A) and maxλ,As(A) satisfy the closure conditions

((2.4.2–3) so that both As + minλ(A) and maxλ,As(A) are generalized form parameters.

Recall that a form algebra [2, §1, B] is a triple (A, (−, λ),Λ) where (A, (−, λ)) is an R-

algebra with antistructure and Λ is a (−, λ)-form parameter in the sense of Definition 2.1

on A. The next concept generalizes that of a form algebra.

Definition 2.5. A double parameter algebra or simply parameter algebra is a 6-tuple

(A, (−, λ),Γ, G,As,Λ) where Γ a (−, λ)-symmetric parameter, (A, (−, λ), G,As) is a pre-

pared algebra, and Λ a ((−, λ), G,As)-form parameter. A morphism

(A, (−, λ),Γ, G,As,Λ) −→ (A′, (−, λ′),Γ′, G′, A′
s,Λ

′)

of parameter algebras is a morphism f : (A, (−, λ), G,As) → (A′, (−, λ′), G′, A′
s) of pre-

pared algebras such that f(Γ) j Γ′ and f(Λ) j Λ′.

Let (A, (−, λ)) be an algebra with antistructure. Let M be a left A-module. Recall that

a sesquilinear form on M is a biadditive map B : M ×M → A such that B(am, bn) =

bB(m,n)a for all a, b ∈ A and m, n ∈ M . Let B be a sesquilinear form on M . Define

B : M ×M → A; (m,n) 7→ B(n,m). Although B is not necessarily a sesquilinear form

on M , one checks easily

λB : M ×M → A; (m,n) 7→ λ(B(m,n)),

is a sesquilinear form on M . B is called (−, λ)-Hermitian or simply λ-Hermitian if B =

λB. Let Γ be a (−, λ)-symmetric parameter on A. A (−, λ)-Hermitian form is called

Γ-Hermitian in the sense of [2, §1, C] or Γ-symmetric if B(m,m) ∈ Γ for all m ∈ M . A

Γ-Hermitian form B on M is called nonsingular if M is finitely generated and projective

over A and the map M → M∗; m 7→ B(m,−) is bijective, where

M∗ = HomA(M,A).

The next definition generalizes [2, p.251, 13.1].

Definition 2.6. Let (A, (−, λ),Γ, G,As,Λ) be a parameter algebra. Let M be a left A-

module. An (A, (−, λ),Γ, G,As,Λ)-form or simply (Γ,Λ)-form on M is a pair (B, q) where

B is a Γ-Hermitian form on M and q : M → A/Λ is a map called a q-form, satisfying the

following:

(2.6.1) q(am) = aq(m)a for all m ∈ M and a ∈ R ∪G.

(2.6.2) q(m+ n) − q(m) − q(n) = B(m,n) in A/Λ for all m, n ∈M .

(2.6.3) If α ∈ A/Λ, let
∼
α denote a lifting of α to A. Then for all m ∈M ,

q̃(m) + λq̃(m) ≡ B(m,m) mod As.

The triple (M,B, q) is called an (A, (−, λ),Γ, G,As,Λ)-module or a (Γ,Λ)-module over

(A, (−, λ), G,As). A doubly parametrized form is a (Γ,Λ)-form for some pair (Λ,Γ). A

doubly parametrized module is a (Γ,Λ)-module for some pair (Γ,Λ).
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A (Γ,Λ)-module (M,B, q) is called nonsingular if the Hermitian module (M,B) is

nonsingular. This includes the condition that M is finitely generated and projective over

A. The orthogonal sum of two (Γ,Λ)-modules is defined by

(M,B, q) ⊕ (M ′, B′, q′) = (M ⊕M ′, B ⊕ B′, q ⊕ q′)

where M ⊕ M ′ is the direct sum of M and M ′, (q ⊕ q′)(m,m′) = q(m) + q′(m′), and

B ⊕ B′((m,m′), (n, n′)) = B(m,n) + B′(m′, n′) for all m,n ∈ M and m′, n′,∈ M ′. A

morphism (M,B, q) → (M ′,M ′, q′) is an A-linear map f : M → M ′ which preserves the

Hermitian forms and q-forms, i.e. B′(f(m), f(n)) = B(m,n) and q′(f(m)) = q(m) for all

m, n ∈M .

The symmetric monoidal category of all nonsingular, doubly parametrized modules over

(A, (−, λ),Γ, As,Λ), with morphisms restricted to all isomorphisms will be denoted by

QQQ(A, (−, λ),Γ, G,As,Λ).

The next result generalizes Theorem 1.1 of [2].

Lemma 2.7. Let (A, (−, λ),Γ, G,As,Λ) be a parameter algebra such that Λ = maxλ,As(A).

Then an A-linear map f : M → M ′ of A-modules defines a morphism (M, (B, q)) →

(M ′, (B′, q′)) of (Γ,Λ)-modules if and only if f preserves the Hermitian forms.

Proof. The only if part is trivial. We prove now the if part. Let m ∈ M . Let q̃(m) and
˜q′(f(m)) be liftings of q(m) and q′(f(m)), respectively, to A. It suffices to show that

q̃(m) − ˜q′(f(m)) ∈ Λ. By (2.6.3),

q̃(m) + λq̃(m) ≡ B(m,m) mod As

and

˜q′(f(m)) + λ ˜q′(f(m)) ≡ B′(f(m), f(m)) mod As.

By assumption, B(m,m) ≡ B′(f(m), f(m)). Thus,

q̃(m) − ˜q′(f(m)) ≡ −λ(q̃(m) − ˜q′(f(m))) mod As.

Hence, q̃(m) − ˜q′(f(m)) ∈ Λ. �

Lemma 2.8. Let (A, (−, λ),Γ, G,As,Λ) be a parameter algebra. Let (M1, B1, q1) and

(M2, B2, q2) be (Γ,Λ)-modules. Let B be a Γ-Hermitian form on M1 ⊕ M2 such that

B|M1 = B1 and B|M2 = B2. Then

q : M1 ⊕M2 → A/Λ; (m1, m2) 7→ q1(m1) + q2(m2) + [B(m1, m2)]

is the unique q-form such that q|M1 = q1, q|M2 = q2 and (M,B, q) is a (Γ,Λ)-module.

Proof. It is easy to check that (M,B, q) is a (Γ,Λ)-module. The uniqueness follows from

property (2.6.2) of (Γ,Λ)-modules. �
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Lemma 2.9. Let AAA = (A, (−, λ),Γ, G,As,Λ) be a parameter R-algebra. If either Λ =

maxλ,As(A) or each element of A is a unique R-linear combination
∑

g∈G rgg then the

following property is satisfied:

(2.9.1) If x ∈ As ∩ Γ and
n∑

i=1

rigi = 0, ri ∈ R, gi ∈ G, then
∑

i<j rirjgixgj ∈ Λ.

Furthermore, if AAA satisfies (2.9.1) then every quotient of AAA and every localization

S−1AAA := (S−1A, (−, λ), S−1Γ, G, S−1As, S
−1Λ)

of AAA where S is a multiplicative set in R0 = {r ∈ R | r = r} also satisfies (2.9.1).

Proof. If each element of A is a unique R-linear combination of elements of G then∑n
i=1 rigi = 0 implies each ri = 0. Thus,

∑
i<j rirjgixgj = 0 ∈ Λ. Suppose now that

Λ = maxλ,As(A). By gj = λ−1gjλ,

0 =

(
n∑

i=1

rigi

)
x

(
n∑

i=1

rigi

)

=

n∑

i=1

ririgixgi +
∑

i<j

rirjgixgj + λ
∑

i<j

rirjgixgj.

Since each ririgixgi ∈ As by (2.3.3), it follows that
∑

i<j

rirjgixgj + λ
∑

i<j

rirjgixgj ≡ 0 mod As.

Thus,
∑

i<j rirjgixgj ∈ Λ. The second assertion in the lemma is clear. �

The next result is a generalization of [2, Lemma 13.6].

Lemma 2.10. Let AAA = (A, (−, λ),Γ, G,As,Λ) be a parameter algebra. Suppose that AAA

satisfies (2.9.1) and Γ + As = min−λ(A) + As. If (M,B) is a Γ-Hermitian module and

M is finitely generated and projective over A then there is a map q : M → A/Λ such that

(M,B, q) is a (Γ,Λ)-module.

Proof. Let M ′ be an A-module such that M ⊕ M ′ is finitely generated and free over

A and let B′ be the Γ-Hermitian form on M ′ with constant value 0. Let (N,C) =

(M ⊕M ′, B ⊕B′). If there is a map q : N → A/Λ such that (N,C, q) is a (Γ,Λ)-module

then (M,B, q|M) is a (Γ,Λ)-module. Thus, we can reduce to the case M is finitely

generated and free over A, with A-basis {vi, . . . , vn}. Let B0 and Bk (1 ≦ k ≦ r) denote

the unique A-sesquilinear forms on M such that

B0(vi, vj) =

{
B(vi, vj) (i < j)

0 (otherwise)

Bk(vi, vj) =

{
B(vi, vj) (k = i = j)

0 (otherwise).
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One checks easily that B = B0 + λB0 +
r∑

i=1

Bi where λB0(m,m
′) = λ(B0(m′.m)).

We define now q-forms for B0 + λB0, B1, . . . , Br. Define q0 : M → A/Λ by q(m) =

[B0(m,m)]. For 1 ≦ i ≦ r, it follows from the assumption on Γ and the fact that B is

Γ-Hermitian that Bi(vi, vi) = ci + λci + di for some ci ∈ A and di ∈ As. Since

ci + λci + di ∈ Γ and ci + λci ∈ min−λ(A) j Γ,

we have that di ∈ Γ. Let a ∈ A and suppose a =
∑
rkgk (rk ∈ R, gk ∈ G). By (2.9.1),

the class in A/Λ of the element
∑

k<ℓ rℓrkgℓdigk does not depend on the decomposition of

the element a. For 1 ≦ i ≦ r, define

qi : M → A/Λ;

r∑

j=1

ajvj 7−→ [aiciai +
∑

k<ℓ

rℓrkgℓdigk]

where ai =
∑

k rkgk. One shows straightforward that (M, q0, B0 +λB0) is a (Γ,Λ)-module

and using the manipulations in the proof of Lemma 2.9 that (M,Bi, qi) (1 ≦ i ≦ r) is a

(Γ,Λ)-module. Thus,

(M,B,
r∑

i=0

qi) = (M,B0 + λB0 +
r∑

i=1

Bi,
r∑

i=0

qi)

is a (Γ,Λ)-module. �

Let (A, (−, λ)) be an R-algebra with antistructure and let Λ (resp. Γ) be a (−, λ)-form

parameter (resp. (−, λ)-symmetric parameter) on A. Let

QQQ(A, (−, λ),Λ)

denote the category of nonsingular, Λ-quadratic modules (cf. Sections 1, B and 13 of [2])

and let

HHH(A, (−, λ),Γ)

denote the category of nonsingular Γ-Hermitian modules. Both categories above are

symmetric monoidal categories under orthogonal sum.

Lemma 2.11. Let AAA = (A, (−, λ),Γ, G,As,Λ) be a parameter algebra.

(2.11.1) If As = 0, there is a canonical equivalence

QQQ(A, (−, λ),Λ) −→QQQ(AAA)

(M,B, q) 7−→ (M,B, q)

[f : (M,B, q) → (M1, B1, q1)] 7−→ [f : (M,B, q) → (M1, B1, q1)]

of symmetric monoidal categories.
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(2.11.2) Let AAA′ = (A, (−, λ), G,Γ′, A′
s,Λ

′) be a parameter algebra such that Γ j Γ′, As j

A′
s, and Λ j Λ′. Let π : A/Λ → A/Λ′ denote the canonical map. Then there is a

canonical functor

QQQ(AAA) −→QQQ(AAA′)

(M,B, q) 7−→ (M,B, πq)

[f : (M,B, q) → (M1, B1, q1)] 7−→ [f : (M,B, πq) → (M1, B1, πq1)]

of symmetric monoidal categories.

(2.11.3) If As = A, there is a canonical equivalence

QQQ(AAA) −→HHH(A, (−, λ),Γ)

(M,B, q) 7−→ (M,B)

[f : (M,B, q) −→ (M1, B1, q1)] 7−→ [f : (M,B) −→ (M1, B1)]

of symmetric monoidal categories.

The proof is straightforward.

Lemma 2.12. Let AAA = (A, (−, λ),Γ, G,As,Λ) be a parameter algebra. Let

F : QQQ(AAA) −→HHH(A, (−, λ),Γ); (M, q,B) 7−→ (M,B)

denote the forgetful functor. If AAA satisfies (2.9.1) (resp. Λ = maxλ,As(A)) then F is

surjective on isomorphism classes of objects (resp. an isomorphism of symmetric monoidal

categories).

Proof. The assertions are an immediate consequence of Lemmas 2.7, 2.9, and 2.10. �

Corollary 2.13. Let AAA = (A, (−, λ),Γ, G,As,Λ) be a parameter algebra. If there is an

element x ∈ Center(A) such that x + x = 1 then Γ = max−λ(A), Λ = maxλ,As(A), and

the forgetful functor

QQQ(AAA) −→HHH(A, (−, λ),Γ); (M, q,B) 7−→ (M,B)

is an isomorphism of symmetric monoidal categories.

Proof. By the proof of Lemma 13.8 of [2], Γ = max−λ(A) and Λ = maxλ,As(A). The last

assertion of the corollary follows now from Lemmas 2.9 and 2.12. �

Our next goal is to introduce the notion of positioning module and to study doubly

parametrized forms on positioning modules. A positioning module with empty positioning

data is essentially just an ordinary module, so that our study of doubly parametrized forms

on positioning modules will include as a special case the doubly parametrized modules in

Definition 2.6.

Suppose G is a monoid, i.e. a nonempty set with an associative, binary operation having

an identity element 1G. Recall that a G-set is a set X together with a map G×X → X;

(g, x) 7→ gx, such that (gf)x = g(fx) and 1Gx = x for all g, f ∈ G and x ∈ X.
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Definition 2.14. A positioning algebra is a triple

(A,G,Θ)

where A is an algebra, G a monoidal subset of A, and Θ a G-set. A morphism (A,G,Θ) →

(A′, G′,Θ′) of positioning algebras is a pair (fA, τ) where fA : A→ A′ is a homomorphism

of algebras such that fA(G) j G′ and τ : Θ → Θ′ an equivariant map, i.e. τ(gx) =

fA(g)τ(x) for all g ∈ G and x ∈ Θ.

Definition 2.15. Let (A,G,Θ) be a positioning algebra. A positioning module over

(A,G,Θ) is a pair

(M, θ : Θ →M)

where M is a left A-module and θ : Θ → M a G-equivariant map, i.e. θ(gx) = gθ(x) for

all g ∈ G and x ∈ X. This θ will be called a positioning map of the module. Define

PPP(A,G,Θ)

to be the category whose objects are all positioning modules (P, θ : Θ → P ) over (A,G,Θ)

where P is a finitely generated, projective A-module. A morphism (P, θ : Θ → P ) →

(P ′, θ′ : Θ → P ′) of positioning modules is an A-linear isomorphism f : P → P ′ such that

fθ = θ′. (We use only isomorphisms so that we can define later the hyperbolic functor.)

The category PPP(A,G,Θ) has a sum operation

(P, θ) ⊕ (P ′, θ′) = (P ⊕ P ′, θ ⊕ θ′)

where P ⊕ P ′ denotes the direct sum of P and P ′ and θ ⊕ θ′ is defined by

(θ ⊕ θ′)(x) = (θ(x), θ′(x)).

Let

PPP(A)

denote as usual the category whose objects are all finitely generated, projective A-modules

and whose morphisms are all A-linear isomorphisms between such modules. PPP(A) has a

sum operation defined by direct sum.

Lemma 2.16. Let (A,G,Θ) be a positioning algebra such that Θ is the empty G-set.

Then the canonical functor

PPP(A) −→PPP(A,G,Θ)

P 7−→ (P, φ)

[f : P → P ′] 7−→ [f : (P, φ) → (P ′, φ)]

where φ : Θ → P denotes the empty map is an equivalence of symmetric monoidal cate-

gories.
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This is evident.

If MMM is a symmetric monoidal category, let

K0(MMM)

denote its Grothendieck group.

Lemma 2.17. Let (A,G,Θ) be a positioning algebra. Then the functor

PPP(A) −→PPP(A,G,Θ)

P 7−→ (P, 0)

[f : P → P ′] 7−→ [f : (P, 0) → (P ′, 0)]

where 0 : Θ → P denotes the constant map with value 0 preserves sums and the forgetful

functor

PPP(A,G,Θ) −→PPP(A)

(P, θ) 7−→ P

[f : (P, θ) → (P ′, θ′)] 7−→ [f : P → P ′]

is a sum preserving retract. Moreover, the induced homomorphism

K0(PPP(A)) −→ K0(PPP(A,G,Θ)); [P ] 7−→ [P, 0]

of Grothendieck groups is an isomorphism.

Proof. The assertions for the functor PPP(A) → PPP(A,G,Θ); P 7→ (P, 0), and the forgetful

functor PPP(A,G,Θ) → PPP(A); (P, θ) 7→ P , are clear. Thus, the induced homomorphism

K0(PPP(A)) → K0(PPP(A,G,Θ)); [P ] 7→ [P, 0], is injective, since it has a retract defined by

the forgetful functor. Let (P, θ) ∈ PPP(A,G,Θ). The A-linear isomorphism P⊕P → P⊕P ;

(p, p′) 7→ (p, p′ + p), defines an isomorphism

(2.17.1) (P, θ) ⊕ (P, 0)
∼=

−→ (P, θ) ⊕ (P, θ)

of positioning modules. Thus, [P, 0] = [P, θ]. Thus, the homomorphism K0(PPP(A)) →

K0(PPP(A,G,Θ)) is surjective. �

Definition 2.18. A parameter algebra with positioning data is a 7-tuple

(A, (−, λ),Γ, G,As,Λ,Θ)

where (A, (−, λ),Γ, G,As,Λ) is a parameter algebra and (A,G,Θ) a positioning algebra.

A morphism of parameter algebras with positioning date is defined in the obvious way, i.e.

it is an algebra homomorphism which induces morphisms of parameter and positioning

algebras.

Definition 2.19. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with

positioning data. A doubly parametrized positioning module over (AAA,Θ) is a quadruple

(M,B, q, θ) where (M, θ) is a positioning module and (B, q) a doubly parametrized form

on M over AAA. Morphisms (resp. orthogonal sums) of doubly parametrized positioning
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modules over (AAA,Θ) are defined in the obvious way, i.e. so that they induce morphism

(resp. sums) on the underlying doubly parametrized modules and positioning modules.

The symmetric monoidal category of all nonsingular, doubly parametrized positioning

modules over (AAA,Θ), with morphisms restricted to all isomorphisms will be denoted by

QQQ(AAA,Θ).

Lemma 2.20. If (M,B, q, θ) be a doubly parametrized positioning module over (AAA,Θ)

then

(M,B, q, θ) ∼= (M,B, q,−θ).

Proof. The map M →M ; m 7→ −m, is an isomorphism (M,B, q, θ) → (M,B, q,−θ). �

Lemma 2.21. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with posi-

tioning data. If Θ is the empty set then the canonical functor

QQQ(AAA) →QQQ(AAA,Θ); (M,B, q) 7→ (M,B, q, φ)

where φ : Θ →M is the empty map is an equivalence of symmetric monoidal categories.

This is clear.

Lemma 2.22. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with posi-

tioning data. Then the functor

QQQ(AAA) →QQQ(AAA,Θ); (M,B, q) 7→ (M,B, q, 0)

where 0 : Θ →M denotes the constant map with value 0 preserves sums and the forgetful

functor

QQQ(AAA,Θ) →QQQ(AAA); (M,B, q, θ) 7→ (M,B, q)

is a sum preserving retract. In particular, the induced homomorphism

K0(QQQ(AAA)) → K0(QQQ(AAA,Θ)); [M,B, q] 7→ [M,B, q, 0]

of Grothendieck groups has a retract (but is not in general an isomorphism, as in Lemma 2.17.

The proof is straightforward.

In order to obtain the analogs of Lemmas 2.11, 2.12, and Corollary 2.13 for positioning

modules, we introduce notions of quadratic and Hermitian forms on positioning modules.

Definition 2.23. A form algebra with positioning data is a quintuple

(A, (−, λ),Λ, G,Θ)

where (A, (−, λ),Λ) is a form algebra and (A,G,Θ) a positioning algebra. A morphism

of form algebras with positioning data is a homomorphism of algebras which induces

morphisms of form algebras and positioning algebras.
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Definition 2.24. A symmetric parameter algebra with positioning data is a quintuple

(A, (−, λ),Γ, G,Θ)

such that (A, (−,−λ),Γ, G,Θ) is a form algebra with positioning data.

Definition 2.25. Let (A, (−, λ),Λ, G,Θ) be a form algebra with positioning data. A

quadratic positioning module over (A, (−, λ),Λ, G,Θ) is a quintuple (M,B, q, θ) where

(M, θ) is a positioning module and (B, q) a Λ-quadratic form on M . Morphisms (resp.

orthogonal sums) of quadratic positioning modules over (A, (−, λ),Λ, G,Θ) are defined

in the usual way, i.e. so that they induce morphisms (resp. sums) on the underlying

quadratic modules and positioning modules.

The symmetric monoidal category of all nonsingular, quadratic forms on positioning

modules over (A, (−, λ),Λ, G,Θ), with morphisms restricted to all isomorphisms will be

denoted by

QQQ(A, (−, λ),Λ, G,Θ).

Definition 2.26. Let (A, (−, λ),Γ, G,Θ) be a symmetric parameter algebra with posi-

tioning data. A Hermitian positioning module over (A, (−, λ),Γ, G,Θ) is a triple (M,B, θ)

where (M, θ) is a positioning module and B a Γ-Hermitian form on M . Morphsims (resp.

orthogonal sums) of Hermitian positioning modules over (A, (−, λ),Γ, G,Θ) are defined

in the usual way, i.e. so that they induce morphisms (resp. sums) on the underlying

Hermitian modules and positioning modules.

The symmetric monoidal category of all nonsingular, Hermitian forms on positioning

modules over (A, (−, λ),Γ, G,Θ), with morphisms restricted to all isomorphisms will be

denoted by

HHH(A, (−, λ),Γ, G,Θ).

The next result generalizes Lemma 2.11.

Lemma 2.27. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with posi-

tioning data.

(2.27.1) If As = 0, there is a canonical equivalence

QQQ(A, (−, λ),Λ, G,Θ) →QQQ(AAA,Θ); (M,B, q, θ) 7→ (M,B, q, θ)

of symmetric monoidal categories.

(2.27.2) Let (AAA′,Θ) = (A, (−, λ),Γ′, G,A′
s,Λ

′,Θ) be a parameter algebra with positioning

data such that Γ j Γ′, As j A′
s, and Λ j Λ′. Let π : A/Λ → A/Λ′ denote the

canonical map. Then there is a canonical functor

QQQ(AAA,Θ) →QQQ(AAA′,Θ); (M,B, q, θ) 7→ (M,B, π ◦ q, θ)

of symmetric monoidal categories.
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(2.27.3) If As = A, there is a canonical equivalence

QQQ(AAA,Θ) →HHH(A, (−, λ),Γ, G,Θ); (M,B, q, θ) 7→ (M,B, θ)

of symmetric monoidal categories.

The proof is straightforward.

The next result generalizes Lemma 2.12.

Lemma 2.28. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with posi-

tioning data. Let

F : QQQ(AAA,Θ) →HHH(A, (−, λ),Γ, G,Θ); (M,B, q, θ) 7→ (M,B, θ)

denote the forgetful functor. If the underlying parameter algebra AAA satisfies (2.9.1) (resp.

Λ = maxλ,As(A)) then F is surjective on isomorphism classes of objects (resp. an iso-

morphism of symmetric monoidal categories).

Proof. The proof is the same as that of Lemma 2.12. The positioning maps are only extra

baggage. �

The next result generalizes Corollary 2.13.

Corollary 2.29. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with posi-

tioning data. If there is an element x ∈ Center(A) such that x+x = 1 then Γ = max−λ(A),

Λ = maxλ,As(A), and the forgetful functor

QQQ(AAA,Θ) →HHH(A, (−, λ),Γ, G,Θ); (M, (B, q), θ) 7→ (M,B, θ)

is an isomorphism of symmetric monoidal categories.

Proof. The proof is the same as that of Corollary 2.13, except the reference to Lemma 2.12

is replaced by one to Lemma 2.28. �

Let CCC be a subcategory of PPP(A) satisfying the next assumption.

Assumption 2.30. CCC contains A and is closed under isomorphisms, direct sums, and

dualization P 7→ P ∗.

Definition 2.31. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with

positioning data. Let (P, θ) ∈ PPP(A,G,Θ). Let B′
P denote the sesquilinear form on

P ⊕ P ∗ defined by B′
P ((p, f), (p′, f ′)) = f(p′). Let

BP = B′
P + λB

′

P

where λB
′

P (m,m′) = λ(B′
P (m′, m)). Let

qP : P ⊕ P ∗ → A/Λ; m 7→ [B′
P (m,m)].

One checks easily that the construction (P, θ) 7→ H(P, θ), where

H(P, θ) = (P ⊕ P ∗, BP , qP , θ),
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defines a sum preserving functor

H : PPP(A,G,Θ) −→QQQ(AAA,Θ)

(P, θ) 7−→ H(P, θ)

[f : (P, θ) → (P ′, θ′)] 7−→ [f ⊕ f ∗−1 : H(P, θ) → H(P ′, θ′)]

called the hyperbolic functor. The object H(P, θ) is called the hyperbolic module on (P, θ)

and H(A, θ) is a called a hyperbolic plane. H(P, θ) is called a CCC-hyperbolic module whenever

P ∈ CCC.

Definition 2.32. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with

positioning data. Let

PPP(AAA,Θ)

denote the symmetric monoidal category whose objects are all quadruples (P, b0, q0, θ)

where (P, θ) ∈ PPP(A,G,Θ) and (b0, q0) is a doubly parametrized form on P ∗ over AAA. A

morphism (P, b0, q0, θ) → (P ′, b′0, q
′
0, θ

′) is an A-linear isomorphism f : P → P ′ such that f

defines a morphism (P, θ) → (P ′, θ′) of positioning modules and f ∗−1 defines a morphism

(P ∗, b0, q0) → (P ′∗, b′0, q
′
0) of doubly parametrized modules over AAA. Sums are defined as in

Definitions 2.6 and 2.15.

Let (P, b0, q0, θ) ∈ PPP(AAA,Θ). Let BP,b0 denote the Γ-Hermitian form on P ⊕ P ∗ defined

by

BP,b0((p, f), (p′, f ′)) = BP ((p, f), (p′, f ′)) + b0(f, f
′)

where BP is defined as in the paragraph above. Define

qP,q0 : P ⊕ P ∗ → A/Λ; (p, f) 7→ [f(p)] + q0(f).

By Lemma 2.8, (BP,b0, qP,q0) is a doubly parametrized form on P ⊕P ∗ over AAA. One checks

easily that the construction (P, b0, q0, θ) 7→ M(P, b0, q0, θ), where

M(P, b0, q0, θ) = (P ⊕ P ∗, BP,b0, qP,q0, θ),

defines a sum preserving functor

M : PPP(AAA,Θ) −→QQQ(AAA,Θ)

(P, b0, q0, θ) 7−→ M(P, b0, q0, θ)

[f : (P, b0, q0, θ) → (P ′, b′0, q
′
0, θ

′)] 7−→ [f ⊕ f ∗−1 : M(P, b0, q0, θ) → M(P ′, b′0, q
′
0, θ

′)]

called the metabolic functor. The object M(P, b0, q0, θ) is called the metabolic module

on (P, b0, q0, θ) and M(A, b0, q0, θ) is called a metabolic plane. M(P, b0, q0, θ) is called a

CCC-metabolic module whenever P ∈ CCC.
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Lemma 2.33. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with posi-

tioning data. Then the diagram

PPP(A,G,Θ)
I //

H &&NNNNNNNNNNN
PPP(AAA,Θ)

Mxxrrrrrrrrrr

QQQ(AAA,Θ)

of symmetric monoidal categories commutes, where I((P, θ)) = (P, 0, 0, θ).

This lemma is obvious.

Definition 2.34. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with

positioning data. Let (M,B, q, θ) ∈ QQQ(AAA,Θ). An A-submodule L j M is called totally

isotropic if B and q are trivial on L, i.e. B(m,m′) = 0 and q(m) = 0 for all m,m′ ∈ L.

The positioning function θ is called totally isotropic if B(θ(x), θ(x′)) and q(θ(x)) = 0 for

all x, x′ ∈ Θ. A totally isotropic, A-direct summand L j M which contains Image(θ)

is called a sublagrangian. If, in addition, L ∈ CCC then L is called a CCC-sublagrangian. A

sublagrangian (resp. CCC-sublagrangian) L such that L = L⊥, where

L⊥ = {m ∈M | B(m, ℓ) = 0 ∀ℓ ∈ L},

is called a Lagrangian (resp. CCC-Lagrangian). (M,B, q, θ) is called a null module (resp.

CCC-null module), if it contains a Lagrangian (resp. CCC-Lagrangian).

The next result generalizes Lemma 2.8 of [2].

Lemma 2.35. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with posi-

tioning data. Let P j M be a Lagrangian in (M,B, q, θ) and let i : P →֒ M denote

the natural embedding. Then the A-linear map M 7→ P ∗; m 7→ B(m,−), has a splitting

i′ : P ∗ →M and for any splitting i′, if b0 = B|Image(i′) and q0 = q|Image(i′) then the A-linear

map i⊕ i′ : P ⊕ P ∗ →M defines an isomorphism M(P, b0, q0, θ) → (M,B, q, θ) of doubly

parametrized, positioning modules.

Proof. Since B is nonsingular and P is a direct summand of M , it follows that the A-linear

map M → P ∗; m 7−→ B(m,−), is surjective. Since M is projective, it follows that P is

projective and hence, P ∗ is projective. Thus, the map M → P above has a splitting, say

i′. Let K = Ker[M → P ∗]. By definition,

K = {m ∈M | B(m, p) = 0 ∀p ∈ P} = P⊥.

Since P is a Lagrangian, it follows that P = P⊥ = K. Thus, the A-linear map i ⊕ i′ :

P⊕P ∗ →M is an isomorphism of A-modules. Defining (b0, q0) as in the lemma, one checks

that i ⊕ i′ defines an isomorphism M(P, b0, q0, θ) → (M,B, q, θ) of doubly parametrized,

positioning modules. �

The next result generalizes Lemmas 2.6 and 2.7 of [2].



EQUIVARIANT INTERSECTION THEORY AND SURGERY THEORY 19

Corollary 2.36. Let (M,B, q, θ) ∈ QQQ(AAA,Θ) and let P j M be a sublagrangian. Let

i : P →֒ M denote the natural embedding and let i′ : P ∗ → M be a splitting of the A-

linear map M → P ∗; m 7→ B(m,−). Let b0 = B|Image(i′) and q0 = q|Image(i′). Then the

A-linear map i⊕ i′ : P ⊕P ∗ → M defines an embedding M(P, b0, q0, θ) → (M,B, q, θ) and

if N = Image(i⊕ i′) then

(M,B, q, θ) = (N,B|N , q|N , θ) ⊕ (N⊥, B|N⊥, q|N⊥, 0).

Furthermore, the Hermitian form B and the map q are well defined on P⊥/P and if

j : P⊥ →֒M denotes the natural embedding then j induces an isomorphism

(P⊥/P,B|P⊥, q|P⊥, 0) → (N⊥, B|N⊥, q|N⊥, 0).

Proof. As in the proof of Lemma 2.35, one shows that i⊕ i′ defines an embedding

M(P, b0, q0, θ) → (M,B, q, θ).

By Corollary 2.3 of [2] and Lemma 2.8,

(M,B, q, θ) = (N,B|N , q|N , θ) ⊕ (N⊥, B|N⊥, qN⊥ , 0).

It follows that P⊥ = P ⊕ N⊥. One checks easily that the isomorphism j : P⊥ →

P ⊕ N⊥ followed by the canonical projection P ⊕ N⊥ → N⊥ defines an isomorphism

(P⊥/P,B|P⊥, q|P⊥, 0) → (N⊥, B|N⊥, q|N⊥, 0). �

The next result generalizes Lemma 2.9 of [2].

Lemma 2.37. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with posi-

tioning data. Let (M,B, q, θ) ∈ QQQ(AAA,Θ). Then the diagonal submodule {(m,m)| m ∈M}

of M ⊕M is a Lagrangian in (M,B, q, θ) ⊕ (M,−B,−q, θ).

The proof is straightforward.

Corollary 2.38. The family of metabolic planes in QQQ(AAA,Θ) is cofinal in QQQ(AAA,Θ), i.e.

given MMM ∈ QQQ(AAA,Θ), there is an MMM ′ ∈ QQQ(AAA,Θ) and metabolic planes MMM 1, . . . , MMM r ∈

QQQ(AAA,Θ) such that

MMM ⊕MMM ′ ∼= MMM1 ⊕ · · · ⊕MMM r.

Proof. From Lemmas 2.37 and 2.35, it follows that metabolic modules M(P ′, b′0, q
′
0, θ)

are cofinal in QQQ(AAA,Θ). Choosing P ∈ PPP(A) such that P ′ ⊕ P is free and forming

the orthogonal sum M(P ′, b′0, q
′
0, θ) ⊕ M(P, 0, 0, 0), one obtains that metabolic modules

M(F, b0, q0, θ) on finitely generated, free modules F are cofinal in QQQ(AAA,Θ). We shall show

that M(F, b0, q0, θ) is isomorphic to an orthogonal sum of metabolic planes. Let (B, q)

denote the doubly parametrized form (BF,b0, qF,q0) on M(F, b0, q0, θ).

Let {e1, . . . , er} be a basis for F and {f1, . . . , fr} ∈ F ∗ its dual basis. Let c denote the

(unique) sesquilinear form on F ∗ such that

c(fi, fj) =

{
−b0(fi, fj) (i < j)

0 (otherwise).
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Let α : F ∗ → F denote the (unique) A-linear map such that

B(α(fi), fj) = c(fi, fj) (1 ≦ i, j ≦ r).

Let id : F → F ∗ denote the identity map. Define f ′
i = (id + α)fi, Mi = Aei + Af ′

i , Bi =

B|Mi
and qi = q|Mi

(1 ≦ i ≦ r). Further define θi : Θ → Aei such that θ(x) =
∑r

i=1 θi(x)

for all x ∈ Θ. Then M(F, b0, q0, θ) = (F ⊕ F ∗, B, q, θ) =
⊕r

i=1(Mi, Bi, qi, θi). Moreover,

one sees easily (see the proof of Lemma 2.35) that each (Mi, Bi, qi, θi) is isomorphic to a

metabolic plane. �

Definition 2.39. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with

positioning data. Let (M,B, q, θ) be a doubly parametrized, positioning module over

(AAA,Θ). An ordered pair (e, f) of elements in M is called a metabolic pair if

B(e, e) = 0, B(f, e) = 1, q(e, e) = q(f, f) = 0,

and

B(θ(x), e) = 0 (∀x ∈ Θ).

If a metabolic pair (e, f) generates M as an A-module then it is called a metabolic basis for

(M,B, q, θ). In this case, (M,B, q, θ) is a metabolic plane in the sense of the paragraph

subsequent to Definition 2.32.

Lemma 2.40. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with posi-

tioning data.

(2.40.1) A doubly parametrized, positioning module over (AAA,Θ) has a metabolic basis if and

only if it is isomorphic to a metabolic plane.

(2.40.2) If (e, f) is a metabolic basis for (M,B, q, θ) and a ∈ As then (e, f + ae) is a

metabolic basis for (M,B, q, θ) and B(f + ae, f + ae) = B(f, f) + a + λa.

Proof. We prove the only if part of (2.40.1). Let (e, f) be a metabolic basis for the doubly

parametrized, positioning module (M,B, q, θ). Let x = 1 ∈ A and let y ∈ A∗ be its dual.

Let α : A⊕A∗ →M ; cx+dy 7→ ce+df . Let b0 : A∗×A∗ → A; (dy, d′y) 7→ B(df, d′f) and

let q0 : A∗ → A/Λ; dy 7→ q(df). Let τ : Θ → A be the unique map such that the diagram

Θ
τ //

θ ##H
HHHHHHHH A⊕ A∗

α∼=
��
M

commutes. Then (b0, q0) is a doubly parametrized form on A∗ and α defines an isomor-

phism M(A, b0, q0, τ) → (M,B, q, θ).

Next we prove the if part of (2.40.1). Let (B, q) denote the doubly parametrized form

on the metabolic plane M(A, b0, q0, θ). Let e = 1 ∈ A and y ∈ A its dual. By definition,

B(e, e) = 0, q(e) = 0, and B(θ(t), e) = 0 for all t ∈ Θ. Let a ∈ Aq be a representative of
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q(y) and let f = y − ae. Then

B(f, e) = B(y, e) −B(e, e)a = B(y, e) = 1 and

q(f) = q(y) + q(−ae) + [B(y,−ae)] (by (2.6.2))

= q(y) + [−aB(y, e)] = q(y) − [a] = 0.

Thus, (e, f) is a metabolic basis for M(A, b0, q0, θ).

The assertion (2.40.2) can be proved by a straightforward computation. �

Lemma 2.41. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with posi-

tioning data. Let (P, b0, q0, θ) ∈ PPP(AAA,Θ). Let β : P ∗ → P denote the (unique) A-linear

map such that f ′(β(f)) = b0(f
′, f) for all f ′ ∈ P ∗. Then the A-linear isomorphism




IP 0 0 0
0 IP ∗ 0 IP ∗

0 0 IP 0
0 0 0 IP ∗







IP 0 0 0
0 IP ∗ 0 0

−IP 0 IP 0
0 0 0 IP ∗







IP 0 0 0
0 IP ∗ 0 0
0 −β IP 0
0 0 0 IP ∗


 :

P ⊕ P ∗ ⊕ P ⊕ P ∗ −→ P ⊕ P ∗ ⊕ P ⊕ P ∗;



p
f
p′

f ′


 7−→




p
f + f ′

p′ − p− β(f)
f ′


 ,

defines an isomorphism

M(P, b0, q0, θ) ⊕ H(P, 0)
∼=

−→ M(P, b0, q0, θ) ⊕ M(P,−b0,−q0,−θ)

of doubly parametrized, positioning modules over (AAA,Θ).

Proof. One checks first that the A-linear map in the lemma preserves the positioning maps

and Hermitian forms. The one can use Lemma 2.8 to simplify checking that it preserves

the q-forms. �

Let A be an algebra with antistructure (−, λ).

Definition 2.42. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with

positioning data. Define

PPP(AAA,Θ)CCC

QQQ(AAA,Θ)CCC

to be the full, symmetric monoidal subcategories of PPP(AAA,Θ) and QQQ(AAA,Θ), respectively,

such that the underlying A-module of each object lies in CCC.

Let

DDD j CCC

be a subcategory which contains A and has the same closure properties as CCC (see Assump-

tion 2.30).
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Definition 2.43. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with

positioning data. Define

KQ0(AAA,Θ)CCC = K0(QQQ(AAA,Θ)CCC)

WQ0(AAA,Θ)DDD,CCC = KQ0(AAA,Θ)CCC/〈DDD-null modules〉

WQ0(AAA,Θ)CCC = WQ0(AAA,Θ)CCC,CCC

KQ0(AAA,Θ) = KQ0(AAA,Θ)PPP(AAA) and

WQ0(AAA,Θ) = WQ0(AAA,Θ)PPP(AAA).

Proposition 2.44. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with

positioning data. Let H : DDD → QQQ(AAA,Θ)CCC; P 7→ H(P, 0) = M(P, 0, 0). Then the canonical

homomorphisms below are isomorphisms:

Coker[H : K0(DDD) → KQ0(AAA,Θ)CCC]
∼=

−→ Coker[M : K0(PPP(AAA,Θ)DDD) → KQ0(AAA,Θ)CCC]
∼=

−→WQ0(AAA,Θ)DDD,CCC.

Proof. The first isomorphism follows from Lemma 2.41 and the second from Lemma 2.35.

�

3. Invariants of forms and G-surgery obstruction groups

In geometry, not all nonsingular, doubly parametrized, positioning modules can arise.

Precisely those modules which are trivial under a certain invariant will occur. This means

that from a geometric point of view, we must study K-groups of nonsingular, doubly

parametrized, positioning modules vanishing under a certain kind of invariant. This

section describes first in a general context the notion of invariant that will be used and

then sets up the K-theoretic framework needed to deal with forms of invariant zero. This

is done abstractly in order to focus attention on essentials. Then we define the specific

invariant that is required in the geometric context and classify the metabolic planes of

invariant zero. The classification is crucial for proving our main surgery results. At the

end of the section, we use the geometric invariant to define the G-equivariant surgery

obstruction groups.

Definition 3.1. LetQQQ be a symmetric monoidal category. (We have in mind the symmet-

ric monoidal category QQQ(A, (−, λ),Γ, G,As,Λ,Θ) of all nonsingular, doubly parametrized,

positioning modules.) Let ((abelian groups)) denote the symmetric monoidal category of

all abelian groups, under direct sum. An invariant ∇ on QQQ with values in a symmetric

monoidal subcategory AAA of ((abelian groups)) consists of a functor

α : QQQ −→AAA

(covariant or contravariant) of symmetric monoidal categories and for each object M ∈ QQQ,

an element

∇(M) ∈ α(M)
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such that the following holds:

(3.1.1) If f : M → M ′ is a morphisms in QQQ then α(f)(∇(M)) = ∇(M ′) if α is covariant

and ∇(M) = α(f)(∇(M ′)) if α is contravariant.

(3.1.2) The natural identification αM⊕M ′ : α(M ⊕M ′) → α(M) ⊕ α(M ′) included in the

definition of α has the property that αM⊕M ′(∇(M ⊕M ′)) = (∇(M),∇(M ′)).

If ∇ is an invariant on QQQ, let

∇QQQ

denote the full subcategory of QQQ consisting of all objects M ∈ QQQ such that ∇(M) = 0.

Call an invariant ∇ on QQQ a trivial invariant, if ∇(M) = 0 ∈ α(M) for all objects M ∈ QQQ,

in which case ∇QQQ = QQQ.

Below, we shall be confronted with a family ∇ of invariants ∇i where i ranges through

an index set I. In this situation, one constructs in the obvious way an invariant

∇′ =
⊕

i∈I
∇i by ∇′(M) = (∇i(M))i∈I ∈

⊕

i∈I

αi(M)

and defines

∇QQQ = ∇′QQQ.

Lemma 3.2. Let QQQ be a symmetric monoidal category and ∇ invariant on QQQ. Then

∇QQQ is closed under isomorphism classes, sums and summands. In particular, ∇QQQ is a

symmetric monoidal subcategory of QQQ.

Proof. The assertions follow immediately from the definition of an invariant. �

Lemma 3.3. Let QQQ denote the symmetric monoidal category QQQ(A, (−, λ),Γ, G,As,Λ,Θ).

Let MMM denote the full subcategory of QQQ generated under orthogonal sum by all metabolic

planes. Let ∇ be an invariant on QQQ. Suppose that for each object (M,B, q, θ) ∈ QQQ,

∇(M,−B,−q, θ) = −∇(M,B, q, θ) and ∇(H(A, 0)) = 0. Then ∇MMM is cofinal in ∇QQQ.

(In practice, this means that ∇QQQ has a good class of cofinal objects.)

Proof. Given an object (M,B, q, θ) ∈ ∇QQQ, we must show there is an object (M ′, B′, q′, θ′)

∈ ∇QQQ such that

(M,B, q, θ) ⊕ (M ′, B′, q′, θ′) ∈ ∇MMM.

Suppose (M,B, q, θ) ∈ ∇QQQ. By assumption, ∇(M,−B,−q, θ) = −∇(M,B, q, θ) = 0.

Thus, by Lemma 3.2,

∇((M,B, q, θ) ⊕ (M,−B,−q, θ)) = 0.

By Lemma 2.37, (M,B, q, θ)⊕(M,−B,−q, θ) has a Lagrangian and hence, by Lemma 2.35,

is isomorphic to a metabolic module. The proof of Corollary 2.38 shows there is a hyper-

bolic module H(P, 0) and metabolic planes MMM 1, . . . , MMM r such that

(M,B, q, θ) ⊕ (M,−B,−q, θ) ⊕ H(P, 0) ∼= MMM1 ⊕ · · · ⊕MMM r.



24 ANTHONY BAK AND MASAHARU MORIMOTO

By assumption and Lemma 3.2, ∇(H(P, 0)) = 0 and

∇((M,B, q, θ) ⊕ (M,−B,−q, θ) ⊕ H(P, 0)) = 0.

Thus, again by Lemma 3.2, ∇(MMM i) = 0 for all 1 ≦ i ≦ r. �

Lemma 3.4. Let QQQ denote the symmetric monoidal category QQQ(A, (−, λ),Γ, G,As,Λ,Θ)

of nonsingular, doubly parametrized, positioning modules over the parameter algebra (A,

(−, λ),Γ, G,As,Λ,Θ) with positioning data. Let ∇ be an invariant on QQQ. If ∇ vanishes on

the metabolic module M(P, b0, q0, θ) and on the hyperbolic module H(P, 0) then ∇ vanishes

on M(P,−b0,−q0,−θ).

Proof. By Lemma 2.41, there is an isomorphism

M(P, b0, q0, θ) ⊕ H(P, 0)
∼=

−→ M(P, b0, q0, θ) ⊕ M(P,−b0,−q0,−θ).

Since ∇ vanishes on M(P, b0, q0, θ) and H(P, 0), it follows from Lemma 3.2 that ∇ vanishes

on M(P,−b0,−q0,−θ). �

Let A be an algebra with antistructure (−, λ) and let DDD j CCC be as in Definition 2.43.

Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with positioning data.

Let ∇ be an invariant on QQQ(AAA,Θ). Define

∇QQQ(AAA,Θ)CCC

to be the full, symmetric monoidal subcategory of ∇QQQ(AAA,Θ) such that the underlying

A-module of each object lies in CCC, i.e. ∇QQQ(AAA,Θ)CCC = ∇(QQQ(AAA,Θ)CCC).

Definition 3.5. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with

positioning data. Let ∇ be an invariant on QQQ(AAA,Θ) such that ∇(H(A, 0)) = 0. Define

∇KQ0(AAA,Θ)CCC = K0(∇QQQ(AAA,Θ)CCC)

∇WQ0(AAA,Θ)DDD,CCC = ∇KQ0(AAA,Θ)CCC/〈DDD-null modules in ∇QQQ(AAA,Θ)〉.

Define

∇WQ0(AAA,Θ)CCC = ∇WQ0(AAA,Θ)CCC,CCC

and

∇KQ0(AAA,Θ) = ∇KQ0(AAA,Θ)PPP (A)

∇WQ0(AAA,Θ) = ∇WQ0(AAA,Θ)PPP (A).

Proposition 3.6. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ,Θ) be a parameter algebra with

positioning data. Let ∇ be an invariant on QQQ(AAA,Θ) such that ∇(H(A, 0)) = 0. Then ∇

vanishes on all DDD-null modules in QQQ(AAA,Θ) and the canonical homomorphism

Coker[H : K0(DDD) → ∇KQ0(AAA,Θ)CCC]
∼=

−→ ∇WQ0(AAA,Θ)DDD,CCC

is an isomorphism.

Proof. The assertions follow directly from Lemmas 2.41, 3.2 and 3.4. �
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In order to define surgery obstruction groups, we shall need a refinement of the situation

above. For this, we adopt the following notation and assumption.

Assumption 3.7. We shall assume that (AAA, Θ̃) = (A, (−, λ),Γ, G,As,Λ, Θ̃) is a parame-

ter algebra with positioning data such that Θ̃ has a free action of the multiplicative group

{±1} of two elements, which commutes with the action of G. (Hence Θ̃ is regarded as a

G× {±1}-set.) Let

(AAA2,Θ2) = (A2, (−λ),Γ2, G2, A2,s,Λ2,Θ2)

be a parameter algebra with positioning data where A2 = A/2A, (−, λ) denotes the an-

tistructure on A2 induced by that on A, Γ2 = Image[Γ → Λ2], G2 = Image[G → A2],

A2,s = Image[As → A2], Λ2 = Image[Λ → A2], and Θ2 is a G2-set. We shall assume that

the pair (Θ̃,Θ2) is equipped with an equivariant map

p : Θ̃ → Θ2,

namely p((g, ǫ)x) = [g]p(x) for g ∈ G, ǫ ∈ {±1} and x ∈ Θ̃, where [g] ∈ A2 is the image

of g. (The action of {±1} on Θ̃ and Θ2 is introduced in order to handle orientation

considerations in the next section.) If M is an A-module, let M2 = M/2M . If (M,B, q) is

a doubly parametrized module over (A, (−, λ),Γ, G,As,Λ), let (M2, B2, q2) be the induced

doubly parametrized module over (A2, (−, λ),Γ2, A2,s, G2,Λ2).

Let (AAA, Θ̃) = (A, (−, λ),Γ, G,As,Λ, Θ̃) be a parameter algebra with positioning data.

Let

Q̃QQ(AAA, Θ̃)

denote the full subcategory of QQQ(AAA, Θ̃) of all objects (M,B, q, θ) such that θ is {±}-

equivariant, i.e. θ(ǫx) = ǫθ(x) for all ǫ ∈ {±1} and x ∈ Θ. Then Q̃QQ(AAA, Θ̃) is closed under

orthogonal sums and orthogonal summands and in particular, is a symmetric monoidal

subcategory of QQQ(AAA, Θ̃). Finally, if ∇ is an invariant on QQQ(AAA, Θ̃) then ∇ is defined on

Q̃QQ(AAA, Θ̃) and so the symmetric monoidal subcategory

∇Q̃QQ(AAA, Θ̃)

of Q̃QQ(AAA, Θ̃) is defined by Definition 3.1 and closed under orthogonal summands by Lemma 3.2.

If Θ is a G-set and Θ̃ = Θ × {±1} then

Q̃QQ(ÃAA, Θ̃) = QQQ(AAA,Θ).

Let AAA = (A, (−, λ),Γ, G,As,Λ) be a parameter algebra and

ΘΘΘ = (Θ̃, p,Θ2).

Let

QQQ(AAA,ΘΘΘ)
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denote the symmetric monoidal category whose objects are all quintuples (M,B, q, θ, θ2)

such that (M,B, q, θ) ∈ Q̃QQ(AAA, Θ̃), (M2, B2, q2, θ2) ∈ QQQ(AAA2,Θ2), and the diagram

Θ̃
θ //

p

��

M

��
Θ2

θ2

// M2

commutes. A morphism α : (M,B, q, θ, θ2) → (M ′, B′, q′, θ′, θ′2) is an A-linear map α :

M → M ′ which defines a morphism (M,B, q, θ) → (M ′, B′, q′, θ′) in Q̃QQ(AAA, Θ̃) and makes

the diagram

Θ2
θ2 //

θ′2   B
BB

BB
BB

B
M2

α2

��
M ′

2

commute where α2 is the A2-linear map M2 →M ′
2 induced by α. The orthogonal sum of

objects is defined in the obvious way, namely

(M,B, q, θ, θ2) ⊕ (M ′, B′, q′, θ′, θ′2) = (M ⊕M ′, B ⊕ B′, q ⊕ q′, θ ⊕ θ′, θ2 ⊕ θ′2).

Furthermore, if ∇ is an invariant on QQQ(AAA,ΘΘΘ) then the symmetric monoidal subcategory

∇QQQ(AAA,ΘΘΘ)

of QQQ(AAA,ΘΘΘ) is defined in Definition 3.1 and is closed under orthogonal summands by

Lemma 3.2.

If the equivariant map p : Θ̃ → Θ2 is surjective, the forgetful functor

QQQ(AAA,ΘΘΘ) → Q̃QQ(AAA, Θ̃)

is an isomorphism of symmetric monoidal categories.

Our next goal is to prove the analogs of Lemmas 3.3, 3.4 and Proposition 3.6, after

replacing QQQ(AAA,Θ) by QQQ(AAA,ΘΘΘ). This requires extending the language we have for the

category QQQ(AAA,Θ) to the category QQQ(AAA,ΘΘΘ).

Let DDD j CCC be the symmetric monoidal subcategories of PPP (A) appearing in Defini-

tion 2.43.

Definition 3.8. Let (M,B, q, θ, θ2) ∈ QQQ(AAA,ΘΘΘ). An A-submodule L j M is called totally

isotropic if q and B are trivial on L (and so B2 and q2 are trivial on Image[L → M2]).

The positioning function θ (resp. θ2) is called totally isotropic if B(θ(t), θ(t′)) = 0 and

q(θ(t)) = 0 for all t, t′ ∈ Θ̃ (resp. B2(θ2(u), θ2(u
′)) = 0 and q(θ2(u)) = 0 for all u, u′ ∈ Θ2).

A totally isotropic, A-direct summand L j M such that Image(θ) j L and Image(θ2) j

Image[L → M2] is called a sublagrangian. If, in addition, L ∈ CCC then L is called a CCC-

sublagrangian. A sublagrangian (resp. CCC-sublagrangian) L such that L = L⊥ := {m ∈

M | B(m, ℓ) = 0 ∀ ℓ ∈ L} is called a Lagrangian (resp. CCC-Lagrangian). (M,B, q, θ, θ2)
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is called a null module (resp. CCC-null module), if it contains a Lagrangian (resp. CCC-

Lagrangian). (M,B, q, θ, θ2) is called hyperbolic, if (M,B, q, θ) = H(P, θ) and Image(θ2) j

P2; in this case, we write (M,B, q, θ, θ2) = H(P, θ, θ2). (M,B, q, θ, θ2) is called metabolic, if

(M,B, q, θ) = M(P, b0, q0, θ) and Image(θ2) j P2; in this case, we write (M,B, q, θ, θ2) =

M(P, b0, q0, θ, θ2). Objects of the kind H(A, θ, θ2) (resp. M(A, b0, q0, θ, θ2)) are called

hyperbolic (resp. metabolic) planes.

Definition 3.9. Let (M,B, q, θ, θ2) ∈ QQQ(AAA,ΘΘΘ). An ordered pair (e, f) of elements of

M is called a metabolic pair if it is a metabolic pair in the sense of Definition 2.39 for

(M,B, q, θ) and if B2(θ2(y), e) = 0 for all y ∈ Θ2. If a metabolic pair (e, f) generates M

as an A-module then it is called a metabolic basis for (M,B, q, θ, θ2).

Proposition 3.10. The analog of anyone of Lemmas 2.35, 2.37, 2.40, 2.41 and Corol-

laries 2.36, 2.38 is valid when QQQ(AAA,Θ) is replaced by QQQ(AAA,ΘΘΘ).

The proofs are analogous to those of the original results. There are no pitfalls. Details

are left to the reader.

Lemma 3.11. Let MMM denote the full subcategory of QQQ(AAA,ΘΘΘ) generated under orthog-

onal sum by all metabolic planes. Let ∇ be an invariant on QQQ(AAA,ΘΘΘ). Suppose that

for each object (M,B, q, θ, θ2) ∈ QQQ(AAA,ΘΘΘ), ∇(M,−B,−q, θ, θ2) = −∇(M,B, q, θ, θ2) and

∇(H(A, 0, 0)) = 0. Then ∇MMM is cofinal in ∇QQQ(AAA,ΘΘΘ).

Proof. Thanks to Proposition 3.10, the proof is the same as that of Lemma 3.3. �

Lemma 3.12. Let ∇ be an invariant on QQQ(AAA,ΘΘΘ). If ∇ vanishes on the metabolic mod-

ule M(P, b0, q0, θ, θ2) and on the hyperbolic module H(P, 0, 0) then ∇ vanishes also on

M(P,−b0,−q0,−θ,−θ2) and

M(P, b0, q0, θ, θ2) ⊕ H(P, 0, 0) ∼= M(P, b0, q0, θ, θ2) ⊕ M(P,−b0,−q0,−θ,−θ2)

under the isomorphism in Lemma 2.41.

Proof. Thanks to Proposition 3.10, the proof is the same as that of Lemma 3.4. �

Let ∇ be an invariant on QQQ(AAA,ΘΘΘ). Let

∇QQQ(AAA,ΘΘΘ)CCC

denote the full, symmetric monoidal subcategory of ∇QQQ(AAA,ΘΘΘ) such that the underlying

A-module of each object lies in CCC. Let

QQQ(AAA,ΘΘΘ)CCC = TQQQ(AAA,ΘΘΘ)CCC

where T denotes a trivial invariant.

Definition 3.13. Let ∇ be an invariant on QQQ(AAA,ΘΘΘ) such that ∇(H(A, 0, 0)) = 0. Define

∇KQ0(AAA,ΘΘΘ)CCC = K0(∇QQQ(AAA,ΘΘΘ)CCC)
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∇WQ0(AAA,ΘΘΘ)DDD,CCC = ∇KQ0(AAA,ΘΘΘ)CCC/〈DDD-null modules in ∇QQQ(AAA,ΘΘΘ)〉.

Define

∇WQ0(AAA,ΘΘΘ)CCC = ∇WQ0(AAA,ΘΘΘ)CCC,CCC

and

∇KQ0(AAA,ΘΘΘ) = ∇KQ0(AAA,ΘΘΘ)PPP (A)

∇WQ0(AAA,ΘΘΘ) = ∇WQ0(AAA,ΘΘΘ)PPP (A).

The next proposition is a generalization of Proposition 3.6.

Proposition 3.14. Let ∇ be an invariant on QQQ(AAA,ΘΘΘ) such that ∇(H(A, 0, 0)) = 0 where

P ∈ DDD, θ = 0, and θ2 = 0. Then ∇ vanishes on all DDD-null modules in QQQ(AAA,ΘΘΘ) and the

canonical homomorphism

Coker[H : K0(DDD) → ∇KQ0(AAA,ΘΘΘ)CCC] −→ ∇WQ0(AAA,ΘΘΘ)DDD,CCC

is an isomorphism.

Proof. The assertions follow directly from Lemmas 3.2 and 3.12. �

Corollary 3.15. Let ∇ be an invariant on QQQ(AAA,ΘΘΘ) such that for any (M,B, q, θ, θ2) ∈

QQQ(AAA,ΘΘΘ),∇(M,B, q, θ, θ2) = −∇(M,−B,−q, θ, θ2) and ∇(H(A, 0, 0)) = 0. Let BBB denote

a subcategory of PPP (A), which contains A, is closed under isomorphisms, direct sums, and

dualization, and CCC j BBB. Then the canonical homomorphisms

∇KQ0(AAA,ΘΘΘ)DDD,CCC −→ ∇KQ0(AAA,ΘΘΘ)DDD,BBB and

∇WQ0(AAA,ΘΘΘ)DDD,CCC −→ ∇WQ0(AAA,ΘΘΘ)DDD,BBB

are injective.

Proof. The injectivity of the first homomorphism follows from Lemma 3.11 and of the

second from Lemma 3.11 and Proposition 3.14. �

The rest of this section will be concerned with certain invariants which arise geometri-

cally. A prototype for these invariants is given in the following lemma.

Lemma 3.16. Let (AAA,Θ) = (A, (−, λ),Γ, G,As,Λ, ,Θ) be a parameter algebra with po-

sitioning data. Let Γ′ j Γ be a (−, λ)-symmetric parameter on A. Give Γ/Γ′ the A-

module structure defined by a[γ] = [aγa] for all a ∈ A and γ ∈ Γ. For each object

(M,B, q, θ) ∈ QQQ(AAA,Θ), let

αΓ′(M,B, q, θ) = HomA(M,Γ/Γ′) and

∇Γ′(M,B, q, θ) : M −→ Γ/Γ′; m 7−→ [B(m,m)].

Then the pair (∇Γ′ , αΓ′) defines an invariant on QQQ(AAA,Θ).
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The proof is straightforward.

Geometric invariants are obtained by modifying the basic idea above and taking into

account the positioning functions. To simplify details, we shall restrict to the case A is

a group ring. We make for the rest of this section, the following assumption concerning

our setup.

Assumption 3.17. Let G denote a group, w : G→ {±1} a group homomorphism (which

will be referred to as an orientation homomorphism), R a commutative ring with 1 (unity)

and with involution r 7→ r, and A the group ring R[G] with compatible involution a 7→ a

such that g = w(g)g−1 for all g ∈ G. Let

ε : A→ R;
∑

g∈G

rgg 7→ r1

denote the projection to the coefficient of 1 ∈ G. Let

G(2) = {g ∈ G| g2 = 1, g 6= 1}.

Let S denote a subset of G(2) ∪ {1} such that S is closed under conjugation by elements

of G. Let

As = R[S]

(
:=

{
∑

g∈S

rgg

∣∣∣∣∣ rg ∈ R (rg = 0 except for finitely many g’s)

})
.

Let λ ∈ R such that λλ = 1, Λ a (−, λ)-form parameter on A, Γ a (−, λ)-symmetric

parameter on A, Θ a finite G-set, and (AAA,Θ) = (A, (−, λ),Γ, G,As, As + Λ,Θ). Let

Γ′ j Γ

denote a (−, λ)-symmetric parameter on A and

Γ′
g = ε(Γ′g−1) for g ∈ G.

Clearly, if g ∈ G(2) ∪ {1} then Γ′
g is a (−, λw(g))-symmetric parameter on R and if

g /∈ G(2) ∪ {1} then Γ′
g = R. Let S(G) denote the G-set of all subgroups of G with

G-action given by conjugation, i.e.

G× S(G) → S(G); (g,H) 7→ gHg−1.

Let

ρ : Θ → S(G)

denote a G-equivariant map such that for each s ∈ S, the set

Θ|s = {t ∈ Θ | ρ(t) ∋ s}

is finite.
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Definition 3.18. If (M,B, q, θ) ∈ QQQ(AAA,Θ) and s ∈ S, let

Σθ
ρ,s =

∑

x∈Θ|s

θ(x)

αΓ′,s(M,B, q, θ) = HomZ(M,R/Γ′
s)

∇Γ′,s(M,B, q, θ) : M → R/Γ′
s; m 7−→ w(s)[ε

(
B(sm,Σθ

ρ,s −m)
)
]

∇Γ′ =
⊕

s∈S

∇Γ′,s and αΓ′ =
⊕

s∈S

αΓ′,s.

Lemma 3.19. Each pair (∇Γ′,s, αΓ′,s) (s ∈ S) defines an invariant in the sense of Defini-

tion 3.1 on QQQ(AAA,Θ). Thus, the pair (∇′
Γ, αΓ′) defines an invariant on QQQ(AAA,Θ). Moreover,

if g ∈ G then Γ′
s = Γ′

gsg−1, αΓ′,s = αΓ′,gsg−1, and

∇Γ′,s(M,B, q, θ)(m) = w(g) ∇Γ′,gsg−1(M,B, q, θ)(gm)

for any (M,B, q, θ) ∈ QQQ(AAA,Θ) and m ∈M .

Proof. Fix (M,B, q, θ) ∈ QQQ(AAA,Θ) and set fs = ∇Γ′,s(M,B, q, θ). First, we show that

fs is an additive map, which immediately implies fs ∈ αΓ′,s(M,B, q, θ). It then follows

routinely that ∇Γ′,s is an invariant on QQQ(AAA,Θ) and hence, ∇Γ′ is an invariant on QQQ(AAA,Θ).

Let b = ε ◦B. Let m,m′ ∈ M . Then

fs(m+m′) − fs(m) − fs(m
′)

= w(s)[b(s(m+m′),Σθ
ρ,s − (m+m′)) − b(sm,Σθ

ρ,s −m) − b(sm′,Σθ
ρ,s −m′)]

= w(s)[b(s(m+m′),−(m+m′)) − b(sm,−m) − b(sm′,−m′)] (biadditivity of b)

= w(s)[b(sm′,−m) + b(sm,−m′)] (biadditivity of b)

= w(s)[b(sm′,−m) + λb(−m′, sm)] (λ-Hermitian property of b)

= w(s)[b(sm′,−m) + λw(s)b(−sm′, m)]

= w(s)[b(sm′,−m) + λw(s)b(sm′,−m)] = 0.

It is clear Γ′
g = Γ′

gsg−1. Thus, αΓ′,s = αΓ′,gsg−1. To complete the proof of the lemma, it

suffices to show that for each m ∈ M , fgsg−1(gm) = w(g)fs(m). But,

fgsg−1(gm) = w(gsg−1)[b((gsg−1)gm,Σθ
ρ,gsg−1 − gm)]

= w(s)[b(gsm, gΣθ
ρ,s − gm)] (because Σθ

ρ,gsg−1 = gΣθ
ρ,s)

= w(g)w(s)[b(sm,Σθ
ρ,s −m)]

= w(g)fs(m).

�

Lemma 3.20. The invariant ∇Γ′ on QQQ(AAA,Θ) is trivial on modules (M,B, q, θ) such that

B is Γ′-Hermitian (i.e. B(m,m) ∈ Γ′ for all m ∈ M) and θ = 0. In particular, ∇Γ′

vanishes on all hyperbolic modules H(P, θ) such that θ = 0.
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If suffices to prove the assertions for the invariants ∇Γ′,s (s ∈ S). This follows from a

straightforward computation which is left to the reader.

Lemma 3.21. Let M(Θ, A)G denote the set of all G-equivariant maps Θ → A. Let

M(Θ,Θ)G denote the set of all maps f : Θ → R such that for each x ∈ Θ, there exists a

finite subset L j G satisfying f(gx) = 0 for all g ∈ Gr L. Then the maps

tr : M(Θ, A)G → M(Θ, R)G; tr(θ) = ε ◦ θ

sr : M(Θ, R)G →M(Θ, A)G; sr(c)(x) =
∑

g∈G

c(g−1x)g (x ∈ Θ)

are mutually inverse isomorphisms.

Let M(Θ̃, A)G×{±1} denote the set of all G × {±1}-equivariant maps Θ̃ → A. Let

M(Θ, R)
{±1}
G denote the set of all {±1}-equivariant maps f : Θ̃ → R such that for each

x ∈ Θ̃, there exists a finite subset L j G satisfying f(gx) = 0 for all g ∈ G r L. Then

the maps

tr : M(Θ, A)G×{±1} → M(Θ, R)
{±1}
G ; tr(θ) = ε ◦ θ

sr : M(Θ, R)
{±1}
G →M(Θ, A)G×{±1}; sr(c)(x) =

∑

g∈G

c(g−1x)g (x ∈ Θ)

are mutually inverse isomorphisms.

This is proven by a straightforward computation.

Lemma 3.22. Let M(A, b0, q0, θ) be a metabolic plane in QQQ(AAA,Θ). Let B = BA,b0 denote

the Hermitian form on M(A, b0, q0, θ). Then M(A, b0, q0, θ) has a metabolic basis (e, f)

such that if B(f, f) =
∑

g∈G rgg (rg ∈ R) then rg = 0 for all g /∈ S.

Proof. Let (e, f) be a metabolic basis. By Assumption 3.17 and (2.6.3), we know that∑
g /∈S rgg = a + λa for some a ∈ A. Thus, by (2.40.2), (e, f − ae) is a metabolic basis

with the desired property. �

Lemma 3.23. Suppose that the involution on R is trivial and that for each r ∈ R, r2 = r,

e.g. R = Z/2Z. Let M(A, b0, q0, θ) be a metabolic plane in QQQ(AAA,Θ) with metabolic basis

(e, f). Let B = BA,b0 denote the Hermitian form on M(A, b0, q0, θ). Let

B(f, f) =
∑

g∈G

rgg

(rg ∈ R). Then ∇Γ′(M(A, b0, q0, θ)) = 0 if and only if for each s ∈ S,
∑

x∈Θ|s

tr(θ)(x) ≡ rs mod Γ′
s.

If additionally Γ′ = min−λ(A) then there is a metabolic basis (e, f) such that rg = 0 for

all g /∈ S and

rs =
∑

x∈Θ|s

tr(θ)(x)
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for all s ∈ S, where min−λ(A) = {a+ λa | a ∈ A}.

Proof. Let ∇ = ∇Γ′(M(A, b0, q0, θ)) and ∇s = ∇Γ′,s(M(A, b0, q0, θ)) for each s ∈ S. By

definition, ∇ = 0 ⇐⇒ for each s ∈ S, ∇s = 0. Since ∇s : Ae ⊕ Af −→ R/Γ′
s is an

additive function by Lemma 3.19 and ∇s vanishes on Ae, it follows that ∇s = 0 ⇐⇒ for

each γ ∈ R and g ∈ G,∇s(γgf) = 0. But, by Lemma 3.19, ∇s(γgf) = w(g)∇g−1sg(γf).

Thus, ∇ = 0 ⇐⇒ for each γ ∈ R and s ∈ S,∇s(γf) = 0. But

∇s(γf) = w(s)[ε
(
B(sγf,Σθ

ρ,s − γf)
)
]

= w(s)[ε
(
B(sγf,Σθ

ρ,s) − B(sγf, γf)
)
] (using bilinearity of B)

= w(s)


ε


B(sγf,

∑

x∈Θ|s

θ(x)) − B(sγf, γf)






= w(s)


ε


B(sγf,

∑

x∈Θ|s

∑

g∈G

tr(θ)(g−1x)ge) − γB(f, f)γs






= w(s)


ε



∑

x∈Θ|s

tr(θ)(s−1x)ssγ


− γrsγss




= w(s)


ε



∑

x∈Θ|s

tr(θ)(s−1x)γw(s)


− γγrsw(s)




=


γ



∑

x∈Θ|s

tr(θ)(s−1x) − rs




 .

The first assertion in the lemma follows.

Let (e, f) be a metabolic basis for M(A, b0, q0, θ). By Lemma 3.21, we can assume

rg = 0 for all g /∈ S. Since Γ′ = min−λ(A), we can find an element a =
∑

s∈S r
′
ss ∈ A such

that for each s ∈ S,
∑

x∈Θ|s

tr(θ)(x) − rs = a+ λa.

But, then by (2.40.2) the metabolic basis (e, f + ae) has the desired properties. �

We extend our list of assumptions under Assumptions 3.7 and 3.17 concerning the setup

to include the following

Assumption 3.24. Let R2 = R/2R and A2 = A/2A. Let ε2 : A2 → R2;
∑

g∈G rgg 7→ r1

denote the projection to the coefficient of 1 ∈ G. Let ΘΘΘ = (Θ̃, p,Θ2). Let ρ : Θ̃ → S(G)

and ρ2 : Θ2 → S(G) denote G-equivariant functions such that ρ((−1)x) = ρ(x) for all
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x ∈ Θ̃ and the diagram

Θ̃

p

��

ρ // S(G)

Θ2

ρ2

<<yyyyyyyy

commutes. We shall assume that Θ2|s = {x ∈ Θ2 | ρ(x) ∋ s} is a finite set for every

s ∈ S. Let Γ′
2 denote a (−, λ)-symmetric parameter on A2 such that Γ′

2 j Image[Γ → A2]

and Γ′
2,g = ε2(Γ

′
2g

−1), for g ∈ G. If (M,B, q, θ, θ2) ∈ QQQ(AAA,ΘΘΘ) and g ∈ G, let

Σθ2
ρ2,g =

∑

x∈Θ2|g

θ2(x).

If (M,B, q, θ, θ2) ∈ QQQ(AAA,ΘΘΘ) and s ∈ S, let αΓ′
2,s

(M,B, q, θ, θ2) = HomZ (M2, R2/Γ
′
2,s) and

∇Γ′
2,s

(M,B, q, θ, θ2) : M2 −→ R2/Γ
′
2,s; m 7−→ [ε2

(
B2(sm,Σ

θ2
ρ2,s −m)]

)
.

(We remark that w(s) = 1 in R2.) Set ∇Γ′
2

=
⊕
s∈S

∇Γ′
2,s

and αΓ′
2

=
⊕
s∈S

αΓ′
2,s

.

Lemma 3.25. Each pair (∇Γ2,s
, αΓ2,s

) (s ∈ S) defines an invariant in the sense of Def-

inition 3.1 on QQQ(AAA2,Θ2). Thus, the pair (∇Γ′
2
, αΓ′

2
) defines an invariant on QQQ(AAA,ΘΘΘ).

Moreover, if g ∈ G then Γ′
2,s = Γ′

2,gsg−1, αΓ′
2,s

= αΓ′
2,gsg−1

, and for each m ∈ M2 (where

(M,B, q, θ, θ2) ∈ QQQ(AAA,ΘΘΘ)),∇Γ′
2,s

(M,B, q, θ, θ2)(m) = w(g)∇Γ′
2,gsg−1 (M,B, q, θ, θ2)(gm).

Proof. By Lemma 3.19, the constructions ∇Γ′
2,s

and αΓ′
2,s

define an invariant on

QQQ(A2, (−, λ),Γ2, G,A2,s,Λ2,Θ2).

These constructions composed with the forgetful functor

QQQ(AAA,ΘΘΘ) −→QQQ(A2, (−, λ),Γ2, G,A2,s,Λ2,Θ2)

yield the constructions in the lemma. The assertions in the lemma follow now from

Lemma 3.19. �

Lemma 3.26. The invariant ∇Γ′
2

on QQQ(AAA,ΘΘΘ) is trivial on modules (M,B, q, θ, θ2) such

that B2 is Γ′
2-Hermitian (i.e. B2(m,m) ∈ Γ′

2 for all m ∈ M2) and θ2 = 0. In particular,

∇Γ′
2
vanishes on all hyperbolic modules H(P, θ, θ2) such that θ2 = 0. Furthermore, for any

module (M,B, q, θ, θ2),∇Γ′
2
(M,B, q, θ, θ2) = −∇Γ′

2
(M,−B,−q, θ, θ2).

Proof. The first assertion follows from Lemma 3.20. The second and third ones are obvi-

ous. �

Lemma 3.27. Suppose the involution on R2 is trivial and for each r ∈ R2, r
2 = r, e.g.R2 =

Z/2Z. Let M(A, b0, q0, θ, θ2) be a metabolic plane in QQQ(AAA,ΘΘΘ) with metabolic basis (e, f).

Let B = BA,b0 denote the Hermitian form on M(A, b0, q0, θ). Let

B(f, f) =
∑

g∈G

rgg (rg ∈ R).

Then the following hold.
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(3.27.1) ∇Γ′
2
(M(A, b0, q0, θ, θ2)) = 0 if and only if for each s ∈ S,

rs =
∑

x∈Θ2|s

tr(θ2)(x) in R2/Γ
′
2,s.

(3.27.2) If additionally Γ′
2 = min−λ(A2) := {a+λa| a ∈ A2} then there is a metabolic basis

(e, f) such that for each g /∈ S, rg = 0, and for every s ∈ S,

rs =
∑

x∈Θ2|s

tr(θ2)(x) in R2.

(3.27.3) If furthermore R is a complete set of representatives in R for the set R2 and the

subset
∑

s∈S2Rs of A is included in min−λ(A) then there is a metabolic basis (e, f)

such that for each g /∈ S, rg = 0, and for every s ∈ S,

rs =
˜∑

x∈Θ2|s

tr(θ2)(x) in R

where r̃ ∈ R denotes the lifting of r ∈ R2.

The proof is the same as that of Lemma 3.23, except for a few small changes in detail.

We leave the checking to the reader.

Definition 3.28. Let ΘΘΘ = (Θ̃, p,Θ2), ρ : Θ̃ → S(G), and ρ2 : Θ2 → S(G) be as in

Assumption 3.24. Let ccc = (c, c2) be a pair consisting of {±1}-equivariant map c : Θ̃ → R

and a map c2 : Θ2 → R2 such that

Θ̃
c //

p

��

R

��
Θ2 c2

// R2

commutes. Let c̃ : Θ2 −→ R denote any map such that the diagram

Θ2
ec //

c2   B
BB

BB
BB

B
R

��
R2

commutes. Recall the definition of metabolic plane in the paragraph subsequent to Def-

inition 2.32 and the definition of metabolic basis in Definition 2.39. Let M(R[G], ccc, c̃)

denote the metabolic plane M(R[G], b0,ec, q0, sr(c), sr(c2)) defined (up to isomorphism) by
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a metabolic basis (e, f) such that

q0 = 0,

b0,ec(f, f) =
∑

s∈S

∑

x∈Θ2|s

c̃(x)s ∈ R[G],

sr(c)(x) =
∑

g∈G

c(g−1x)ge ∈ R[G]e (x ∈ Θ̃), and

sr(c2)(x) =
∑

g∈G

c2(g
−1x)ge ∈ R2[G]e (x ∈ Θ2).

If the involution on R2 is trivial and if r2 = r for any r ∈ R2, then M(R[G], ccc, c̃) ∈

∇Γ′
2
QQQ(AAA,ΘΘΘ) by Lemma 3.27.

Lemma 3.29. Suppose the involution on R2 is trivial, r2 = r for any r ∈ R2,
∑
s∈S

2Rs j

min−λ(R[G]), and Γ′
2 = min−λ(R2[G]). Let (ccc, c̃) and (ccc′, c̃′) be as in Definition 3.28. If

ccc = ccc′ then M(R[G], ccc, c̃) ∼= M(R[G], ccc′, c̃′).

Proof. Let (e, f) and (e′, f ′) be the metabolic bases defining M(R[G], ccc, c̃) and M(R[G],

ccc′, c̃′), respectively, as in Definition 3.28. Let R denote a complete set of representatives

in R for the set R2. By (3.27.3) and the proof of Lemma 3.23, there exists a metabolic

basis (e, f + ae) (resp. (e′, f ′ + ae′)), where a (resp. a′) ∈ R[G], of M(R[G], ccc, c̃) (resp.

M(R[G], ccc′, c̃′)) such that

rs =
∑̃

x∈Θ2|s

c2(x) (resp. r′s =
∑̃

x∈Θ2|s

c′2(x)) ∈ R,

where B(f + ae, f + ae) =
∑
s∈S

rss and B(f ′ + a′e′, f ′ + a′e′) =
∑
s∈S

r′ss. Since c2 = c′2, it

follows that rs = r′s. Thus M(R[G], ccc, c̃) ∼= M(R[G], ccc′, c̃′). �

Definition 3.30. Let R and Γ′
2 be as in Lemma 3.29. Set M(R[G], ccc) = M(R[G], ccc, c̃) for

some c̃. By Lemma 3.29, the isomorphism class of M(R[G], ccc) is uniquely defined.

Lemma 3.31. Let R and Γ′
2 be as in Lemma 3.29. For any invertible element r ∈ R,

M(R[G], ccc) ∼= M(R[G], rccc), where rccc = (rc, rc2).

Proof. The maps sr(c2) and sr(rc2) are defined in Lemma 3.21. Let (e, f) be a metabolic

basis defining M(R[G], ccc, c̃) as in Definition 3.28. Since r2 ≡ r mod 2R and r is invertible,

r ≡ 1 mod 2R. Set e′ = r−1e and f ′ = rf . Then sr(c)(x)e = sr(rc)(x)e′, sr(c2)(x)e =

sr(rc2)(x)e
′ and B(f, f) ≡ B(f ′, f ′) mod min−λ(R[G]). This proves Lemma 3.31. �

The next lemma classifies metabolic planes vanishing under ∇Γ′
2

and plays a key role

in proving our G-surgery results.

Lemma 3.32. Let R and Γ′
2 be as in Lemma 3.29. If M(R[G], b0, q0, θ, θ2) ∈ ∇Γ′

2
QQQ(AAA,ΘΘΘ)

is a metabolic plane then

M(R[G], b0, q0, θ, θ2) ∼= M(R[G], ccc)
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for some ccc = (c, c2).

Proof. This follows immediately from Lemma 3.27. �

To close this section, we use the notation developed above to define G-surgery obstruc-

tion groups. They will play an important role in the rest of the paper.

Definition 3.33. We make even more precise now, the setup described under Assump-

tions 3.7, 3.17 and 3.24. Let

λ = (−1)k

G(2)λ = {g ∈ G(2) | w(g) = −λ}

Q = a subset of G(2)λ ∪ {1} r S, which is closed under conjugation

by elements of G

Λ(Q) = the (−, (−1)k)-form parameter on A generated by Q

Γ(S) = the (−, (−1)k)-symmetric parameter on A generated by S rG(2)λ

Γ′
2 = the minimum symmetric parameter min(−1)k(A2) on A2

FFF(A) = the full, symmetric monoidal subcategory of PPP(A) consisting of all

finitely generated, free A-modules.

Define the G-equivariant surgery obstruction groups

W2k(R,G,Q, S,ΘΘΘ)CCC = ∇Γ′
2
WQ0(AAA,ΘΘΘ)FFF(A),CCC

W2k(R,G,Q, S,ΘΘΘ)proj = W2k(R,G,Q, S,ΘΘΘ)PPP(A)

W2k(R,G,Q, S,ΘΘΘ)free = W2k(R,G,Q, S,ΘΘΘ)FFF(A).

Lemma 3.34. Let BBB be a subcategory of PPP(A), which contains A, is closed under iso-

morphisms, direct sums, and dualization, and CCC j BBB. Then the canonical homomorphism

W2k(R,G,Q, S,ΘΘΘ)CCC −→W2k(R,G,Q, S,ΘΘΘ)BBB

is injective.

Proof. The assertion follows immediately from Corollary 3.15 and Lemma 3.26. �

Remark 3.35. Let SSS(A) denote the full, symmetric monoidal subcategory of PPP(A) con-

sisting of all finitely generated, stably free A-modules. Then the canonical maps

∇Γ′
2
WQ0(AAA,ΘΘΘ)FFF(A),CCC −→ ∇Γ′

2
WQ0(AAA,ΘΘΘ)SSS(A),CCC , and

W2k(R,G,Q, S,ΘΘΘ)FFF(A) −→ W2k(R,G,Q, S,ΘΘΘ)SSS(A)

are isomorphisms. Henceforth we shall identify groups related by a canonical isomorphism

above.
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4. Geometric intersection theory

For the rest of the paper, let G denote a finite group, k an integer ≧ 3, and n = 2k.

Unless specifically mentioned otherwise, the term submanifold means smooth neat sub-

manifold (cf. [15]). Similarly the term embedding (resp. immersion) means smooth

neat embedding (resp. immersion). Let Z be a compact, connected, simply connected,

n-dimensional, oriented, smooth G-manifold such that

dimZg ≦ k for all g ∈ Gr {1} .

On the G-manifold Z, G-surgery of dimension k is the process of equivariantly replacing

embedded G-handles (G × Sk × Dk)α, α ∈ A, by handles (G × Dk+1 × Sk−1)α where

the latter are obtained from the former by filling in {g} × Sk × Dk, g ∈ G, to get

{g}×Dk+1 ×Dk and emptying out {g}×Dk+1 × Interior(Dk) to get {g}×Dk+1 × Sk−1.

However, one can make this replacement simultaneously for all embedded G-handles only

when all handles are mutually disjoint. To get the resulting space as a manifold, the

G-handles (G× Sk ×Dk)α must be disjoint from the singular set of Z:

Sing(G,Z) =
⋃

g∈Gr{1}

Zg

=
⋃

H∈S(G)r{{1}}




⋃

γ∈π0(ZH)

Zγ



 ,

where Zγ is the underlying space of the connected component γ. Let us suppose this is

the case. Let hα : Sk = {1} × Sk × {0} → Z, α ∈ A, and hγ : Zγ → Z, γ ∈ π0(Z
H) with

H 6= {1}, denote the canonical inclusions.

By performing G-surgery on the G-handles above, we kill the elements hα∗[S
k] of

Hk(Z; Z). However the problem we shall be facing starts not with the hα’s above, but

with a set of elements aα in Image[πk(Z) → Hk(Z; Z)]. We are asked to realize the aα’s

by embeddings hα : Sk → Z which extend to G-handles (G×Sk ×Dk)α that are mutually

disjoint from one another and from the singular set. On the other hand, we know only

that each aα can be realized by an immersion hα (cf. [15]). Getting the conditions above

satisfied will rest on establishing a G-equivariant geometric self-intersection form which

is defined on all immersions. Establishing such a form and showing that it does the job

are the main goals of this section.

In applications outside the current paper, we shall need that the G-handles above are

disjoint not only from the singular set, but also from possibly larger G-subsets L. We

describe these G-subsets next.

Assumption 4.1. Let L be a G-subcomplex of a G-equivariant smooth triangulation of

Z satisfying the following.

(4.1.1) L k Sing(G,Z).
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(4.1.2) L = L(k−1)∪
⋃

β∈B Bβ where L(k−1) denotes the (k−1)-skeleton of L and (forgetting

the G-action on L) each Bβ is a subcomplex of L.

(4.1.3) For each β ∈ B, Bβ is a compact connected k-dimensional submanifold of Z.

(4.1.4) For each β ∈ B, L(k−1) ∩ Bβ j L(k−2).

(4.1.5) For every β, β ′ ∈ B, Bβ ∩ Bβ′ is a submanifold of Z.

(4.1.6) For every β, β ′ ∈ B, if Bβ 6= Bβ′ as subsets of Z then Bβ ∩ Bβ′ j L(k−2).

(4.1.7) If Bβ, β ∈ B, is orientable then Bβ is oriented.

The assumption above obviously implies the next assumption on Z.

Assumption 4.2. If Zγ 6= Zγ′ for connected components γ ∈ π0(Z
H) and γ′ ∈ π0(Z

H′
),

where H , H ′ are nontrivial subgroups of G, then dim(Zγ ∩ Zγ′) ≦ k − 2.

It is remarkable that if Z satisfies Assumption 4.2 then Assumption 4.1 is fulfilled by

L = Sing(G,Z) where (forgetting orientations) the Bβ’s range over all underlying spaces

Zγ such that γ ∈ π0(Z
H) and dimZH = k. Let hβ : Bβ → Z, β ∈ B, denote the canonical

inclusion maps. Since L(k−1) is not crucial for the general position argument for hα, the

problem we actually face is that of separating the hα’s, α ∈ A, from one another and

from the hβ’s, β ∈ B. In case each Bβ, β ∈ B, is orientable, it is to be expected one

can do this if and only if the geometric intersection numbers #(hα, hα′) and #(hα, hβ)

and the equivariant self-intersection numbers #g(hα) are zero for all α, α′ ∈ A, β ∈ B,

and g ∈ G. However, this requires that the equivariant self-intersection numbers #g(hα)

are defined. The main goal of this section is to define for certain g and arbitrary α, a

replacement ♮g(hα) for #g(hα), which agrees with #g(hα) whenever the latter is defined,

and to show (Theorems 4.19 and 4.21) that the vanishing of the geometric intersection

numbers and the replacements ♮g above provides a necessary and sufficient criteria for

solving the problem above. Of course, this problem is not only interesting for immersions

of k-dimensional spheres, but for any finite family of immersions of closed, connected,

oriented, k-dimensional manifolds and so, we shall treat the problem above in this context.

The rest of the section is organized as follows. Looking ahead, we shall want in the

next section to pack all of the information above into one module called the surgery

obstruction module. In order to deal with this module, it is convenient to have an algebraic

description of the geometric intersection form. We begin below by recalling the algebraic

intersection form on Hk(Z;R) and establish some basic facts concerning it. Then we

recall the geometric intersection form and compare it with the algebraic one. Next, self-

intersection forms #g are recalled and the self-intersection forms ♮g are defined. Results

relating the forms # and ♮g are established. Then results concerning singular sets are

proved. Finally, the main theorems are proved.

Let R be a commutative ring with unit element. For 0 ≦ ℓ ≦ n, let

PZ,∂Z : Hn−ℓ(Z, ∂Z;R) → Hℓ(Z;R)
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and

PZ : Hn−ℓ(Z;R) → Hℓ(Z, ∂Z;R)

denote the Poincaré-Lefschetz duality isomorphisms (cf. Theorems 18 and 20 of [43, VI

§2]). Let

∪ : Hn−ℓ(Z, ∂Z;R) ×Hℓ(Z;R) → Hn(Z, ∂Z, ;R) and

∪ : Hn−ℓ(Z, ∂Z;R) ×Hℓ(Z, ∂Z;R) → Hn(Z, ∂Z;R)

denote the cup products [43, V §6]. If A ∈ Hn(Z, ∂Z;R) and a ∈ Hn(Z, ∂Z;R), let

A(a) denote the evaluation of A on a. Let [Z, ∂Z] denote the orientation class of Z in

Hn(Z, ∂Z; Z) and [Z, ∂Z]R the image of [Z, ∂Z] in Hn(Z, ∂Z;R), under the canonical

homomorphism. Define the mixed R-intersection pairing

IntZ,∂Z;R : Hk(Z;R)×Hk(Z, ∂Z;R) → R;

(a, b) 7→ (−1)k(P−1
Z,∂Z;R(a) ∪ P−1

Z;R(b))([Z, ∂Z]R)

and the R-intersection pairing

IntZ;R : Hk(Z;R)×Hk(Z;R) → R;

(a, b) 7→ (−1)k(P−1
Z,∂Z;R(a) ∪ P−1

Z,∂Z;R(b))([Z, ∂Z]R).

Of course, if ∂Z = ∅ then by definition IntZ,∂Z;R = IntZ,R.

The action of G on Z induces a G-module structure on the homology groups Hℓ(Z;R)

and Hℓ(Z, ∂Z;R). Namely if g ∈ G and x ∈ Hℓ(Z;R) or Hℓ(Z, ∂Z;R) then gx = ℓg∗(x),

where ℓg denotes the left translation map Z → Z; z 7→ gz. Let R[G] denote the group

ring of G with coefficients in R. Define the mixed G-equivariant R-intersection pairing

IntG,Z,∂Z;R : Hk(Z;R) ×Hk(Z, ∂Z;R) → R[G]

by

IntG,Z,∂Z;R(a, b) =
∑

g∈G

IntZ,∂Z;R(a, g−1b)g,

and the G-equivariant R-intersection pairing

IntG,Z;R : Hk(Z;R) ×Hk(Z;R) → R[G]

by

IntG,Z;R(a, b) =
∑

g∈G

IntZ;R(a, g−1b)g.

Lemma 4.3. The diagram

Hk(Z;R) ×Hk(Z;R)
IntG,Z;R //

��

R[G]

Hk(Z,R) ×Hk(Z, ∂Z;R)

IntG,Z,∂Z;R

44iiiiiiiiiiiiiiiiiiii

commutes.
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Proof. The case of an arbitrary finite group G follows from the case G = {1}. The case

G = {1} follows from the fact that the cup product diagram corresponding to the diagram

in the lemma commutes. �

Define the orientation homomorphism wZ : G −→ {±1} by

wZ(g) =

{
1, if g preserves the orientation of Z

−1, if g reverses the orientation of Z.

Thus,

g[Z, ∂Z] = wZ(g)[Z, ∂Z].

When working in the context of Z, we shall give the group ring R[G] the involution a 7→ a

such that for all r ∈ R and g ∈ G,

rg = rwZ(g)g−1

and let λ = (−1)k. The G-actions on the cohomology groups Hℓ(Z;R) and Hℓ(Z, ∂Z;R)

are afforded by gx = wZ(g)ℓg−1
∗(x) for all g ∈ G and x ∈ Hℓ(Z;R) or Hℓ(Z, ∂Z;R).

If f : (A,B) → (A′, B′) is a continuous map of pairs of topological spaces (B j A,

B′ j A′ and f(B) j B′) then for each integer ℓ, define

Kℓ(A,B;R) = Ker[f∗ : Hℓ(A,B;R) −→ Hℓ(A
′, B′;R)]

Kℓ(A;R) = Ker[f∗ : Hℓ(A;R) −→ Hℓ(A
′;R)]

Kℓ(A,B;R) = Coker[f ∗ : Hℓ(A′, B′;R) −→ Hℓ(A,B;R)]

Kℓ(A;R) = Coker[f ∗ : Hℓ(A′;R) −→ Hℓ(A;R)].

Let f : (X, ∂X) → (Y, ∂Y ) be a continuous map of compact, connected, n-dimensional

manifolds. Define

f̂∗ : Hℓ(Y ;R) −→ Hℓ(X;R)

to be the composite of the solid arrows in the diagram

Hℓ(Y ;R)
bf∗ //

P−1
Y,∂Y

��

Hℓ(X;R)

Hn−ℓ(Y, ∂Y ;R)
f∗

// Hn−ℓ(X, ∂X;R)

PX,∂X

OO

and define

f̂∗ : Hℓ(Y, ∂Y ;R) −→ Hℓ(X, ∂X;R)

to be the composite of the solid arrows in the diagram

Hℓ(Y, ∂Y ;R)
bf∗ //

P−1
Y

��

Hℓ(X, ∂X;R)

Hn−ℓ(Y ;R)
f∗

// Hn−ℓ(X;R).

PX

OO
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Recall that f is called a degree-one map, if X and Y are oriented and f∗[X, ∂X] =

[Y, ∂Y ] in Hn(Y, ∂Y ; Z). In the remainder of this section, let f : (X, ∂X) → (Y, ∂Y ) be a

degree-one G-map of compact, connected, n-dimensional, oriented, smooth G-manifolds

X and Y . Since f ∗ and the Poincaré-Lefschetz duality maps in the diagrams above are

R[G]-homomorphisms, so is f̂∗.

Lemma 4.4. The following holds:

(4.4.1) The homomorphism f̂∗ is a G-equivariant splitting for f∗.

(4.4.2) The sequence of R[G]-modules

· · ·
∂// Kℓ(∂X;R) // Kℓ(X;R) // Kℓ(X, ∂X;R)

∂ // Kℓ−1(∂X;R) // · · ·

is exact.

(4.4.3) If n = 2k then

IntG,X;R(Kk(X;R), f̂∗Hk(Y ;R)) = 0, IntG,X;R(f̂∗Hk(Y ;R), Kk(X;R)) = 0,

IntG,X,∂X;R(Kk(X;R), f̂∗Hk(Y, ∂Y ;R)) = 0, IntG,X,∂X;R(f̂∗Hk(Y ;R), Kk(X, ∂X;R)) = 0.

Proof. (4.4.1): Let a ∈ Hℓ(Y ;R). Then there exists an element b ∈ Hn−ℓ(Y, ∂Y ;R) such

that PY,∂Y (b) = a. Thus

f∗f̂∗(a) = f∗(PX,∂X(f ∗b)) = f∗([X, ∂X]R ∩ f ∗b) = [Y, ∂Y ]R ∩ b = PY,∂Y (b) = a.

Similarly f∗f̂∗(a
′) = a′ for all a′ ∈ Hℓ(X, ∂X;R).

(4.4.2): The assertion follows from the definition of Kℓ(−;R) and (4.4.1).

(4.4.3): This is proved by straightforward computation, cf. [8, I.2.9]. �

Lemma 4.5. Suppose Kk(X;R) and Kk(X, ∂X;R) are free R-modules. Then the pairing

IntX,∂X;R : Kk(X;R) ×Kk(X, ∂X;R) → R is nonsingular.

Let A denote a connected, closed, oriented, smooth manifold of dimension k, and B a

connected, compact, smooth manifold of dimension k. We assume that B is oriented if B

is orientable. In the following, immersions and embeddings will always mean smooth, neat

immersions and embeddings (cf. [15]). Let hα : A → Z and hβ : B → Z be immersions

such that hβ |∂B is an embedding. (Since A is closed, it follows from the definition of neat

immersion that Image(hα) j Interior(Z).)

Let Zβ = Z or Z2 (= Z/2Z) depending on whether B is oriented or nonorientable. Let

#(hα, hβ) ∈ Zβ

denote the geometric intersection number of hα and hβ. Since A is oriented, the normal

bundle ν(hα) of hα is oriented such that a local frame of T (A) with positive orientation

followed by a local frame of ν(hα) with positive orientation becomes a local frame of

h∗αT (Z) with positive orientation. If both hα and hβ are embeddings and B is oriented

then our number #(hα, hβ) above is the same as the number Image(hα) · Image(hβ) in

Definition 6.1 of Milnor [21]. In this connection, we stress that our #(hα, hβ) is the
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intersection number not “of Image(hα) and Image(hβ)” but “of Image(hβ) and Image(hα)”

in the language of [21].

The geometric intersection form #( , ) has the property that #(hα, hβ) = 0 ⇐⇒ there is

a regular homotopy hα ∼ h′α such that Image(h′α)∩Image(hβ) = ∅. (A regular homotopy,

by definition, is one such that at each level the maps are immersions.) The result above

is an easy corollary of Theorem 6.6 of [21].

Define the G-equivariant geometric intersection number #G(hα, hβ) by

#G(hα, hβ) =
∑

g∈G

#(hα, g
−1hβ)g ∈ Zβ [G].

Lemma 4.6 (cf. [1, p.15, Theorem 1]). Let [A] denote the orientation class of A and

[B, ∂B] the orientation class of B. Then

#G(hα, hβ) = IntG,Z,∂Z;Zβ
(hα∗[A], hβ∗[B, ∂B])

(if B is closed then this reads

#G(hα, hβ) = IntG,Z;Zβ
((hα)∗[A], (hβ)∗[B]).)

Proof. For G = {1}, the first statement is deduced from the definitions of the cup product,

the Poincaré-Lefschetz duality isomorphism as derived from the dual cell decomposition,

and the ordinary geometric intersection number. The result for arbitraryG follows directly

from the above and the definitions of #G( , ) and IntG,Z,∂Z;Zβ
( , ). �

We want to define next the generalized (or doubly parametrized) G-equivariant geo-

metric self-intersection form. This is a new construction, since we are going to allow fixed

point manifolds of dimension k. Our definition will reduce to the one of [25, §3], when the

fixed point manifolds of nontrivial subgroups have dimension ≦ k − 1 and to [44, Part I,

§5], when the fixed point manifolds of nontrivial subgroups are empty.

For an integer ℓ, let

G(Z, ℓ) = {g ∈ G | Zg has an ℓ-dimensional, connected component}

G(2) = {g ∈ G | g 6= 1, g2 = 1}

G(> 2) = {g ∈ G | g2 6= 1}.

Lemma 4.7. If g ∈ G(Z, ℓ) then wZ(g) = (−1)n−ℓ.

Proof. Let L be an ℓ-dimensional, connected component of Zg. Let p ∈ L be an interior

point of L. Let Tp(L) (resp. Tp(Z)) denote the tangent space at p in L (resp. Z).

Since G is finite and Z is compact, there is a G-invariant Riemannian metric on Z.

Fix such a metric. Denote by 〈g〉 the subgroup generated by g. The exponential map

Exp from a certain neighborhood of 0 in Tp(Z) to Z (with respect to the Riemannian

metric) is automatically G-equivariant and a local diffeomorphism as long as its image

lies in the interior of Z. Let Bp(Z) j Tp(Z) denote a tiny 〈g〉-invariant ball centered

at 0 ∈ Tp(Z) such that Exp|Bp : Bp(Z) → Z is a diffeomorphism of Bp(Z) onto a
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neighborhood U of p. Since Exp is G-equivariant, Bp(Z)g is diffeomorphic to Ug and Ug j

L. Clearly, ℓ = dimL = dimTp(L) ≦ dimTp(Z)g = dimBp(Z)g = dimUg ≦ dimL = ℓ.

Thus, Tp(L) = Tp(Z)g. Let νp(L) denote the normal space of Tp(L), i.e. the orthogonal

complement to Tp(L) in Tp(Z) with respect to the Riemannian metric. Clearly νp(L) is

〈g〉-invariant. Since Tp(L) = Tp(Z)g, the group 〈g〉 acts freely on νp(L) \ 0. Thus, the 〈g〉-

module νp(L) decomposes as a product of nontrivial, 1-dimensional real representations

of 〈g〉 and realifications of nontrivial, 1-dimensional complex representations of 〈g〉. In

the first case, the determinant over R of the R-linear automorphism defined by g is (−1)

and in the second case (+1). The determinant d of the R-linear automorphism of νp(L)

defined by g satisfies the relation d = (−1)n−ℓ. But d = wZ(g). �

Corollary 4.8. (Recall λ = (−1)k.) If g ∈ G(Z, ℓ) ∩G(2) then

g =

{
λwZ(g)g−1 (= λg), if ℓ ≡ k mod 2

−λwZ(g)g−1 (= −λg), if ℓ 6≡ k mod 2.

Proof. By Lemma 4.7, λ = wZ(g) ⇐⇒ ℓ ≡ k mod 2, and λ = −wZ(g) ⇐⇒ ℓ 6≡ k

mod 2. �

Corollary 4.9. If ℓ 6≡ ℓ′ mod 2 then G(Z, ℓ) ∩G(Z, ℓ′) = ∅.

Proof. Suppose g ∈ G(Z, ℓ) ∩ G(Z, ℓ′). By Lemma 4.7 (−1)n−ℓ = wZ(g) = (−1)n−ℓ′, and

hence n− ℓ ≡ n− ℓ′ mod 2. This contradicts the assumption ℓ 6≡ ℓ′ mod 2. �

Recall the notion of self-intersection form introduced in [44, pp.45–46]. It is naturally

generalized as follows. Let A be a connected, closed, k-dimensional, orientable, smooth

manifold and hα : A→ Z an immersion. If H is a subgroup of G, let

Free(H,Z) = {x ∈ Z | Hx = {1}},

where Hx is the isotropy subgroup at x of the H-action on Z. Note that Free(H,Z)

is 1-connected. Suppose Image(hα) ⊂ Free(H,Z). Since H acts freely on Free(H,Z),

Free(H,Z)/H is a manifold with the fundamental group ∼= H , and the canonical map π :

Free(H,Z) → Free(H,Z)/H is a universal covering map. Using the composite mapping

π ◦ hα : A → Free(H,Z)/H , one defines the H-equivariant geometric self-intersection

number µH(hα) ∈ Z[H ]/minλ(Z[H ]), exactly as in [44, pp.45–46], where minλ(Z[H ]) is

the minimum λ-form parameter on Z[H ]. Thus, setting

Zg =

{
Z/(1 − λwZ(g))Z, if g ∈ G and g2 = 1

Z, if g ∈ G and g2 6= 1,

one can regard µH(hα) as an |H|-tuple (µH(hα)g)g∈H such that µH(hα)g ∈ Zg and

µH(hα)g = λwZ(g)µH(hα)g−1. If H ′ is another subgroup of G such that Free(H ′, Z) is

1-connected and Image(hα) ⊂ Free(H ′, Z), and if g ∈ H ∩ H ′, then one can check that

µH(hα)g = µH′(hα)g. For any g ∈ H , we define the g-th geometric self-intersection number

#g(hα) = µH(hα)g ∈ Zg.
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Thus, #g(hα) is defined only when Free(〈g〉, Z) is 1-connected and Image(hα) ⊂ Free(〈g〉, Z).

We shall partially overcome this restriction in Definition 4.11 below. The geometric self-

intersection numbers #g( ) (g ∈ G) have the property that #1(hα) = 0 ⇐⇒ hα is reg-

ularly homotopic to an embedding h′α, and the property that #1(hα) = 0 and #g(hα) =

0 ⇐⇒ hα is regularly homotopic to an embedding h′α such that Image(h′α)∩Image(gh′α) =

∅ (cf. [1, p.17, Corollary 1]).

Let ν(hα) denote the normal bundle of the immersion hα : A → Z and χ(ν(hα)) the

Euler number of ν(hα). If the normal bundle ν(hα) is trivial then χ(ν(hα)) = 0. There is a

relation (cf. Theorem 4.11 (iii) of [44, p.5]) between the equivariant geometric intersection

number and the equivariant geometric self-intersection number given by the equation

#H(hα, hα) = µ̃H(hα) + λµ̃H(hα) + χ(ν(hα)),

where µ̃H(hα) is a lifting of µH(hα) to Z[H ]. From this, one deduces easily the next

lemma.

Lemma 4.10. Let hα : A → Z be an immersion such that #g(hα) is defined. If g ∈

{1} ∪G(2), let #̃g(hα) denote a lifting of #g(hα) to Z. Then

#(hα, g
−1hα) =





#g(hα), if order(g) ≧ 3

#̃g(hα) + λwZ(g)#̃g(hα), if g ∈ G(2)

#̃g(hα) + λ#̃g(hα) + χ(ν(hα)), if g = 1.

In particular, χ(ν(hα)) = 0 whenever #(hα, hα) = 0 and #1(hα) = 0.

In the following, let

Q(G,Z) = G(Z, k − 1) ∩G(2)

S(G,Z) = G(Z, k) ∩G(2).

Let Λ(Q(G,Z)) denote the λ-form parameter on Z[G] generated by Q(G,Z), namely

Λ(Q(G,Z)) = minλ(Z[G]) + Z[Q(G,Z)].

Let

Z(k − 1, G(2)) =
⋃

g∈G(2)




⋃

γ∈π0(Zg,k−1)

Zγ




where π0(Z
g, k−1) is the subset of π0(Z

g) consisting of all (k−1)-dimensional connected

components, and Zγ stands for the underlying space of γ. Set

Ẑ = Z \ Z(k − 1, G(2)).

Lemma 4.10 motivates making the following definition.
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Definition 4.11. Let A be a connected, closed, k-dimensional, oriented, smooth manifold

and hα : A→ Z (resp. hα : A→ Ẑ) an immersion. If g ∈ Gr (Q(G,Z)∪S(G,Z)) (resp.

Gr S(G,Z)), define

♮g(hα) =





#(hα, g
−1hα), if g ∈ G(> 2)

#g(h
′
α), if g ∈ G(2) with dimZg ≦ k − 2

(resp. g ∈ G(2) with dimZg ≦ k − 1)

#1(hα), if g = 1

where h′α : A → Free(〈g〉, Z) (resp. h′α : A → Free(〈g〉, Ẑ)) is regularly homotopic in

Z (resp. Ẑ) to hα. If h′′α : A → Free(〈g〉, Z), g ∈ G(2) with dimZg ≦ k − 2, (resp.

h′′α : A → Free(〈g〉, Ẑ), g ∈ G(2) with dimZg ≦ k − 1,) is regularly homotopic in Z

(resp. Ẑ) to hα then h′′α is regularly homotopic in Free(〈g〉, Z) to h′α, so that ♮g(hα) is well

defined.

Theorem 4.12. Let hα : A → Z (resp. hα : A → Ẑ) be as in Definition 4.11 and

g ∈ Gr (Q(G,Z) ∪ S(G,Z)) (resp. Gr S(G,Z)). Then ♮g(hα) is defined and ♮g(hα) =

#g(hα) whenever #g(hα) is defined, i.e. Image(hα) j Free(〈g〉, Z). Furthermore, if ♮̃g(hα)

denotes a lifting of ♮g(hα) to Z in the case g ∈ {1} ∪G(2) then

#(hα, g
−1hα) =





♮g(hα), if g ∈ G(> 2)

♮̃g(hα) + λwZ(g)♮̃g(hα), if g ∈ G(2) \ (Q(G,Z, ) ∪ S(G,Z))

(resp. g ∈ G(2) r S(G,Z))

♮̃g(hα) + λ♮̃g(hα) + χ(ν(hα)), if g = 1.

Proof. By definition, ♮g(hα) is always defined. The first equation for #(hα, g
−1hα) holds

by definition and the others follow from the corresponding equations in Lemma 4.10.

The assertion that ♮g(hα) = #g(hα) whenever the latter is defined follows now from the

equations just proved and those in Lemma 4.10. �

Whereas the G-equivariant, self-intersection form #G( ) is defined only on immersions

hα : A → Free(G,Z), the generalized G-equivariant self-intersection form ♮G( ) (resp.

♮̂G( )) to be constructed below will be defined on all immersions hα : A → Z (resp.

hα : A → Ẑ). To make this construction, we note first that each element g ∈ Q(G,Z)

(resp. S(G,Z)) satisfies by Corollary 4.8 the equation g = −λg (resp. g = λg).

Definition 4.13. Let hα : A → Z (resp. hα : A → Ẑ) be as in Definition 4.11. Let

G(> 2) = C ∪ C−1 be a disjoint decomposition. For each g ∈ {1} ∪ (G(2) r (Q(G,Z) ∪

S(G,Z))) ∪ C (resp. {1} ∪ (G(2) \ ∪S(G,Z)) ∪ C), let ♮̃g(hα) be a lifting of ♮g(hα) to Z.

Define the generalized G-equivariant self-intersection number

♮G(hα) =
∑

g

♮̃g(hα)g ∈ Z[G]/(Λ(Q(G,Z)) + Z[S(G,Z)]))
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where g runs over {1} ∪ (G(2) r (Q(G,Z) ∪ S(G,Z))) ∪ C (resp.

♮̂G(hα) =
∑

g

♮̃g(hα)g ∈ Z[G]/(min
λ

(Z[G]) + Z[S(G,Z)])

where g runs over {1} ∪ (G(2) r S(G,Z)) ∪ C).

The number ♮G(hα) (resp. ♮̂G(hα)) does not depend on the liftings ♮̃(hα), and not on

the choice of C, because for g ∈ G(> 2),

♮g−1(hα) = λwZ(g)♮g(hα)

and therefore, ♮g(hα)g ≡ ♮g−1(hα)g−1 mod (minλ(Z[G])). The number ♮G(hα) (resp.

♮̂G(hα)) is invariant under regular homotopy of hα in Z (resp. Ẑ).

Theorem 4.14. Let hα : A → Z (resp. hα : A → Ẑ) be as in Definition 4.11 and let

♮̃G(hα) denote a lifting of ♮G(hα) (resp. ♮̂G(hα)) to Z[G]/Z[S(G,Z)]. Then

#G(hα, hα) = ♮̃G(hα) + λ♮̃G(hα) + χ(ν(hα)) in Z[G]/Z[S(G,Z)].

Proof. It follows from the definitions of #G and ♮G (resp. ♮̂G) that the assertion of the

theorem is equivalent to the assertion of Theorem 4.12. �

Definition 4.15. Let hi : Ai → Z (resp. hi : Ai → Ẑ), i = 0, 1, be immersions

as in Definition 4.11. Then the connected sum h0#h1 of h0 and h1 is defined up to

regular homotopy in Z (resp. Ẑ) as follows. Let Di ⊂ Ai, i = 0, 1, be k-dimensional

disks such that hi|Di
are injective. Let I denote the closed unit interval [0, 1], Dk a k-

dimensional disk, and identify the k-dimensional disks {i} ×Dk ⊂ I ×Dk, i = 0, 1, with

the k-dimensional disks Di, respectively, by orientation preserving diffeomorphisms. Let

ϕ : I×Dk → Z (resp. ϕ : I×Dk → Ẑ) be an immersion such that ϕ|Di
= hi. Let A0#A1

denote the usual connected sum of A0 and A1 formed by cutting out the interior of the

disks Di from Ai, and let T denote the tube in A0#A1 connecting A0 and A1. Thus one

has a diffeomorphism ψ : I × Sk−1 → T such that the maps ψ|{i}×Sk−1 , i = 0, 1, agree

with the identifications made above. Let h = h0#h1 : A0#A1 → Z denote the immersion

such that h|Ai\Di
= hi|Ai\Di

and

h|T (ψ(t, x)) = ϕ(t, x) ((t, x) ∈ I × Sk−1).

If h′i : Ai → Z (resp. h′i : Ai → Ẑ), i = 0, 1, are immersions which are regularly

homotopic in Z (resp. Ẑ) to hi, i = 0, 1, respectively, and if h′ : A0#A1 → Z (resp.

h′ : A0#A1 → Ẑ ) is an immersion enjoying the same properties relative to h′0 and h′2 as

h relative to h0 and h1, then h′ is regularly homotopic in Z (resp. Ẑ) to h, because A0 and

A1 are connected and Z (resp. Ẑ) is 1-connected. We define ♮G(h0#h1) = ♮G(h) (resp.

♮̂G(h0#h1) = ♮̂G(h)) and conclude that ♮G(h0#h1) (resp. ♮̂G(h0#h1)) is well defined and

invariant under regular homotopy of h0 and h1 in Z (resp. Ẑ).
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Theorem 4.16. Let hi : Ai → Z (resp. hi : Ai → Ẑ), i = 0, 1, be immersions as in

Definition 4.11. Then

#G(h0, h1) = ♮G(h0#h1) − ♮G(h0) − ♮G(h1)

in Z[G]/(Λ(Q(G,Z)) + Z[S(G,Z)])

(resp. #G(h0, h1) = ♮̂G(h0#h1) − ♮̂G(h0) − ♮̂G(h1)

in Z[G]/(minλ(Z[G]) + Z[S(G,Z)])).

Proof. The proof is similar to Theorem 5.2 (iv) of [44]. �

In applications, it will be sometimes necessary to perform G-surgery relative to a G-

subset which is strictly larger than the singular set Sing(G,Z). This is of interest also in

the case G = 1. In order to handle such situations, we introduced already in Assump-

tion 4.1 a generalization L of the singular set. For the rest of this section, L denotes such

a set. If U is a subset of Z, define

ρG(U) =
⋂

x∈U

Gx.

If β ∈ B, set ρG(β) = ρG(Bβ). For a subgroup H of G, define

U=H = {x ∈ U | Gx = H}.

Proposition 4.17. For any β ∈ B,

B
=ρG(β)
β

is connected and open dense in Bβ.

Proof. This follows from the property that any element x ∈ Bβ such that Gx 6= ρG(β) lies

in L(k−2). �

Proposition 4.18. If dimZγ = k − 1 or k, where γ ∈ π0(Z
H) and H ∈ S(G), then

|ρG(Zγ) ∩G(2)| ≦ 1.

Proof. Let p ∈ Interior(Zγ). Let Tp(Zγ) (resp. Tp(Z)) denote the tangent space at p in

γ (resp. Z). Then Tp(Zγ) has an orthogonal complement ν(Zγ) in Tp(Z) with respect

to some ρG(Zγ)-invariant inner product. Note dim ν(Zγ) = n − dim(Zγ) ≧ 1. We claim

ρG(Zγ) acts freely on νp(Zγ) \ {0}. Suppose this has been shown. Then the group ρG(Zγ)

injects into AutR[ρG(Zγ)](νp(Zγ)). Let f ∈ AutR[ρG(Zγ )](νp(Zγ)) denote an element such that

f 2 = id. Each eigenvalue of f must be 1 or −1. Moreover if f acts freely on νp(Zγ) \ {0}

then all eigenvalues of f are −1, hence f = −id. In other words, AutR[ρG(Zγ )](νp(Zγ))

has exactly one element which is of order 2 and acts freely on νp(Zγ) \ {0}, namely −id.

Thus, |ρG(Zγ)∩G(2)| ≦ 1. If dimZγ = k then it follows from Sing(G,Z) ≦ k that ρG(Zγ)

acts freely on elements νp(Zγ) \ {0}. If dim γ = k − 1 then there are no β ∈ B such that

Bβ % Zγ. Thus, ρG(Zγ) acts freely on νp(Zγ) \ {0}. �



48 ANTHONY BAK AND MASAHARU MORIMOTO

Let hβ : Bβ → Z, β ∈ B, denote the canonical inclusion map afforded by L in Assump-

tion 4.1.

Theorem 4.19. Let {Aα | α ∈ A} be a finite set of connected, closed, k-dimensional,

oriented, smooth manifolds and for each α ∈ A, let hα : Aα → Ẑ be an immersion. Then

(4.19.1) and (4.19.2) below are equivalent.

(4.19.1) (i) #G(hα, hα′) = 0 for all α 6= α′ ∈ A.

(ii) #(hα, hβ) = 0 for all (α, β) ∈ A× B.

(iii) #G(hα, hα) = 0 and ♮̂G(hα) = 0 for all α ∈ A.

(4.19.2) There is a family of regular homotopies hα ∼ h′α in Ẑ where α ranges through A

such that the following holds:

(a) Image(h′α) ∩ gImage(h′α′) = ∅ for all α 6= α′ ∈ A and all g ∈ G.

(b) Image(h′α) ∩Bβ = ∅ for all (α, β) ∈ A× B.

(c) h′α is an embedding such that χ(ν(h′α)) = 0 and Image(h′α) ∩ gImage(h′α) = ∅
for all α ∈ A and all g ∈ Gr {1}.

Proof. Since each hα, α ∈ A, is regularly homotopic in Ẑ to an immersion h′′α : Aα →

Ẑ \ L(k−1), it suffices to prove the equivalence (4.19.1) ⇐⇒ (4.19.2) when hα is replaced

by h′′α.

It is routine to establish (i) ⇐⇒ (a), (ii) ⇐⇒ (b), (iii) ⇐ (c), and (i) ∪ (ii) ∪ (iii) ⇐ (a)

∪ (b) ∪ (c). To prove (i) ∪ (ii) ∪ (iii) ⇒ (a) ∪ (b) ∪ (c), it suffices to show (i) ∪ (ii) ∪ (iii)

⇒ (c). By (i) ∪ (ii), there is a family of regular homotopies h′′α ∼ h
(3)
α , α ∈ A, such that

the h
(3)
α ’s satisfy (a) ∪ (b) when h′α is replaced by h

(3)
α . In particular, each Image(h

(3)
α )

j Ẑ r L j Free(G,Z). Moreover, Ẑ \ L is 1-connected, because Z is 1-connected and

dimZ − dimL ≧ 3. Hence, #g(h
′′
α) is defined for any (g, α) ∈ G × A. Furthermore, we

can treat each index α by itself. For a fixed α, (c) is equivalent to the assertion that

#G(h
(3)
α , h

(3)
α ) = 0 and #G(h

(3)
α ) = 0. It is clear that #G(h

(3)
α , h

(3)
α ) = #G(hα, hα) = 0 by

(iii), since #G( , ) is invariant under homotopy. Thus it suffices to show #G(h
(3)
α ) = 0.

By definition, #G(h
(3)
α ) = 0 ⇐⇒ #g(h

(3)
α ) = 0 for all g ∈ G. If g ∈ G \ S(G,Z) then

#g(h
(3)
α ) = ♮g(h

(3)
α ) = 0 by (iii). Suppose g ∈ S(G,Z). Then by Lemma 4.7, λwZ(g) = 1.

Thus #g(h
(3)
α ) ∈ Zg = Z. Lemma 4.10 gives 2#g(h

(3)
α ) = #(h

(3)
α , g−1h

(3)
α ), and this is equal

to 0 by (iii). Thus, #g(h
(3)
α ) = 0. �

Lemma 4.20. Let Z be as in Theorem 4.19 and let A be a closed, connected, k-dimensional,

oriented, smooth manifold. If h : A→ Ẑ is an immersion and

τ ∈
⊕

g∈Q(G,Z)
Zgg

then there exists a regular homotopy h ∼ h′ in Z such that h′(A) j Ẑ and ♮̂G(h′) =

♮̂G(h) + τ .

We remark that Zg = Z2 by Lemma 4.7.
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Proof. For simplicity, we treat first the case when τ = g for some element g ∈ Q(G,Z).

Let γ ∈ π0(Z
H , k − 1) such that ρG(Zγ) ∋ g. (It follows from Assumption 4.1 that Zγ

is a (k − 1)-dimensional connected component of Zg.) Consider how ♮̂G(h) is altered by

a regular homotopy h ∼ h′′ crossing γ once (i.e. the intersection number of Zγ and the

regular homotopy is equal to 1). The resulting immersion h′′ can be realized by a connected

sum construction as follows. Fix a point p ∈ Z
=ρG(ZH

γ )
γ (hence Gp = ρG(Zγ)). Decompose

the tangent space Tp(Z) in Z into a direct sum of the tangent space Tp(Zγ) in Zγ and the

normal space νp(Zγ) of Zγ in Z. Clearly, dim νp(Zγ) = k + 1. Take a tiny ball Dk+1 in

νp(Zγ) centered at 0 so that the exponential map Exp maps Dk+1 diffeomorphically into

Z, Exp(Dk+1) ∩ Sing(G,Z) = {p}, and Image(h) ∩G(Exp(Dk+1)) = ∅. Set Sk = ∂Dk+1

and hg = Exp|Sk : Sk → Free(G,Z). Then h′′ above may be realized as h#hg (connected

sum in Ẑ). Since Image(hg) bounds the embedded disk Exp(Dk+1), hg is null homotopic

in Z. Moreover, Exp(Dk+1) ⊂ Z r Za if a /∈ ρG(Zγ). Recall that ρG(Zγ) ∩ G(2) = {g},

by Proposition 4.18. Thus, for all a ∈ G(2) r {g}, ♮a(hg) = #a(hg) = 0. It follows

that ♮̂G(hg) = #g(hg)g. It is elementary to compute that #g(hg) = 1 ∈ Z2. Since

#G(h, hg) = 0, ♮̂G(h′′) = ♮̂G(h) + ♮̂G(hg) = ♮̂G(h) + g by Theorem 4.16. We consider

now the case of a general τ . Let gi, i = 1, 2, · · · , ℓ, denote all the elements such that

gi ∈ Q(G,Z) and the gi-th coefficient of τ is nonzero. By induction on ℓ, one shows that

there is a regular homotopy h ∼ h′ in Z such that ♮̂G(h′) = ♮̂G(h) + τ . �

Theorem 4.21. Let {Aα | α ∈ A} be a finite set of connected, closed, k-dimensional,

oriented, smooth manifolds and for each α ∈ A, let hα : Aα → Z be an immersion. Then

(4.21.1) and (4.21.2) below are equivalent.

(4.21.1) (i) #G(hα, hα′) = 0 for all α 6= α′ ∈ A.

(ii) #(hα, hβ) = 0 for all (α, β) ∈ A× B.

(iii) #G(hα, hα) = 0 and ♮G(hα) = 0 for all α ∈ A.

(4.21.2) There is a family of regular homotopies hα ∼ h′α in Z where α ranges through A

such that the following holds:

(a) Image(h′α) ∩ gImage(h′α′) = ∅ for all α 6= α′ ∈ A and for all g ∈ G.

(b) Image(h′α) ∩Bβ = ∅ for all (α, β) ∈ A× B.

(c) h′α is an embedding such that χ(ν(h′α)) = 0 and Image(h′α) ∩ gImage(h′α) = ∅
for all α ∈ A and all g 6= 1 ∈ G.

Proof. Since #G( , ), #( , ) and ♮G( ) are invariant under regular homotopy in Z, the

assertion (4.21.2) =⇒ (4.21.1) is an obvious corollary of the assertion (4.19.2) =⇒ (4.19.1).

We show that (4.21.1) =⇒ (4.21.2). It suffices to find regular homotopies hα ∼ h′′α such

that h′′α : Aα → Ẑ and (4.21.1) (i)–(iii) are satisfied when hα is replaced by h′′α. There are

regular homotopies hα ∼ h
(3)
α , Aα ∈ A, in Z such that h

(3)
α : Aα → Ẑ. Clearly (4.21.1) (i)

and (ii) are valid after hα is replaced by h
(3)
α . Furthermore #G(h

(3)
α , h

(3)
α ) = #G(hα, hα) = 0

and ♮G(h
(3)
α ) = ♮G(hα) = 0 by assumption. It remains to find a regular homotopy h

(3)
α ∼ h′′α
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in Z such that ♮̂G(h′′α) = 0, for each α ∈ A. But, one can find such a regular homotopy

by applying Lemma 4.20 with h = h
(3)
α and τ = −♮̂G(h

(3)
α ) = ♮̂G(h

(3)
α ). �

5. G-surgery obstruction modules

Let X and Y denote compact, connected, oriented smooth G-manifolds of dimension

n = 2k (n ≧ 6) such that dim Sing(G,X) ≦ k and Y is simply connected.

This section defines the doubly parametrized positioning module MMMfff of a k-connected

G-surgery map fff = (f, b). MMMfff is called the G-surgery obstruction module of fff . It will

be shown that a geometrically defined invariant ∇B vanishes on MMMfff . The G-surgery

obstruction σ(fff) is by Definition 5.11 the class ofMMMfff in the G-surgery obstruction group.

Theorem 6.3 of the next section will show that the vanishing of σ(fff) is a sufficient condition

for performing G-surgery. Theorem 7.8 will show that the vanishing of σ(fff) is a necessary

condition for performing G-surgery.

The module MMMfff will actually be defined with respect to any given G-set

L = L(k−1) ∪
⋃

β∈B

Bβ (⊂ X)

satisfying Assumption 4.1 in Section 4. By definition, L k Sing(G,X) and is properly

thought of as a generalization of Sing(G,X). See Assumption 4.2. In this setting MMMfff will

be denoted by MMMfff,B and σ(fff) by σ(fff,B), where B = {hβ : Bβ → X | β ∈ B} denotes the

set of canonical inclusion maps. Define

B+,L = {β ∈ B | Bβ is orientable}.

Recall that for each β ∈ B+,L, Bβ is assumed to be oriented. Its orientation class in

Hk(Bβ , ∂Bβ ; Z) is denoted by [β]. We introduce the notion of a G-singularity structure

equipped with a free {±1}-action on B+,L so that the G-action on the structure is com-

patible with that on the family of orientations {[β] | β ∈ B}.

Definition 5.1. The set B, or more precisely the pair (L,B), is called a G-singularity

structure for X if the following conditions are satisfied.

(5.1.1) B is a G× {±1}-set such that B{±1} = B r B+,L.

(5.1.2) For all g ∈ G and β ∈ B, Bgβ = gBβ. (Hence the map g : X → X, x 7→ gx, has

the well-defined restriction g : Bβ → Bgβ.)

(5.1.3) For all β ∈ B+, B(−1)β = Bβ as subsets of X and [(−1)β] = −[β]. (Hence

hβ = h(−1)β .)

(5.1.4) For all g ∈ G and β ∈ B+,L, [gβ] = g[β] (namely, g∗[β]).

(5.1.5) Let β and β ′ be arbitrary elements of B such that Bβ = Bβ′ as subsets of X. If

Bβ is orientable then β = β ′ or β = (−1)β ′; if Bβ is not orientable then β = β ′.

For the rest of this paper, we let (L,B) be a G-singular structure for X. Define

Θ̃B = B+,L, Θ2,B = B/{1,−1}
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and let

pB : Θ̃B → Θ2,B

denote the canonical map. For each element t of Θ2,B, let [t] denote the nontrivial element

of Hk(Bβ(t), ∂Bβ(t); Z2). It follows that for β ∈ Θ̃B, the Z2-reduction of [β] is equal to

[pB(β)].

In the remainder of the paper, we often denote a lifting in B of t ∈ Θ2,B by β(t) which

is uniquely determined up to {±1}-action. In this occasion, β is a section Θ2,B → B of

the quotient map B → Θ2,B.

Let R denote a commutative ring with unit element.

Definition 5.2. Let

Hk(X;R) = K(X;R) ⊕K(X;R)c and

Hk(X, ∂X;R) = K(X, ∂X;R) ⊕K(X, ∂X;R)c

be R[G]-direct sum decompositions such that

IntG,X,∂X;R(K(X;R), K(X, ∂X;R)c) = 0 and

IntG,X,∂X;R(K(X;R)c, K(X, ∂X;R)) = 0.

Let

Hk(X;R2) = K(X;R2) ⊕K(X;R2)
c and

Hk(X, ∂X;R2) = K(X, ∂X;R2) ⊕K(X, ∂X;R2)
c

be R2[G]-direct decompositions compatible with the decompositions of Hk(X;R) and

Hk(X, ∂X;R) such that

IntG,X,∂X;R2(K(X;R2), K(X, ∂X;R2)
c) = 0 and

IntG,X,∂X;R2(K(X;R2)
c, K(X, ∂X;R2)) = 0,

where R2 = R/2R. The term compatible above means that the canonical maps

πX : Hk(X;R) → Hk(X;R2) and

πX,∂X : Hk(X, ∂X;R) → Hk(X, ∂X;R2)

preserve the decompositions, i.e.

πX(K(X;R)) j K(X;R2),

πX(K(X;R)c) j K(X;R2)
c,

πX,∂X(K(X, ∂X;R)) j K(X, ∂X;R2), and

πX,∂X(K(X, ∂X;R)c) j K(X, ∂X;R2)
c.

If x ∈ Hk(X, ∂X;R) (resp. Hk(X, ∂X;R2)) then x has a decomposition

x = xK + xKc
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where xK ∈ K(X, ∂X;R) (resp. K(X, ∂X;R2)) and xKc ∈ K(X, ∂X;R)c (resp.

K(X, ∂X;R2)
c). Define

θK : Θ̃B → K(X, ∂X;R); β 7→ (hβ∗[β]R)K

θ2,K : Θ2,B → K(X, ∂X;R2); t 7→ (hβ(t)∗
[t]R2)K .

Clearly, the diagram

Θ̃B

pB

��

θK // K(X, ∂X;R)

πX,∂X

��
Θ2,B

θ2,K

// K(X, ∂X;R2)

commutes. The 8-tuple

(K(X,R), K(X, ∂X;R), IntG,X,∂X;R, θK ,

K(X, ∂X;R2), K(X;R2), IntG,X,∂X;R2, θ2,K)

is called a geometric positioning module.

The 8-tuple is usually abbreviated by (K(X,R), K(X, ∂X;R), IntG,X,∂X;R, θK , θ2,K) if

the canonical maps

πX : K(X;R) → K(X;R2) and

πX,∂X : K(X, ∂X;R) → K(X, ∂X;R2)

are surjective.

Definition 5.3. We call the geometric positioning module above nonsingular, if

(5.3.1) K(X;R) and K(X, ∂X;R) are finitely generated, projective R[G]-modules,

(5.3.2) IntG,X,∂X;R on K(X;R) ×K(X, ∂X;R) is nonsingular, and

(5.3.3) πX : K(X;R) → K(X;R2) and πX,∂ : K(X, ∂X; R) → K(X, ∂X;R2) are surjec-

tive.

If the geometric positioning module is nonsingular, it follows of course that K(X;R2)

and K(X, ∂X;R2) are finitely generated R2[G]-modules and IntG,X,∂X;R2 is nonsingular.

Definition 5.4. We shall call the geometric positioning module Hermitian if the canonical

maps K(X;R) → K(X, ∂X;R) and K(X;R2) → K(X, ∂X;R2) are isomorphisms.

This make sense, since by Lemma 4.3 the diagram

K(X;R) ×K(X;R)
IntG,X;R //

��

R[G]

K(X;R) ×K(X, ∂X;R)

IntG,X,∂X;R

44iiiiiiiiiiiiiiiiiiii

commutes and IntG,X;R is λ-Hermitian, where λ = (−1)k. Similar remarks hold when R

is replaced by R2. We shall abbreviate a Hermitian geometric positioning module by

(K(X;R), IntG,X;R, θK , θ2,K).
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Theorem 5.5. Suppose that X is simply connected. Let {hα : Aα → X | α ∈ A} be a

finite set of immersions hα of connected, closed, k-dimensional, oriented, smooth man-

ifolds Aα. Let (K(X,Z), K(X, ∂X; Z), IntG,X,∂X;Z, θK , θ2,K) be a geometric positioning

module in Definition 5.2 such that hα∗[α] ∈ K(X; Z) for each α ∈ A, where [α] is the

orientation class of Aα. Let ♮G be the G-self-intersection form in Definition 4.13. Then

(5.5.1) and (5.5.2) below are equivalent.

(5.5.1) (i) IntG,X,∂X;Z(hα∗[α], h′α′∗[α
′]) = 0 for all α 6= α′ ∈ A.

(ii) IntG,X,∂X;Z(hα∗[α], θK([β])) = 0 for all (α, β) ∈ A × Θ̃B and

IntG,X,∂X;Z2(hα∗[α], θ2,K(t)) = 0 for all (α, t) ∈ A× Θ2,B.

(iii) IntG,X,∂X;Z(hα∗[α], hα∗[α]) = 0 and ♮G(hα) = 0 for all α ∈ A.

(5.5.2) There is a family of regular homotopies hα ∼ h′α in X where α ranges through A

such that the following holds:

(a) Image(h′α) ∩ gImage(h′α′) = ∅ for all α 6= α′ ∈ A and g ∈ G.

(b) Image(h′α) ∩Bβ(t) = ∅ for all (α, t) ∈ A× Θ2,B.

(c) h′α is an embedding such that χ(ν(h′α)) = 0 and Image(h′α) ∩ gImage(h′α) = ∅
for all α ∈ A and g 6= 1 ∈ G.

Proof. It follows from Lemma 4.6 and the observations

IntG,X,∂X;Z((hα)∗[α], θK(β)) = IntG,X,∂X;Z(hα∗[α], hβ∗([β]))

and

IntG,X,∂X;Z2(hα∗[α], θ2,K(t)) = IntG,X,∂X;Z2(hα∗[α], hβ(t)∗
([t]))

that (5.5.1) ⇐⇒ (4.21.1). Thus the assertion of the theorem follows from the assertion in

Theorem 4.21. �

Let f : (X, ∂X) → (Y, ∂Y ) be a G-map. The map f is called an R-boundary quasiequiv-

alence if the induced map H∗(∂X;R) → H∗(∂Y ;R) is an isomorphism. If f is an R-

boundary quasiequivalence then f is necessarily an R2-boundary quasiequivalence. The

map f is called a (G,R)-singularity quasiequivalence if the induced map

H∗(Sing(G,X);R) → H∗(Sing(G, Y );R)

is an isomorphism. If f is a (G,R)-singularity quasiequivalence then f is necessarily a

(G,R2)-singularity quasiequivalence.

Lemma 5.6. Let f : (X, ∂X) → (Y, ∂Y ) be a degree-one G-map. Then

(Kk(X;R), Kk(X, ∂X;R), IntG,X,∂X;R, θKk
, θ2,Kk

)

is a geometric positioning module. If f is a k-connected, R-boundary quasiequivalence

and if Kk(X;R) is R[G]-projective then (Kk(X;R), IntG,X;R, θKk
, θ2,Kk

) is a nonsingular

Hermitian geometric positioning module.
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Proof. By (4.4.1)–(4.4.3), the decompositions Hk(X;R′) = Kk(X;R′) ⊕ f̂∗(Hk(Y ;R′))

and Hk(X, ∂X;R′) = Kk(X, ∂X;R′)⊕ f̂∗(Hk(Y, ∂Y ;R′)) (for R′ = R and R2) satisfy the

conditions required in Definition 5.2. Thus,

(Kk(X;R), Kk(X, ∂X;R),IntG,X,∂X;R, θKk
,

Kk(X;R2), Kk(X, ∂X;R2), IntG,X,∂X;R, θ2,Kk
)

is a geometric positioning module.

By k-connectedness, Kk−1(X; Z) = 0. By the universal coefficient theorem, the canon-

ical map

R′ ⊗Z Kk(X; Z) → Kk(X;R′)

is an isomorphism for an arbitrary Z-moduleR′. Thus the canonical mapR2⊗RKk(X;R) →

Kk(X;R2) is an isomorphism.

Next suppose f is an R-boundary quasiequivalence. Then the maps Kk(X;R) →

Kk(X, ∂X;R) and Kk(X;R2) → Kk(X, ∂X;R2) are isomorphisms. It follows that the

map R2 ⊗R Kk(X, ∂X;R) → Kk(X, ∂X;R2) is also an isomorphism. The facts above es-

tablish that (Kk(X;R), IntG,X;R, θKk
, θ2,Kk

) is a Hermitian geometric positioning module.

If Kk(X;R) is an R[G]-projective module then by Lemma 4.5, (Kk(X;R), IntG,X;R) is a

nonsingular, λ-Hermitian module. Thus (Kk(X;R), IntG,X;R, θKk
, θ2,Kk

) is a nonsingular

Hermitian geometric positioning module. �

Let f : (X, ∂X) → (Y, ∂Y ) be a G-map of smooth G-manifolds X and Y . Let T (X)

denote the tangent bundle of X. The smooth action of G on X gives T (X) a real G-

vector bundle structure. Let ξ+ and ξ− be real G-vector bundles on Y and let f ∗(ξ+) and

f ∗(ξ−) denote the pullback bundles of ξ+ and ξ−, respectively, to X. Let ξ = ξ+ − ξ−
denote the formal difference. A G-framing of f with respect to ξ is an isomorphism

b : T (X) ⊕ f ∗(ξ− ⊕ η) → f ∗(ξ+ ⊕ η) of real G-vector bundles where η is a real G-vector

bundle over Y . Usually η = εY (V ) for a finite dimensional, real G-module (i.e. real

G-representation space) V . Here εY (V ) is the product bundle on Y with fiber V ( i.e.

trivial G-vector bundle) and f ∗εY (V ) = εX(V ). A G-framed map is a pair fff = (f, b) :

(X, ∂X, T (X)) → (Y, ∂Y, ξ).

Definition 5.7. Let fff = (f, b) : (X, ∂X, T (X)) → (Y, ∂Y, ξ) be a k-connected, degree-

one G-framed map. Suppose that f is an R-boundary quasiequivalence and Kk(X;R) is

R[G]-projective. Such a map fff is called a k-connected (R,G)-surgery map. Define

Bf,R = IntG,X;R|Kk(X;R)×Kk(X;R)
, θf,B = θKk

, θ2,f,B = θ2,Kk
.
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By Lemma 5.6, (Kk(X;R), Bf,R, θf,B, θ2,f,B) is a nonsingular Hermitian geometric posi-

tioning module on the projective R[G]-module Kk(X;R). Let

Q(G,X) = G(X, k − 1) ∩G(2)

S(G,X) = G(X, k) ∩G(2)

Λ(Q(G,X)) = minλ(Z[G]) + Z[Q(G,X)]

Γ(S(G,X)) = min−λ(Z[G]) + Z[S(G,X)]

(cf. Section 3). Since f is k-connected and of degree one, we deduce that the relative

Hurewicz map πk(f) → Kk(X; Z) is an isomorphism. Thus, each element of Kk(X; Z)

can be represented by an immersion h : Sk → X of the oriented k-sphere Sk. Since fff

is G-framed, we can in fact choose h such that its normal bundle ν(h) in X is trivial,

cf. [44, Part 0, p.10, Theorem 1.1 and Proposition]. Such an h is unique up to regular

homotopy in X, cf. [44, Part 0, Theorem 1.1] or the proposition subsequent to it. For

each x ∈ Kk(X; Z), let hx : Sk → X be an immersion of the k-sphere Sk with trivial

normal bundle such that hx∗[S
k] = x. By Lemma 4.6,

Bf,Z(x, y) = #G(hx, hy).

Let

♮G : Immersion(Sk,Free(G,X)) → Z[G]/(Λ(Q(G,X)) + Z[S(G,X)])

denote the generalized, G-equivariant, self-intersection form in Definition 4.13 and define

qfff : Kk(X; Z) → Z[G]/(Λ(Q(G,X)) + Z[S(G,X)]); x 7→ ♮G(hx).

By Theorem 4.14, we have the equality

Bf,Z(x, y) = q̃fff ,Z(x) + q̃fff ,Z(y) in Z[G]/Z[S(G,Z)]

where q̃fff,Z(x) and q̃fff ,Z(y) denote liftings of qfff ,Z(y) and qfff ,Z(y), respectively, to Z[G]/Z[S(G,Z)].

By Theorem 4.16, we have the equality

qfff(x+ y) = qfff (x) + qfff (y) +Bf,Z(x, y) in Z[G]/(Λ(Q(G,X)) + Z[S(G,X)]).

Furthermore, one shows routinely that for any element a ∈ Z[G], qfff(ax) = aqfff (x)a. It

follows that the pair (Bf,Z, qfff) is a doubly parametrized form, in the sense of Definition 2.6,

on Kk(X; Z) over the parameter algebra

(Z[G], (−, λ),Γ(S(G,X)), G,Z[S(G,X)],Λ(Q(G,X)) + Z[S(G,X)]).

By applying the exact functor R⊗−, we extend Bf,Z and qfff,Z, respectively, to maps

Bf,R : Kk(X,R) ×Kk(X,R) → R[G]

and

qfff ,R : Kk(X;R) → R[G]/(RΛ(Q(G,X) +R[S(G,X)]))
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and obtain straightforward that (Bf,R, qfff,R) is a doubly parametrized form on Kk(X;R)

over the parameter algebra

(R[G], (−, λ), RΓ(S(G,X)), G,R[S(G,X)], RΛ(Q(G,X)) +R[S(G,X)])).

The 5-tuple

MMMfff,B = (Kk(X;R), Bf,R, qfff ,R, θf,B, θ2,f,B)

is called the R[G]-surgery obstruction module of (fff,B).

Proposition 5.8. Let fff : (X, ∂X;T (X)) → (Y, ∂Y ; ξ) be a k-connected (R,G)-surgery

map. Then its surgery obstruction module MMMfff,B lies in the category QQQ(AAA,ΘΘΘB), where

AAA = (R[G], (−, λ), RΓ(S(G,X)), G,R[S(G,X)], RΛ(Q(G,X)) +R[S(G,X)])

is as in Section 3 and ΘΘΘB = (Θ̃B, pB,Θ2,B). Moreover on Image[Kk(X; Z) → Kk(X;R)],

Bf,R = #G and qfff,R = ♮G.

Proof. The nonsingularity of Bf,R was proved in Lemma 5.6. Everything else was shown

directly above. �

Our next goal is to show that the surgery obstruction module MMMfff ,B above lies in a

certain subcategory

∇BQQQ(AAA,ΘΘΘB)

of QQQ(AAA,ΘΘΘB) where ∇B is an invariant on the latter category, in the sense of Definition 3.1.

To describe ∇B, it is convenient to use the notation established in Section 3. By defini-

tion A = R[G], Γ = RΓ(S(G,X)), As = R[S(G,X)], Λ = RΛ(Q(G,X)) + R[S(G,X)],

A2 = R2[G]. Let Γ′
2 = min−λ(A2) (= minλ(A2), because 2 = 0 in A2), ε2 : A2 → R2;∑

g∈G rgg 7→ r1, Γ′
2,g = ε2(Γ

′
2g

−1), where g ∈ G, and

ρ2 = ρG : Θ2,B → S(G); t 7→
⋂

x∈Bβ(t)

Gx.

If (M,B, q, θ, θ2) ∈ QQQ(AAA,ΘΘΘB) and g ∈ S(G,X), let

Σθ2,B
ρ2,g =

∑
t∈Θ2,B|g

θ2(t) ∈M2,

where Θ2,B|g = {t ∈ Θ2,B | ρ2(t) ∋ g} and M2 = M/2M . Define Θ2(G,X) to be the

set of all submanifolds of X obtained as k-dimensional connected components of XH for

subgroups H of G. By Assumption 4.1, Θ2(G,X) is a subset of Θ2,B.

Lemma 5.9. Let g ∈ S(G,X). Then the following hold.

(5.9.1) Θ2,B|g = Θ2(G,X)|g, thus

Σθ2
ρ2,g =

∑

t∈Θ2(G,X)|g

θ2(t).
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(5.9.2) If A is a connected closed manifold and h : A→ X a continuous map then

#2(h, gh) =
∑

t∈Θ2(G,X)|g

#2(h, hβ(t)) in Z2,

where #2(h, gh) is the mod 2 geometric intersection number of h and gh.

Proof. (5.9.1): Let t ∈ Θ2,B such that ρ2(t) ∋ g. Then Bβ(t) j Xg. Since dimXg ≦ k,

Bβ(t) is a k-dimensional connected component of Xg. Thus t belongs to Θ2(G,X).

(5.9.2): For the computation of the intersection number, we may assume that h : A→ X

is an immersion and that h, gh and Xg intersect transversely with one another. If h and

gh meet each other at a point x in XrXg then h and gh meet at gx ∈ XrXg, too. Thus

the number of points in X \ Xg at which h and gh meet each other is an even integer.

Thus #2(h, gh) is equal (mod 2) to the number of points in Xg at which h and gh meet

each other. This number is equal (mod 2) to #2(h,X
g). On the other hand

#2(h,X
g) =

∑

t∈Θ2(G,X)|g

#2(h, hβ(t)).

�

If (M,B, q, θ, θ2) ∈ QQQ(AAA,ΘΘΘB) and s ∈ S(G,X), let

αΓ′
α,s

(M,B, q, θ, θ2) = HomZ(M2, R2Γ
′
2,s) = HomZ(M2, R2)

and

∇Γ′
2,s

(M,B, q, θ, θ2) : M2 → R2; m 7→ ε2(Bf,R2(sm,Σ
θ2
ρ2,s −m)).

Let

∇Γ′
2

=
⊕

s∈S(G,X)

∇Γ′
2,s

αΓ′
2

=
⊕

s∈S(G,X)

αΓ′
2,s

∇B = (∇Γ′
2
, αΓ′

2
).

By Lemma 3.25, ∇B defines an invariant on QQQ(AAA,ΘΘΘB). It is called the geometric invariant

on Q(AAA,ΘΘΘB).

Lemma 5.10. Suppose R2 = Z/2Z or 0. If fff : (X, ∂X, T (X)) → (Y, ∂Y, ξ) is a

k-connected (R,G)-surgery map then the surgery obstruction module MMMfff ,B belongs to

∇BQQQ(AAA,ΘΘΘB), namely

ε2(Bf,R2(sm,Σ
θ2,f,B
ρ2,s −m))) = 0

for all m ∈ Kk(X;R2) = R2 ⊗R Kk(X;R).

Proof. Unwinding definitions, one obtains that

ε2(Bf,R2(sm,Σ
θ2,f,B
ρ2,s −m)) = IntX;R2(sm,Σ

θ2,f,B
ρ2,s −m)

= IntX,∂X;R2(m,Σ
θ2,f,B
ρ2,s − sm).
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Choose an immersion h : Sk → X such that the normal bundle ν(h) of h in X is trivial

and h∗[S
k] = m. By definition and (5.9.1),

Σ
θ2,f,B
ρ2,s =

∑

t∈Θ2(G,X)|s

θ2,f,B(t).

Since hβ(t) : Bβ(t) → X is the canonical embedding, it follows over R2 that

IntX,∂X;R2(m,Σ
θ2,f,B
ρ2,s − sm) =

∑

t∈Θ2(G,X)|s

IntX,∂X;R2(h∗[S
k], s(hβ(t))∗[t])

− IntX,∂X;R2(h∗[S
k], sh∗[S

k])

=
∑

t∈Θ2(G,X)|s

#2(h, shβ(t)) − #2(h, sh) (by Lemma 4.6)

=
∑

t∈Θ2(G,X)|s

#2(h, hβ(t)) − #2(h, sh)

= 0 (by (5.9.2)).

�

Definition 5.11. Suppose R2 = Z/2Z or 0. If fff : (X, ∂X, T (X)) → (Y, ∂Y, ξ) is a

k-connected (R,G)-surgery map, define

σ(fff,B) = [MMMfff ,B] ∈ W2k(R,G,Q(G,X), S(G,X),ΘΘΘB)proj.

If Kk(X;R) is stably free over R[G] (cf. Remark 3.35) then we can regard

σ(fff,B) ∈W2k(R,G,Q(G,X), S(G,X),ΘΘΘB)free.

In the remainder of this paper we suppose Z ⊆ R ⊆ Q.

Lemma 5.12. A finitely generated R-free, R[G]-module M is R[G]-projective if and only

if M(p) = M ⊗Z Z(p) is Z(p)[G]-projective for all (rational) primes p that are not invertible

in R.

Proof. The proof is similar to that of Lemma 2 of Nakayama [34]. �

Let P(G) denote the set of all subgroups of G of prime power order. A G-map f : X →

Y (or (X, ∂X) → (Y, ∂Y )) is called a P(G)R-singularity quasiequivalence if the induced

map H∗(X
P ; Z(p)) → H∗(Y

P ; Z(p)) is an isomorphism for any prime p not invertible in R

and any nontrivial p-subgroup P of G.

Lemma 5.13. Let f : (X, ∂X) → (Y, ∂Y ) be a degree-one R-boundary and P(G)R-

singularity quasiequivalence such that Kℓ(X;R) = 0 for all ℓ ≦ k−1. Then Kℓ(X;R) = 0

if ℓ 6= k and Kk(X;R) is a finitely generated, projective R[G]-module. If moreover f is a

(G,R)-singularity quasiequivalence then Kk(X;R) is a stably free R[G]-module.
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Proof. Let Cf denote the mapping cone of f . Then K∗(X;M) ∼= H∗+1(Cf ;M) for any

Z-module M . Thus the universal coefficient theorem holds for the functors K∗(−;−)

and K∗(−;−). Since Kℓ(X;R) = 0 for ℓ ≦ k − 1, we obtain Kℓ(X;R) = 0 for ℓ ≦

k − 1 by the universal coefficient theorem. By Poincaré-Lefschetz duality (cf. [8, I.2.8]),

Kℓ(X, ∂X;R) = 0 for ℓ ≧ k + 1. From the exact sequence of the pair (X, ∂X) with

coefficient ring R, it follows that Kℓ(X;R) = 0 for ℓ ≧ k + 1. Thus Kℓ(X;R) = 0 for

ℓ 6= k. Since

Kk(X;R) = Kk(X, ∂X;R) = Kk(X;R) = Hom(Kk(X;R), R)

and Kk(X;R) = Kk(X; Z) ⊗R, it follows that Kk(X;R) is a free R-module.

Next we prove that Kk(X;R) is R[G]-projective. By Lemma 5.12, it suffices to show

that Kk(X; Z(p)) is Z(p)[G]-projective for each prime p not invertible in R. It is enough

to show that Kk(X; Z(p)) is Z(p)[P ]-projective for any prime p as above and any Sylow p-

subgroup P of G. If P is the trivial group then it is obviously the case. Suppose P 6= {1}.

By hypothesis, f |Sing(P,X) : Sing(P,X) → Sing(P, Y ) is a Z(p)-homology equivalence. This

amounts to K∗(X; Z(p)) = K∗(X, Sing(P,X); Z(p)). Set K = Kk(X, Sing(G,X); Z(p)). By

observation of the cellular chain complex with coefficient ring Z(p) of the mapping cone

of f : (X, Sing(P,X)) → (Y, Sing(P, Y )) using [42][Proposition 3.5 (i) and (v)], we con-

clude that K/pK is Zp[P ]-free. Let ψ : Zp[P ]m → K/pK be a Zp[P ]-isomorphism and ψ̃ :

Z(p)[P ] → K be a Z(p)[P ]-homomorphism covering ψ. Let A = {gai | g ∈ P , i = 1, . . . , m}

be the canonical Z(p)-basis of Z(p)[P ]. Let

B = {bg,i | g ∈ P , i = 1, . . . , m}

be a Z(p)-basis of K. Take the matrix representation τ of ψ̃ with respect to the bases A

and B. Since ψ is an isomorphism, [det τ ] is an invertible element in Zp, which implies

that det τ is invertible in Z(p). Thus ψ̃ is an isomorphism. This implies Kk(X; Z(p)) is

Z(p)[P ]-free. Consequently, Kk(X;R) is R[G]-projective.

If f is a (G,R)-singularity quasiequivalence then, by inspecting the cellular chain com-

plex with coefficient ring R of the mapping cone of f : (X, Sing(G,X)) → (Y, Sing(G, Y )),

one can deduce that Kk(X;R) = Kk(X, Sing(G,X);R) is a stably free R[G]-module. �

Lemma 5.14. If a degree-one G-map f : (X, ∂X) → (Y, ∂Y ) is a k-connected, R-

boundary, P(G)R-singularity quasiequivalence then

Kk(X;R) = Ker[f∗ : Hk(X;R) → Hk(Y ;R)]

is a finitely generated, projective R[G]-module. If moreover, f is a (G,R)-singularity

quasiequivalence then Kk(X;R) is a stable free R[G]-module.

Proof. This follows immediately from Lemma 5.13. �
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6. G-surgery obstructions and theorems

The present section has two main results Theorems 6.2 and 6.3. The surgery obstruction

σ(fff,B) is defined in Theorem 6.3 as the class of surgery module MMMfff,B in the surgery

obstruction group Wn(R,G,Q(G,X), S(G,X),ΘΘΘB)proj. The results are for any coefficient

ring R such that Z j R j Q. Let MMM ′ denote the orthogonal sum MMM ′ = MMMfff ,B ⊕ M of

a G-surgery obstruction module MMMfff,B and a metabolic plane M which vanishes under

the geometric invariant ∇B. Theorem 6.2 says that one can convert by G-surgery the G-

framed map fff to a G-framed map fff ′ such thatMMM ′ =MMMfff ′,B. Since M vanishes by definition

in the G-surgery obstruction group, it will follow that σ(fff,B) = σ(fff ′,B). Theorem 6.3

says that the vanishing of σ(fff,B) is a sufficient condition for converting fff by G-surgery

into a G-framed homotopy equivalence fff ′.

Let I denote the closed unit interval [0, 1] and pX : I×X → X the canonical projection

on the second factor X. Recall that a G-cobordism W between X and X ′ is a compact

oriented smooth G-manifold of dimension n + 1 such that the boundary ∂W of W is a

union of two G-submanifolds ∂+W and ∂−W satisfying the properties

∂+W = −X ∐X ′ (−X denotes X with the opposite orientation)

∂−W ∼=G I × ∂X ′ (∼=G reads G-diffeomorphic to)

∂+W ∩ ∂−W = ∂(∂+W ) = ∂(∂−W ) = ∂(−X) ∐ ∂(X ′).

TW |∂+W is identified with ε∂W (R) ⊕ T (∂+W )

in the standard way, namely the inward normal bundle ν(−X,W ) of −X in W is

identified with ε−X(R) and the outward normal bundle ν(X ′,W ) of X ′ in W is identified

with εX′(R). If ηi (i = 1, 2) are bundles over X, if b : η1 → η2 is a bundle map

covering the identity map on X, and if C is a subspace of X, then b|C denotes the

bundle map b|η1|C : η1|C → η2|C . Let fff = (f, b) : (X, ∂X, TX) → (Y, ∂Y, f ∗ξ) and

fff ′ = (f ′, b′) : (X ′, ∂X ′, TX ′) → (Y, ∂Y, f ′∗ξ) denote G-framed maps. Then a G-framed

cobordism between fff and fff ′ consists of a G-cobordism W from X to X ′ and a G-framed

map

(F,B) : (W, ∂W, TW ) → (I × Y, ∂(I × Y ), (pY ◦ F )∗(εY (R) ⊕ ξ)),

where

B : TW ⊕ (pY ◦ F )∗(ξ− ⊕ η) → εW (R) ⊕ (pY ◦ F )∗(ξ+ ⊕ η),

such that F (X) j {0}×Y , F (X ′) j {1}×Y , F |X = f , F |X′ = f ′, B|X = idεX(R) ⊕ b and

B|X′ = idεX′(R) ⊕ b′. Unless specifically mentioned otherwise, we assume that the stable

term η has the form η = εY (U) for a real G-module U such that dimUG ≧ n.

Let C denote a G-simplicial subcomplex of X with respect to some smooth equivariant

triangulation of X. The G-framed cobordism (F,B) above is said to be relative to C, if

there exists a manifold G-neighborhood N = N(C,X) of C in X such that the canonical

inclusion N → X extends to a (neat) G-embedding I × N → W with the property that

N = X ∩ (I ×N) = {0}×N (the left equality holds in X, and the right equality holds in
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I×N), X ′∩(I×N) = {1}×N , and for each t ∈ I, F |{t}×C = f |C (i.e. F ({t}×C) j {t}×Y

and the composite map

C −→ {t} × C
F

−→ I × Y
pY−→ Y

is the map f |C), B|{t}×C = (idεX(R) ⊕ b)|C (i.e. the composite map

(εX(R) ⊕ TX ⊕ f ∗(ξ− ⊕ η))|C −→ (εN(R) ⊕ TN ⊕ (f |N)∗(ξ− ⊕ η))|C

−→ (T (I ×N) ⊕ ((pY ◦ F )|I×N)∗(ξ− ⊕ η))|{t}×C

−→ (TW ⊕ (pY ◦ F )∗(ξ− ⊕ η))|{t}×C

B
−→ ((pY ◦ F )∗(εY (R) ⊕ ξ+ ⊕ η))|{t}×C

= (εX(R) ⊕ f ∗(ξ+ ⊕ η))|C

is the map (idεX(R) ⊕ b)|C). If (F,B) is relative to C then one says that fff is G-framed

cobordant rel C to fff ′.

Performing G-surgery on a G-framed map fff = (f, b), f : X → Y , defines a pair

(F,B) of maps called the trace of G-surgery, which satisfies the conditions above for a

G-framed cobordism, except possibly the condition that B|X′ = idεX′(R) ⊕ b′. The next

lemma guarantees that we can perform the G-surgery in a way that its trace (F,B) is a

G-framed cobordism in the sense above.

Lemma 6.1. Let (M,M0) denote an n-dimensional, finite G-CW-pair, i.e. M0 j M

and n = dim(M r M0). Let ω and ω′ denote real G-vector bundles supplied with a G-

invariant Riemannian metric over M . Let ⊕ denote the operation of orthogonal sum on

G-vector bundles with a G-invariant Riemannian metric. If ω k εM(Rn′
) where n′ =

max(n, 1) then any G-vector bundle isomorphism b : εM(R) ⊕ ω → εM(R) ⊕ ω′ such that

b|M0 = idεM0
(R) ⊕ b′0, for some G-vector bundle isomorphism b′0 : ωM0 → ω′

M0
, is regularly

G-homotopic rel M0 to an orthogonal sum idεM (R) ⊕ b′ of G-vector bundle isomorphisms

idεM (R) and b′ : ω → ω′ such that b′|M0 = b′0.

Proof. It is well known that b is regularly G-homotopic to a metric-preserving isomor-

phism. (This follows from the equivariant covering homotopy property and from the fact

that if 〈 , 〉 and 〈 , 〉′ are G-invariant Riemannian metrics on the same underlying G-

vector bundle ξ, then (1 − t)〈 , 〉 + t〈 , 〉′ (t ∈ I) is a G-invariant Riemannian metric on

ξ.) Thus we may assume that b is metric preserving.

We prove Lemma 6.1 by double induction on n and the number of isotropy types of

n-dimensional cells in M rM0. Suppose M0 j M ′ and M = M ′ ∪
⋃

j(G/H ×Dn
j ), where

Dn
j = Dn. Invoke the inductive hypothesis that b|M ′ has the form idεM′(R) ⊕ b′′ where

b′′ : ω|M ′ → ω′|M ′. Under this hypothesis, we will find b′ as in Lemma 6.1. For fixed

j, set E = H/H × Dn
j . Then b(εM(R)|

Er

◦
E
) = εM(R)|

Er

◦
E

where E = Closure(E) and
◦

E = Interior(E), but it is not necessary that

(6.1.1) b(εM(R)|E) = εM(R)|E.
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Let bH : εMH(R) ⊕ ωH → εMH (R) ⊕ ω′H be the restriction of b to the H-fixed point set.

Then b|MH decomposes as a sum b|MH = bH ⊕ bH (NG(H)-orthogonal sum). We deform

b keeping b|M ′ and bH fixed. The obstruction σ to modifying b to satisfy (6.1.1) lies in

πn−1(S
m−1), where m = fiber-dim(ωH) + 1. Since fiber-dim(ωH) ≧ fiber-dim(ωG) ≧ n,

the obstruction group πn−1(S
m−1) is trivial. Hence the obstruction σ vanishes. If (6.1.1)

is satisfied for all j then b(εM(R)) = εM(R). Since b is metric preserving, we get b(ω) j

ω′. Moreover, we can arrange b so that b|εM (R) = idεM (R), because fiber-dim(εM(R) ⊕

εM(Rn′
)) ≧ 2. �

Recall that Z j R j Q, λ = (−1)k,

AAA = (R[G], (−, λ), RΓ(S(G,X)), G,R[S(G,X)], RΛ(Q(G,X) +R[S(G,X)]),

and Γ′
2 = min−λ(R2[G]).

The formulation of the next theorem makes use of the classification in Lemma 3.32 of

metabolic planes in ∇BQQQ(AAA,ΘΘΘB).

Theorem 6.2. Let fff = (f, b) : (X, ∂X, TX) → (Y, ∂Y, f ∗ξ) denote a G-framed map

such that f is a k-connected, P(G)R-singularity, R-boundary quasiequivalence. Let (L,B)

denote a G-singularity structure of X (cf. Definition 5.1). Let

MMMfff,B = (Kk(X;R), Bf,R, qfff ,R, θf,B, θ2,f,B)

denote the R[G]-surgery obstruction module (Definition 5.7) in QQQ(AAA,ΘΘΘB) of (fff,B). By

Lemma 5.10, MMMfff,B lies in ∇BQQQ(AAA,ΘΘΘB). Let M(R[G], ccc) (ccc : ΘΘΘB → (R,R2)) denote a

metabolic plane in ∇BQQQ(AAA,ΘΘΘB). Then one can perform G-surgery on fff along (k − 1)-

dimensional spheres in Interior(XrL) to obtain a k-connected G-framed map fff ′ = (f ′, b′) :

(X ′, ∂X ′, TX ′) → (Y, ∂Y, f ′∗ξ) such that MMMfff ′,B
∼= MMMfff,B ⊕ M(R[G], ccc) in ∇BQQQ(AAA,ΘΘΘB).

Note that in the theorem above, the resulting map f ′ is a P(G)R-singularity and R-

boundary quasiequivalence, because the surgery is performed on Interior(X).

The proof of Theorem 6.2 will be given after the following application.

Theorem 6.3. Let fff = (f, b) : (X, ∂X, TX) → (Y, ∂Y, f ∗ξ) and (L,B) denote a G-framed

map and a G-singularity structure of X, respectively, in the previous theorem. Let

σ(fff,B) ∈Wn(R,G,Q(G,X), S(G,X),ΘΘΘB)proj

denote the element afforded by MMMfff,B. If σ(fff,B) = 0 then one can perform G-surgery on

fff along (k − 1)- and k-dimensional spheres in Interior(X r L) to obtain a k-connected

G-framed map fff ′ = (f ′, b′) : (X ′, ∂X ′, TX ′) → (Y, ∂Y, f ′∗ξ) such that f ′ : X ′ → Y is an

R-homology equivalence.

Proof. Suppose σ(fff,B) = 0. Then there exists modules MMM and NNN ∈ ∇BQQQ(AAA,ΘΘΘB) such

that NNN is null in ∇BQQQ(AAA,ΘΘΘB)FFF(A), and MMMfff,B ⊕MMM ∼=NNN ⊕MMM . By Lemma 3.11, the family

of metabolic planes in ∇BQQQ(AAA,ΘΘΘB)FFF(A) is cofinal in ∇BQQQ(AAA,ΘΘΘB). Thus we can assume



EQUIVARIANT INTERSECTION THEORY AND SURGERY THEORY 63

without loss of generality that MMM is isomorphic to a direct sum of metabolic planes in

∇BQQQ(AAA,ΘΘΘB)FFF(A). By Lemma 3.32, we may assume that

MMM ∼= M(R[G], ccc1) ⊕ · · · ⊕ M(R[G], cccℓ)

for some ccci = (ci, c2,i), where ci : Θ̃B → R and c2,i : Θ2,B → R2, i = 1, · · · , ℓ. By

Theorem 6.2, one can perform G-surgery on fff along (k − 1)-dimensional spheres in

Interior(X r L) to get a G-surgery map fff ′′ such that

MMMfff ′′,B
∼= MMMfff,B ⊕ M(R[G], ccc1) ⊕ · · · ⊕ M(R[G], cccℓ).

Since this module is isomorphic to NNN ⊕MMM , it follows that MMMfff ′′,B is a null module in

∇BQQQ(AAA,ΘΘΘB)FFF(A). Therefore we may assume that MMMfff,B is null in the free category. In this

case there is a free Lagrangian U ofMMMfff,B where U ⊂ Kk(X;R). Let {x1, · · · , xℓ} be a basis

of U . We can assume without loss of generality that each xi is represented by an immersion

hi : Sk → Interior(XrL) with trivial normal bundle. Note that #G(hi, hj) = Bf,R(xi, xj),

#G(hi, hβ) = Bf,R(xi, θ(β)) ∈ Z for β ∈ Θ̃B, #G(hi, hβ(t)) = B2,f,R(xi, θ2(t)) ∈ Z2 for

t ∈ Θ2,B where β(t) ∈ is a lifting of t, and ♮G(hi) = q(xi). Thus all these elements are

trivial. By Theorem 5.5, we may assume that ghi and g′hj are disjoint unless g = g′ ∈ G

and 1 ≦ i = j ≦ ℓ, that Image(hi) ∩ Bβ = ∅ for all 1 ≦ i ≦ ℓ and all β ∈ B, and that

hi is an embedding with trivial normal bundle such that Image(hi) ∩ gImage(hi) = ∅ for

all 1 ≦ i ≦ ℓ and all g 6= 1 ∈ G. Now we can perform G-surgery on fff along h1, . . . ,

hℓ. The resulting G-framed map fff ′ = (f ′; b′) : (X ′, ∂X ′;T (X ′)) → (Y, ∂Y ; f ′∗ξ) is a G-

surgery map in the sense of Definition 5.7 (in particular X ′ is 1-connected). Moreover

Kk(X
′;R) = 0 by the argument in [44, p.51, lines 12–(−7)] (cf. Proof of Theorem 7.3

Step 4 of [6, p.292]). Thus, f ′ : X ′ → Y is an R-homology equivalence. �

Proof of Theorem 6.2. The proof has 3 steps. Step 1 constructs a smooth G-embedding

ϕ : G×Sk−1×Dk+1 → Int(XrL) satisfying certain properties. After identifying X with

{1}×X, we obtain a smooth G-embedding ϕ : G×Sk−1 ×Dk+1 → I ×X. Step 2 begins

by attaching the G-handle G×Dk ×Dk+1 to I ×X, using ϕ as the attaching map. Let

W = (I ×X)
⋃

ϕ
(G×Dk ×Dk+1)

denote the resulting attaching space and let

X ′ = (({1} ×X) r ϕ(G× Sk−1 × Int(Dk+1)))
⋃

ϕ|
G×Sk−1×Sk

(G×Dk × Sk).

Clearly ∂W = X ′ ∪ ({0} ×X)∪ (I × ∂X). Using the properties of ϕ and Lemma 6.1, we

show that the G-framed map (f, b), f : X → Y , extends to a G-framed cobordism (F,B),

F : W → I×Y , rel (∂X ∪L), which satisfies the usual conditions plus an extra condition

set out at the beginning of the section. Let (f ′, b′), f ′ : X ′ → Y , denote the G-framed

map obtained by restricting (F,B) to X ′ and by identifying canonically Y with {1} × Y .

Step 3 shows that f ′ is k-connected and that Mfff ′,B = Mfff ,B ⊕ M(R[G], ccc).
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Step 1. In order to construct an embedding ϕ which can be used to complete Step 3, we

need to fix a model M(R[G], ccc, c̃) in the isomorphism class of M(R[G], ccc). This is done as

follows. The module M(R[G], ccc) is defined in Definition 3.30 and by definition, ccc is a pair

(c, c2) of maps such that the diagram

Θ̃B

c //

pB

��

R

��
Θ2,B c2

// R2

commutes. By Lemma 3.31, the isomorphism class of M(R[G], ccc) is not changed, if ccc is

replaced by rccc = (rc, rc2) for any invertible element r ∈ R. Let Z′
2 = Image[Z → R2].

Since Z j R j Q, there is an invertible element r ∈ R such that Image(rc) j Z and

Image(rc2) j Z′
2. After replacing ccc by rccc, we may assume Image(c) j Z and Image(c2) j

Z′
2. Let β : Θ2,B → B denote a section of the quotient map B → Θ2,B (cf. the paragraph

subsequent to Definition 5.1). Now let c̃ : Θ2,B → Z be any map such that the diagram

Θ2,B
ec //

c2 !!C
CC

CC
CC

C
Z

��
Z′

2

commutes and c̃(t) = c(β(t)) for all t ∈ pB(Θ̃B). This gives us the model M(R[G], ccc, c̃) we

want.

Using c̃ above, we shall first construct for each t ∈ pB(Θ̃B) and each 1 ≦ i ≦ |c̃(t)|,

an embedded oriented k-dimensional disk Dt,i in X such that the ordinary intersection

number

Bβ(t) ·Dt,i =

{
1, if t ∈ pB(Θ̃B), c̃(t) > 0

−1, if t ∈ pB(Θ̃B), c̃(t) < 0.

Then we shall construct for each t ∈ Θ2,B r pB(Θ̃B) and each 1 ≦ i ≦ |c̃(t)|, an embedded

k-dimensional disk Dt,i with arbitrary orientation such that

Bβ(t) ·Dt,i = ±1.

Finally we shall choose a certain embedded k-dimensional disk D0 and connect each

∂(Dt,i) to ∂(D0) by a solid k-dimensional tube Tt,i
∼= I ×Dk−1. This leads quickly to a

G-embedding ϕ : G× Sk−1 ×Dk+1 → X.

We fill in the details of the outline in the paragraph above.

Let t ∈ pB(Θ̃B) such that c̃(t) 6= 0. Let N(t) denote a ρG(t)-tubular neighborhood of

Bβ(t). Take a closed, k-dimensional disk D(t) in Bβ(t) rL(k−2) such that D(t)∩gD(t) = ∅
for all g ∈ G r ρG(t). Since D(t) is ρG(t)-contractible, N(t)|D(t)

∼= D(t) × M(t) for

some ρG(t)-module M(t) of dimension k. Let D′
t,1, · · · , D

′
t,|ec(t)| denote disjoint, embedded,

closed, k-dimensional disks in the interior of D(t). Let xt,i, 1 ≦ i ≦ |c̃(t)|, denote the
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center of D′
t,i. Clearly xt,i /∈ Bβ(t′) for any t′ ∈ pB(Θ̃B) such that t′ 6= t. Since N(t)|D′

t,i

∼=

D′
t,i ×M(t) for each i such that 1 ≦ i ≦ |c̃(t)|, there is a smooth section s′t,i : D′

t,i →

N(t)|D′
t,i

such that s′t,i intersects transversally D′
t,i and Image(s′t,i) ∩ D′

t,i = {xt,i}. Note

that ρG(t) acts freely on M(t) r {0}. Thus we can take a δ-approximation st,i of s′t,i in

N(t)|D′
t,i

such that if y ∈ D′
t,i is close to xt,i, i.e. for example, the distance between y

and xt,i is less than the half of the radius of D′
t,i, then st,i(y) = s′t,i(y), and such that if

gst,i(y) = g′st,i(y
′), where g, g′ ∈ G and y, y′ ∈ ∂D′

t,i, then g = g′ and y = y′. Note

that st,i is not necessarily a section. If we choose δ sufficiently small (in the sense of C1-

topology) then st,i is an embedding. Let Dt,i = Image(st,i). Clearly, GDt,i ∩ GDt,j = ∅
whenever i 6= j. Furthermore, ∂Dt,i ∩ g∂Dt′,j = ∅ whenever t 6= t′, i 6= j, or g 6= 1.

Orient each Dt,i such that when c̃(t) > 0 (resp. c̃(t) < 0), the orientation at xt,i given by

the orientation on X agrees (resp. disagrees) with the orientation at xt,i defined by the

orientations of Bβ(t) and Dt,i. The constructions above guarantee that the intersection

number

Bβ(t) ·Dt,i =

{
1, if t ∈ pB(Θ̃B), c̃(t) > 0

−1, if t ∈ pB(Θ̃B), c̃(t) < 0.

Now let t ∈ Θ2,B r pB(Θ̃B) such that c̃(t) 6= 0. Let N(t) denote a ρG(t)-tubular

neighborhood of Bβ(t). As above, we take a k-dimensional closed disk D(t), k-dimensional

closed disks D′
t,i, where 1 ≦ i ≦ |c̃(t)|, with centers xt,i, and k-dimensional closed disks

Dt,i (⊂ N(t)|D′
t,i

), except now we orient each Dt,i arbitrarily. Thus

Bβ(t) ·Dt,i = ±1.

Set

BBB = {(t, i) | t ∈ Θ2,B, c̃(t) 6= 0, and 1 ≦ i ≦ |c̃(t)|}.

We put all Dt,i’s, (t, i) ∈ BBB, together as follows. Let N(L) denote a G-regular neighbor-

hood of L. Let

D0 ⊂ Interior (X rN(L))

denote an embedded, closed, k-dimensional disk such that D0∩gD0 = ∅ for all g 6= 1 ∈ G.

Let {Tt,i | (t, i) ∈ BBB} be a set of disjoint, closed, k-dimensional, solid tubes (∼= I ×Dk−1)

in

(Interior(X) r L) rG


Interior(D0) ∪

⋃

(t,i)∈BBB

Interior(Dt,i)




such that Tt,i connects ∂D0 to ∂Dt,i and such that Tt,i ∩ gTt′,j = ∅ whenever one of the

inequalities g 6= 1, t 6= t′, or i 6= j holds. Let

D = D0 ∪
⋃

(t,i)∈BBB

(Tt,i ∪Dt,i).

Then D is an embedded, closed, k-dimensional disk such that for each t ∈ Θ2,B,

D ∩Bβ(t) = {xt,1, · · · , xt,|ec(t)|}.



66 ANTHONY BAK AND MASAHARU MORIMOTO

By choosing the Tt,i’s appropriately, we can assume that D is the union of D0, Tt,i and Dt,i

as oriented manifolds. Thus, ∂D is a (k−1)-dimensional sphere embedded in Interior(Xr
L) and ∂D ∩ g∂D = ∅ for g 6= 1 ∈ G. Let

(6.2.1) hccc : Sk−1 = ∂D → Interior(X r L)

denote the canonical inclusion. Since ∂D is the boundary of the embedded disk D in X

and D is contractible, ∂D has a closed, tubular neighborhood N(∂D) in X diffeomorphic

to Sk−1 × Dk+1. Moreover, we may assume that N(∂D) lies in Interior(X r L), and

N(∂D) ∩ gN(∂D) = ∅ whenever g 6= 1. Let H : Sk−1 × Dk+1 → N(∂D) denote a

coordinate diffeomorphism. Define ϕ = IndG
{1}H : G × Sk−1 × Dk+1 → I × X where

IndG
H(g, u) = (1, gH(u)) for g ∈ G and u ∈ Sk−1 ×Dk+1.

Step 2. Form the attaching space

W = (I ×X)
⋃

ϕ
(G×Dk ×Dk+1),

and define the subset X ′ ⊂ ∂W by

X ′ = {({1} ×X) r IndG
{1}H(G× Sk−1 × Interior(Dk+1))}

⋃
ϕ|

G×Sk−1×Sk

(G×Dk × Sk).

Clearly ∂W = X ′ ∪ ({0} × X) ∪ (I × ∂X). Let ψ : Dk → D denote a diffeomorphism

extending hccc : ∂Dk = Sk−1 → ∂D. The G-map idI × f : I ×X → I × Y extends to a G-

map F : W → I × Y such that F (X ′) j {1}× Y and F (g, u, 0) = (1, g(f(ψ(u)))) for any

g ∈ G and u ∈ Dk. The obstruction σH to extending the G-vector bundle isomorphism

idεI(R) × b : εI(R) × (T (X) ⊕ f ∗ξ− ⊕ εX(U)) → εI(R) × (f ∗ξ+ ⊕ εX(U))

over I ×X to a G-vector bundle isomorphism

B′ : T (W ) ⊕ (pY ◦ F )∗ξ− ⊕ εW (U) → (pY ◦ F )∗(εY (R) ⊕ ξ+) ⊕ εW (U)

over W lies in πk−1(SO(k + 1 + m)), where m is a certain nonnegative integer. The

flexibility we have for choosing the coordinate diffeomorphism H : Sk−1×Dk+1 → N(∂D)

above, allows us to control the element σH . Let ω : Sk−1 → SO(k + 1) be a smooth

map. Let Hω denote the diffeomorphism Sk−1 × Dk+1 → N(∂D) defined by Hω(x, y) =

H(x, ω(x)y), where x ∈ Sk−1 and y ∈ Dk+1. Then we have the formula σHω = σH +[ω] for

the obstructions, where [ω] ∈ πk−1(SO(k+1+m)) is the homotopy class of the composition

of ω : Sk−1 → SO(k + 1) and the canonical map SO(k + 1) → SO(k + 1 +m). Since the

homomorphism πk−1(SO(k + 1)) → πk−1(SO(k + 1 +m)) induced by the canonical map

is an isomorphism, we can choose H such that σH = 0. In other words, we can choose

H such that idεI(R) × b extends to B′ (cf. the proof of Corollary to Theorem 1.1 in [44,

Part 0, p.10]). Define f ′ : X ′ → Y by F (u) = (1, f ′(u)) (u ∈ X ′). By Lemma 6.1, B′

is regularly G-homotopic rel (I × (∂X ∪ L)) ∪ ({0} × X) to B : T (W ) ⊕ (pY ◦ F )∗ξ− ⊕

εW (U) → (pY ◦ F )∗(εY (R) ⊕ ξ+) ⊕ εW (U) such that B|X′ = idεX′(R) ⊕ b′ for some b′ :

T (X ′)⊕ f ′∗ξ− ⊕ εX′(U) → f ′∗ξ+ ⊕ εX′(U). Therefore (F,B) is a G-framed cobordism rel
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∂X ∪ L from fff = (f, b) to fff ′ = (f ′, b′). The map fff ′ is called the G-framed map obtained

from fff by G-surgery along hccc (or more precisely along H).

Step 3. The step takes place in 3 parts. Part 1 constructs a pair (e1, f1) of elements

in Kk(X
′;R) such that Bf ′,R(e1, e1) = 0, Bf ′,R(f1, e1) = 1 and qfff ′,R(e1) = qfff ′,R(f1) = 0.

Suppose this has been done. Let M(e1, f1) denote the R[G]-submodule of Kk(X
′;R)

generated by e1 and f1. M(e1, f1) is an R[G]-free module with basis {e1, f1} and the

canonically induced sequence

0 →M(e1, f1)
⊥ → Kk(X

′;R)
Bf ′,R(•,−)
−→ HomR[G](M(e1, f1), R[G]) → 0

of R[G]-modules is split exact, where

M(e1, f1)
⊥ = {x ∈ Kk(X

′;R) | Bf ′,R(x, y) = 0 for all y ∈M(e1, f1)}.

Clearly Kk(X
′;R) = M(e1, f1)

⊥ ⊕M(e1, f1) and the restriction of Bf ′,R to M(e1, f1) is

nonsingular. Let NNN(e1, f1) denote the doubly parametrized module

(M(e1, f1), Bf ′,R|M(e1,f1), qfff ′,R|M(e1,f1)).

(Kk(X
′;R), Bf ′,R, qfff ′,R) obviously splits as the orthogonal sum (Kk(X

′;R), Bf ′,R, qfff ′,R) =

NNN(e1, f1)
⊥⊕NNN(e1, f1), whereNNN(e1, f1)

⊥ = (M(e1, f1)
⊥, Bf ′,R|M(e1,f1)⊥ , qfff ′,R|M(e1,f1)⊥). Ac-

cordingly the maps θf ′,B : Θ̃B → Kk(X
′;R) and θ2,f ′,B : Θ2,B → Kk(X

′;R2) split canon-

ically as direct sums θf ′,B = θM⊥ ⊕ θM and θ2,f ′,B = θ2,M⊥ ⊕ θ2,M where θM⊥ : Θ̃B →

M(e1, f1)
⊥, θM : Θ̃B → M(e1, f1), θ2,M⊥ : Θ2,B → M(e1, f1)

⊥
2 , and θ2,M : Θ2,B →

M(e1, f1)2. LetMMM(e1, f1) = (NNN(e1, f1), θM , θ2,M), and letMMM(e1, f1)
⊥ = (NNN(e1, f1)

⊥, θ⊥M , θ
⊥
2,M).

By construction,MMMfff ′,B = MMM(e1, f1)
⊥⊕MMM(e1, f1). Part 2 shows thatMMM(e1, f1) ∼= M(R[G], ccc, c̃).

Part 3 shows that f ′ is k-connected. Part 4 shows that MMM(e1, f1)
⊥ ∼= MMMfff,B.

We supply now details of the above.

Part 1. Let

S1 = {1} × {x0} × Sk
(
⊂ {1} × Sk−1 × Sk ⊂ G×Dk ×Dk+1 ⊂ X ′

)
.

Using a parallel translation of {1} ×D (⊂ {1} ×X), we can find a k-dimensional closed

disk D′ embedded in

{1} × (X rG · Interior(Image(H)))

such that

∂D′ = {1} × Sk−1 × {x′0}
(
⊂ G×Dk ×Dk+1 ⊂ X ′

)

for some x′0 ∈ Sk. Let

S2 = {1} ×Dk × {x′0} ∪{1}×Sk−1×{x′
0}
D′ (⊂ X ′) .

Let hSi
: Si → X ′, i = 1, 2, denote the inclusion maps. We shall use the hSi

, i = 1,

2, to construct e1 and f1. Give S2 the orientation which agrees with that on D′ and

S1 the orientation such that #(hS2 , hS1) = 1, i.e. #(hS1 , hS2) = (−1)k. Obviously,
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#G(hS1 , hS1) = 0, #G(hS2, hS1) = 1, and ♮G(hS1) = 0. Since S2 is an embedded sphere

with trivial normal bundle, ♮1(hS2) = 0. If

g ∈ Gr
⋃

t∈Θ2,B: ec(t)6=0

ρG(t),

then ♮g(hS2) = 0. Moreover using Lemma 9.1 of [6] (as in the proof of Theorem 8.1 of [6,

§9]), we can choose D so that for g ∈ S(G,X),

#(hS2 , ghS2) =
∑

t∈Θ2,B|g

(−1)kc̃(t).

Let [Si] ∈ Hk(Si; Z) denote the orientation class of Si. Let e1 = hS1∗[S1] and h2 =

hS2∗[S2] ∈ Hk(X
′; Z). Then e1, h2 ∈ Kk(X

′; Z) (j Kk(X
′;R)). It follows from Lemma 4.6

and the values #G(hS1, hS1) = 0 and #G(hS2 , hS1) = 1 above that Bf ′,R(e1, e1) = 0 and

Bf ′,R(h2, e1) = 1. We will show that f ′ : X ′ → Y is k-connected. Once this has been

shown, we obtain a quadratic map qfff ′,R : Kk(X
′;R) → R[G]/RΛ(Q(G,X)+R[S(G,X)]))

by Definition 5.7. By definition, qfff ′,R(e1) = ♮G(hS1) and qfff ′,R(h2) = ♮G(hS2). Thus

from the values ♮G(hS1) = 0 and ♮g(hS2) = 0 above, it follows that qfff ′,R(e1) = 0 and

qfff ′,R(h2)g = 0 (the g-th coefficient of qfff ′,R(h2)) if g ∈ {1}∪ (G(2) r (Q(G,X)∪S(G,X)))

(see Definition 5.7). Choose v ∈ Z[Gr ({1}∪G(2))] such that after setting f1 = h2 +ve1,

we get qfff ′,R(f1) = 0. We maintain that Bf ′,R(f1, e1) = 1 and obtain additionally that

Bf ′,R(f1, f1) =
∑

g∈S(G,X)

∑

t∈Θ2,B|g

(−1)kc̃(t)g.

Part 2. By Lemma 3.31, M(R[G], ccc, c̃) ∼= M(R[G], (−1)kccc, (−1)kc̃). We shall show

MMM(e1, f1) = (M(e1, f1), Bf ′,R|M(e1,f1), qfff ′,R|M(e1,f1), θM , θ2,M)

is isomorphic to M(R[G], (−1)kccc, (−1)kc̃). According to Definition 3.28, we must show

that

(6.2.2)

Bf ′,R(e1, e1) = 0, Bf ′,R(f1, e1) = 1,

Bf ′,R(f1, f1) =
∑

g∈S(G,X)

∑

t∈Θ2,B|g

(−1)kc̃(t)g,

qfff ′,R(e1) = qfff ′,R(f1) = 0,

and

(6.2.3) θM = sr((−1)kc), θ2,M = sr((−1)kc2).

The property (6.2.2) has been demonstrated already in Part 1.
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Clearly θM (β) = Bfff ′,R(f1, (hβ∗[β])Kk(X′;R)) for β ∈ Θ̃B (cf. Definition 5.2). But

Bf ′,R(f1, (hβ∗[β])Kk(X′;R)) = Bf ′,R(h2, (hβ∗[β])Kk(X′;R))

=
∑

g∈G

Int(hS2, g
−1hβ)g

=
∑

g∈G

Int(hS2, hg−1β)g

=
∑

g∈G

(−1)kc(g−1β)g

= sr((−1)kc)(β).

Similarly, one shows that θM2 = sr((−1)kc2).

Part 3. We show first that f ′ : X ′ → Y is k-connected. We begin by simplifying the

Mayer-Vietoris exact sequences

(6.2.4)

· · · // Ki+1(W,X; Z)
∂ // Ki(X; Z)

iX∗ // Ki(W ; Z)
τ // Ki(W,X; Z) // · · ·

and

(6.2.5)

· · · // Ki+1(W,X
′; Z)

∂′
// Ki(X

′; Z)
iX′ ∗ // Ki(W ; Z)

τ ′
// Ki(W,X

′; Z) // · · ·

for the pairs (W,X) and (W,X ′), respectively.

By definition, Ki(W,X; Z) = Ker[F∗ : Hi(W,X; Z) → Hi(I × Y, Y ; Z)]. Since Hi(I ×

Y, Y ; Z) = 0, it follows that Ki(W,X; Z) = Hi(W,X; Z). Since the quotient space W/X

is G-homotopy equivalent to (G× Sk)/(G× {pt}), we obtain

(6.2.6) Ki(W,X; Z) ∼=

{
Z[G], if i = k

0, if i 6= k.

Let h2 ∈ Kk(X; Z) be as in Part 1. Set h′2 = iX′∗(h2) and h′′2 = τ(h′2). From the definition

of h2, we obtain that

(6.2.7) Kk(W,X; Z) = Z[G]h′′2, a free Z[G]-module generated by h′′2.

Since f is k-connected, it follows that Ki(X; Z) = 0 if i < k. Thus the exact sequence for

(W,X) above simplifies to a split exact sequence

(6.2.8) 0 // Kk(X; Z)
iX∗ // Kk(W ; Z)

τ // Kk(W,X; Z) // 0

and canonical identifications

(6.2.9) Kj(X; Z) = Kj(W ; Z) for j 6= k.
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As above, Ki(W,X
′; Z) = Hi(W,X

′; Z). Since W/X ′ is G-homotopy equivalent to

(G× Sk+1)/(G× {pt}), we obtain

(6.2.10) Ki(W,X
′; Z) ∼=

{
Z[G], if i = k + 1

0, if i 6= k + 1.

Thus the exact sequence for (W,X ′) above simplifies to an exact sequence

(6.2.11) · · · // Kk+1(W,X
′; Z)

∂′
// Kk(X

′; Z)
iX′ ∗ // Kk(W ; Z)

τ ′
// 0

and

(6.2.12) Kj(X
′; Z) = Kj(W ; Z) = 0 j < k.

From this fact and the fact thatX ′ and Y are simply connected, it follows that f ′ : X ′ → Y

is k-connected. Additionally, we obtain

(6.2.13) Kk+1(W,X
′; Z) = Z[G]e′1, a Z[G]-free module generated by e′1,

for an unique element e′1 ∈ Kk+1(W,X
′; Z) such that ∂′(e′1) = e1.

Part 4. Let ϕ = IndG
{1}H : G× Sk−1 ×Dk+1 → X be as in Part 1. Let

X0 = X r Interior(Image(ϕ)).

Let i0 : X0 → X and i1 : X0 (= {1} × X0) → X ′ denote the canonical inclusions. Let

iX : X →W and iX′ : X ′ →W denote also the canonical inclusions. Let

Kk(X0; Z) = Ker[(f ◦ i0)∗ : Hk(X0; Z) → H(Y ; Z)].

Clearly iX ◦ i0 is homotopic (in fact, G-isotopic) to iX′ ◦ i1 and hence f ◦ i0 is homotopic

to f ′ ◦ i1. Thus Kk(X0; Z) = Ker[(f ′ ◦ i1)∗ : Hk(X0; Z) → H(Y ; Z)] and the diagram

(6.2.14) Kk(X0; Z)

i1∗
��

i0∗ // Kk(X; Z)

iX∗

��
Kk(X

′; Z)
iX′ ∗

// Kk(W ; Z)

of Z[G]-modules commutes. Moreover the map i0∗ is surjective, because i0 is k-connected.

Since Z j R j Q, R is a ring of fractions of Z. Thus the functor M 7→ R⊗M , where

M is a Z-module, is exact. Thus we can canonically identify the modules R⊗Hj(V ; Z) =

Hj(V ;R) for any topological space V .

By applying the functor R⊗− to (6.2.14), we obtain a commutative diagram

Kk(X0;R)

i1∗
��

i0∗ // Kk(X;R)

iX∗

��
Kk(X

′;R)
iX′ ∗

// Kk(W ;R)
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of R[G]-modules such that i0∗ is surjective. By Lemma 5.13, Kk(X;R) is R[G]-projective.

Thus there is an R[G]-submodule KR j Kk(X0;R), which maps isomorphically under i0∗
onto Kk(X;R). Let j0 = i0∗|KR

: KR → Kk(X;R), j1 = i1∗|KR
: KR → Kk(X

′;R), and

σ = j1 ◦ j
−1
0 : Kk(X;R) → Kk(X

′;R).

From Part 1, we know that Kk(X
′;R) has an orthogonal decomposition

(Kk(X
′;R), Bf ′,R, qfff ′,R) =NNN(e1, f1)

⊥ ⊕NNN(e1, f1).

Let p⊥ denote the projection of Kk(X
′;R) on M(e1, f1). We shall show that the R[G]-

homomorphism p⊥ ◦ σ : Kk(X;R) → M(e1, f1)
⊥ is an isomorphism MMMfff,B → MMM(e1, f1)

⊥

of doubly parametrized modules with positioning data.

First we show that σ : Kk(X;R) → Kk(X
′;R) is a morphism (Kk(X;R), Bf,R, qfff,R) →

(Kk(X
′;R), Bf ′,R, qfff ′,R) of doubly parametrized modules.

Let K ′
Z

= KR ∩ Image[Kk(X0; Z) → Kk(X0;R)]. K ′
Z

is a Z[G]-submodule of Kk(X0;R)

such that R ·K ′
Z

= KR. It suffices to show that the map σ|j0(K ′
Z
) preserves Hermitian and

quadratic forms. Let KZ denote the preimage in Kk(X0; Z) of K ′
Z
. The groups and maps

above fit into a commutative diagram

(6.2.15) Kk(X0; Z)
1⊗−

loc. epi.
// //___________ Kk(X0;R)

i1∗

{{

i0∗

'' ''OOOOOOOOOOO

KZ

1⊗− // //
+

�

88qqqqqqqqqqq

K ′
Z

�

�

loc. epi.
// //______ KR

j0

∼=
//

j1
��

*




77ooooooooooo

Kk(X;R)

iX∗

��σ
ssggggggggggggggggggggggg

Kk(X
′;R)

iX′ ∗

// Kk(W ;R).

Let x ∈ KZ. Then x is represented by an immersion hx : Sk → Interior(X0) with trivial

normal bundle. Suppose y ∈ KZ. By definition, x′ = 1 ⊗ x, y′ = 1 ⊗ y ∈ K ′
Z
. Clearly hx

(resp. hy) represents also j0(x
′) and j1(x

′) (resp. j0(y
′) and j1(y

′)). By Proposition 5.8,

Bf,R(j0(x
′), j0(y

′)) = #G(hx, hy) = Bf ′,R(j1(x
′), j1(y

′)) = Bf ′,R(σ(j0(x
′)), σ(j0(y

′))) and

qfff,R(j0(x
′)) = [♮G(hx)] = qfff ′,R(τ1(j1(x

′))) = qfff ′,R(σ(j0(x
′))).

Next we show that σ(Kk(X;R)) j M(e1, f1) ⊕ R[G]e1. Recall that e1 itself is totally

isotropic, i.e. Bf,R(e1, e1) = 0 and qfff ,R(e1) = 0, and Bf,R(f1, e1) = 0. Obviously

(R[G]e1)
⊥ = {u ∈ Kk(X

′;R) | Bf ′,R(u, e1) = 0}

coincides with M(e1, f1)
⊥ ⊕R[G]e1. By Diagram (6.2.15), it suffices to show that i1((1⊗

−)(Kk(X0, Z))) j (R[G]e1)
⊥. Suppose this has been done. The map p⊥|M(e1,f1)⊥⊕R[G]e1

:

M(e1, f1)
⊥ ⊕ R[G]e1 → M(e1, f1)

⊥ preserves Hermitian and quadratic forms, because

e1 is orthogonal to M(e1, f1)
⊥ by definition and e1 itself is totally isotropic. Thus the

map p⊥ ◦ σ preserves Hermitian and quadrqatic forms and therefore p⊥ ◦ σ is a mor-

phism (Kk(X;R), Bf,R, qfff,R) → NNN(e1, f1)
⊥ of doubly parametrized modules. Suppose
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x ∈ Kk(X0; Z). Then x is represented by an immersion hx : Sk → Interior(X0) with triv-

ial normal bundle. On the other hand e1 is represented by the embedding hS1 appearing

in Part 1. By Proposition 5.8, Bf ′,R(i1∗(1 ⊗ x), e1) = #G(hx, hS1). But #G(hx, hS1) = 0

because Image(hx) ∩GImage(hS1) = ∅. Thus i1∗(1 ⊗ x) ∈ (R[G]e1)
⊥.

Next we show that p⊥ ◦ σ : (Kk(X;R), Bf,R, qfff,R) → N(e1, f1)
⊥ is an isomorphism of

doubly parametrized modules. Since Bf,R is nonsingular and p⊥ ◦ σ preserves Hermitian

forms, it follows from [2, Lemma 2.3] that p⊥ ◦ σ is injective and M(e1, f1)
⊥ splits as an

orthogonal sum Image(p⊥ ◦ σ) ⊕M ′. Thus it suffices to show that rankR(Kk(X;R)) =

rankR(M(e1, f1)
⊥). We know Kk(X

′;R) = M(e1, f1)
⊥ ⊕M(e1, f1). Therefore it suffices

to show

(6.2.16) Kk(X
′;R) ∼= Kk(X;R) ⊕R[G] ⊕R[G].

Consider the diagram

(6.2.17)

· · · // Kk(X;R)

σ

��

iX∗ // Kk(W ;R)
τ // Kk(W,X;R) // · · ·

· · · // Kk+1(W,X
′;R)

∂′
// Kk(X

′;R)
iX′ ∗ // Kk(W ;R) // · · ·

afforded by (6.2.4) and (6.2.5). We compute first the top row and then the bottom row.

This will establish (6.2.14) above.

The following is a continuation of the computation in Part 3. It follows from (6.2.6)

and (6.2.7) that

(6.2.18) Kj(W,X;R) =

{
R[G]h′′2, if j = k

0, if j 6= k.

By (6.2.10)–(6.2.13) and Poincaré-Lefschetz duality, we obtain

(6.2.19) Kj(W,X
′;R) =

{
R[G]e′1, if j = k + 1

0, if j 6= k + 1,

where e′1 is an element in Kk+1(W,X
′;R) such that ∂′(e′1) = e1. Thus Diagram (6.2.17)

simplifies to a commutative diagram

(6.2.20) Kk(X;R)

σ

��

//
iX∗ // Kk(W ;R)

τ // // R[G]h′′2

R[G]e1
�

� // Kk(X
′;R)

iX′ ∗ // // Kk(W ;R)

Since Kk(X;R) is R[G]-projective, so is Kk(W ;R). Thus the bottom row is split exact

as well as the top row. We obtain Kk(X
′;R) ∼= Kk(X;R) ⊕R[G] ⊕R[G], in fact

(6.2.21) Kk(X
′;R) = σ(Kk(X;R)) ⊕ R[G]e1 ⊕R[G]h2.
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We prove next that p⊥ ◦σ preserves positioning functions. This will complete the proof

of the theorem.

Let β ∈ Θ̃. We must show p⊥(σ(θf,B(β))) = θM⊥(β). By definition, θM⊥(β) =

p⊥(θf ′,B(β)). Thus it suffices to show p⊥(σ(θf,B(β))) = p⊥(θf ′,B(β)). Let p1 denote

the projection M(e1, f1)
⊥ ⊕ M(e1, f1) → M(e1, f1)

⊥ ⊕ R[G]f1 and p2 denote the pro-

jection M(e1, f1)
⊥ ⊕ R[G]f1 → M(e1, f1)

⊥. Clearly p⊥ = p2 ◦ p1. It suffices to show

p1(σ(θf,B(β))) = p1(θf ′,B(β)). By definition, θf,B(β) = (hβ∗[β]R)K . Thus iX∗(θf,B(β)) =

iX′∗(θf ′,B(β)). From iX′∗ ◦ σ = iX∗ (cf. (6.2.15)) and the exactness of the bottom row in

(6.2.20), it follows that p1(σ(θf,B(β))) = p1(θf ′,B(β)).

Replacing Θ̃f,B above by Θ2,f,B and applying Z2 ⊗− to the argument above, we obtain

that p⊥ ◦ σ preserves mod 2 positioning functions. (Note that R2 := Z2 ⊗ R = Z2 if

1/2 /∈ R and R2 = 0 if 1/2 ∈ R.) Thus p⊥ ◦ σ preserves positioning data. �

7. G-framed ΘΘΘ-cobordism invariance

The surgery obstruction in Wall’s surgery theory is a framed-cobordism invariant. Sim-

ilar results are expected in equivariant surgery theory. We prove in this section that our

surgery obstruction is aG-framed ΘΘΘ-cobordism invariant under hypotheses on the singular

set and the boundary. Theorem 1.1 in the introduction follows immediately from the last

result in the section, Theorem 7.8. The proof of this theorem provides the construction

of the surgery obstruction element σ(fff) required in the statement of Theorem 1.1.

We introduce first the notion G-framed ΘΘΘ-cobordism. Let fff = (f, b) : (X, ∂X, TX) →

(Y, ∂Y, f ∗ξ) and fff ′ = (f ′, b′) : (X ′, ∂X ′, TX ′) → (Y, ∂Y, f ′∗ξ) denote G-framed maps, and

FFF = (F,B) : (W, ∂+W, ∂−W,TW ) → (I × Y, ∂I × Y, I × ∂Y, (pY ◦ F )∗(εY (R) ⊕ ξ))

a G-framed cobordism between fff and fff ′. Let (L,B), B = {hβ : Bβ → X | β ∈ B}, and

(L′,B′), B′ = {h′β : B′
β → X ′ | β ∈ B′}, denote G-singularity structures for X and X ′,

respectively. We shall assume throughout B = B′ and B+,L = B+,L′ as G×{±1}-sets (see

Definition 5.1). To simplify notation, we shall use the abbreviations B+ = B+,L(= B+,L′),

Θ̃ = Θ̃B(= Θ̃B′), Θ2 = Θ2,B(= Θ2,B′), and ΘΘΘ = ΘΘΘB(= ΘΘΘB′). We remind the reader that the

G-framed cobordism (F,B) above is called trivial, if W is just a cylinder, i.e. W = I×X.

If (F,B) is trivial then f is G-homotopic to f ′ and b is regularly G-homotopic to b′.

Definition 7.1. Let W be a G-cobordism between X and X ′. A ΘΘΘ-cobordism on W

between (L,B) and (L′,B′) is a pair (L̂, B̂) consisting of a G-simplicial subcomplex L̂ of

W and a set

B̂ ={inclusion maps Hβ : (B̂β , ∂+B̂β, ∂−B̂β) → (W, ∂+W, ∂−W )

of submanifolds B̂β ⊂W | β ∈ B}

satisfying the following conditions.

(7.1.1) L̂ k Sing(G,W ).

(7.1.2) L̂ = L̂(k) ∪
⋃

β∈B B̂β, where L̂(k) is the k-skeleton of L̂.
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(7.1.3) For each β ∈ B, B̂β is a (k + 1)-dimensional connected submanifold of W .

(7.1.4) If β ∈ B r B+ (resp. B+) then B̂β is a cobordism (resp. oriented cobordism)

between Bβ and B′
β (hence ∂B̂β = ∂+B̂β∪∂−B̂β , ∂+B̂β = Bβ∐B

′
β, ∂+B̂β∩∂−B̂β =

∂Bβ ∐ ∂B′
β).

(7.1.5) Hβ|∂+
bBβ

= hβ ∪ h′β .

(7.1.6) For each β ∈ B, L̂(k) ∩ B̂β j L̂(k−1).

(7.1.7) For every β, β ′ ∈ B, B̂β ∩ B̂β′ is a submanifold of W .

(7.1.8) For every β, β ′ ∈ B, if B̂β 6= B̂β′ as subsets of W then B̂β ∩ B̂β′ j L̂(k−1).

(7.1.9) For all g ∈ G and β ∈ B, B̂gβ = gB̂β. (Hence the map g : W → W has the

well-defined restriction g : B̂β → B̂gβ.)

(7.1.10) For all β ∈ B+, B̂(−1)β = B̂β as subsets ofW (henceHβ = H(−1)β) and [B̂(−1)β , ∂B̂(−1)β ] =

−[B̂β, ∂B̂β ].

(7.1.11) For all g ∈ G and β ∈ B+, [B̂gβ , ∂B̂gβ ] = g[B̂β, ∂B̂β].

A pair (FFF, (L̂, B̂)) is called a G-framed ΘΘΘ-cobordism between (fff, (L,B)) and (fff ′, (L′,B′))

if FFF = (F,B) is a G-framed cobordism between fff = (f, b) and fff ′ = (f ′, b′), and (L̂, B̂) is

a ΘΘΘ-cobordism on W between (L,B) and (L′,B′).

For the remainder of the section, let (FFF, (L̂, B̂)) denote a G-framed ΘΘΘ-cobordism be-

tween (fff, (L,B)) and (fff ′, (L′,B′)). In addition, let A = R[G], λ = (−1)k,

AAA = (A, (−, λ), RΓ(S(G,X)), G,R[S(G,X)], RΛ(Q(G,X)) +R[S(G,X)]),

and Γ′
2 = min−λ(R2[G]). Γ′

2 defines ∇ = ∇B (cf. Definition 3.18, Definition 3.33 and the

notation prior to Lemma 5.10).

Lemma 7.2. One can perform G-surgery on FFF along spheres of dimension ≦ k − 1 in

Interior(W r L̂) to obtain a G-framed ΘΘΘ-cobordism (FFF ′, (L̂, B̂)), FFF ′ = (F ′, B′), between

(fff, (L,B)) and (fff ′, (L′,B′)) such that the resulting map F ′ : W ′ → I × Y is k-connected.

Proof. This is clear from the observation

dim L̂+ (k − 1) < dimW (for any β ∈ B).

�

Recall the assumption Z j R j Q. Suppose fff and fff ′ are k-connected, R-boundary

quasiequivalences, F is k-connected, and ∂−F : ∂−W → I × ∂Y is an R-homology equiv-

alence. Then, the sequence

0 → Kk+1(W ) → Kk+1(W, ∂W ) → Kk(∂W ) → Kk(W ) → Kk(W, ∂W ) → 0

is exact, where

Kℓ(W, ∂W ) = Ker[F∗ : Hℓ(W, ∂W ;R) → Hℓ(I × Y, ∂(I × Y );R)]

Kℓ(W ) = Ker[F∗ : Hℓ(W ;R) → Hℓ(I × Y ;R)], etc.
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Lemma 7.3. Suppose f and f ′ are k-connected, P(G)R-singularity, R-boundary quasiequiv-

alences, ∂−F = F |∂−W : ∂−W → I × ∂Y is an R-homology equivalence, and F is k-

connected. Then FFF is G-framed cobordant rel X ∪ ∂−W ∪ L̂ to FFF ′ = (F ′, B′), where

F ′ : (W ′, ∂+W
′, ∂−W

′) → (I × Y, ∂I × Y, I × ∂Y ), satisfying the following properties.

(7.3.1) (FFF ′, (L̂, B̂)) is a G-framed ΘΘΘ-cobordism between (fff, (L,B)) and (fff ′′, (L′,B′)) such

that fff ′′ = (f ′′, b′′) : (X ′′, ∂X ′′, TX ′′) → (Y, ∂Y, f ′′∗ξ) is a k-connected G-framed

map.

(7.3.2) F ′ : W ′ → I × Y is k-connected and Kk(W
′, ∂W ′;R) = 0 = Kk+1(W

′;R).

(7.3.3) MMMfff ′′,B′
∼= MMMfff ′,B′ ⊕M(R[G], ccc1)⊕· · ·⊕M(R[G], cccℓ) in ∇QQQ(AAA,ΘΘΘ) for some ccci : ΘΘΘ →

(Z,Z2), i = 1, · · · , ℓ, (cf. Definitions 3.28 and 3.30).

Proof. Fix a small, closed, n-dimensional disk D0 in general position in Interior(X ′ rL′).

Thus D0 ∩ gD0 = ∅ if g ∈ G r {1}. Let t ∈ Θ2. Take a point xt ∈ B′
β(t) such that

Gxt = ρG(t). Further choose small, closed, n-dimensional, Gxt-invariant disks Dt with

center xt in X ′ rGD0 such that gDt ∩ g
′Dt′ = ∅ unless t = t′ and gGxtg

−1 = g′Gxt′
g′−1,

where t, t′ ∈ Θ2, and g, g′ ∈ G. Thus each GDt is a G-equivariant tubular neighborhood

of Gxt. For each t, take a connecting tube Tt from ∂D0 to ∂Dt in general position in

(X ′ r L′) r
⋃

t∈Θ2
G(Interior(Dt)). Then,

D = D0 ∪
⋃

t∈Θ2

(Dt ∪ Tt)

is homeomorphic to the n-dimensional disk Dn. Since Kk(W ) → Kk(W, ∂W ) is surjective,

we can take finitely many embeddings with trivial normal bundle, hi : Sk → Interior(W ),

i = 1, · · · , ℓ say, which together generate Kk(W, ∂W ). Without loss of generality, we

can assume ghi and g′hj are disjoint unless i = j. For each i, take a path pi : [0, 1] →

W r L̂ in general position starting in Interior(D0) and ending in Im(hi) (i.e., pi(0) ∈

Interior(D0) and pi(1) ∈ Im(hi)). Choose a thin band ui : [0, 1] × Dk →֒ X along the

path pi (i.e., ui(t, 0) = pi(t) for all t ∈ [0, 1]) in general position such that ui(0, D
k) ⊂

Interior(D0) and ui(1, D
k) ⊂ Image(hi). Then taking the union of ui([0, 1] × Sk−1) and

Image(hi) r ui(1, Interior(Dk)), we obtain an embedding h′i : (Dk, Sk−1) → (W,X ′ r L′).

Here the restriction ∂h′i : Sk−1 → X ′ r L′ of h′i is a trivial embedding close to pi(0).

We may suppose ghi and g′hj are disjoint unless i = j. For β ∈ Θ̃, let ci(β) denote the

ordinary intersection number in Z afforded by Wβ and Image(hi). Set c̃i(t) = ci(β(t))

and c2,i(t) = [ci(β(t))] ∈ Z2 for t ∈ pB(Θ̃), where β(t) ∈ Θ̃ denotes as usual a lifting

of t. For t ∈ Θ2 r pB(Θ̃), let c̃i(t) denote the number (∈ Z) of intersection points of

B̂t with Image(hi). Set c2,i(t) = [c̃i(t)] ∈ Z2. Thus ccci = (ci, c2,i) : ΘΘΘ → (Z,Z2) and

c̃i : Θ2 → Z. Without loss of generality, we can assume that for t ∈ Θ2, hi meets with

B̂β(t) at mi,t-points A(i, t, 1), · · · , A(i, t,mi,t), each having isotropy subgroup Gxt, where

mi,t = |c̃i(t)|. Take points B(i, t, 1), · · · , B(i, t,mi,t) in h′i(S
k−1) and C(i, t, 1), · · · ,

C(i, t,mi,t) in Dt ∩ B′
β(t). Let △(i, t, j) = △A(i, t, j)B(i, t, j)C(i, t, j) denote embedded
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triangles in W (each of which is homeomorphic to D2) such that

A(i, t, j)B(i, t, j) ⊂ Im(h′i),

A(i, t, j)C(i, t, j) ⊂ B̂
=ρG(t)
β(t) , and

B(i, t, j)C(i, t, j) ⊂ Interior(D).

We may assume g(Interior(△(i, t, j))) ∩ g′(Interior(△(i′, t′, j′))) = ∅ unless i = i′, t = t′,

j = j′ and g = g′. Moreover we may assume △(i, t, j) is perpendicular to B̂β(t), X
′ and

Image(h′i). For each i, delete the intersection points A(i, t, j) of h′i with B′
β(t) along the

triangle △(i, t, j) (see Lemma 1.2 of [30]), where t ∈ Θ2 and j = 1, · · · , m, and obtain

an embedding h′′i : (Dk, Sk−1) → (W r L̂, X ′ r L′). It is remarkable that the restriction

∂h′′i : Sk−1 → X ′ r L′ of h′′i is the connected sum of ∂h′i and hccci
(cf. (6.2.1)). Thickening

h′′i , we obtain embeddings

H ′′
i : (Dk ×Dk+1, Sk−1 ×Dk+1) → (W r L̂, X ′ r L′),

i = 1, · · · , ℓ. Now we may suppose gH ′′
i and g′H ′′

j are disjoint unless g = g′ and i = j.

Further we can suppose F (Image(H ′′
i )) is a point in {1} × Y . Set

V =
ℓ⋃

i=1

G(Image(H ′′
i )),

∂+V =
ℓ⋃

i=1

G(H ′′
i (Sk−1 ×Dk+1)),

W ′ = Closure(W r V ),

X ′′ = (X ′ ∪ V ) r

{
ℓ⋃

i=1

G(H ′′
i (Dk × (Interior(Dk+1))))

}
,

F ′ = F |W ′ : W ′ → I × Y,

B′ = B|W : T (W ′) → (pY ◦ F ′)∗(εY (R) ⊕ ξ),

f ′′ = F |X′′ : X ′′ → {1} × Y = Y.

Deforming B by a regular G-homotopy (cf. Lemma 6.1) if necessary, we can assume

without loss of generality that B′|X′′ has the form

idX′′ ⊕ b′′ : εX′′(R) ⊕ T (X ′′) → εX′′(R) ⊕ f ′′∗ξ.

We check that FFF ′ = (F ′, B′) and fff ′′ = (f ′′, b′′) satisfy (7.3.1)–(7.3.3). Clearly, by con-

struction, f ′′ and F ′ are k-connected. By excision, Kk(W
′, ∂W ′;R) = Kk(W, ∂W ∪V ;R).

There is an exact sequence

Kk(∂W ∪ V, ∂W ;R) // Kk(W, ∂W ;R) // Kk(W, ∂W ∪ V ;R) // 0.

Since the first arrow is surjective, Kk(W, ∂W ∪ V ;R) = 0. Thus we get Kk(W
′, ∂W ′;R)

= 0. By the universal coefficient theorem, Kk(W ′, ∂W ′;R) = 0. The Poincaré-Lefschetz

duality implies Kk+1(W
′;R) = 0. Note that fff ′′ can be obtained from fff ′ by G-surgery
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along the embeddings ∂h′′1, · · · , ∂h′′ℓ : Sk−1 → X ′. These embeddings are isotopic in

Interior(X ′ r L′) to hccc1, · · · , hcccℓ
, respectively (see (6.2.1)). Thus we obtain

MMMfff ′′,B
∼= MMMfff ′,B′ ⊕ M(R[G], ccc1) ⊕ · · · ⊕ M(R[G], cccℓ).

�

Suppose fff and fff ′ are k-connected, P(G)R-singularity, R-boundary quasiequivalences.

Suppose F is k-connected, ∂−F : ∂−W → I × ∂Y is an R-homology equivalence, and

furthermore Kk+1(W ;R) = 0 = Kk(W, ∂W ;R). Note that ∂+FFF is the disjoint union of

two G-framed maps −fff and fff ′, where −fff is a copy of fff whose underlying manifold has

orientation opposite to the original one. Let θ∂(F,bB) (resp., θ2,∂(F,bB)) denote the composi-

tion:

Θ̃
id∪id
−→ Θ̃B ∐ Θ̃B′

θ∂+F,B∪B′

−→ Kk(∂+W ;R) = Kk(∂W ;R)

(resp., Θ2
id∪id
−→ Θ2,B ∐ Θ2,B′

θ2,∂+F,B∪B′

−→ Kk(∂+W ;R2) = Kk(∂W ;R2)).

Set

MMM∂(FFF ,bB) = (Kk(∂W ;R), B∂F,R, q∂FFF ,R, θ∂(F,bB), θ2,∂(F,bB)).

Clearly this module is isomorphic to MMM−(fff,B) ⊕MMMfff ′,B′.

Lemma 7.4. Suppose fff and fff ′ are k-connected, P(G)R-singularity, R-boundary quasiequiv-

alences, ∂−F : ∂−W → I × ∂Y is an R-homology equivalence, F : W → I × Y is

k-connected, and Kk+1(W ;R) = 0 = Kk(W, ∂W ;R). Then the following hold.

(7.4.1) MMM∂(FFF ,bB) = −MMMfff ,B ⊕MMMfff ′,B′ (hence MMM∂(FFF ,bB) ∈ ∇QQQ(AAA,ΘΘΘ)), where

−MMMfff ,B = (Kk(X,R),−qfff,R,−Bf,R,−θf,B,−θ2,f,B).

(7.4.2) The submodule ∂Kk+1(W, ∂W ;R) of Kk(∂W ;R) contains Im(θ∂(F,bB)); the submod-

ule ∂Kk+1(W, ∂W ;R2) of Kk(∂W ;R2) contains Im(θ2,∂(F,bB)).

(7.4.3) ∂Kk+1(W, ∂W ;R) is totally isotropic in MMM∂(FFF ,bB).

Proof. Property (7.4.1) follows from MMM−(fff ,B)
∼= −MMMfff,B.

Property (7.4.2) is obtained by chasing the following commutative diagram

Hk+1(B̂β, ∂B̂β) //

∂
��

Hk+1(W, ∂W ) //

∂

��

Kk+1(W, ∂W )

∂

��

Hk(∂B̂β) //

��

Hk(∂W ) //

��

Kk(∂W )

=

��

Hk(∂B̂β , ∂−B̂β) // Hk(∂W, ∂−W ) // Kk(∂W, ∂−W )

Hk(−Bβ , ∂(−Bβ)) ⊕Hk(B
′
β, ∂B

′
β).

=

OO

for the coefficient rings R and R2.
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We prove (7.4.3). Here the coefficient ring of homology groups isR. RegardKk+1(W, ∂W )

as a submodule of Kk(∂W ) via the connecting homomorphism ∂. It is well known that

the ordinary intersection form Int∂W ;R : Kk(∂W ) ×Kk(∂W ) → R satisfies

Int∂W ;R(Kk+1(W, ∂W ), Kk+1(W, ∂W )) = 0.

Since Kk+1(W, ∂W ) is G-invariant,

B∂F,R(Kk+1(W, ∂W ), Kk+1(W, ∂W )) = 0.

We conclude the proof by showing q∂F vanishes on ∂Kk+1(W, ∂W ). By Definition 5.7,

q∂FFF is a map

Kk(∂W ) −→ (R/(1 − λ))[{1}] ⊕R2[G(2)λ rQ] ⊕ R[G(2)−λ r S] ⊕R[G(≥ 3)h],

where G(2)λ = {a ∈ G(2) | w(a) = −λ}, G(2)−λ = {a ∈ G(2) | w(a) = λ}, Q = Q(G,X),

S = S(G,X), and G(≧ 3)h is a subset of G such that

G = {1} ∐G(2) ∐G(≧ 3)h ∐G(≧ 3)h
−1.

Let x ∈ Kk+1(W, ∂W ). For g ∈ G(≧ 3)h, the g-th coefficient q∂FFF ,R(x)g of q∂FFF ,R(x) is equal

to 0, because

q∂FFF ,R(x)g = ε(Int∂W ;R(x, g−1x)).

For g ∈ G(2)−λ r S, q∂FFF ,R(x)g = 0, because

ε(Int∂W ;R(x, g−1x)) = 2q∂FFF,R(x)g.

Thus we have reduced to the case g ∈ {1} ∪ (G(2)λ r Q). Let 〈g〉 denote the subgroup

generated by g in G. By definition,

q∂FFF ,R(x)g = q∂(ResG
〈g〉FFF ),R(x)g

for any x ∈ Kk(∂W ) = Kk(∂(ResG
〈g〉W )). But

dim(Sing(〈g〉,ResG
〈g〉W)) + (k + 1) ≤ {(k − 2) + 1} + (k + 1)

= 2k

< dim(ResG
〈g〉W ).

In other words, the strong gap hypothesis holds for the group 〈g〉. In this case, an

argument similar to [44, p.53, lines 7–11] proves that q∂(ResG
〈g〉FFF ),R(x) = 0 for all x ∈

Kk+1(ResG
〈g〉W, ∂(ResG

〈g〉W )). Consequently q∂FFF ,R(x) = 0 for all x ∈ Kk+1(W, ∂W ). �

Corollary 7.5. Suppose fff , fff ′ and FFF are as in Lemma 7.4. Let σ(fff,B) and σ(fff ′,B′)

∈ Wn(R,G,Q(G,X), S(G,X),ΘΘΘ)proj denote their surgery obstructions defined in Theo-

rem 6.3. If Kk+1(W, ∂W ;R) is a stably free R[G]-module then

σ(−(fff,B)) + σ(fff ′,B′) = 0 ∈Wn(R,G,Q(G,X), S(G,X),ΘΘΘ)proj.
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Proof. First note that Kk(∂W ;R) = Kk(X;R) ⊕ Kk(X;R) is a projective R[G]-module

and has the nonsinglar Hermitian form B∂F,R.

Since Kk+1(W ;R) = 0 = Kk(W, ∂W ;R), we obtain from the Mayer-Vietoris exact

sequence for the pair (W, ∂W ), a short exact sequence

(7.5.1) ∂Kk+1(W, ∂W ;R) �

� // Kk(∂W ;R)
i∂W ∗ // Kk(W ;R) // 0.

of R[G]-modules. By Poincaré-Lefschetz duality, Kk(W,R) ∼= Kk+1(W, ∂W ;R) as R-

modules. By the universal coefficient theorem, Kk+1(W, ∂W ;R) ∼= Hom(Kk+1(W, ∂W ; Z),

R) asR-modules. ThusKk(W ;R) is a freeR-module. In addition, we get rankRKk(W ;R) =

rankR(∂Kk+1(W, ∂W ;R)). The exact sequence (7.5.1) splits over R and

(7.5.2) Kk(∂W ;R) ∼= ∂Kk+1(W, ∂W ;R) ⊕Kk(W ;R)

as R-modules. Let ε1 denote the projection map R[G] → R on the coefficient of 1 ∈ G.

The ordinary intersection pairing, i.e. ε1 ◦B∂f,R, yields an R[G]-homomorphism

(7.5.3) ψ : Kk(∂W ;R) → HomR(∂Kk+1(W, ∂W ;R), R), x 7→ ε1(B∂f,R(x,−)).

Since ε1 ◦B∂f,R is nonsingular, ψ is epic. Thus Kk(∂W ;R) possesses an R[G]-direct sum

decomposition

(7.5.4) Kk(∂W ;R) = Ker(ψ) ⊕M

where M ∼= HomR(∂Kk+1(W, ∂W ;R), R) via ψ|M . It follows from (7.5.2) and (7.5.4) that

rankR(Ker(ψ)) = rankRKk(W ;R) = rankR(∂Kk+1(W, ∂W ;R)).

By Lemma 7.4, ∂Kk+1(W, ∂W ;R) j Ker(ψ). Since Ker(ψ) and ∂Kk+1(W, ∂W ;R) are

both R-free modules having the same R-rank, we obtain Ker(ψ) = ∂Kk+1(W, ∂W ;R).

Set

∂Kk+1(W, ∂W ;R)⊥ = {x ∈ Kk(∂W ;R) | B∂F,R(x, y) = 0 for all y ∈ ∂Kk+1(W, ∂W ;R)}.

Then the equality ∂Kk+1(W, ∂W ;R)⊥ = Ker(ψ) follows from the formula

B∂F,R(x, y) =
∑

g∈G

ε1(B∂F,R(x, g−1y))g (x, y ∈ Kk(∂W ;R)).

Thus we obtain

(7.5.5) ∂Kk+1(W, ∂W ;R) = Ker(ψ) = ∂Kk+1(W, ∂W ;R)⊥.

By (7.5.4) and (7.5.5), ∂Kk+1(W, ∂W ;R) is an R[G]-direct summand of Kk(∂W ;R).

Hence it follows from Lemma 7.4 that Kk(W, ∂W ;R) is an R[G]-stably free Lagrangian of

MMM∂(FFF ,bB). Thus MMM∂(FFF ,bB) vanishes in Wn(R,G,Q(G,X), S(G,X),ΘΘΘ)free, and consequently

σ(−(fff,B)) + σ(fff ′,B′) = 0. �

Remark 7.6. Let Kk(W ;R), Kk(∂W ;R) and Kk+1(W, ∂W ;R) be as in Corollary 7.5.

Then Kk(W ;R) ∼= HomR(∂Kk+1(W, ∂W ;R), R) as R[G]-modules. Moreover Kk(W ;R)

and Kk(∂W ;R) are both stably R[G]-free modules.
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Proof. Let M be as in (7.5.4). Then i∂W ∗ maps M isomorphically onto Kk(W ;R). Thus

Kk(W ;R) ∼= HomR(∂Kk+1(W, ∂W ;R), R) as R[G]-modules. Since ∂Kk+1(W, ∂W ;R) is

stably free over R[G], so is HomR(∂Kk+1(W, ∂W ;R), R). Thus Kk(W ;R) and Kk(∂W ;R)

are both stably free over R[G]. �

Let H(G) denote the set of all hyperelementary subgroups ofG. The map f : (X, ∂X) →

(Y, ∂Y ) is called an (H(G), R)-singularity quasiequivalence if fH : XH → Y H is an R-

homology equivalence for all nontrivial H ∈ H(G), i.e. H 6= {1}.

Lemma 7.7. Suppose f and f ′ are k-connected, R-boundary, (H(G), R)-singularity equiv-

alences such that ∂X = ∂X ′, ∂f = ∂f ′ and ∂b = ∂b′. If (FFF , B̂) is a G-framed ΘΘΘ-cobordism

rel ∂X between fff and fff ′ and F is an (H(G), R)-singularity quasiequivalence then the G-

surgery obstructions

σ(fff,B) and σ(fff ′,B′) lie in Wn(R,G,Q(G,X), S(G,X),ΘΘΘ)free

(j Wn(R,G,Q(G,X), S(G,X),ΘΘΘ)proj) and furthermore

σ(fff,B) = σ(fff ′,B′).

Proof. For each hyperelementary subgroup H of G, Kk(X;R) is stably free over R[H ],

by Lemma 5.14. Thus by Swan’s induction theorem, Kk(X;R) is stably free over R[G].

Hence the G-surgery obstruction σ(fff,B) lies in Wn(R,G,Q(G,X), S(G,X),ΘΘΘ)free. By

Lemmas 2.20 and 2.37, σ(−(fff,B)) = −σ(fff,B). Similarly σ(fff ′,B′) lies in the same abelian

group. Since F is a cobordism rel ∂X and f is an R-boundary quasiequivalence, ∂−F

is also an R-homology equivalence. Thus Kk(∂W ;R) ∼= Kk(X;R) ⊕Kk(X
′;R) as R[G]-

modules and Kk(∂W ;R) is stably free over R[G]. Moreover, by Lemma 7.3 we can

assume F satisfies the hypotheses of Lemma 7.4. Then Kj(W ;R) = 0 except for j = k,

and Kk(W ;R) is free over R. For each hyperelementary subgroup H of G, F : W → I×Y

is an (H,R)-singularity quasiequivalence in the sense prior to Lemma 5.6. One can adapt

now the proof of Lemma 5.14 to show that Kk(W ;R) is stably free over R[H ]. Thus

by Swan’s induction theorem, Kk(W ;R) is stably free over R[G]. By the short exact

sequence (7.5.1), Kk+1(W, ∂W ;R) is also stably free over R[G]. Thus by Corollary 7.5,

σ(fff,B) = σ(fff ′,B′). �

We remind the reader once again of the assumption Z j R j Q.

Theorem 7.8. Let X and Y denote compact, connected, oriented, smooth G-manifolds of

dimension n = 2k ≧ 6. Let (L,B) denote a G-singularity structure for X. Let fff = (f, b) :

(X, ∂X, TX) → (Y, ∂Y, f ∗ξ) denote a degree one G-framed map. Suppose Y is simply

connected and f : X → Y is an R-boundary, (H(G), R)-singularity quasiequivalence.

Then σ(fff,B) possesses a complete G-surgery obstruction

σ(fff,B) ∈Wn(R,G,Q(G,X), S(G,X),ΘΘΘB)free,
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i.e., σ(fff,B) = 0 if and only if one can perform G-surgery on fff along spheres of di-

mension ≦ k in Interior(X r L) to obtain a k-connected G-framed map fff ′ = (f ′, b′) :

(X ′, ∂X, TX ′) → (Y, ∂Y, f ′∗ξ) such that f ′ : X ′ → Y is an R-homology equivalence.

The definition of σ(fff,B) above is given in the proof below. Note that σ(fff,B) has been

defined previously in Theorem 6.3, but only for k-connected maps fff .

Proof. Since dimBβ ≦ k, we can perform G-surgery on fff along spheres of dimension

≦ k − 1 in Interior(X r L) to obtain a k-connected (R,G)-surgery map fff 1 = (f1, b1),

f1 : (X1, ∂X1) → (Y, ∂Y ). When f itself is k-connected, we allow surgery along an empty

set of spheres and get fff 1 = fff . Note that ∂X1 = ∂X and Sing(G,X1) = Sing(G,X).

Thus, f1 is also an R-boundary, (H(G), R)-singularity quasiequivalence. Using Swan’s

induction theorem (cf. proof of Lemma 7.7), we get

σ(fff 1,B) ∈Wn(R,G,Q(G,X), S(G,X),ΘΘΘB)free.

We define σ(fff,B) to be the element σ(fff1,B). We check that the element σ(fff,B) is

independent of the choice of fff 1. Let fff 2 = (f2, b2) be another k-connected (R,G)-surgery

map obtained in the same way as fff 1. Then there exists a G-framed ΘΘΘB-cobordism (FFF, B̂)

rel ∂X between (fff 1, (L,B)) and (fff2, (L,B)) such that L̂ = I × L and B̂ = I × B. In this

situation, F : W → I×Y is automatically an (H(G), R)-singularity quasiequivalence and

∂−(F,B) = I × ∂(f, b). Thus by Lemma 7.7, σ(fff1,B) = σ(fff 2,B).

Suppose σ(fff,B) = 0. By definition, this means that σ(fff 1,B) = 0. By Theorem 6.3, we

can perform G-surgery on fff 1 along spheres of dimension ≦ k in Interior(XrL) to obtain

a G-framed map fff ′ as described in the theorem.

On the other hand, if we can obtain by a G-surgery in Interior(XrL), a G-framed map

fff ′ as described in the theorem then by independence of the choice of fff1 in constructing

σ(fff,B), we have σ(fff,B) = σ(fff ′,B). But σ(fff ′,B) = 0, because now Kk(X
′;R) = 0. �
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