Bull. Soc. Math. Bel. (series A) 45 (1993), 29-37.

Cancellation over Rings of Dimension $\leqq 1$

ANTHONY BAK
Department of Mathematics
University of Bielefeld
W-4800 Bielefeld, Germany
MASAHARU MORIMOTO
Department of Mathematics
Okayama University
Okayama 700, Japan

Abstract

Let A be a module finite R-algebra such that the Bass-Serre dimen$\operatorname{sion}(R) \leqq 1$. Let M, M^{\prime} and P be A-modules. Then $M \oplus A \oplus P \cong M^{\prime} \oplus A \oplus P$ implies $M \oplus A \cong M^{\prime} \oplus A$, providing the following holds: (1) P is finitely generated and projective. (2) M is finitely presented. (3) There is a 2 -sided ideal I in A such that the general linear group $G L_{2}(A)$ acts transitively on the (A / I)-unimodular vectors in $A / I \oplus A / I$ and for almost all maximal ideals \mathfrak{m} of R there is locally an $A_{\mathfrak{m}}$-homomorphism $f^{\mathfrak{m}}: M_{\mathfrak{m}} \longrightarrow A_{\mathfrak{m}}$ such that modulo the Jacobson $\operatorname{radical}\left(A_{\mathfrak{m}}\right)$, image $\left(f^{\mathfrak{m}}\right) \supseteq I_{\mathfrak{m}}$.

1. Introduction

The purpose of this note is to extend a recent cancellation result of Hambleton and Kreck [H-K, Theorem A] for modules over a separable order to modules over a module finite R-algebra where dimension $(R) \leq 1$. We define the dimension $\operatorname{dim}(R)$ of a commutative ring R to be 0 (resp. 1) if it is semilocal (resp. there is a finite set \mathfrak{M} of maximal ideals of R such that for each element $s \in R \backslash \underset{\mathfrak{m} \in \mathfrak{M}}{\cup} \mathfrak{m}$, the quotient ring $R / R s$ is semilocal.) This notion of dimension is weaker than that of Bass-Serre dimension which was used by H. Bass in his fundamental work on cancellation, cf. [B, IV].

Our main result is the following.
THEOREM 1.1 Let A be a module finite R-algebra such that $\operatorname{dim}(R) \leqq 1$. Let M, M^{\prime}, and P be A-modules. Suppose the following conditions hold.
(1.1.1) There is a 2-sided ideal I in A such that the general linear group $G L_{2}(A)$ acts transitively on the (A / I)-unimodular vectors in $A / I \oplus A / I$.
(1.1.2) M is finitely presented (this is automatic if A is Noetherian and M is finitely generated) and for all but a finite number of maximal ideals \mathfrak{m} of R, there is locally an $A_{\mathfrak{m}}$-homomorphism $f^{\mathfrak{m}}: M_{\mathfrak{m}} \longrightarrow A_{\mathfrak{m}}$ such that modulo the Jacobson radical $\left(A_{\mathfrak{m}}\right)$ the image $\left(f^{\mathfrak{m}}\right) \supseteq I_{\mathfrak{m}}$.
If P is finitely generated and projective then $P \oplus A \oplus M \cong P \oplus A \oplus M^{\prime}$ implies $A \oplus M \cong A \oplus M^{\prime}$.

It is very likely that there are appropriate generalizations of (1.1) to module finite R-algebras A where the only condition imposed on A is that R is finite dimensional. As Hambleton and Kreck [H-K] have shown, one can expect such results to find applications in the classification of 2-dimensional C.W. complexes.
\square COROLLARY $1.2 \quad$ Let A be a module finite R-algebra such that $\operatorname{dim}(R) \leqq 1$. Let M, M^{\prime} and P be A-modules. Suppose the following conditions hold.
(1.2.1) There is a 2 -sided ideal I in A such that A / I is commutative and each element of the special linear group $S L_{2}(A / I)$ lifts to $G L_{2}(A)$; e.g., $S L_{2}(A / I)$ is equal to the elementary group $E_{2}(A / I)$.
(1.2.2) Condition (1.1.2) above.

If P is finitely generated and projective then $P \oplus A \oplus M \cong P \oplus A \oplus M^{\prime}$ implies $A \oplus M \cong A \oplus M^{\prime}$.
PROOF The conclusion above will follow from (1.1), once we show that condition (1.1.1) is satisfied. It suffices to show that $S L_{2}(A / I)$ acts transitively on unimodular vectors of $A / I \oplus A / I$. Let $a, c \in A / I$ such that $(a, c) \in A / I \oplus A / I$ is unimodular. Choose elements $b, d \in A / I$ such that $a d+b c=1$. The matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has determinant 1, i.e. $\in S L_{2}(A / I)$, and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{1}{0}=\binom{a}{c}$. It follows that $S L_{2}(A / I)$ acts transitively on the unimodular vectors in $A / I \oplus A / I$. Q.E.D.

COROLLARY 1.3 Let R be a Dedekind ring with field of fractions F. Let A be an R-order on a finite separable semisimple F-algebra. Let M, M^{\prime}, and N be finitely generated A-modules. Let I be a 2-sided ideal of A such that conditions (1.1.1) and (1.1.2) are satisfied. Suppose that N is R torsion free and that there is a natural number r such that for each maximal ideal \mathfrak{m} of $R, N_{\mathfrak{m}}$ is a direct summand of $\left(A_{\mathfrak{m}} \oplus M_{\mathfrak{m}}\right)^{r}$. Then $N \oplus A \oplus M \cong$ $N \oplus A \oplus M^{\prime}$ implies $A \oplus M \cong A \oplus M^{\prime}$.

PROOF Clearly, $N \oplus A \oplus A \oplus M \cong N \oplus A \oplus A \oplus M^{\prime}$. By Swan's cancellation theorem $\left[\mathrm{S},(9.4)\right.$ and (9.7)], $A \oplus A \oplus M \cong A \oplus A \oplus M^{\prime}$. Since $\operatorname{dim}(R) \leqq 1$, it follows now from Theorem (1.1) that $A \oplus M \cong A \oplus M^{\prime}$. Q.E.D.
\square COROLLARY 1.4 (Hambleton - Kreck [H-K, Theorem A]) Let A be a separable R-order as in (1.3). Let M, M^{\prime} and N be finitely generated A-modules where N is as in (1.3). Suppose there is a 2 -sided ideal I in A such that the ring A / I is also a separable R-order and the following conditions hold.
(1.4.1) $G L_{2}(A)$ acts transitively on the (A / I)-unimodular vectors of $A / I \oplus$ A/I.
(1.4.2) There is a natural number k such that for all but a finite number of maximal ideals \mathfrak{m} of $R,\left((A / I)^{k} \oplus M\right)_{\mathfrak{m}}$ has a direct summand isomorphic to $A_{\mathfrak{m}}$. Then $N \oplus A \oplus M \cong N \oplus A \oplus M^{\prime}$ implies $A \oplus M \cong A \oplus M^{\prime}$.

PROOF The conclusion of Hambleton - Kreck will follow from (1.3), once we show that condition (1.1.2) is satified.

Let $B=A / I$. For almost all maximal ideals \mathfrak{m} of R, there are by hypothesis $A_{\mathfrak{m}}$-homomorphisms $f: A_{\mathfrak{m}} \longrightarrow B_{\mathfrak{m}}^{k} \oplus M_{\mathfrak{m}}$ and $g: B_{\mathfrak{m}}^{k} \oplus M_{\mathfrak{m}} \longrightarrow$ $A_{\mathfrak{m}}$ such that $g f=1_{A_{\mathfrak{m}}}$. Write $f=\left(f_{1}, f_{2}\right)$ where $f_{1}: A_{\mathfrak{m}} \longrightarrow B_{\mathfrak{m}}^{k}$ and $f_{2}: A_{\mathfrak{m}} \longrightarrow M_{\mathfrak{m}}$ and write $g=\left(g_{1}, g_{2}\right)$ where $g_{1}: B_{\mathfrak{m}}^{k} \longrightarrow A_{\mathfrak{m}}$ and $g_{2}:$ $M_{\mathfrak{m}} \longrightarrow A_{\mathfrak{m}}$. For $a \in I_{\mathfrak{m}}, f_{1}(a)=f_{1}(1) a=0$; thus, $a=g f(a)=g_{2} f_{2}(a)$. Thus, $\left.g_{2} f_{2}\right|_{I_{\mathfrak{m}}}=1_{I_{\mathfrak{m}}}$. Thus, $M_{\mathfrak{m}}$ contains a direct summand isomorphic to $I_{\mathfrak{m}}$. Q.E.D.

In the next section, we recall a few definitions and then prove Theorem (1.1). Our methods are elementary and require little beyond a familiarity with semilocal rings, Nakayama's lemma, and localization.

2. Proof of Theorem 1.1

We begin by recalling a few definitions.
Let A be an associative ring with identity and \mathfrak{q} a 2 -sided ideal in A. Let $M=M_{1} \oplus \cdots \oplus M_{n}$ be a direct sum of right A-modules. If $f: M_{i} \longrightarrow M_{j}(i \neq$ j) is an A-homomorphism and \bar{f} its unique extension to an A-endomorphism of M such that $\bar{f}\left(M_{k}\right)=0$ for all $k \neq i$, we set $\epsilon(f)=1_{M}+\bar{f}$. Clearly $\epsilon(f)$ is an A-automorphism of M with inverse $\epsilon(-f) . \epsilon(f)$ is called the elementary transformation defined by f. If image $(f) \subseteq M_{j} \mathfrak{q}$ then $\epsilon(f)$ is called a \mathfrak{q}-elementary transformation. Let $E\left(M_{1} \ldots, M_{n}\right)$ denote the subgroup of $\operatorname{Aut}_{A}(M)$ generated by all elementary transformations $\epsilon(f)$ where f ranges over all A-homomorphisms $f: M_{i} \longrightarrow M_{j}$ such that $i \neq j, 1 \leq i \leq n, 1 \leq$ $j \leq n$. Let $E\left(M_{1}, \ldots, M_{n} ; \mathfrak{q}\right)$ denote the normal subgroup of $E\left(M_{1}, \ldots, M_{n}\right)$
generated by the \mathfrak{q}-elementary transformations. If $M_{1}=\cdots=M_{n}=A$ then by definition $E_{n}(A)=E_{n}\left(M_{1}, \ldots, M_{n}\right)$ and $E_{n}(A, \mathfrak{q})=E\left(M_{1}, \ldots, M_{n} ; \mathfrak{q}\right)$.

Let M be a right A-module. An element $m \in M$ is called unimodular if there is an A-homomorphism $f: M \longrightarrow A$ such that $f(m)=1$. It follows that $m=\left(m_{1}, \ldots, m_{n}\right) \in M_{1} \oplus \cdots \oplus M_{n}$ is unimodular \Leftrightarrow there are A-homomorphisms $f_{i}: M_{i} \longrightarrow A(i=1, \ldots, n)$ such that $\sum_{i=1}^{n} f_{i}(m)=$ $1 \Leftrightarrow$ there are A-homomorphisms $f_{i}: M_{i} \longrightarrow A(i=1, \ldots, n)$ such that $\left(f_{1}\left(m_{1}\right), \ldots, f_{n}\left(m_{n}\right)\right) \in A^{n}=A \oplus \cdots \oplus A(n$ times $)$ is unimodular. A vector $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ is unimodular \Leftrightarrow there are elements $b_{1}, \ldots, b_{n} \in A$ such that $\sum_{i=1}^{n} b_{i} a_{i}=1$.

If M is a right A-module and $m \in M$, one defines $o_{M}(m)=\{f(m) \mid f \in$ $\left.\operatorname{Hom}_{A}(M, A)\right\}$. Clearly, $o_{M}(m)$ is a left ideal in A and m is unimodular $\Leftrightarrow o_{M}(m)=A$.

LEMMA 2.1 Let A be an associative ring with identity. Let $\left(a_{1}, \ldots, a_{n}\right) \in$ A^{n} be unimodular. Then there is an element $b \in A$ such that $\left(a_{1}, \ldots, a_{n-1},\left(b a_{n}\right)^{2}\right)$ is unimodular.

PROOF By definition, there are elements $c_{1}, \ldots, c_{n} \in A$ such that $1=c_{1} a_{1}+\cdots+c_{n} a_{n}$. Thus, $a_{n}=a_{n}\left(c_{1} a_{1}+\cdots+c_{n} a_{n}\right)$. Thus, $1=c_{1} a_{1} \cdots+$ $c_{n} a_{n}=c_{1} a_{1}+\cdots+c_{n-1} a_{n-1}+c_{n}\left[a_{n}\left(c_{1} a_{1}+\cdots+c_{n} a_{n}\right)\right]=\left(c_{n} a_{n} c_{1}+c_{1}\right) a_{1}+\cdots+$ $\left(c_{n} a_{n} c_{n-1}+c_{n-1}\right) a_{n-1}+\left(c_{n} a_{n}\right)^{2}$. Thus, $\left(a_{1}, \ldots, a_{n-1},\left(c_{n} a_{n}\right)^{2}\right)$ is unimodular. Q.E.D.

LEMMA 2.2 Let A be a semilocal ring and let \mathfrak{q} be a 2 -sided ideal in A. Let \mathfrak{a} be a left ideal in A. Let M be a right A-module. Let $(a, m) \in$ $A \oplus M$ such that $m \in M \mathfrak{q}$ and $\mathfrak{a}+o_{A \oplus M}(a, m)=A$. Then there is an A-homomorphism $f: M \longrightarrow A \mathfrak{q}$ such that $\mathfrak{a}+o_{A}(a+f(m))=A$.

PROOF By definition, there is an A-homomorphism $g: M \longrightarrow A$ such that $\mathfrak{a}+o_{A \oplus A}(a, g(m))=A$. Since $m \in M \mathfrak{q}, g(m) \in \mathfrak{q}$. It follows from (2.1) that $\mathfrak{a}+o_{A \oplus A}\left(a,(b g(m))^{2}\right)=A$ for some $b \in A$. By [B, III (2.8)], there is an element $c \in A$ such that $\mathfrak{a}+o_{A}\left(a+c(b g(m))^{2}\right)=A$. Define f to be the compositon of the A-homomorphisms $M \xrightarrow{g} A \xrightarrow{c b g(m) b} A$ where $c b g(m) b$ denotes left multiplication by $c b g(m) b$. Clearly, f has the desired properties. Q.E.D.

LEMMA $2.3 \quad$ Let A be a module finite R-algebra. Let \mathfrak{q} be a 2 -sided ideal in A. Let \mathfrak{M} be a finite set of maximal ideals in R. Let M be a right A module. If $(a, m) \in A \oplus M$ is a unimodular element such that $m \in M \mathfrak{q}$ then
there is an A-homomorphism $f: M \longrightarrow A \mathfrak{q}$ such that $A(a+f(m)) \supseteqq A s$ for some $s \in R \backslash \underset{\mathfrak{m} \in \mathfrak{M}}{\cup} \mathfrak{m}$.

PROOF Let $\mathfrak{p}=\underset{\mathfrak{m} \in \mathfrak{M}}{\cap} \mathfrak{m}$. R / \mathfrak{p} is a semilocal ring (with maximal ideals $\{\mathfrak{m} / \mathfrak{p} \mid \mathfrak{m} \in \mathfrak{M}\})$. Since A is module finite over $R, A / A \mathfrak{p}$ is module finite over $R / R \mathfrak{p}$ and hence semilocal. By hypothesis, there is an A-homomorphism $g: M \longrightarrow A$ such that $(a, g(m))$ is unimodular. Since $m \in M \mathfrak{q}, g(m) \in \mathfrak{q}$. By (2.1), $\left(a,(b g(m))^{2}\right)$ is unimodular for some $b \in A$. By [B, III (2.8)], there is an element $c \in A$ such that $a+c(b g(m))^{2}$ is a unit $\bmod A \mathfrak{p}$. Let f denote the composition of $M \xrightarrow{g} A \xrightarrow{c b g(m) b} A$ where $c b g(m) b$ denotes left multiplication by $\operatorname{cbg}(m) b$. Then $a+f(m)$ is a unit in $A / A \mathfrak{p}$. Let S denote the multiplicative set $R \backslash \underset{\mathfrak{m} \in \mathfrak{M}}{\cup} \mathfrak{m}$. Since the ideal $S^{-1} A \mathfrak{p}$ in $S^{-1} A$ is contained in the Jacobson radical $\left(S^{-1} A\right)$ and $S^{-1} A / S^{-1} A \mathfrak{p}=A / \mathfrak{p}$, it follows from Nakayama's lemma [B, III (2.2)] that $a+f(m)$ is a unit in $S^{-1} A$. Thus, there are elements $d \in A$ and $s \in S$ such that $s^{-1} d(a+f(m))=1$ in $S^{-1} A$. Thus, there is an element $t \in S$ such that the equality $t d(a+f(m))=t s$ holds in A. Q.E.D.

\square PROPOSITION $2.4 \quad$ Let A be a module finite R-algebra such that

 $\operatorname{dim}(R) \leqq 1$. Let M be a finitely presented right A-module. Let I be a 2-sided ideal in A with the following properties.(2.4.1) There is a subgroup G of the general linear group $G L_{2}(A)$, which acts transitively on the (A / I)-unimodular vectors in $A / I \oplus A / I$.
(2.4.2) there is a finite set \mathfrak{M} of maximal ideals of R such that for each maximal ideal $\mathfrak{m} \notin \mathfrak{M}$, there is locally an $A_{\mathfrak{m}}$-homomorphism $f^{\mathfrak{m}}: M_{\mathfrak{m}} \longrightarrow$ $A_{\mathfrak{m}}$ such that modulo the Jacobson radical $\left(A_{\mathfrak{m}}\right)$, the image $\left(f^{\mathfrak{m}}\right) \supseteq I_{\mathfrak{m}}$.
Let \mathfrak{q} be a 2 -sided ideal in A and let $G(\mathfrak{q})$ be a subgroup of the \mathfrak{q}-relative general linear group $G L_{2}(A, \mathfrak{q})$, which acts transitively on the (A / I)-unimodular vectors u of $A / I \oplus A / I$ such that $u \equiv(1,0) \bmod (\mathfrak{q}+I) / I$. (If $\mathfrak{q}=A$, one can take $G(\mathfrak{q})=G$.) If $v, w \in A \oplus A \oplus M$ are unimodular elements such that $v \equiv w \bmod \mathfrak{q}$, i.e $v-w \in(A \oplus A \oplus M) \mathfrak{q}$, then there is an automorphism σ in the normal closure of $<E(A, A, M ; \mathfrak{q}), G(\mathfrak{q})>$ by $<E(A, A, M), G>$ such that $\sigma v=w$.

PROOF The proof will be divided into two steps.
Step 1: There is an element $\rho \in<E(A, A, M), G>$ such that $\rho w=(1,0,0) \in$ $A \oplus A \oplus M$.
Step 2: If $w=(1,0,0)$ then there is an element $\tau \in<E(A, A, M ; \mathfrak{q}), G(\mathfrak{q})>$ such that $\tau v=(1,0,0)$.
Assume Steps 1 and 2 have been established. The proof is then completed as follows. By Step 1, there is a ρ such that $\rho w=(1,0,0)$. Clearly, $\rho v \equiv \rho w$
$\bmod \mathfrak{q}$. Thus, according to Step 2, there is a $\tau \in<E(A, A, M ; \mathfrak{q}), G(\mathfrak{q})>$ such that $\tau \rho v=\rho w$. Clearly, $\left(\rho^{-1} \tau \rho\right) v=w$ and $\rho^{-1} \tau \rho$ is in the normal closure of $<E(A, A, M ; \mathfrak{q}), G(\mathfrak{q})>$ under $<E(A, A, M), G>$.

Step 1 is the special case of Step 2 where $\mathfrak{q}=A$. Thus, it suffices to prove Step 2.

Let $v=(1+a, b, m)$ be a unimodular element in $A \oplus A \oplus M$ such that $a, b \in \mathfrak{q}$ and $m \in M \mathfrak{q}$. Enlarge \mathfrak{M} to a finite set, denoted again by \mathfrak{M}, such that if m is a maximal ideal $\notin \mathfrak{M}$ and $s \in R \backslash \mathfrak{m}$ then $A / A s$ is semilocal. This can be done, since $\operatorname{dim}(R) \leqq 1$. By Lemma (2.3), there is an A-homomorphism $f: A \oplus M \longrightarrow A \mathfrak{q}$ such that $A(a+f(b, m)) \supseteqq A s$ for some $s \in R \backslash \underset{\mathfrak{m} \in \mathfrak{M}}{\cup} \mathfrak{m}$. Clearly, $\epsilon(f) v=(1+a+f(b, m), b m)$. Thus, we can assume right from the start that $A(1+a) \supseteqq A s$ for some $s \in R \backslash \underset{\mathfrak{m} \in \mathfrak{M}}{\cup} \mathfrak{m}$.

Since $(1+a, b, m)$ is unimodular, there is an A-homomorphism f : $M \longrightarrow A$ such that $(1+a, b, f(m)) \in A \oplus A \oplus A$ is unimodular. Applying Lemma (2.2) to the vector $(1+a, b, f(m))$ over the semilocal ring $A / A s$, we can find an A-homomorphism $g: A \longrightarrow A \mathfrak{q}$ such that $(1+a, b+g f(m))$ is unimodular over $A / A s$. But, since $A(1+a) \supseteqq A s$, it follows that $(1+a, b+$ $g f(m))$ is unimodular over A. Clearly, $\epsilon(g f) v=(1+a, b+g f(m), m)$. Thus, we can assume right from the start that $v=(1+a, b, m)$ where $(1+a, b)$ is unimodular. By hypothesis, there is an element $\tau \in G(\mathfrak{q})$ such that $\tau \oplus$ $1_{M}(v)=\left(1+a^{\prime}, b^{\prime}, m\right)$ where $a^{\prime}, b^{\prime} \in I \cap \mathfrak{q}$. Thus, we can assume $v=(1+$ $a, b, m)$ where $a, b \in I \cap \mathfrak{q}$ and $(1+a, b)$ is unimodular. Moreover, by applying if necessary an elementary transformation $\epsilon(f)$ to v, where $f: A \longrightarrow A(I \cap \mathfrak{q})$ has the property that $A(1+a+f(b)) \supseteq A s$ for some $s \in R \backslash \underset{\mathfrak{m} \in \mathfrak{M}}{\cup \mathfrak{m} \text {, we can }}$ assume that $A(1+a) \supseteq A s$.

Let $V(R s)=\{\mathfrak{m} \mid \mathfrak{m}$ a maximal ideal of $R, \mathfrak{m} \supseteq R s\}$. Evidently, $V(R s) \cap$ $\mathfrak{M}=\varnothing$. Thus, $R / R s$ is semilocal and $V(R s)$ is finite. Let $\mathfrak{m} \in V(R s)$. Let $f^{\mathfrak{m}}: M_{\mathfrak{m}} \longrightarrow A_{\mathfrak{m}}$ be as in the hypothesis of the proposition. Since M is finitely presented, we can apply $[\mathrm{B}$, III (4.5)] to find an A-homomorphism $f^{[\mathfrak{m}]}: M \longrightarrow A$ and an element $s^{[\mathfrak{m}]} \in R \backslash \mathfrak{m}$ such that $\left(s^{[\mathfrak{m}]}\right)^{-1} f^{[\mathfrak{m}]}=f^{\mathfrak{m}}$. Let $t^{[\mathfrak{m}]} \in R \backslash \mathfrak{m}$ such that $t^{[\mathfrak{m}]} \equiv\left(s^{[\mathfrak{m}]}\right)^{-1} \bmod \left(R_{\mathfrak{m}} \mathfrak{m}\right)$. Let $g^{[\mathfrak{m}]}=t^{[\mathfrak{m}]} f^{[\mathfrak{m}]}$. Let $J^{[\mathfrak{m}]}$ denote the inverse image in A of the Jacobson radical $\left(A_{\mathfrak{m}} / A_{\mathfrak{m}} s\right)$. Each $g^{[\mathfrak{m}]}$ has the property that $\bmod J^{[\mathrm{m}]}$, image $\left(g^{[\mathrm{m}]}\right) \supseteq I$. Let $x^{[\mathrm{m}]} \in M$ such that $\bmod J^{[\mathfrak{m}]}, g^{[\mathfrak{m}]} x^{[\mathfrak{m}]}=b-g^{[\mathfrak{m}]}(m)$. Let $r^{[\mathfrak{m}]} \in R$ such that $r^{[\mathfrak{m}]} \equiv 1 \bmod \mathfrak{m}$ and $r^{[\mathfrak{m}]} \equiv 0 \bmod \mathfrak{m}^{\prime}$ for each $\mathfrak{m}^{\prime} \neq \mathfrak{m} \in V(R s)$. Let $x=\sum_{\mathfrak{m} \in V(R s)} x^{[\mathfrak{m}]} r^{[\mathfrak{m}]}$. Since $(1+a, b)$ is unimodular, we can find an A-homomorphism $h: A \oplus$ $A \longrightarrow M$ such that $h(1+a, b)=x$. Clearly, $\epsilon(h)(1+a, b, m)=(1+$ $a, b, m+h(1+a, b))=(1+a, b, m+x)$. Since $(1+a, b)$ is unimodular and
$g^{[\mathfrak{m}]}(m+x) \equiv g^{[\mathfrak{m}]}(m)+g^{[\mathfrak{m}]} x^{[\mathfrak{m}]} \equiv g^{[\mathfrak{m}]}(m)+\left(b-g^{[\mathfrak{m}]}(m)=b \bmod J^{[\mathfrak{m}]}\right.$, we see that $(1+a, m+x) \in A \oplus M$ is unimodular $\bmod J^{[\mathrm{m}]}$. Thus, $(1+a, m+x)$ is unimodular over $A_{\mathfrak{m}} / A_{\mathfrak{m}} s=(A / A s)_{\mathfrak{m}}$ for each $\mathfrak{m} \in V(R s)$. Thus, by Nakayama, $(1+a, m+x)$ is unimodular over $A / A s$. (More specifically, one can argue as follows. Choose $c, d \in A$ such that $c(1+a)+d b=1$ and let $g=\sum_{\mathfrak{m} \in V(R s)} x^{[\mathfrak{m}]} g^{[\mathfrak{m}]}$. It suffices to show that $A(c a+d g(m+x)) \equiv A$ $\bmod A s$. By the local-global principle, it suffices to show that for all maximal ideals of $R / R s$, equivalently for all $\mathfrak{m} \in V(R s), A_{\mathfrak{m}}(c a+d g(m+x)) \equiv A_{\mathfrak{m}}$ $\bmod \left(A_{\mathfrak{m}} s\right)$. By Nakayama's lemma [B, III (2.2)], it suffices to show that $A_{\mathfrak{m}}(c a+d g(m+x)) \equiv A_{\mathfrak{m}} \bmod A_{\mathfrak{m}} J^{[\mathfrak{m}]}$. But $\left.c a+d g(m+x)\right) \equiv c a+d b=1$ $\bmod A_{\mathfrak{m}} \bmod J^{[\mathfrak{m}]}$.) Since $A(1+a) \supseteq A s$, it follows that $(1+a, m+x)$ is unimodular over A. Choose $h^{\prime}: A \oplus M \longrightarrow A$ such that $h^{\prime}(1+a, m+$ $x)=1-b$. Clearly, $\epsilon\left(h^{\prime}\right) \epsilon(h)(1+a, b, m)=(1+a, 1, m+x)$. Choose $h^{\prime \prime}: A \longrightarrow A$ such that $h^{\prime \prime}(1)=-a$. If $\tau=\epsilon(h)^{-1} \epsilon\left(h^{\prime}\right)^{-1} \epsilon\left(h^{\prime \prime}\right) \epsilon\left(h^{\prime}\right) \epsilon(h)$ then $\tau(1+a, b, m)=\left(1, b^{\prime}, m^{\prime}\right)$ for suitable b^{\prime} and m^{\prime}. Furthermore, since image $\left(h^{\prime \prime}\right) \subseteq I \cap \mathfrak{q}, \tau \in E(A, A,, M ; \mathfrak{q})$. Thus, $b^{\prime} \equiv 0 \bmod \mathfrak{q}$ and $m^{\prime} \equiv 0 \bmod M \mathfrak{q}$. Letting $h_{1}: A \longrightarrow A$ such that $h_{1}(1)=-b^{\prime}$ and $h_{2}: A \longrightarrow M$ such that $h_{2}(1)=-m^{\prime}$, we obtain that $\epsilon\left(h_{2}\right) \epsilon\left(h_{1}\right) \tau(1+a, b, m)=(1,0,0)$. Q.E.D.

THEOREM $2.5 \quad$ Let A be a module finite R-algebra such that $\operatorname{dim}(R) \leqq 1$. Let M be a finitely presented right A-module. Let I be a 2 -sided ideal in A satisfying (2.4.1) and (2.4.2). If M^{\prime} and P are right A-modules and P is finitely generated and projective then $P \oplus A \oplus M \cong P \oplus A \oplus M^{\prime}$ implies $A \oplus M \cong A \oplus M^{\prime}$.

PROOF The proof follows the pattern of that in Bass [B, IV (3.5)]. Choose Q such that $P \oplus Q \cong A^{n}$ for some n. If $n=0$ then $P=0$ and we are done. Thus, we can assume $n>0$. It suffices now to show that $A^{n+1} \oplus M \cong A^{n+1} \oplus M^{\prime}$ implies $A^{n} \oplus M \cong A^{n} \oplus M^{\prime}$ for any $n>0$. Let $v=(1,0, \ldots, 0) \in A^{n+1} \oplus M, w=(1,0, \ldots, 0) \in A^{n+1} \oplus M^{\prime}$, and identify $A^{n+1} \oplus M$ with $A^{n+1} \oplus M^{\prime}$. By Proposition (2.4), there is a transformation $\sigma \in<E(A, \ldots, A, M), G>$ such that $\sigma v=w . \sigma$ induces an isomorphism $A \oplus A^{n} \oplus M / v A \xrightarrow{\cong} A \oplus A^{n} \oplus M^{\prime} / w A$. But $A^{n} \oplus M \cong A \oplus A^{n} \oplus M / v A$ and $A^{n} \oplus M^{\prime} \cong A \oplus A^{n} \oplus M^{\prime} / w A$. Q.E.D.

THEOREM 2.6 Let A be a module finite R-algebra such that $\operatorname{dim}(R) \leq 1$ and R is Noetherian. Let M, M^{\prime}, and N be finitely generated right A-modules (and therefore finitely presented, because A is Noetherian). Let B denote the A-endomorphism ring $\operatorname{End}_{A}(N)$ of N and suppose that the canonical A-homomorphisms $\operatorname{Hom}_{A}(N, M) \otimes_{B} N \longrightarrow M, f \otimes n \mapsto f(n)$, and $\operatorname{Hom}_{A}\left(N, M^{\prime}\right) \otimes_{B} N \longrightarrow M^{\prime}, f \otimes n \mapsto f(n)$ are isomorphisms; e.g., M
and M^{\prime} are direct summands of a direct sum of N^{\prime} s. Let \mathfrak{I} be a 2 -sided ideal in B such that \mathfrak{I} and the right B-module $\operatorname{Hom}_{A}(N, M)$ satisfy conditions (2.4.1) and (2.4.2). Let Q be a right A-module which is a direct summand of a direct sum of finitely many copies of N. Then $Q \oplus N \oplus M \cong Q \oplus N \oplus M^{\prime}$ implies $N \oplus M \cong N \oplus M^{\prime}$.

PROOF \quad Since N finitely generated over A and A is module finite over R with R Noetherian, it follows that B is module finite over R. Consider the functor $(($ right A-modules $)) \longrightarrow(($ right B-modules $)), X \mapsto \operatorname{Hom}_{A}(N, X)$. Applying the functor to the isomorphism $Q \oplus N \oplus M \cong Q \oplus N \oplus M^{\prime}$, we obtain an isomorphism $\operatorname{Hom}_{A}(N, Q) \oplus B \oplus \operatorname{Hom}_{A}(N, M) \cong \operatorname{Hom}_{A}(N, Q) \oplus B \oplus$ $\operatorname{Hom}_{A}\left(N, M^{\prime}\right)$. Since Q is a direct summand of a direct sum of finitely many copies of N, it follows that $\operatorname{Hom}_{A}(N, Q)$ is finitely generated and projective over $B . \operatorname{Hom}_{A}(N, M)$ is finitely presented over B, since it is finitely generated already over R and B is Noetherian. Thus, we can apply Theorem (2.5). By the conclusion of that theorem, $B \oplus \operatorname{Hom}_{A}(N, M) \cong B \oplus$ $\operatorname{Hom}_{A}\left(N, M^{\prime}\right)$. Applying the functor $-\otimes_{B} N$ to the isomorphism above, we obtain an isomorphism $N \oplus \operatorname{Hom}_{A}(N, M) \otimes_{B} N \cong N \oplus \operatorname{Hom}_{A}\left(N, M^{\prime}\right) \otimes_{B} N$. But by hypothesis, $\operatorname{Hom}_{A}(N, M) \otimes_{B} N \cong M$ and $\operatorname{Hom}_{A}\left(N, M^{\prime}\right) \otimes_{B} N \cong$ M^{\prime}. Q.E.D.

REMARK 2.7 One can replace in (2.4) and (2.5) (resp. (2.6)) the hypothesis that M is finitely presented by the weaker hypothesis that M contains a direct summand M_{0} such that M_{0} is finitely presented and the ideal I (resp. \mathfrak{I}) in A (resp. B) satisfies (2.4.2) with respect to the submodule M_{0} (rersp. Hom $\left.{ }_{A}\left(N, M_{0}\right)\right)$. The details are a little tedious, but not difficult. We shall skip them.

References

B. H. Bass, Algebraic K-Theory, W.A. Benjamin (1968), New York

H-K. I. Hambleton and M. Kreck, Cancellation of Lattices and Finite Two-Colexes, preprint
S. R. Swan, K-Theory of Finite Groups and Orders, Lecture Notes in Math. 149 (1970), Springer-Verlag, Berlin

