Bull. Soc. Math. Bel. (series A) 45 (1993), 29 - 37.

Cancellation over Rings of Dimension ≤ 1

ANTHONY BAK Department of Mathematics University of Bielefeld W-4800 Bielefeld, Germany

MASAHARU MORIMOTO Department of Mathematics Okayama University Okayama 700, Japan

Abstract Let A be a module finite R-algebra such that the Bass-Serre dimension $(R) \leq 1$. Let M, M' and P be A-modules. Then $M \oplus A \oplus P \cong M' \oplus A \oplus P$ implies $M \oplus A \cong M' \oplus A$, providing the following holds: (1) P is finitely generated and projective. (2) M is finitely presented. (3) There is a 2-sided ideal I in A such that the general linear group $GL_2(A)$ acts transitively on the (A/I)-unimodular vectors in $A/I \oplus A/I$ and for almost all maximal ideals \mathfrak{m} of R there is locally an $A_{\mathfrak{m}}$ -homomorphism $f^{\mathfrak{m}}: M_{\mathfrak{m}} \longrightarrow A_{\mathfrak{m}}$ such that modulo the Jacobson radical $(A_{\mathfrak{m}})$, image $(f^{\mathfrak{m}}) \supseteq I_{\mathfrak{m}}$.

1. Introduction

The purpose of this note is to extend a recent cancellation result of Hambleton and Kreck [H-K, Theorem A] for modules over a separable order to modules over a module finite R-algebra where dimension $(R) \leq 1$. We define the **dimension** dim(R) of a commutative ring R to be 0 (resp. 1) if it is semilocal (resp. there is a finite set \mathfrak{M} of maximal ideals of R such that for each element $s \in R \setminus \bigcup_{\mathfrak{m} \in \mathfrak{M}} \mathfrak{m}$, the quotient ring R/Rs is semilocal.) This notion of dimension is weaker than that of Bass-Serre dimension which was used by H. Bass in his fundamental work on cancellation, cf. [B, IV].

Our main result is the following.

 \Box **THEOREM** 1.1 Let A be a module finite R-algebra such that $\dim(R) \leq 1$. Let M, M', and P be A-modules. Suppose the following conditions hold.

(1.1.1) There is a 2-sided ideal I in A such that the general linear group $GL_2(A)$ acts transitively on the (A/I)-unimodular vectors in $A/I \oplus A/I$.

(1.1.2) M is finitely presented (this is automatic if A is Noetherian and M is finitely generated) and for all but a finite number of maximal ideals \mathfrak{m} of R, there is locally an $A_{\mathfrak{m}}$ -homomorphism $f^{\mathfrak{m}}: M_{\mathfrak{m}} \longrightarrow A_{\mathfrak{m}}$ such that modulo the Jacobson radical $(A_{\mathfrak{m}})$ the image $(f^{\mathfrak{m}}) \supseteq I_{\mathfrak{m}}$.

If P is finitely generated and projective then $P \oplus A \oplus M \cong P \oplus A \oplus M'$ implies $A \oplus M \cong A \oplus M'$. \Box

It is very likely that there are appropriate generalizations of (1.1) to module finite *R*-algebras *A* where the only condition imposed on *A* is that *R* is finite dimensional. As Hambleton and Kreck [H-K] have shown, one can expect such results to find applications in the classification of 2-dimensional C.W. complexes.

 \Box COROLLARY 1.2 Let A be a module finite R-algebra such that $\dim(R) \leq 1$. Let M, M' and P be A-modules. Suppose the following conditions hold.

(1.2.1) There is a 2-sided ideal I in A such that A/I is commutative and each element of the special linear group $SL_2(A/I)$ lifts to $GL_2(A)$; e.g., $SL_2(A/I)$ is equal to the elementary group $E_2(A/I)$.

(1.2.2) Condition (1.1.2) above.

If P is finitely generated and projective then $P \oplus A \oplus M \cong P \oplus A \oplus M'$ implies $A \oplus M \cong A \oplus M'$. \Box

PROOF The conclusion above will follow from (1.1), once we show that condition (1.1.1) is satisfied. It suffices to show that $SL_2(A/I)$ acts transitively on unimodular vectors of $A/I \oplus A/I$. Let $a, c \in A/I$ such that $(a, c) \in A/I \oplus A/I$ is unimodular. Choose elements $b, d \in A/I$ such that ad + bc = 1. The matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ has determinant 1, i.e. $\in SL_2(A/I)$, and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix}$. It follows that $SL_2(A/I)$ acts transitively on the unimodular vectors in $A/I \oplus A/I$. Q.E.D.

 \Box COROLLARY 1.3 Let R be a Dedekind ring with field of fractions F. Let A be an R-order on a finite separable semisimple F-algebra. Let M, M', and N be finitely generated A-modules. Let I be a 2-sided ideal of A such that conditions (1.1.1) and (1.1.2) are satisfied. Suppose that N is R-torsion free and that there is a natural number r such that for each maximal ideal \mathfrak{m} of $R, N_{\mathfrak{m}}$ is a direct summand of $(A_{\mathfrak{m}} \oplus M_{\mathfrak{m}})^r$. Then $N \oplus A \oplus M \cong N \oplus A \oplus M'$ implies $A \oplus M \cong A \oplus M'$. \Box

PROOF Clearly, $N \oplus A \oplus A \oplus M \cong N \oplus A \oplus A \oplus M'$. By Swan's cancellation theorem [S, (9.4) and (9.7)], $A \oplus A \oplus M \cong A \oplus A \oplus M'$. Since dim $(R) \leq 1$, it follows now from Theorem (1.1) that $A \oplus M \cong A \oplus M'$. Q.E.D.

 \Box COROLLARY 1.4 (Hambleton - Kreck [H-K, Theorem A]) Let A be a separable R-order as in (1.3). Let M, M' and N be finitely generated A-modules where N is as in (1.3). Suppose there is a 2-sided ideal I in A such that the ring A/I is also a separable R-order and the following conditions hold.

(1.4.1) $GL_2(A)$ acts transitively on the (A/I)-unimodular vectors of $A/I \oplus A/I$.

(1.4.2) There is a natural number k such that for all but a finite number of maximal ideals \mathfrak{m} of R, $((A/I)^k \oplus M)_{\mathfrak{m}}$ has a direct summand isomorphic to $A_{\mathfrak{m}}$. Then $N \oplus A \oplus M \cong N \oplus A \oplus M'$ implies $A \oplus M \cong A \oplus M'$. \Box

PROOF The conclusion of Hambleton - Kreck will follow from (1.3), once we show that condition (1.1.2) is satisfied.

Let B = A/I. For almost all maximal ideals \mathfrak{m} of R, there are by hypothesis $A_{\mathfrak{m}}$ -homomorphisms $f: A_{\mathfrak{m}} \longrightarrow B_{\mathfrak{m}}^{k} \oplus M_{\mathfrak{m}}$ and $g: B_{\mathfrak{m}}^{k} \oplus M_{\mathfrak{m}} \longrightarrow A_{\mathfrak{m}}$ such that $gf = 1_{A_{\mathfrak{m}}}$. Write $f = (f_{1}, f_{2})$ where $f_{1}: A_{\mathfrak{m}} \longrightarrow B_{\mathfrak{m}}^{k}$ and $f_{2}: A_{\mathfrak{m}} \longrightarrow M_{\mathfrak{m}}$ and write $g = (g_{1}, g_{2})$ where $g_{1}: B_{\mathfrak{m}}^{k} \longrightarrow A_{\mathfrak{m}}$ and $g_{2}: M_{\mathfrak{m}} \longrightarrow A_{\mathfrak{m}}$. For $a \in I_{\mathfrak{m}}, f_{1}(a) = f_{1}(1)a = 0$; thus, $a = gf(a) = g_{2}f_{2}(a)$. Thus, $g_{2}f_{2}|_{I_{\mathfrak{m}}} = 1_{I_{\mathfrak{m}}}$. Thus, $M_{\mathfrak{m}}$ contains a direct summand isomorphic to $I_{\mathfrak{m}}$. Q.E.D.

In the next section, we recall a few definitions and then prove Theorem (1.1). Our methods are elementary and require little beyond a familiarity with semilocal rings, Nakayama's lemma, and localization.

2. Proof of Theorem 1.1

We begin by recalling a few definitions.

Let A be an associative ring with identity and q a 2-sided ideal in A. Let $M = M_1 \oplus \cdots \oplus M_n$ be a direct sum of right A-modules. If $f: M_i \longrightarrow M_j (i \neq j)$ is an A-homomorphism and \overline{f} its unique extension to an A-endomorphism of M such that $\overline{f}(M_k) = 0$ for all $k \neq i$, we set $\epsilon(f) = 1_M + \overline{f}$. Clearly $\epsilon(f)$ is an A-automorphism of M with inverse $\epsilon(-f)$. $\epsilon(f)$ is called the **elementary transformation** defined by f. If image $(f) \subseteq M_j \mathfrak{q}$ then $\epsilon(f)$ is called a \mathfrak{q} -elementary transformation. Let $E(M_1, \ldots, M_n)$ denote the subgroup of $\operatorname{Aut}_A(M)$ generated by all elementary transformations $\epsilon(f)$ where f ranges over all A-homomorphisms $f: M_i \longrightarrow M_j$ such that $i \neq j, 1 \leq i \leq n, 1 \leq j \leq n$. Let $E(M_1, \ldots, M_n; \mathfrak{q})$ denote the normal subgroup of $E(M_1, \ldots, M_n)$

generated by the \mathfrak{q} -elementary transformations. If $M_1 = \cdots = M_n = A$ then by definition $E_n(A) = E_n(M_1, \ldots, M_n)$ and $E_n(A, \mathfrak{q}) = E(M_1, \ldots, M_n; \mathfrak{q})$.

Let M be a right A-module. An element $m \in M$ is called **unimodular** if there is an A-homomorphism $f : M \longrightarrow A$ such that f(m) = 1. It follows that $m = (m_1, \ldots, m_n) \in M_1 \oplus \cdots \oplus M_n$ is unimodular \Leftrightarrow there are A-homomorphisms $f_i : M_i \longrightarrow A(i = 1, \ldots, n)$ such that $\sum_{i=1}^n f_i(m) =$ $1 \Leftrightarrow$ there are A-homomorphisms $f_i : M_i \longrightarrow A(i = 1, \ldots, n)$ such that $(f_1(m_1), \ldots, f_n(m_n)) \in A^n = A \oplus \cdots \oplus A$ (n times) is unimodular. A vector $(a_1, \ldots, a_n) \in A^n$ is unimodular \Leftrightarrow there are elements $b_1, \ldots, b_n \in A$ such that $\sum_{i=1}^n b_i a_i = 1$.

If M is a right A-module and $m \in M$, one defines $o_M(m) = \{f(m) | f \in Hom_A(M, A)\}$. Clearly, $o_M(m)$ is a left ideal in A and m is unimodular $\Leftrightarrow o_M(m) = A$.

 \Box LEMMA 2.1 Let A be an associative ring with identity. Let $(a_1, \ldots, a_n) \in A^n$ be unimodular. Then there is an element $b \in A$ such that $(a_1, \ldots, a_{n-1}, (ba_n)^2)$ is unimodular. \Box

PROOF By definition, there are elements $c_1, \ldots, c_n \in A$ such that $1 = c_1 a_1 + \cdots + c_n a_n$. Thus, $a_n = a_n (c_1 a_1 + \cdots + c_n a_n)$. Thus, $1 = c_1 a_1 \cdots + c_n a_n = c_1 a_1 + \cdots + c_n a_{n-1} + c_n [a_n (c_1 a_1 + \cdots + c_n a_n)] = (c_n a_n c_1 + c_1) a_1 + \cdots + (c_n a_n c_{n-1} + c_{n-1}) a_{n-1} + (c_n a_n)^2$. Thus, $(a_1, \ldots, a_{n-1}, (c_n a_n)^2)$ is unimodular. Q.E.D.

 \Box LEMMA 2.2 Let A be a semilocal ring and let \mathfrak{q} be a 2-sided ideal in A. Let \mathfrak{a} be a left ideal in A. Let M be a right A-module. Let $(a, m) \in$ $A \oplus M$ such that $m \in M\mathfrak{q}$ and $\mathfrak{a} + o_{A \oplus M}(a, m) = A$. Then there is an A-homomorphism $f: M \longrightarrow A\mathfrak{q}$ such that $\mathfrak{a} + o_A(a + f(m)) = A$. \Box

PROOF By definition, there is an A-homomorphism $g: M \longrightarrow A$ such that $\mathfrak{a} + o_{A \oplus A}(a, g(m)) = A$. Since $m \in M\mathfrak{q}, g(m) \in \mathfrak{q}$. It follows from (2.1) that $\mathfrak{a} + o_{A \oplus A}(a, (bg(m))^2) = A$ for some $b \in A$. By [B, III (2.8)], there is an element $c \in A$ such that $\mathfrak{a} + o_A(a + c(bg(m))^2) = A$. Define f to be the compositon of the A-homomorphisms $M \xrightarrow{g} A \xrightarrow{cbg(m)b} A$ where cbg(m)b denotes left multiplication by cbg(m)b. Clearly, f has the desired properties. Q.E.D.

 \Box LEMMA 2.3 Let A be a module finite R-algebra. Let \mathfrak{q} be a 2-sided ideal in A. Let \mathfrak{M} be a finite set of maximal ideals in R. Let M be a right A-module. If $(a, m) \in A \oplus M$ is a unimodular element such that $m \in M\mathfrak{q}$ then

there is an A-homomorphism $f: M \longrightarrow A\mathfrak{q}$ such that $A(a+f(m)) \supseteq As$ for some $s \in R \setminus \bigcup_{\mathfrak{m} \in \mathfrak{M}} \mathfrak{m}$. \Box

PROOF Let $\mathfrak{p} = \bigcap_{m \in \mathfrak{M}} \mathfrak{m}$. R/\mathfrak{p} is a semilocal ring (with maximal ideals $\{\mathfrak{m}/\mathfrak{p} | \mathfrak{m} \in \mathfrak{M}\}$). Since A is module finite over R, $A/A\mathfrak{p}$ is module finite over $R/R\mathfrak{p}$ and hence semilocal. By hypothesis, there is an A-homomorphism $g: M \longrightarrow A$ such that (a, g(m)) is unimodular. Since $m \in M\mathfrak{q}, g(m) \in \mathfrak{q}$. By (2.1), $(a, (bg(m))^2)$ is unimodular for some $b \in A$. By [B, III (2.8)], there is an element $c \in A$ such that $a+c(bg(m))^2$ is a unit mod $A\mathfrak{p}$. Let f denote the composition of $M \xrightarrow{g} A \xrightarrow{cbg(m)b} A$ where cbg(m)b denotes left multiplication by cbg(m)b. Then a+f(m) is a unit in $A/A\mathfrak{p}$. Let S denote the multiplicative set $R \setminus \bigcup \mathfrak{m}$. Since the ideal $S^{-1}A\mathfrak{p}$ in $S^{-1}A$ is contained in the Jacobson radical $(S^{-1}A)$ and $S^{-1}A/S^{-1}A\mathfrak{p} = A/\mathfrak{p}$, it follows from Nakayama's lemma [B, III (2.2)] that a+f(m) is a unit in $S^{-1}A$. Thus, there is an element $t \in S$ such that $s^{-1}d(a+f(m)) = 1$ in $S^{-1}A$. Thus, there is an element $t \in S$ such that the equality td(a + f(m)) = ts holds in A. Q.E.D.

 \square **PROPOSITION** 2.4 Let *A* be a module finite *R*-algebra such that dim(*R*) ≤ 1 . Let *M* be a finitely presented right *A*-module. Let *I* be a 2-sided ideal in *A* with the following properties.

(2.4.1) There is a subgroup G of the general linear group $GL_2(A)$, which acts transitively on the (A/I)-unimodular vectors in $A/I \oplus A/I$.

(2.4.2) there is a finite set \mathfrak{M} of maximal ideals of R such that for each maximal ideal $\mathfrak{m} \notin \mathfrak{M}$, there is locally an $A_{\mathfrak{m}}$ -homomorphism $f^{\mathfrak{m}} : M_{\mathfrak{m}} \longrightarrow A_{\mathfrak{m}}$ such that modulo the Jacobson radical $(A_{\mathfrak{m}})$, the image $(f^{\mathfrak{m}}) \supseteq I_{\mathfrak{m}}$.

Let \mathfrak{q} be a 2-sided ideal in A and let $G(\mathfrak{q})$ be a subgroup of the \mathfrak{q} -relative general linear group $GL_2(A, \mathfrak{q})$, which acts transitively on the (A/I)-unimodular vectors u of $A/I \oplus A/I$ such that $u \equiv (1,0) \mod (\mathfrak{q}+I)/I$. (If $\mathfrak{q} = A$, one can take $G(\mathfrak{q}) = G$.) If $v, w \in A \oplus A \oplus M$ are unimodular elements such that $v \equiv w \mod \mathfrak{q}$, i.e. $v - w \in (A \oplus A \oplus M)\mathfrak{q}$, then there is an automorphism σ in the normal closure of $\langle E(A, A, M; \mathfrak{q}), G(\mathfrak{q}) \rangle$ by $\langle E(A, A, M), G \rangle$ such that $\sigma v = w$. \Box

PROOF The proof will be divided into two steps.

Step 1: There is an element $\rho \in \langle E(A, A, M), G \rangle$ such that $\rho w = (1, 0, 0) \in A \oplus A \oplus M$.

Step 2: If w = (1, 0, 0) then there is an element $\tau \in \langle E(A, A, M; \mathfrak{q}), G(\mathfrak{q}) \rangle$ such that $\tau v = (1, 0, 0)$.

Assume Steps 1 and 2 have been established. The proof is then completed as follows. By Step 1, there is a ρ such that $\rho w = (1, 0, 0)$. Clearly, $\rho v \equiv \rho w$ mod \mathfrak{q} . Thus, according to Step 2, there is a $\tau \in \langle E(A, A, M; \mathfrak{q}), G(\mathfrak{q}) \rangle$ such that $\tau \rho v = \rho w$. Clearly, $(\rho^{-1} \tau \rho) v = w$ and $\rho^{-1} \tau \rho$ is in the normal closure of $\langle E(A, A, M; \mathfrak{q}), G(\mathfrak{q}) \rangle$ under $\langle E(A, A, M), G \rangle$.

Step 1 is the special case of Step 2 where q = A. Thus, it suffices to prove Step 2.

Let v = (1 + a, b, m) be a unimodular element in $A \oplus A \oplus M$ such that $a, b \in \mathfrak{q}$ and $m \in M\mathfrak{q}$. Enlarge \mathfrak{M} to a finite set, denoted again by \mathfrak{M} , such that if m is a maximal ideal $\notin \mathfrak{M}$ and $s \in R \setminus \mathfrak{m}$ then A/As is semilocal. This can be done, since $\dim(R) \leq 1$. By Lemma (2.3), there is an A-homomorphism $f : A \oplus M \longrightarrow A\mathfrak{q}$ such that $A(a + f(b, m)) \supseteq As$ for some $s \in R \setminus \bigcup_{\mathfrak{m} \in \mathfrak{M}} \mathfrak{m}$. Clearly, $\epsilon(f)v = (1 + a + f(b, m), bm)$. Thus, we can assume right from the start that $A(1 + a) \supseteq As$ for some $s \in R \setminus \bigcup_{\mathfrak{m} \in \mathfrak{M}} \mathfrak{m}$.

Since (1 + a, b, m) is unimodular, there is an A-homomorphism $f : M \longrightarrow A$ such that $(1 + a, b, f(m)) \in A \oplus A \oplus A$ is unimodular. Applying Lemma (2.2) to the vector (1 + a, b, f(m)) over the semilocal ring A/As, we can find an A-homomorphism $g : A \longrightarrow A\mathfrak{q}$ such that (1 + a, b + gf(m)) is unimodular over A/As. But, since $A(1 + a) \supseteq As$, it follows that (1 + a, b + gf(m)) is unimodular over A. Clearly, $\epsilon(gf)v = (1 + a, b + gf(m), m)$. Thus, we can assume right from the start that v = (1 + a, b, m) where (1 + a, b)is unimodular. By hypothesis, there is an element $\tau \in G(\mathfrak{q})$ such that $\tau \oplus 1_M(v) = (1 + a', b', m)$ where $a', b' \in I \cap \mathfrak{q}$. Thus, we can assume v = (1 + a, b, m) where $a, b \in I \cap \mathfrak{q}$ and (1 + a, b) is unimodular. Moreover, by applying if necessary an elementary transformation $\epsilon(f)$ to v, where $f : A \longrightarrow A(I \cap \mathfrak{q})$ has the property that $A(1 + a + f(b)) \supseteq As$ for some $s \in R \setminus \bigcup_{\mathfrak{m}, \mathfrak{m}} \mathfrak{m}$, we can assume that $A(1 + a) \supseteq As$.

Let $V(Rs) = \{\mathbf{m} | \mathbf{m} \text{ a maximal ideal of } R, \mathbf{m} \supseteq Rs\}$. Evidently, $V(Rs) \cap \mathfrak{M} = \emptyset$. Thus, R/Rs is semilocal and V(Rs) is finite. Let $\mathbf{m} \in V(Rs)$. Let $f^{\mathfrak{m}} : M_{\mathfrak{m}} \longrightarrow A_{\mathfrak{m}}$ be as in the hypothesis of the proposition. Since M is finitely presented, we can apply [B, III (4.5)] to find an A-homomorphism $f^{[\mathfrak{m}]} : M \longrightarrow A$ and an element $s^{[\mathfrak{m}]} \in R \setminus \mathfrak{m}$ such that $(s^{[\mathfrak{m}]})^{-1}f^{[\mathfrak{m}]} = f^{\mathfrak{m}}$. Let $t^{[\mathfrak{m}]} \in R \setminus \mathfrak{m}$ such that $t^{[\mathfrak{m}]} \equiv (s^{[\mathfrak{m}]})^{-1} \mod (R_{\mathfrak{m}}\mathfrak{m})$. Let $g^{[\mathfrak{m}]} = t^{[\mathfrak{m}]}f^{[\mathfrak{m}]}$. Let $J^{[\mathfrak{m}]}$ denote the inverse image in A of the Jacobson radical $(A_{\mathfrak{m}}/A_{\mathfrak{m}}s)$. Each $g^{[\mathfrak{m}]}$ has the property that $\mod J^{[\mathfrak{m}]}$, image $(g^{[\mathfrak{m}]}) \supseteq I$. Let $x^{[\mathfrak{m}]} \in M$ such that $\mod J^{[\mathfrak{m}]}$, $g^{[\mathfrak{m}]}x^{[\mathfrak{m}]} = b - g^{[\mathfrak{m}]}(m)$. Let $r^{[\mathfrak{m}]} \in R$ such that $r^{[\mathfrak{m}]} \equiv 1 \mod \mathfrak{m}$ and $r^{[\mathfrak{m}]} \equiv 0 \mod \mathfrak{m}'$ for each $\mathfrak{m}' \neq \mathfrak{m} \in V(Rs)$. Let $x = \sum_{\mathfrak{m} \in V(Rs)} x^{[\mathfrak{m}]}r^{[\mathfrak{m}]}$.

Since (1 + a, b) is unimodular, we can find an A-homomorphism $h : A \oplus A \longrightarrow M$ such that h(1 + a, b) = x. Clearly, $\epsilon(h)(1 + a, b, m) = (1 + a, b, m + h(1 + a, b)) = (1 + a, b, m + x)$. Since (1 + a, b) is unimodular and

 $g^{[\mathfrak{m}]}(m+x) \equiv g^{[\mathfrak{m}]}(m) + g^{[\mathfrak{m}]}x^{[\mathfrak{m}]} \equiv g^{[\mathfrak{m}]}(m) + (b - g^{[\mathfrak{m}]}(m) = b \mod J^{[\mathfrak{m}]}$, we see that $(1+a, m+x) \in A \oplus M$ is unimodular mod $J^{[\mathfrak{m}]}$. Thus, (1+a, m+x) is unimodular over $A_{\mathfrak{m}}/A_{\mathfrak{m}}s = (A/As)_{\mathfrak{m}}$ for each $\mathfrak{m} \in V(Rs)$. Thus, by Nakayama, (1+a, m+x) is unimodular over A/As. (More specifically, one can argue as follows. Choose $c, d \in A$ such that c(1+a) + db = 1 and let $g = \sum_{\mathfrak{m} \in V(Rs)} x^{[\mathfrak{m}]}g^{[\mathfrak{m}]}$. It suffices to show that $A(ca + dg(m+x)) \equiv A$

mod As. By the local-global principle, it suffices to show that for all maximal ideals of R/Rs, equivalently for all $\mathfrak{m} \in V(Rs)$, $A_{\mathfrak{m}}(ca + dg(m + x)) \equiv A_{\mathfrak{m}}$ mod $(A_{\mathfrak{m}}s)$. By Nakayama's lemma [B, III (2.2)], it suffices to show that $A_{\mathfrak{m}}(ca + dg(m + x)) \equiv A_{\mathfrak{m}} \mod A_{\mathfrak{m}}J^{[\mathfrak{m}]}$. But $ca + dg(m + x)) \equiv ca + db = 1$ mod $A_{\mathfrak{m}} \mod J^{[\mathfrak{m}]}$.) Since $A(1 + a) \supseteq As$, it follows that (1 + a, m + x)is unimodular over A. Choose $h' : A \oplus M \longrightarrow A$ such that h'(1 + a, m + x)is unimodular over A. Choose $h' : A \oplus M \longrightarrow A$ such that h'(1 + a, m + x)is unimodular over A. Choose $h' : A \oplus M \longrightarrow A$ such that h'(1 + a, m + x) $h'' : A \longrightarrow A$ such that h''(1) = -a. If $\tau = \epsilon(h)^{-1}\epsilon(h')^{-1}\epsilon(h'')\epsilon(h')\epsilon(h)$ then $\tau(1 + a, b, m) = (1, b', m')$ for suitable b' and m'. Furthermore, since image $(h'') \subseteq I \cap \mathfrak{q}, \tau \in E(A, A, , M; \mathfrak{q})$. Thus, $b' \equiv 0 \mod \mathfrak{q}$ and $m' \equiv 0 \mod M\mathfrak{q}$. Letting $h_1 : A \longrightarrow A$ such that $h_1(1) = -b'$ and $h_2 : A \longrightarrow M$ such that $h_2(1) = -m'$, we obtain that $\epsilon(h_2)\epsilon(h_1)\tau(1 + a, b, m) = (1, 0, 0)$. Q.E.D.

 \Box **THEOREM** 2.5 Let A be a module finite R-algebra such that $\dim(R) \leq 1$. Let M be a finitely presented right A-module. Let I be a 2-sided ideal in A satisfying (2.4.1) and (2.4.2). If M' and P are right A-modules and P is finitely generated and projective then $P \oplus A \oplus M \cong P \oplus A \oplus M'$ implies $A \oplus M \cong A \oplus M'$. \Box

PROOF The proof follows the pattern of that in Bass [B, IV (3.5)]. Choose Q such that $P \oplus Q \cong A^n$ for some n. If n = 0 then P = 0 and we are done. Thus, we can assume n > 0. It suffices now to show that $A^{n+1} \oplus M \cong A^{n+1} \oplus M'$ implies $A^n \oplus M \cong A^n \oplus M'$ for any n > 0. Let $v = (1, 0, \ldots, 0) \in A^{n+1} \oplus M, w = (1, 0, \ldots, 0) \in A^{n+1} \oplus M'$, and identify $A^{n+1} \oplus M$ with $A^{n+1} \oplus M'$. By Proposition (2.4), there is a transformation $\sigma \in \langle E(A, \ldots, A, M), G \rangle$ such that $\sigma v = w$. σ induces an isomorphism $A \oplus A^n \oplus M/vA \xrightarrow{\cong} A \oplus A^n \oplus M'/wA$. But $A^n \oplus M \cong A \oplus A^n \oplus M/vA$ and $A^n \oplus M' \cong A \oplus A^n \oplus M'/wA$. Q.E.D.

□ **THEOREM** 2.6 Let *A* be a module finite *R*-algebra such that $\dim(R) \leq 1$ and *R* is Noetherian. Let *M*, *M'*, and *N* be finitely generated right *A*-modules (and therefore finitely presented, because *A* is Noetherian). Let *B* denote the *A*-endomorphism ring $\operatorname{End}_A(N)$ of *N* and suppose that the canonical *A*-homomorphisms Hom $_A(N, M) \otimes_B N \longrightarrow M, f \otimes n \mapsto f(n)$, and Hom $_A(N, M') \otimes_B N \longrightarrow M', f \otimes n \mapsto f(n)$ are isomorphisms; e.g., *M*

and M' are direct summands of a direct sum of N's. Let \mathfrak{I} be a 2-sided ideal in B such that \mathfrak{I} and the right B-module $\operatorname{Hom}_A(N, M)$ satisfy conditions (2.4.1) and (2.4.2). Let Q be a right A-module which is a direct summand of a direct sum of finitely many copies of N. Then $Q \oplus N \oplus M \cong Q \oplus N \oplus M'$ implies $N \oplus M \cong N \oplus M'$. \Box

PROOF Since N finitely generated over A and A is module finite over R with R Noetherian, it follows that B is module finite over R. Consider the functor ((right A-modules)) \longrightarrow ((right B-modules)), $X \mapsto \text{Hom }_A(N, X)$. Applying the functor to the isomorphism $Q \oplus N \oplus M \cong Q \oplus N \oplus M'$, we obtain an isomorphism $\text{Hom }_A(N, Q) \oplus B \oplus$ Hom $_A(N, M) \cong$ Hom $_A(N, Q) \oplus B \oplus$ Hom $_A(N, M) \cong$ Hom $_A(N, Q) \oplus B \oplus$ Hom $_A(N, M) \cong$ Generated and projective over B. Hom $_A(N, M)$ is finitely presented over B, since it is finitely generated already over R and B is Noetherian. Thus, we can apply Theorem (2.5). By the conclusion of that theorem, $B \oplus$ Hom $_A(N, M) \cong B \oplus$ Hom $_A(N, M')$. Applying the functor $-\otimes_B N$ to the isomorphism above, we obtain an isomorphism $N \oplus$ Hom $_A(N, M) \otimes_B N \cong N \oplus$ Hom $_A(N, M') \otimes_B N \cong M'$. But by hypothesis, Hom $_A(N, M) \otimes_B N \cong M$ and Hom $_A(N, M') \otimes_B N \cong M'$. Q.E.D.

REMARK 2.7 One can replace in (2.4) and (2.5) (resp. (2.6)) the hypothesis that M is finitely presented by the weaker hypothesis that M contains a direct summand M_0 such that M_0 is finitely presented and the ideal I (resp. \mathfrak{I}) in A (resp. B) satisfies (2.4.2) with respect to the submodule M_0 (resp. Hom $_A(N, M_0)$). The details are a little tedious, but not difficult. We shall skip them.

References

B. H. Bass, Algebraic K-Theory, W.A. Benjamin (1968), New York

H-K. I. Hambleton and M. Kreck, Cancellation of Lattices and Finite Two-Colexes, preprint

S. R. Swan, K-Theory of Finite Groups and Orders, Lecture Notes in Math. 149 (1970), Springer-Verlag, Berlin