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Abstract. Let G be a finite group. Let f : X → Y be a k-connected, degree 1, G-framed
map of simply connected, closed, oriented, smooth manifolds X and Y of dimension 2k = 6.

Under the assumption that the dimension of the singular set of the action of G on X is at

most k, we construct an abelian group W (G,Y ) and an element σ(f) ∈ W (G,Y ), called the
surgery obstruction of f such that the vanishing of σ(f) in W (G,Y ) guarantees that f can

converted by G-surgery to a homotopy equivalence.
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1. Introduction

Let G be a finite group and X a smooth G-manifold. In the current article, the term
G-equivariant surgery or simply G-surgery will be used in a restricted sense. Namely, it
will refer to G-surgery on that part of X where each nontrivial element of G acts without
fixed points. Thus, G-surgery on X will not change the G-singular set

Sing(G,X) =
⋃

g∈G\{1}

Xg,
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where Xg = {x ∈ X | gx = x}.

Equivariant surgery theory in the sense above has been developed by several authors,
beginning in the early early 70-ies. For references, see [18], [11], and [13]. C. T. C. Wall’s
nonsimply connected surgery for compact manifolds X can be viewed as G-surgery on the

universal covering space X̃ of X where G is the fundamental group of X. Except for [7],
equivariant surgery theory has proceeded under the gap hypothesis: 2 dim Sing(G,X) <
dimX. Under this hypothesis, the surgery obstruction group is either an L-group of Wall
or a quotient of such involving form parameters, cf. [13], [14]. However, it turns out that
there are interesting geometric problems for G-manifolds X, which require using G-surgery,
where 2 dimSing(G,X) = dimX. In order to handle such problems, we develop in this
paper an equivariant surgery obstruction theory under the assumptions that dimX = 2k =
6 and dimSing(G,X) 5 k.

Applications of our G-surgery will appear in subsequent papers. They include the
following. Buchdahl, Kwasik, and Schultz [6] proved that if a standard n-sphere Sn admits
a one fixed point, smooth (or locally linear) G-action for some finite group G then n = 6.
We shall prove a converse to this result, namely that the alternating group A5 on 5 letters
has a one fixed point, smooth action on each Sn for n = 6 ([3]). Another application is
the following. Recall that an Oliver group is a finite group G which does not possess a
series of subgroups P C H C G such that P and G/H are of prime power order and H/P
is cyclic. According to [16], if a finite group G acts smoothly on a standard sphere, with
precisely one fixed point then G is Oliver. The converse of this result, namely that each
Oliver group has a one fixed point, smooth action on some standard sphere, is proved for
odd order abelian groups in [17], for nontrivial perfect groups in [10], and in full generality
in [9].

The equivariant surgery obstruction theory which is presented in the current article is
sufficient for the applications in [3], [9], and [10] above, but is not best possible, because
extra assumptions will be imposed on middle dimensional fixed point sets. The advantage
of making these assumptions is that new constructions needed for surgery with middle
dimensional fixed point sets can be introduced, while at the same the details of the proofs
can be considerably simplified over the general situation. The general situation will be
treated in a paper under preparation and will show that vanishing of the surgery obstruc-
tion invariant of a G-framed map is equivalent to the map being G-framed cobordant
(relatively to the G-singular set) to a homotopy equivalence.

We describe now our main result in the current article. Let X and Y be oriented,
smooth G-manifolds. Let T (X) denote the tangent bundle of X. Recall that a G-framed
map fff = (f, b) : X → Y is a pair consisting of a smooth map f : X → Y and a real
G-vector bundle isomorphism b : T (X) ⊕ f ∗η → f∗(ξ ⊕ η) covering the identity map on
X, for some real G-vector bundles ξ and η on Y . A G-framed map fff = (f, b) is said to
be of degree 1 (resp. k-connected) if f is of degree 1 (resp. k-connected). As usual, Z will
denote the ring of integers, Z(p) the localization of Z at a prime number p, and Q the ring
of rational numbers. We regard the set
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G(2) = {g ∈ G | g2 = 1 and g 6= 1}

as a G-set by letting G act by conjugation on the elements of G(2).

Theorem 1.1. Let G be a finite group and Y a closed, 1-connected, oriented, smooth
G-manifold of even dimension n = 2k = 6. Suppose that (1.1.1)–(1.1.3) below hold.

(1.1.1) dimY g 5 k for any g ∈ G \ {1}. (This is equivalent to dim Sing(G, Y ) 5 k.)

(1.1.2) If dimY H = k for some subgroup H 5 G then |H| = 2 and Y H is connected and

oriented such that each g : Y H → Y gHg−1

(g ∈ G) is orientation preserving.

(1.1.3) dim(Y H ∩ Y K) 5 k − 2 whenever dimY H = k and dimY K = k − 1 (H, K 5 G).

Let R be one of Z, Z(p) (p a prime), or Q. Then there is an abelian group W (G, Y ;R)
having the properties (DP) and (SP) below.

(DP) W (G, Y ;R) is determined solely by the data (R,G,Q, S, λ, wG
Y ), where Q = Q(G, Y ) =

{g ∈ G(2) | dimY g = k − 1}, S = S(G, Y ) = {g ∈ G(2) | dimY g = k}, λ = (−1)k, and
wG

Y : G→ {±1} is the orientation homomorphism associated to Y .

(SP) Let fff = (f : X → Y, b : T (X) ⊕ f∗η → f∗ξ ⊕ η) be a degree 1, k-connected,
G-framed map where X also satisfies (1.1.1)–(1.1.3). Suppose that Q(G,X) = Q(G, Y ),
S(G,X) = S(G, Y ), and Kk(f ;R) = Ker[f∗ : Hk(X;R) → Hk(Y,R)] is stably free over
R[G]. Then there is an element σ(fff) ∈W (G, Y ;R) depending on fff , such that if σ(fff) = 0
then fff can be converted by G-surgery to a degree 1, k-connected, G-framed map fff ′ = (f ′ :
X ′ → Y, b′ : T (X ′)⊕f ′∗η → f ′∗ξ) with the property that f ′ is an R-homology equivalence.

Theorem 1.1 will be deduced in the main body of the paper from a slight generalization
Theorem 7.3 of it.

Remark 1.2. Let

fff = (f : X → Y, b : T (X) ⊕ f∗η → f∗ξ ⊕ η)

be as in Theorem 1.1. Let X0 be a G-simplicial subcomplex of X with respect to some
equivariant smooth triangulation of X such that dimX0 5 k−1. Suppose σ(fff) = 0. Then
in the proof of Theorem 7.3, the G-surgery used to convert f to an R-homology equivalence
will be along embeddings h : S` → X such that ` 5 k. Since dimS` + dimX0 < dimX,
we can modify these embeddings so that h(S`)∩X0 = ∅. Thus, the G-surgery required in
Theorem 1.1 (SP) and also in Theorem 7.3 can be performed in the free part of X \X0.

A special case of equivariant surgery theory on manifolds having middle-dimensional
singular sets was treated by K. H. Dovermann [7], namely the case |G| = 2. His surgery
obstruction was expressed in terms of several invariants in classical surgery theory. The
approach in the current paper is very different from that in [7], in that we construct a new
surgery group over a ring with form parameters, housing a single invariant to detect the
obstruction to performing G-surgery.
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We describe now this surgery invariant. Recall that the usual surgery invariant, under
the gap hypothesis, is obtained by equipping Kk(f ; Z) with the restriction Bf of the
equivariant intersection form on Hk(X; Z) and then showing that the self-intersection
form on X defines a quadratic form qfff on Kk(F ; Z), whose associated Hermitian form is
Bf . If the triple (Kk(f ; Z), Bf , qfff ) has (stably) a Z[G]-free Lagrangian L then one can
realize geometrically any Z[G]-basis for L by equivariantly embedded, disjoint k-spheres
and then remove these by performing G-surgery. Thus, the class of (Kk(f ; Z), Bf , qfff ) in
the Grothendieck group of all such algebraically defined triples modulo all triples having
a Z[G]-free Lagrangian is a sufficient invariant for performing equivariant surgery. We
want to modify this procedure so that it works under the hypothesis dimSing(G,X) 5
k. It turns out that Kk(f ; Z) is still a finitely generated, projective Z[G]-module, that
Bf is still a nonsingular Hermitian form, but that it is not necessarily even. The first
ingredient we develop is a new notion of quadratic form q whose associated Hermitian
form B is not necessarily even. This involves two parameters instead of one as above
and we call a triple (M,B, q) a doubly parametrized quadratic module. In the geometric
situation, we construct a quadratic form qfff in the new sense above, on Kk(f ; Z), which
incorporates selfintersection information needed later and whose associated Hermitian form
is the intersection form Bf above. The notion of Lagrangian L for (M,B, q) is the usual
one, but it is not necessary that a Lagrangian in the generality we are working has a
direct sum complement which is a Lagrangian. We are still not finished building our
surgery invariant. The subset S(G,X) of G(2) is G-invariant under the action of G via
conjugation. We replace now the triples (M,B, q) above by quadruples MMM = (M,B, q, α)
where α : S(G,X) → K is a G-map and define a Lagrangian L for (M,B, q, α) to be
one for (M,B, q) such that Im(α) ⊆ L. The G-map α is called the positioning data of
(M,B, q, α). In the geometric situation, αf is the G-map which assigns to each s ∈ S(G,X)
the image in Kk(f ; Z) of the orientation class of Xs. ¿From the geometric standpoint, our
main result is the following: If L is a Z[G]-free Lagrangian for (Kk(f ; Z), Bf , qfff , αf ) then
any Z[G]-basis of L can be realized geometrically by equivariantly embedded, disjoint k-
spheres which do not meet Sing(G,X). This being the case, we can perform G-surgery
on the embedded spheres and convert f to a homology equivalence and therefore, to
a homotopy equivalence. One would like now to form the Grothendieck group of all
algebraically defined quadruples (M,B, q, α) modulo the subgroup of all quadruples having
a Z[G]-free Lagrangian and claim that the class of (Kk(f ; Z), Bf , qfff , αf) in this group is a
sufficient obstruction to performing equivariant surgery. But, this doesn’t work, because
stabilization with respect to this group is too strong. It turns out that the quadruples
(Kk(f ; Z), Bf , qfff , αf ) vanish under a certain invariant ∇. This is a crucial observation.
The right group W (G, Y ) for housing (Kk(f ; Z), Bf , qfff , αf) is the Grothendieck group
of all algebraically defined quadruples MMM = (M,B, q, α) with trivial ∇MMM modulo the
subgroup generated by all such quadruples having a Lagrangian. A few words concerning
∇ are in order. ¿From the geometric point of view, the definition of ∇ is motivated by the
obstruction that if x ∈ Kk(f ; Z) is realized by an immersion h : Sk → X and if s ∈ S(G,X)
then the intersection number of h and sh is congruent mod 2 to that of Xs and sh. The
observation shows that if we define for an arbitrary algebraic object MMM = (M,B, q, α),
∇MMM : M → Map(S(G,X),Z/2Z) by ∇MMM (x)(s) = [ε(B(α(s) − x, sx))] (x ∈M and s ∈ S),
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where ε : Z[G] → Z is the map defined by ε(
∑

g∈G

agg) = a1 (ag ∈ Z), then for any geometric

objectMMMfff = (Kk(f ; Z), Bf , qfff , αf), ∇MMMfff
= 0. In other words, ∇ vanishes on all geometric

objects. Now our result that the family of all metabolic planes with trivial ∇-invariant is
cofinal in the category of all algebraic objects with trivial ∇-invariant and our result that
any metabolic plane with trivial ∇-invariant can be added to a geometric object MMMfff by
performing G-surgery on fff shows that the group W (G, Y ; Z) is the correct one for housing
our G-surgery invariant.

The rest of the article is organized as follows. In Section 2, we recall certain foundations
of equivariant surgery including the equivariant intersection form and equivariant selfinter-
section form. We construct a doubly parametrized selfintersection form which is used later
to define qfff . In Section 3, we prove the geometric result that a k-dimensional immersion h
into a 2k-dimensional G-manifold X, which does not meet the G-singular set Sing(G,X)
and vanishes under our doubly parametrized selfintersection form, is regularly homotopic
to an equivariant embedding h′, i.e. an embedding h′ such that Imh′ ∩ gImh′ = ∅ for all
g ∈ G\{1}. Section 4 is purely algebraic. It defines doubly parametrized quadratic modules
with positioning data and the invariant ∇ of such modules. Various Grothendieck-Witt
groups relevant to studying surgery groups are constructed. One of these groups, namely
that defined in (4.4), is the surgery group. Section 5 studies special metabolic planes
whose ∇-invariant is trivial. The main result is Theorem 5.6: A doubly parametrized
quadratic module which has a free Lagrangian and trivial ∇-invariant, decomposes as an
orthogonal sum of special metabolic planes with trivial ∇-invariant. A corollary of this
result is that the family of metabolic planes with trivial ∇-invariant is cofinal in the cat-
egory of all doubly parametrized quadratic modules with trivial ∇-invariant. Section 6
is devoted to the proof of Theorem 5.6. Section 7 begins by constructing the geometric
module MMMfff = (Kk(f ; Z), Bf , qfff , αf ), where fff = (f, b), and showing that its ∇-invariant
is 0. Let σ(fff) denote the class of MMMfff in the surgery group W (G, Y ; Z). The main result
of the paper is Theorem 7.3 asserting that if σ(fff) = 0 then fff is G-framed cobordant to
fff ′ = (f ′, b′) such that f ′ : X ′ → Y is a homology equivalence. Theorem 7.3 is proved in
Section 8 on the basis of Theorem 8.1: Any metabolic plane with trivial ∇-invariant can
be added to MMMfff by performing G-surgery on fff ; i.e., given a metabolic plane MMM such that

∇MMM = 0, there is a G-framed map fff ′′ = (f ′′, b′′) obtained from fff by G-surgery such that
MMMfff ′′

∼=MMMfff ⊕MMM . Theorem 8.1 is proved in Section 9.

2. Geometric preliminaries

In this section, we develop notation to be used in the following sections.
Let X be a G-space. For a point x ∈ X and for a subgroups H of G, let Hx denote the

isotropy subgroup at x in the H-space resG
HX. Let

XH = Fix(H,X) = {x ∈ X | Gx k H}

FixG(>H,X) = {x ∈ X | Gx % H},

FixG(=H,X) = {x ∈ X | Gx = H}

Free(H,X) = {x ∈ X | Hx = {1}}, and

Sing(H,X) = {x ∈ X | Hx 6= {1}}.
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If g ∈ G, let Xg = X〈g〉, Free(g,X) = Free(〈g〉, X), etc. For a subspace Z j X, define

ρG
X(Z) =

⋂

x∈Z

Gx.

Let MnfMnfMnfn(G) denote the family of all paracompact, 1-connected (i.e. connected and
simply connected), oriented, smooth G-manifolds of dimension n. Let MnfMnfMnfn

cp(G) denote
the family of all compact G-manifolds in MnfMnfMnfn(G).

For X ∈ MnfMnfMnfn(G), the orientation homomorphism wG
X : G → {±1} is defined by

wG
X(g) = 1 if g : X → X is orientation preserving and wG

X(g) = −1 if otherwise. For any
commutative ring R with the unity, let R[G] denote the group ring of G with coefficients
in R. For any set U , the set Map(U,R) consisting of all maps U → R is regarded as an
R-module in the canonical way. As R-modules, R[G] = Map(G,R). For a subset S of G,
let R[S] denote the R-submodule of R[G] generated by S; thus R[S] = Map(S,R). We
shall always give R[G] the antiinvolution a 7→ a defined by w = wG

X ; thus

∑

g∈G

rgg =
∑

g∈G

rgw(g)g−1 (rg ∈ R).

Let H be a subgroup G, which will be indicated by H 5 G. Since X has an equivariant
smooth triangulation (cf. [8]), the H-fixed-point set XH is an NG(H)-simplicial complex
of dimension 5 n where NG(H) = {g ∈ G | gHg−1 = H}.

Let π0(X
H) denote the set of all connected components γ of XH . The underlying space

of γ will be denoted by Xγ (or XH
γ when we want to emphasize the group H). For a

nonnegative integer `, let π0(X
H , `) denote the subset of π0(X

H) consisting of all γ such
that dimXγ = `. Set

Π(G,X) =
∐

H5G

π0(X
H), and

Π(G,X, `) =
∐

H5G

π0(X
H , `).

For γ ∈ Π = Π(G,X) such that γ ∈ π0(X
H), define ρ(γ) = ρΠ(γ) := H (Π = Π(G,X)).

One should note that if H = ρΠ(γ) then H 5 ρG
X(Xγ), but H is not necessarily equal to

ρG
X(Xγ). For g ∈ G and γ ∈ Π(G,X), let gγ be the connected component γ ′ ∈ π0(X

gHg−1

)

such that XgHg−1

γ′ = gXH
γ . The assignment g 7→ gγ defines an action of G on Π(G,X).

Obviously, Π(G,X, `) is G-invariant. Let Φ : Π(G,X) → Π(G,X) denote the map γ 7→ β
such that ρΠ(β) = ρG

X(Xγ) and Xβ = Xγ as subsets of X. The map Φ is a G-map. The
property ρΠ(Φ(γ)) = ρG

X(XΦ(γ)) should be kept in mind. Generally speaking, the subsets
below are more useful than Π(G,X) and Π(G,X, `) for handling problems arising from
Sing(G,X). Define

Θ(G,X) = Im(Φ) and Θ(G,X, `) = Θ(G,X) ∩ Π(G,X, `).

Let MnfMnfMnf2k
sg (G) denote the family of all X ∈ MnfMnfMnf2k(G) satisfying the following hy-

potheses:
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(2.1.1) dim Sing(G,X) 5 k (namely, dimXg 5 k for all g ∈ G \ {1}).

(2.1.2) |π0(X
H , k)| 5 1 for any H 5 G.

(2.1.3) If γ ∈ Θ(G,X, k) then |ρΠ(γ) ∩G(2)| = 1.

(2.1.4) If γ ∈ Θ(G,X, k) and δ ∈ Θ(G,X, k − 1) then dim(Xγ ∩Xδ) 5 k − 2.

(2.1.5) All submanifolds XH
γ (γ ∈ Θ(G,X, k)) are oriented in such a way that each g ∈ G

acts as an orientation preserving diffeomorphism Xγ → Xgγ.

Set MnfMnfMnf2k
cp,sg(G) =MnfMnfMnf2k

cp(G) ∩MnfMnfMnf2k
sg (G).

Lemma 2.2. Let X ∈MnfMnfMnf2k
sg (G) where k = 2. Then for every γ ∈ Θ(G,X, k),

dim FixG(>ρΠ(γ), Xγ) 5 k − 2.

In particular, FixG(=ρ(γ), Xγ) is connected and open dense in Xγ.

Proof. Let γ ∈ Θ(G,X, k). If Xγ % Xδ for some δ ∈ Π(G,X) then by (2.1.4), dimXδ 5
k − 2. Thus

dimFixG(>ρΠ(γ), Xγ) 5 k − 2. Q.E.D.

Let Y be a closed, connected, oriented, smooth manifold of dimension k. Let X ∈
MnfMnfMnfn(G) where n = 2k and let λ = (−1)k. Let Map(Y,X) denote the set of all continuous
maps Y → X. Let Immer(Y,X) denote the set of all smooth immersions Y → X and let
Immert(Y,X) denote the subset of Immer(Y,X) consisting of all immersions Y → X with
trivial normal bundle. Let Int(X) denote the interior of X. For f1, f2 ∈ Map(Y, Int(X)),
let intsec(f1, f2) denote the geometric intersection number of f1 and f2. This number is
determined as follows. Approximate f1 and f2 by f ′

1 and f ′
2 ∈ Immer(Y, Int(X)) such

that Imf ′
1 ∩ Imf ′

2 = {a1, · · · , am}, f ′−1
1 (ai) = {bi}, f

′−1
2 (ai) = {ci}, and each ai is a

transversal-intersection point of f ′
1 and f ′

2. For each point ai, define intsec(f ′
1, f

′
2; ai) =

1 (resp. −1) if the ordered direct sum df ′
1(Tbi

(Y )) ⊕ df ′
2(Tci

(Y )) has the same (resp.

opposite) orientation as Tai
(X). Then intsec(f1, f2) =

m∑
i=1

intsec(f ′
1, f

′
2; ai). The G-

intersection number intsecG(f1, f2) of f1 and f2 is defined by

intsecG(f1, f2) =
∑

g∈G

intsec(f1, g
−1f2)g ∈ Z[G].

intsecG(f1, f2) is well-defined and invariant under homotopies of f1 and f2 in Int(X).
If dimX > dim Sing(H,X) + 2 then Free(H,X) is 1-connected. Hence if

f ∈ Immer(Y, Int(Free(H,X))), the composition πH ◦ f determines the

selfintersection number selfintsecH(f) ∈ Z[H]/minλ(Z[H]) (cf. [19, Part I §5]), where

πH : Int(Free(H,X)) → Int(Free(H,X))/H is the canonical projection, and minλ(Z[H]) =
{x−λx | x ∈ Z[H]}. The number selfintsecH(f) is invariant under regular homotopies of f
in Int(Free(H,X)). Let T j G be a subset closed under taking inverses. For a commutative
ring R with 1, we define a coefficient quasibundle BT (R) over T as follows. For g ∈ G set
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Rg = R/(1−λw(g))R if g2 = 1, and Rg = R otherwise. Define BT (R) =
∐

g∈T

Rg. The map

pB : BT (R) → T such that pB(Rg) = {g} is called the projection. A map s : T → BT (R) is
called a section if pB◦s = idT . Define Γλ,w(T ;R) to be the set of all sections s : T → BT (R)
such that s(g−1) = λw(g)s(g). Define

Q(G,X) = {g ∈ G(2) | dimXg = k − 1}, and

S(G,X) = {g ∈ G(2) | dimXg = k}.

It is easy to show that w(g)(= wG
X(g)) = (−1)k+1 (resp. (−1)k) for all g ∈ Q(G,X) (resp.

S(G,X)). Thus, Q(G,X) j {g ∈ G(2) | g = −(−1)kg} and S(G,X) j {g ∈ G(2) | g =
(−1)kg}. Letting Q = Q(G,X), S = S(G,X) and defining

Λ(G,Q;R) = 〈x− λx | x ∈ A〉R +R[Q],

we see that there is a canonical identification R[G \S]/Λ(G,Q;R) = Γλ,w(G \ (Q∪S);R).
Thus we can regard selfintsecH(f) ∈ Γλ,w(H; Z) for f ∈ Immer(Y, Int(Free(H,X))). If H,
K 5 G and f ∈ Immer(Y, Int(Free(H,X))) ∩ Immer(Y, Int(Free(K,X))) then it follows
that

(2.3) selfintsecH(f)(g) = selfintsecK(f)(g) ∈ Zg for any g ∈ H ∩K.

Furthermore if f ∈ Immert(Y, Int(Free(H,X))) then

(2.4) intsecH(f, f) = ˜selfintsecH(f) + λ ˜selfintsecH(f) in Z[H]

where ˜selfintsecH(f) is a lifting of selfintsecH(f) ∈ Z[H]/minλ(Z[H]) (cf. [19, Part I
Theorem 5.2 (iii)]).

The following lemma is well-known.

Lemma 2.5. Let k be an integer = 3, n = 2k, X ∈ MnfMnfMnfn(G) such that dimX >
dim Sing(G,X)+2. Let Y be a closed, connected, oriented, k-dimensional smooth manifold.
Let f ∈ Immer(Y, Int(Free(G,X))). If intsecG(f, f) = 0 ∈ Z[G] and selfintsecG(f) = 0 ∈
Z[G]/minλ(Z[G]) then f is regularly homotopic in Int(Free(G,X)) to a smooth embedding
f ′ : Y → Int(Free(G,X)) such that Im(f ′) ∩ gIm(f ′) = ∅ for all g ∈ G \ {1}.

Lemma 2.6. If X ∈MnfMnfMnf2k
sg (G) then there is a canonical bijection

S(G,X) → Θ(G,X, k); s 7→ γ(s) such that ρΠ(γ(s)) 3 s.

Proof. This follows from (2.1.2)–(2.1.3). Q.E.D.

G acts on S(G,X) by conjugation and the bijection above is a G-map. In this paper

we identify S(G,X) with Θ(G,X, k) via this bijection, whenever X ∈MnfMnfMnf2k
sg (G).
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Definition 2.7. Let X ∈ MnfMnfMnfn
sg(G) (n = 2k = 6) and let Y be as above. Then for

f ∈ Immer(Y, Int(X)) define

µX(f) ∈ Γλ,w(G(µ),Z) (where G(µ) = G \ (Q(G,X) ∪ S(G,X)))

by

µX(f)(g) =

{
selfintsec〈g〉(f̂g)(g) (g ∈ ({1} ∪G(2)) ∩G(µ))

intsec(f, g−1f) (g ∈ G \ ({1} ∪G(2))),

where f̂g ∈ Immer(Y, Int(Free(g,X))) is an approximation regularly homotopic to f . We
can regard

µX(f) ∈ Z[G \ S]/Λ(G,Q; Z) = Z[G]/(Λ(G,Q; Z) + Z[S])

in a canonical way, where Q = Q(G,X), S = S(G,X) and

Λ(G,Q; Z) = minλ(Z[G]) + {
∑

g∈Q

agg | ag ∈ Z}.

The well-definedness of µX(f) is easily checked because dimXg 5 k − 2 for all g ∈
({1} ∪G(2)) ∩G(µ).

Theorem 2.8. Let k be an integer = 3, n = 2k, X ∈MnfMnfMnfn
sg(G), and X̂ = X \

(⋃
γ Xγ

)

where γ runs over Θ(G,X, k). Let Y be a closed, connected, oriented, k-dimensional,

smooth manifold. If f ∈ Immer(Y, Int(X̂)) satisfies intsecG(f, f) = 0 and µX̂(f) = 0 ∈

Z[G \ S]/Λ(G,Q; Z) then f is regularly homotopic in X̂ to a smooth embedding f ′ : Y →
Int(Free(G,X)) such that Im(f ′) ∩ gIm(f ′) = ∅ for all g ∈ G \ {1}, where Q = Q(G,X)
and S = S(G,X).

The result above is proved below.

3. Regular homotopies of immersions to embeddings

The present section is devoted to the proof of Theorem 2.8.
Let k be an integer = 3, n = 2k, and X ∈MnfMnfMnfn

sg(G).

Lemma 3.1. If γ ∈ Θ(G,X, k − 1) then FixG(=H,Xγ) (where H = ρ(γ)) is open dense
in Xγ.

Proof. The conclusion follows from the observation dim FixG(>H,Xγ) 5 k − 2. Q.E.D.
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Lemma 3.2. If γ ∈ Θ(G,X, k − 1) then |ρΠ(γ) ∩G(2)| 5 1.

Proof. Set H = ρΠ(γ). By Lemma 3.1, we can take a point z in Int(FixG(= H,Xγ)).
By definition, Gz = H. Let Tz(X) be the tangential H-representation at z in X. Then
Tz(X) is the direct sum Tz(X

H) ⊕ νz(X
H , X) of H-representations. Set V = νz(X

K , X).
By (2.1.1) and (2.1.4), H acts freely on V \ {0} and dimR V = k + 1. In particular,
L = H ∩G(2) acts freely on V \ {0}. Thus each g ∈ L acts on V like scalar multiplication
by −1. Since V is a faithful H-representation, we get |L| 5 1. Q.E.D.

For the remainder of the current section, let Y be a closed, connected, oriented, k-

dimensional, smooth manifold, and set X̂ = X \ (
⋃

γ Xγ) where γ runs over Θ(G,X, k).

Lemma 3.3. Let f : Y → Int(Free(G,X)) be a smooth immersion. If τ ∈ (Z/2Z)[Q(G,X)]

then there exists a regular homotopy ft : f ∼ f1 (f0 = f) in Int(X̂) such that Im(f1) ⊂
Int(Free(G,X)) and selfintsecG(f1) = selfintsecG(f)+ τ in Z[G]/minλ(Z[G]) (λ = (−1)k).

We shall assume for the moment that the lemma has been proved and deduce Theorem
2.8 from the lemma.

Proof that Lemma 3.3 =⇒ Theorem 2.8. Let f : Y → Int(X̂) be an immersion sat-

isfying the hypotheses in Theorem 2.8. Since dim Sing(G, X̂) 5 k − 1, f is regularly

homotopic to an immersion in Int(Free(G,X)) = Int(Free(G, X̂)). Thus we suppose
Im(f) ⊂ Int(Free(G,X)). Since intsecG(f, f) = 0 and µX̂(f) = 0, we get selfintsecG(f) ∈

(Z/2Z)[Q(G,X)]. By Lemma 3.3, f is regularly homotopic to f ′′ in X̂ such that Im(f ′′) ⊂
Int(Free(X)) and selfintsecG(f ′′) = 0 in Z[G]/minλ(Z[G]). As the intersection form is in-
variant under homotopies, intsecG(f ′′, f ′′) = intsecG(f, f) = 0. By Lemma 2.5, f ′′ is regu-
larly homotopic in Int(Free(G,X)) to a smooth embedding f ′ such that Im(f ′)∩gIm(f ′) =
∅ for all g ∈ G \ {1}. Q.E.D.

Proof of Lemma 3.3. It suffices to prove the lemma in the case τ = g (g ∈ Q(G,X)).
Set H = 〈g〉. Since dimXH = k − 1, there is a connected component XH

β of dimension

k − 1. Let δ = Φ(β) ∈ Θ(G,X, k − 1). Set K = ρΠ(δ) (= ρG
X(XH

β )). Fix a point

z ∈ Int(FixG(=K,XK
δ )). Let ν = ν(XK

δ , X) be the NG(K)-normal bundle of XK
δ in X.

This normal bundle is often identified with an NG(K)-tubular neighborhood of XK
δ . Let

Dr(ν) (resp. Sr(ν)) be the radius r closed-disk (resp. sphere) bundle over XK
δ associated

with ν. Regard each S(ν) ⊂ Dr(ν) as a submanifold of ν ⊂ X. Thus Dr = Dr(ν|z) (resp.
Sr = Sr(ν|z)) is a (k + 1)-dimensional closed disk (resp. k-dimensional sphere) centered
at z. Take r > 0 so small that

(3.4) Dr ∩ aDr 6= ∅ (a ∈ G) =⇒ a ∈ K,

and that GDr ∩ GIm(f) = ∅. Then K acts freely on Dr \ {z}. Let h′ : Dk+1 = Dr →
X be the canonical inclusion (hence a smooth embedding). Set h = h′|∂Dk+1 : Sk →
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Int(Free(G,X)). We regard selfintsecG(h) ∈ Γλ,w(G; Z). Clearly selfintsecG(h)(1) = 0 in
Z/(1 − λ)Z. Since h bounds a disk,

(3.5) intsecG(h, h) = 0.

By (3.4), selfintsecG(h)(a) = 0 for all a ∈ G \ K. Set J = {a ∈ G | a = −λa}. By
(3.5), selfintsecG(h)(a) = 0 for all a ∈ G \ J . Since K ∩ G(2) = g, selfintsecG(h)(a) is
possibly nontrivial only when a = g. Note that selfintsecG(h)(g) = selfintsec〈g〉(h)(g). It is
elementary to check that selfintsec〈g〉(h)(g) = 1 in Z/2Z. Thus, we get selfintsecG(h) = g

in Z[G]/minλ(Z[G]). Take a (k+1)-dimensional connecting band ψ(I×Dk) from Im(f) to
Sr in Int(Free(G,X)) as follows. Let B = I ×Dk (I = [0, 1]). Take a smooth embedding
ψ : B → (Int(X) \ Int(Dr(ν))) such that Im(ψ) ∩ aIm(ψ) 6= ∅ (a ∈ G) =⇒ a = 1, such
that ψ−1(Im(f)) = {0} ×Dk and ψ−1(Sr) = {1} ×Dk, and such that f−1(Im(ψ)) ∼= Dk.
Set U = f−1(Im(ψ)) and V = h−1(Im(ψ)) (∼= Dk). Construct the connected sum Y ′ of
Y = Domain(f) with Sk

h = Domain(h) by

Y ′ = {Y \ Int(U)} ∪ (I × Sk−1) ∪
{
Sk

h \ Int(V )
}
.

Since Sk
h = Sk, Y ′ is diffeomorphic to Y . Define f1 : Y ′ → Int(Free(G,X)) by gluing

f |Y \Int(U), ψ|I×Sk−1 , and hSk\Int(V ). By construction, f is regularly homotopic to f1 in

Int(X̂). In addition, one has that selfintsecG(f1) = selfintsecG(f)+ g in Z[G]/minλ(Z[G]).
Q.E.D.

4. Doubly parametrized quadratic modules

Let R denote a commutative ring with the unity, such that a ≡ a2 mod 2R for all
a ∈ R. For applications in surgery, the ring Z of integers and the ring U−1Z of U -fractions
of Z, where U is a multiplicative set in Z, will be of primary interest. Let λ = 1 or −1 and
let w : G → {±1} be a homomorphism. In the following, the ring A = R[G] is equipped
with the antiinvolution − defined by (

∑
g∈G agg)

− =
∑

g∈G agw(g)g−1 (ag ∈ R). Let

G(2) = {g ∈ G | g2 = 1, and g 6= 1}.

G acts on G(2) by conjugation f 7→ gfg−1 (g ∈ G(2), g ∈ G). Let Q and S be conjugation-
invariant subsets of G(2) satisfying

(QC) Q j {g ∈ G(2) | g = −λg}, and

(SC) S j {g ∈ G(2) | g = λg}.

We define three R-submodules Aq, As, and Λ of A as follows:
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Aq = Aq(G,S) := R[G \ S],

As = As(G,S) := R[S], and

Λ = Λ(G,Q;R) := minλ(R[G]) + R[Q] (the form parameter generated by Q),

where minλ(R[G]) is the minimal form parameter of R[G], i.e.

minλ(R[G]) = 〈x− λx | x ∈ A〉R.

Clearly Aq(G,S) = Map(G \ S,R) and As(G,S) = Map(S,R) as R-modules. In the
following, let

AAA = (R,G,Q, S, λ, w).

Definition 4.1. A map B : M ×M → A (where M is a finitely generated A-module) is
called a λ-Hermitian form on M if (4.1.1)–(4.1.3) are satisfied:

(4.1.1) B is biadditive,

(4.1.2) B(ax, by) = bB(x, y)a,

(4.1.3) B(x, y) = λB(y, x),

for all x, y ∈M , a, b ∈ A. A map q : M → Aq/Λ is called an AAA-quadratic form (or simply
quadratic form) on M with respect to B if (4.1.4)–(4.1.6) are fulfilled:

(4.1.4) q(gx) = gq(x)g and q(rx) = r2q(x) in Aq/Λ = A/(Λ + As),

(4.1.5) q(x+ y) − q(x) − q(y) = B(x, y) in Aq/Λ = A/(Λ + As), and

(4.1.6) q̃(x) + λq̃(x) = B(x, x) in Aq = A/As where q̃(x) is a lifting of q(x),

for all x, y ∈ M , r ∈ R, and g ∈ G. A triple MMM = (M,B, q) consisting of a finitely
generated A-module M , a λ-Hermitian form B on M and an AAA-quadratic form q on M
with respect to B, is called a doubly parametrized AAA-quadratic module (or simply quadratic
module).

Let ((proj)) be the category of all finitely generated projective A-modules, ((s-free)) the
category of all finitely generated stably free A-modules, and ((free)) the category of all
finitely generated free A-modules. Let C be one of ((proj)), ((s-free)), and ((free)). If M ,
M ′ ∈ C (more precisely Obj(C)) then Mor(M,M ′) is the set of all A-linear isomorphisms
M → M ′. Let QQQ(AAA)C be the category of all quadratic modules MMM = (M,B, q) such
that M ∈ C, and B is nonsingular. If MMM = (M,B, q), MMM ′ = (M ′, b′, q′) ∈ QQQ(AAA)C then
Mor(MMM,MMM ′) is the set of all A-linear isomorphisms f : M → M ′ such that B(x, y) =
B′(f(x), f(y)) and q(x) = q′(f(x)) (∀x, y ∈M).

Let Θ be a finite G-set. A G-map α : Θ → M (where M is a G-module) will be called
a positioning map. Let

QQQ(AAA,Θ)C
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be the category of all MMM = (M,B, q, α) such that (M,B, q) ∈ QQQ(AAA)C and α : Θ → M is
a G-map. If MMM = (M,B, q, α), MMM ′ = (M ′, B′, q′, α′) ∈ QQQ(AAA,Θ)C then Mor(MMM,MMM ′) is the
set of all morphisms f : (M,B, q) → (M ′, B′, q′) such that α(x) = α′(f(x)) (∀x ∈ Θ). For
MMM = (M,B, q, α), an A-direct summand L of M is called a C-Lagrangian of MMM if L ∈ C,
B(L,L) = 0, q(L) = 0, L = L⊥, and α(Θ) ⊂ L, where

L⊥ = {x ∈M | B(x, y) = 0 (∀y ∈ L)}.

If MMM has a C-Lagrangian then MMM is called a C-null module. Define KQ0(AAA,Θ)C to be
the Grothendieck group of the category QQQ(AAA,Θ)C with respect to orthogonal sum. If
C k D k ((free)), define

WQ0(AAA,Θ)C,D = KQ0(AAA,Θ)C/〈D-null modules in QQQ(AAA,Θ)D〉.

In the remainder of this paper we treat only the case that Θ = S and the action of
G on S is via conjugation. To MMM = (M,B, q, α) ∈ QQQ(AAA, S)C, we associate a function
∇ = ∇MMM : M → Map(S,R/2R) defined by

(4.2) ∇(x)(s) = [ε(B(α(s) − x, sx))], (x ∈M , s ∈ S).

where ε : A→ R is the ring homomorphism
∑

g∈G

agg 7→ a1 (ag ∈ R).

Lemma 4.3. Let MMM = (M,B, q, α) ∈ QQQ(AAA, S)C. Then for each a, b ∈ R, x, y ∈ M , and
s ∈ S, one has the formula

∇MMM (ax+ by)(s) = a∇MMM (x)(s) + b∇MMM (y)(s) in R/2R.

Since the proof follows by straightforward calculation from Definition (4.2), we omit it
(note that a2 ≡ a mod 2R for a ∈ R).

A quadratic module MMM with positioning map is called a special quadratic module if
∇MMM = 0. Let SQSQSQ(AAA, S)C be the full subcategory of QQQ(AAA, S)C consisting of all special
quadratic modules. Define SKQ0(AAA, S)C to be the Grothendieck group of the category
SQSQSQ(AAA, S)C with respect to orthogonal sum. If C k D k ((free)), define

SWQ0(AAA, S)C,D = SKQ0(AAA, S)C/〈D-null modules in SQSQSQ(AAA, S)D 〉.

Now let n = 2k be an even integer = 6, and λ = (−1)k. Set

(4.4) Wn(AAA, S)C = SWQ0(AAA, S)C,((free)).

Let NSQNSQNSQ(AAA, S)C denote the full subcategory of SQSQSQ(AAA, S)C consisting of all C-null mod-
ules.
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Proposition 4.5. NSQNSQNSQ(AAA, S)((free)) is a cofinal subcategory of SQSQSQ(AAA, S)C. That is, each
MMM ∈ SQSQSQ(AAA, S)C is a direct summand of some NNN ∈NSQNSQNSQ(AAA, S)((free)).

Proof. Let MMM = (M,B, q, α). Since B is nonsingular, M is a selfdual A-module, namely
M ∼= M# := HomA(M,A). Since M is a finitely generated projective A-module, M is a

direct summand of Am for large m. Say Am = M⊕M ′. LetHHH(M ′) = (M ′⊕M ′#, B′, q′, 0)

be the hyperbolic module: B′((x, f), (x′, f ′)) = f(x′) + λf ′(x) ∈ A for x, x′ ∈ M ′ and f ,

f ′ ∈ M ′#; q′((x, f)) = [f(x)] ∈ A/(Λ + As); and 0 : S → M ′ ⊕M ′# is the trivial map.

Then MMM ⊕MMM ⊕HHH(M ′) has the underlying A-module M ⊕M# ⊕M ′ ⊕M ′#, namely A2m.
It is easy to check that HHH(M) ∈ NSQNSQNSQ(AAA, S)C. This allows us to assume that M is a free
A-module.

Now let M ′ be a copy of M and ψ : M →M ′ an A-isomorphism. Define B′ : M ′×M ′ →
A, q′ : M ′ → Aq/Λ, and α′ : S → M ′ as follows: B′(ψ(x), ψ(y)) = −B(x, y), q′(ψ(x)) =
−q(x), and α′(s) = ψ(α(s)), for x, y ∈M and s ∈ S. Set MMM ′ = (M ′, B′, q′, α′). Obviously
MMM ′ ∈ SQSQSQ(AAA, S)((free)). Now consider NNN = MMM ⊕MMM ′. Then L = {(x, ψ(x)) | x ∈ M} is a
((free))-Lagrangian of NNN . More precisely, one has that

(B ⊕ B′)((x, ψ(x)), (x, ψ(x))) = B(x, x) + B′(ψ(x), ψ(x)) = 0,

(q ⊕ q′)(x, ψ(x)) = q(x) + q′(ψ(x)) = 0, and

(α⊕ α′)(s) = (α(s), α′(s)) = (α(s), ψ(α(s))) ∈ L.

Moreover L ∼= M is an A-free, direct summand of M ⊕M ′ (M ⊕ 0 is a complementary
summand to L). Q.E.D.

It is easy to see that the canonical homomorphism Wn(AAA, S)((free)) →Wn(AAA, S)((s−free))

is an isomorphism and that the canonical homomorphismWn(AAA, S)((s−free)) →Wn(AAA, S)((proj))

is injective. We could define Wn(AAA,Θ)C for more general Θ, but we omit such general-
izations for simplicity. For suitable Q, S, λ, and w, the group Wn(AAA, S)C will be called a
G-surgery obstruction group.

5. Metabolic planes for special quadratic modules

We construct specific quadratic modules with positioning map whose ∇-invariant is
trivial, called special metabolic planes and use them to decompose ((free))-null modules
with trivial ∇.

Definition 5.1. Let β = (c, r) be a pair of elements c, r ∈ Map(S,R) such that

(BC) c(s) ≡ r(s) mod 2R for any s ∈ S.

Let x and y be distinct letters. The special metabolic plane

MMM(x, y, β) = (M(x, y), Br, q, αc)

associated to β with metabolic basis {x, y} is defined as follows. Let M = M(x, y) be the
free R[G]-module with basis {x, y}, i.e. M(x, y) = 〈x, y〉R[G]. Let Br : M ×M → R[G]
be the unique map satisfying Relations (4.1.1)–(4.1.3) and
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(5.1.1) Br(x, x) = 0, Br(y, x) = 1, and Br(y, y) =
∑
g∈S

r(g)g.

Define q : M → R[G \ S]/Λ(G,Q;R) to be the unique map satisfying Relations (4.1.4)–
(4.1.5) and

(5.1.2) q(x) = 0 and q(y) = 0.

Clearly, for a, b ∈ R[G],

q(ax+ by) = B(by, ax) = ab ∈ R[G \ S]/Λ(G,Q;R) = R[G]/(Λ(G,Q;R) + R[S]).

Thus, (4.1.6) is satisfied. Let G act as usual on S by conjugation (hence g · s = gsg−1),
and define a map αc : S →M by

(5.1.3) αc(s) =
∑

g∈G

c(g · s)g−1x,

Clearly αc is a G-map (a positioning map).

Proposition 5.2. Let MMM(x, y, β) be a special metabolic plane as in Definition 5.1. Then
MMM(x, y, β) belongs to SQSQSQ(AAA, S)((free)).

Proof. By Lemma 4.3, it suffices to prove that ∇MMM(x,y,β)(ax)(s) = 0 and ∇MMM(x,y,β)(ay)(s) =
0 for every a ∈ G and s ∈ S.

The second equality holds because

∇MMM(x,y,β)(ay)(s) = [ε(Br(αc(s) − ay, say))]

= [ε(Br(
∑

g∈G

c(gsg−1)g−1x, say))]− [ε(Br(ay, say))]

= [ε(λ
∑

g∈G

w(g)c(gsg−1)sag)]− [ε(
∑

h∈S

r(h)saha)]

= [λw(sa)c(a−1sa)] − [w(a)r(a−1sa)] = 0 ∈ R/2R.

The first equality is straightforward to check. Q.E.D.

Lemma 5.3. Let β = (c, r) and β′ = (c′, r′) satisfy Condition (BC). If there exists an
a ∈ R× := Unit(R) such that ac(s) = c′(s) and a2r(s) = r′(s) for any s ∈ S then
MMM(x, y, β) is isomorphic to MMM(x′, y′, β′).

Proof. Let f : M(x, y) → M(x′, y′) denote the R[G]-linear map determined by the equa-
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tions f(x) = ax′ and f(y) = a−1y′. Then

f(αc(s)) = f(
∑

g∈G

c(gsg−1)g−1x)

=
∑

g∈G

ac(gsg−1)g−1x′ = αc′(s), and

Br′(f(y), f(y)) = Br′(a−1y′, a−1y′)

= a−2
∑

s∈S

r′(s)s

=
∑

s∈S

r(s)s = Br(y, y).

Using this, the reader can easily check that f is an isomorphism. Q.E.D.

Proposition 5.4. Suppose R is the ring U−1Z of U-fractions of Z where U is a multiplica-
tive set in Z. Let β = (c, r) be a pair of elements c, r ∈ Map(S,R) satisfying Condition
(BC). Then there exists a pair β′ = (c′, r′) of elements c′, r′ ∈ Map(S,Z) satisfying (BC)
such that MMM(x, y, β) is isomorphic to MMM(x′, y′, β′).

Proof. Since S is finite, there is an integer a ∈ U such that ac, ar ∈ Map(S,Z). Set
β′ = (ac, a2r). Then by Lemma 5.3, MMM(x, y, β) ∼=MMM(x′, y′, β′). Q.E.D.

Lemma 5.5. Let β = (c, r) and β′ = (c′, r′) satisfy the Condition (BC). If c(s) = c′(s)
and r(s) ≡ r′(s) mod 2R for any s ∈ S then MMM(x, y, β) is isomorphic to MMM(x′, y′, β′).
Thus the isomorphism class of MMM(x, y, (c, r)) depends only on c.

Proof. By hypothesis, there exists an a ∈ R[S] such that a+ λa =
∑
s∈S

(r′(s) − r(s))s. Let

f : M(x, y) → M(x′, y′) be an R[G]-linear map such that f(x) = x′ and f(y) = y′ − ax′.
Then

Br′(f(y), f(y)) = Br′(y′ − ax′, y′ − ax′)

= Br′(y′, y′) − Br′(y′, ax′) − Br′(ax′, y′) + Br′(ax′, ax′)

=

(
∑

s∈S

r′(s)s

)
− a− λa+ 0

=
∑

s∈S

r(s)s = Br(y, y).

Using this, the reader can check easily that f is an isomorphism. Q.E.D.
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Theorem 5.6. If MMM = (M,B, q, α) is a ((free))-null, special quadratic module with La-
grangian L then there exist pairs βi = (ci, ri), where ci, ri ∈ Map(S,R) satisfying (BC) (i =
1, · · · , m = rankR[G]L) such that MMM is isomorphic to MMM(x1, y1, β1)⊕· · ·⊕MMM(xm, ym, βm).

The result above is proved in the next section.

Corollary 5.7. Suppose R is a ring of fractions of Z. If MMM = (M,B, q, α) is a ((free))-
null, special quadratic module with Lagrangian L then there exist pairs βi = (ci, ri) where
ci, ri ∈ Map(S,Z) satisfying (BC) (i = 1, · · · , m = rankR[G]L) such that MMM is isomorphic
to MMM(x1, y1, β1) ⊕ · · · ⊕MMM(xm, ym, βm).

Proof. The result follows immediately from Proposition 5.4 and Theorem 5.6. Q.E.D.

Corollary 5.8. The family of special metabolic planes is cofinal in the category of special
quadratic modules.

Proof. The result follows immediately from Proposition 4.5 and Theorem 5.6. Q.E.D.

Corollary 5.9. Suppose R is a ring of fractions of Z. Then the family of special meta-
bolic planes MMM(x, y, (c, r)) such that c, r ∈ Map(S,Z) is cofinal in the category of special
quadratic modules.

Proof. The result follows immediately from Proposition 5.4 and Corollary 5.8. Q.E.D.

6. Decomposition of ((free))-null modules

This section is devoted to the proof of Theorem 5.6.
Let MMM = (M,B, q, α) be a ((free))-null module with Lagrangian L. Let {x1, · · · , xm}

(m = rankAL) be an arbitrary basis of L. Since L is a Lagrangian, the sequence

0 −→ L −→M
τ
−→ HomA(L,A) −→ 0,

is split-exact over A where τ(y) ∈ HomA(L,A) (y ∈ M) is given by τ(y)(x) = B(y, x)
(x ∈ L). Thus there exist elements yi (i = 1, · · · , m) in M such that B(yi, xi) = δij . By
the split-exact sequence above, {xi, yi | 1 5 i 5 m} is a basis of M .

Lemma 6.1 (Orthonormalization of Gram-Schmidt-Wall). Suppose that for some integer
k,

B(yi, yj) = 0 (for all i < j 5 k), and

q(yi) = 0 (for all i 5 k).

Set
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(6.1.1) y′k+1 = yk+1 −


 ˜q(yk+1)xk+1 +

∑

i5k

B(yi, yk+1)xi


 ,

where ˜q(yk+1) ∈ A is a lifting of q(yk+1) ∈ Aq/Λ = A/(Λ + As). Then it follows that
B(y′k+1, xj) = δk+1,j for all j, B(yj, y

′
k+1) = 0 for all j < k + 1, and q(y′k+1) = 0.

Since the proof is a straightforward calculation, we omit it.
Inductive use of Lemma 6.1 on k produces the next corollary.

Corollary 6.2. For an arbitrary basis {x1, · · · , xm} of L, there exist elements y1, · · · ,
ym ∈M such that B(yi, xj) = δij (for all i, j), B(yi, yj) = 0 (for all i 6= j), and q(yi) = 0
(for all i).

Theorem 6.3. Let MMM = (M,B, q, α) be a ((free))-null module with Lagrangian L = 〈x〉A.
Let y ∈ M be an element such that B(y, x) = 1 and q(y) = 0. Then MMM is isomorphic to
the special metabolic plane MMM(x, y, β) associated to β = (cα, r), where cα, r ∈ Map(S,R)
are determined by the equations

α(s) =
∑

g∈G

cα(gsg−1)g−1x (∀s ∈ S), and B(y, y) =
∑

s∈S

r(s)s.

For the moment, assume that Theorem 6.3 has been proved.

Proof that Theorem 6.3 =⇒ Theorem 5.6. We shall prove that MMM is isomorphic to an
orthogonal sum of special metabolic planes associated to certain βi = (ci, ri) where

(6.4) ci, ri ∈ Map(S,R).

Let {x1, · · · , xm} be a basis of L and let {y1, · · · , ym} be as in Corollary 6.2. Set Mi =
〈xi, yi〉A, Bi = B|Mi

: Mi ×Mi → A, and qi = q|Mi
: Mi → Aq/Λ. Let pi : M → Mi be

the projection with respect to the basis {xi, yi | 1 5 i 5 m}. Set αi = pi ◦ α : S → Mi.
It is easy to check that MMM i = (Mi, Bi, qi, αi) ∈ SQSQSQ(AAA, S)((free)) with ((free))-Lagrangian
Li = 〈xi〉A. Now use Theorem 6.3 to deduce that each MMM i is isomorphic to a special
metabolic plane. Thus MMM =MMM1 ⊕ · · · ⊕MMMm is isomorphic to a orthogonal sum of special
metabolic planes. Q.E.D.

The rest of this section is devoted to the proof of Theorem 6.3.
Let MMM = (M,B, q, α) and x, y be as in Theorem 6.3. For every s ∈ S, α(s) has the

form

(6.5) α(s) =
∑

g∈G

aα(s, g)g−1x,



EQUIVARIANT SURGERY WITH MIDDLE-DIMENSIONAL SINGULAR SETS. I 19

where aα(s, g) ∈ R. As usual G acts on S by conjugation. The isotropy subgroup Gs (at
s in the G-space S) is {h ∈ G | hsh−1 = s}. We define ΣGs

∈ A by

ΣGs
=
∑

h∈Gs

h.

Since α is a G-map, α(s) is Gs-invariant. Thus α(s) has the form

(6.6) α(s) =
∑

gGs∈G/Gs

âα(s, gsg−1)ΣGs
g−1x,

where âα(s, gsg−1) = aα(s, g).

Lemma 6.7. In the above situation, âα(s, gsg−1) = âα(fsf−1, gsg−1) for any f ∈ G.

Proof. Let h ∈ G. Then

hα(s) =
∑

gGs∈G/Gs

âα(s, gsg−1)hΣGs
g−1x

=
∑

gGs∈G/Gs

âα(s, gsg−1)hΣGs
h−1(gh−1)−1x

=
∑

gGs∈G/Gs

âα(s, gsg−1)ΣG
hsh−1 (gh−1)−1x

=
∑

(gh−1)G
hsh−1∈G/G

hsh−1

âα(s, gsg−1)ΣG
hsh−1 (gh−1)−1x

=
∑

g′G
hsh−1∈G/G

hsh−1

âα(s, g′(hsh−1)g′
−1

)ΣG
hsh−1 g

′−1
x.

On the other hand,

α(hsh−1) =
∑

g′G
hsh−1∈G/G

hsh−1

âα(hsh−1, g′(hsh−1)g′
−1

)ΣG
hsh−1 g

′−1
x.

Since hα(s) = α(hsh−1), we get

âα(s, g′(hsh−1)g′
−1

) = âα(hsh−1, g′(hsh−1)g′
−1

)

for all g′. Substitute now in the equation above f−1, g and fsf−1 for h, g′, and s,
respectively. Then we obtain that âα(fsf−1, gsg−1) = âα(s, gsg−1). Q.E.D.
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Lemma 6.8. If cα : S → R is defined by cα(s) = âα(s, s) then

α(s) =
∑

g∈G

cα(gsg−1)g−1x.

Proof. This is shown by straightforward calculation:

α(s) =
∑

gGs∈G/Gs

âα(s, gsg−1)ΣGs
g−1x

=
∑

gGs∈G/Gs

âα(gsg−1, gsg−1)ΣGs
g−1x

=
∑

gGs∈G/Gs

cα(gsg−1)ΣGs
g−1x

=
∑

g∈G

cα(gsg−1)g−1x. Q.E.D.

Lemma 6.9. If r : G → R is defined by B(y, y) =
∑

g∈G r(g)g then r(g) = 0 for all

g ∈ G \ S.

Proof. The conclusion follows immediately from the hypothesis q(y) = 0 and the property
(4.1.6). Q.E.D.

Putting Lemmas 6.8 and 6.9 together, we getMMM ∼=MMM(x, y, β). This completes the proof
of Theorem 6.3.

7. G-Surgery theorem

Throughout this section let n = 2k be an even integer = 6, let X and Y be closed
manifolds in MnfMnfMnfn

cp,sg(G), let λ = (−1)k and w = wG
X , and let R be a ring of fractions of

Z.
A pair (f, b) is called a G-framed map if f : X → Y is a G-map and b : T (X) ⊕ f ∗η →

f∗(ξ ⊕ η) is a G-vector bundle isomorphism (covering the identity map on X) for real
G-vector bundles η and ξ over Y . A G-framed map (f, b) is said to be of degree 1 (resp.
k-connected) if f is of degree 1 (resp. k-connected).

If V is a real G-module, let εX(V ) denote the product bundle X × V → X with fiber
V . Let R be the 1-dimensional, trivial, real G-module.

In the sequel we always assume

(HC) the bundle η is sufficiently large; more precisely, η k εY (Rn+1) where n = dimX.

Proposition 10.1 in the appendix demonstrates one advantage of this assumption.
Let I = [0, 1] and let pY : I × Y → Y be the canonical projection. For a closed subset

Z j X, a cobordism (F,B) : (f, b) ∼ (f ′, b′) relative to Z is defined in the usual way:
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F : W → (I×Y ) (I = [0, 1]) is a G-map such that ∂W = (−X)∪X ′, F (−X) j ({0}×Y ),
F (X ′) j ({1} × Y ), F |−X = f , F |X′ = f ′, (where (I × Z) j W in a canonical way,
and F |I×Z = idI × f |Z); B : T (W ) ⊕ (pY ◦ F )∗η → (pY ◦ F )∗(εY (R) ⊕ ξ ⊕ η) is a real
G-vector bundle isomorphism such that B|−X = idε−X(R) ⊕ b and B|X′ = idεX′ (R) ⊕ b′,
(T (W )|I×Z = εI(R) × T (X)|Z in a canonical way, and B|I×Z = idεI(R) × b|Z).

Our first goal is to define a quadrupleMMMfff = (Kk(f ;R), Bf , qfff , αf ) for any k-connected,
degree 1, G-framed map fff = (f, b). Let fff = (f, b) be a degree 1, G-framed map and let AAA
= (R,G,Q, S, λ, w, S), where Q = Q(G,X) and S = S(G,X). Let

pdualX : H∗(X;R) → H∗(X;R)

denote the Poincaré duality homomorphism, and let

ppairX : Hk(X;R)×Hk(X,R) → R

denote the Poincaré pairing. For each integer `, define

K`(f ;R) = Ker[f∗ : H`(X;R) → H`(Y ;R)], and

K`(f ;R) = Coker[f∗ : H`(Y ;R) → H`(X;R)].

Suppose that f is k-connected.
This assumption implies by [5, I.2.8] that Kk(f ;R) = R ⊗Z Kk(f ; Z) ∼= Kk(f ;R) =

HomZ(Kk(f ; Z), R) as R-modules and that these modules are finitely generated, free R-
modules. The λ-Hermitian module (Hk(X;R), ppair) over R can be decomposed into
the orthogonal sum (Kk(f ;R), ppair|) ⊕ (pdual(Im(f∗)), ppair|). It is well-known that
(Kk(f ;R), ppair|) is nonsingular ([5, I.2.9]). Let πf : Hk(X;R) → Kk(f ;R) be the canon-
ical projection, namely

πf (x) = x− pdualX ◦ f∗ ◦ pdual−1
Y ◦ f∗(x).

We treat first the case to R = Z and define Bf , qfff , and αf for Kk(f ; Z). This done,
we extend Bf , qfff , and αf to Kk(f ;R) in the usual way, using the fact that Kk(f ;R) ∼=
R⊗Z Kk(f, ; Z).

For the moment we forget the G-action on X and apply the ordinary surgery theory of
C. T. C. Wall. Since f : X → Y is k-connected, the canonical map πk+1(f) → Kk(X; Z)
is surjective. Thus each element x ∈ Kk(X; Z) can be represented by a continuous map
h′x : Sk → X such that f ◦ h′x is null homotopic in Y . This h′x can be approximated
by an immersion. Since f ◦ h′x is null homotopic, h′x

∗
(T (X) ⊕ f∗η) ∼= (f ◦ h′x)∗(ξ ⊕ η) is

a trivial bundle. Thus, it follows from Hirsch’s immersion classification theorem that the
map h′x is homotopic to an immersion hx with trivial normal bundle in X. Moreover the
regular homotopy class of hx in X is uniquely determined by x (providing, of course, f
and b are fixed).

It is well known that ppair(x, y) = ±intsec(hx, hy) (∀x, y ∈ Kk(f ; Z)). The sign ± is
determined by the definitions of ppair and intsec. We shall adopt definitions such that
ppair(x, y) = (−1)kintsec(hx, hy). (The sign will not be essential in our arguments. A
reader preferring definitions of ppair and intsec such that ppair(x, y) = intsec(hx, hy) can
easily modify the arguments.)
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Reimpose now the G-action on X. Define Bf : Kk(f ; Z) ×Kk(f ; Z) → Z[G] by

Bf (x, y) =
∑

g∈G

intsec(hx, g
−1hy)g


= (−1)k

∑

g∈G

ppair(x, g−1y)g


 .

Then (Kk(f ; Z), Bf) is a nonsingular λ-Hermitian module over Z[G] by [5, I.2.9] and [1,
(1.2.4)].

Define qfff : Kk(f ; Z) → Z[G \ S]/Λ(G,X; Z) by

qfff (x) = µX(hx).

By Hypothesis (2.1.5), each Xγ (γ ∈ Θ(G,X, k)) has the orientation class ori(Xγ) ∈
Hk(Xγ; Z). Let jγ : Xγ → X be the canonical inclusion. Adopting the identification in
Lemma 2.6, define αf : S = Θ(G,X, k) → Kk(f ; Z) by

αf (s) = αf (γ(s)) = πf ◦ jγ(s)∗
(ori(Xγ(s))).

By (2.1.5), αf is a G-map.
This completes the definition of the quadruple

MMMfff = (Kk(f ;R), Bf , qfff , αf)

for R = Z.
We consider next the case of a general R. There is a canonical homomorphism ϕ :

Kk(f ; Z) → Kk(f ;R) and the induced R-homomorphism R ⊗ ϕ : R ⊗ Kk(f ; Z) →
Kk(f ;R) is an isomorphism by the universal coefficient theorem [5, I.2.8]. Thus we
can extend Bf above to a pairing Bf : Kk(f ;R) × Kk(f ;R) → R[G] by using the rule
Bf (rx, r′y) = rr′Bf (x, y) (r, r′ ∈ R, x, y ∈ Kk(f ;R)), qfff above to a map qfff : Kk(f ;R) →
R[G]q/Λ(G,X;R) by using the rule qf (rx) = r2qf (x) (r ∈ R, x ∈ Kk(f ;R)), and αf above
to a function αf : S → Kk(f ;R) by composing it with ϕ. It is straightforward to check
that Bf is a nonsingular form over R[G], that αf is a G-map, and that Bf and qfff satisfy
(4.1.1)–(4.1.6).

Lemma 7.1. Let X and Y be closed G-manifolds in MnfMnfMnfn
cp,sg(G) (n = 2k = 6) and let

fff = (f, b) be a k-connected, degree 1, G-framed map. Let AAA = (R,G,Q, S, λ, w) where Q =
Q(G,X), S = S(G,X), λ = (−1)k, and w = wG

X . Let C = ((proj)), ((s − free)), or ((free)).
Suppose Kk(f ;R) ∈ C. Then the quadruple MMMfff = (Kk(f ;R), Bf , qfff , αf) belongs to
SQSQSQ(AAA, S)C.

Proof. Set ∇ = ∇MMMfff
. It suffices to show that ∇(x)(s) = 0 for each x ∈ Kk(f ;R) and

s ∈ S = S(G,X).
Let jγ(s) : Xγ(s) → X be the canonical inclusion and let hx : Sk → X be an immersion

with trivial normal bundle, representing x. Without loss of generality, we may suppose
that hx, shx, and jγ(s) transversally intersect one another (cf. Lemma 9.1). If z ∈ X is an
intersection point of hx and shx then so is sz ∈ X. Thus intsec(hx, shx) ≡ intsec(hx, jγ(s))
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mod 2. It is obvious that intsec(hx, jγ(s)) ≡ intsec(shx, jγ(s)) mod 2. Thus for R = Z we
obtain using (4.2) that

∇(x)(s) = [ε(Bf (αf (s) − x, sx))]

= [ε(Bf (αf (s), sx))]− [ε(Bf (x, sx))]

= [intsec(jγ(s), shx)] − [intsec(hx, shx)]

= 0 in Z/2Z.

Consider now the general case. Clearly for each x ∈ Kk(f ;R), there are elements a ∈ R
and y ∈ K(f ; Z) such that x = ay. By Lemma 4.3 , ∇(ay) = a∇(y) and by the case R = Z
above, ∇(y) = 0. Q.E.D.

Definition 7.2. In the situation of Lemma 7.1, define σ(fff) to be the element in Wn(AAA, S)C
determined by the quadruple MMMfff .

Theorem 7.3. Let X and Y be closed G-manifolds in MnfMnfMnfn
cp,sg(G) (n = 2k = 6) and

let fff = (f : X → Y , b : T (X) ⊕ f∗η → f∗(ξ ⊕ η)) be a k-connected, degree 1 G-framed
map. Suppose that Kk(f ;R) belongs to C. If σ(fff) = 0 in Wn(AAA, S)C then fff can be
converted by G-surgery of isotropy type {1} to a k-connected, degree 1, G-framed map
fff ′ = (f ′ : X ′ → Y, b′ : T (X ′)⊕ f ′∗η → f ′∗(ξ⊕ η)) (thus fff ∼ fff ′ rel. Sing(G,X)) such that
f ′ : X ′ → Y is an R-homology equivalence.

This will be proved in the next section.
Concerning the assumption in Theorem 7.3 that Kk(f ;R) belongs to C, the following

is known.

Remark 7.4. Let f : X → Y be a k-connected, degree 1 G-map. Then the following are
true.

(7.4.1) If fP : XP → Y P is an R(p)-homology equivalence for any p-subgroup P 6= {1}
of G (where p ranges over the set of all primes dividing |G|) then Kk(f ;R) is a projective
R[G]-module.

(7.4.2) If fH : XH → Y H is anR-homology equivalence for any hyperelementary subgroup
H 6= {1} of G then Kk(f ;R) is a stably free R[G]-module.

Proof of Theorem 1.1. Since Y is 1-connected and f : X → Y is k-connected, X
is 1-connected. Condition (2.1.1) follows from (1.1.1); Conditions (2.1.2), (2.1.3) and
(2.1.5) follow from (1.1.2);Condition (2.1.4) follows from (1.1.3). Thus X and Y be-
long to MnfMnfMnfn

cp,sg(G) (see §4). Since f has degree 1, it follows that wG
X = wG

Y . Set

W (G, Y ;R) = Wn(AAA, S)((s−free)) (cf. (4.4)) for AAA = (R,G,Q, S, λ, wG
Y ). Theorem 1.1

follows now from Theorem 7.3. Q.E.D.

8. Algebraic triviality and geometric deformation

This section is devoted to the proof of Theorem 7.3.
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Throughout the section, X and Y are closed G-manifolds inMnfMnfMnfn
cp,sg(G) (n = 2k = 6),

and fff = (f, b) is a k-connected, degree 1, G-framed map consisting of f : X → Y and
b : T (X) ⊕ f∗η → f∗(ξ ⊕ η). We set λ = (−1)k, w = wG

X , Q = Q(G,X), S = S(G,X),
and AAA = (R,G,Q, S, λ, w).

Theorem 8.1. Let Kk(f ;R) ∈ C and let β = (c, r), (r, c ∈ Map(S,Z)) be a pair such
that c(s) ≡ r(s) mod 2Z for all s ∈ S = S(G,X). Then fff = (f, b) can be converted by
G-surgery of isotropy type ({1}) to a k-connected, degree 1, G-framed map fff ′ = (f ′, b′)
(f ′ : X ′ → Y and b′ : T (X ′) ⊕ f ′∗η → f ′∗(ξ ⊕ η)) such that Kk(f ′;R) ∈ C and MMMfff ′

∼=
MMMfff ⊕MMM(x, y, β).

This will be proved in §9.

Proof of Theorem 7.3. In outline, the proof proceeds as follows. First, we show using
Theorems 5.6 and 8.1 that σ(fff) = 0 (fff = (f, b)) implies MMMfff has a free Lagrangian L after
suitable G-surgery on fff . Second, we show using Theorem 2.8 that the elements x1, · · · ,
xm of an R[G]-basis of L can be represented by smooth embeddings h1, · · · , hm : Sk → X
with trivial normal bundles such that gIm(hi)∩ g

′Im(hj) = ∅ unless i = j and g = g′ ∈ G.
Third, we perform G-surgery along the hi’s and fourth, check that the resulting fff ′ = (f ′, b′)
has the desired properties.

We shall prove first the case R = Z and then show how this proof can be modified in
the case of a general R. The case R = Z is divided into 4 steps corresponding to the 4
steps in the outline above.

Step 1. We reduce the proof to the case that MMMfff is a ((free))-null module. Suppose
σ(fff) = 0. By definition, there exist MMM ∈ SQSQSQ(AAA, S)C and NNN ∈ SQSQSQ(AAA, S)((free)) such that
NNN is a ((free))-null module and

MMMfff ⊕MMM ∼= NNN ⊕MMM.

Since NSQNSQNSQ(AAA, S)((free)) is cofinal in SQSQSQ(AAA, S)C (Proposition 4.5), we may assume that MMM
is a ((free))-null module. Thus NNN ⊕MMM is a ((free))-null module. By Theorem 5.6, MMM is
isomorphic to a orthogonal sum of special metabolic planes. Thus by applying Theorem
8.1, we may continue the proof under the hypothesis that MMMfff is a ((free))-null module.

Let L ⊂ Kk(f ;R) be a ((free))-Lagrangian ofMMMfff and let {x1, · · · , xm} be an R[G]-basis
of L.

Step 2. We find nice embeddings Sk → Free(G,X) representing the xi’s. For each i
(1 5 i 5 m), there is a smooth immersion hi : Sk → X with trivial normal bundle,
representing xi. Since by Lemmas 2.2 and 2.6 dimFixG(> ρΠ(γ(s)), Xγ(s)) 5 k − 2 for
all s ∈ S(G,X), we may assume that Im(hi) ∩ FixG(> ρΠ(γ(s)), Xγ(s)) = ∅ for all i
(1 5 i 5 m) and s ∈ S(G,X). Let jγ(s) : Xγ(s) → X be the canonical inclusion. Since L
is a Lagrangian, L ⊃ Im(αf ). Thus Bf (αf (s), xi) = 0. By definition,

(8.2) αf (s) = πf (jγ(s)∗
(ori(Xγ(s)))).
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Since Kk(f ;R) is orthogonal to pdual(Im(f ∗)) under ppair, it follows that

ppair(y, x) = ppair(πf (y), x) (∀y ∈ Hk(X;R) and ∀x ∈ Kk(f ;R)).

Since ppair is equal to intsec up to sign, the equality (8.2) implies intsecG(jγ(s), hi) = 0.
By Lemma 2.2, FixG(= ρΠ(γ(s)), Xγ(s)) is connected whenever s ∈ S(G,X). Thus if a,
b ∈ Im(hi) ∩ Xγ(s) have opposite intersection numbers, we can take a path from a to
b in Im(hi) and another in FixG(= ρΠ(γ(s)), Xγ(s)). Apply now Theorem 6.6 of [12] (a
procedure for cancelling intersection points with opposite intersection numbers) to deduce
that hi is regularly homotopic to an immersion h′i such that Im(h′i) ∩ Xγ(s) = ∅ for all
s ∈ S(G,X). Replace hi by h′i, 1 5 i 5 m. Then for all i and j,

(8.3) intsecG(hi, hj) = 0, and

(8.4) µX̂(hi) = 0,

where X̂ = X \
(⋃

γ X
H
γ

)
(γ runs over Θ(G,X, k)). By [12, Theorem 6.6], the vanishing

property (8.3) for i 6= j allows us to assume that gIm(hi) ∩ g
′Im(hj) = ∅ (i 6= j) for all

g, g′ ∈ G. Next apply Theorem 2.8 for f = hi. This allows to assume that each hi is a
smooth embedding such that Im(hi) ∩ gIm(hi) = ∅ for all g ∈ G \ {1}. Thus each xi is
represented by a embedding hi with trivial normal bundle such that gIm(hi)∩g

′Im(hj) = ∅
unless i = j and g = g′. In particular, Im(hi) ⊂ Free(G,X).

Step 3. We construct fff ′ = (f ′, b′). There will be no essential differences here from the
corresponding step in Wall’s ordinary surgery theory. Perform G-surgery on fff along the
embeddings h1, · · · , hm. Let F = idI × f : I ×X → I ×Y and let B = idεI×X(R) ⊕ (p∗Xb) :
T (I×X)⊕(f ◦pX)∗η → (f ◦pX)∗(εY (R)⊕ξ⊕η) where we identify T (I×X) = εI×X (R)⊕
p∗XT (X) and pX : I × X → X is the canonical projection. The embeddings hi : Sk →
X = {1} ×X can be extended to framed embeddings Hi : Sk ×Dk → {1} ×X such that

gIm(Hi)∩ g
′Im(Hj) = ∅ unless i = j and g = g′. Define indGHi : G×Sk ×Dk → {1}×X

by indGHi(g, s, d) = gHi(s, d) (g ∈ G, s ∈ Sk, and d ∈ Dk). Construct the attaching
space

W = W (H1, · · · , Hm)

= (I ×X) ∪indGH1∪···∪indGHm

{
(G×Dk+1 ×Dk)1 ∪ · · · ∪ (G×Dk+1 ×Dk)m

}
.

Define X ′ by ∂W = ({0} ×X)
∐
X ′. Since each f ◦ hi is null homotopic, there is a map

di : Dk+1 → Y such that di(x) = f ◦ hi(x) for all x ∈ Sk. The G-map F : I ×X → I × Y
is extensible to a G-map F ′ : W → I × Y such that F ′((G × Dk+1 × Dk)i) ⊂ {1} × Y
and F ′(1, x, 0) = (1, di(x)) for (1, x, 0) ∈ {1} × Dk+1 × {0} ⊂ (G × Dk+1 × Dk)i. If we
choose appropriate Hi’s then the bundle isomorphism B is extensible to B′ : T (W ) ⊕
(pY ◦ F ′)∗η → (pY ◦ F ′)∗(εY (R) ⊕ ξ ⊕ η). Let f ′ = F ′|X′ : X ′ → {1} × Y = Y and let
b′′ = B′|X′ : εX′(R) ⊕ T (X ′) ⊕ f ′∗η → f ′∗(εY (R) ⊕ ξ ⊕ η). Since η satisfies (HC) in §7,
b′′ is G-regularly homotopic to idεX′ (R) ⊕ b′, where idεX′ (R) : εX′(R) → f ′∗εY (R) is the
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canonical isomorphism and b′ : T (X ′)⊕f ′∗η → f ′∗(ξ⊕η) (cf. §10). We have just obtained
a G-framed map (f ′, b′).

Step 4. We prove that the f ′ obtained in Step 3 is a k-connected, degree 1, R-homology
equivalence. These properties are independent of the G-action on X and Y in the fol-
lowing sense. We obtained the G-manifold X ′ and the G-map f ′ by G-surgery. But
forgetting G-actions, these are obtained by ordinary surgery on resG

{1}X along the basis

{ei,g | g ∈ G, 1 5 i 5 m} (where ei,g = gxi) of the Lagrangian resG
{1}L for

resG
{1}(Kk(f ;R), Bf , qfff ).

It is obvious that f ′ has degree 1. Furthermore the basis {ei,g | 1 5 i 5 m, g ∈ G} possesses
complementary basis elements fi,g such that

(8.5)

(resG
{1}Bf )(fi,g, ei′,g′) = δ(i,g),(i′,g′) ∈ R,

(resG
{1}Bf )(fi,g, fi′,g′) = 0, and

(resG
{1}qfff )(fi,g) = 0 ∈ R/(1 − λ)R,

where (resG
{1}Bf )(x, y) = ε ◦ Bf (x, y) (x, y ∈ Kk(f,R)) (cf. (4.2)). Thus, the arguments

in [19, pp.51–52] imply that f ′ is a k-connected, R-homology equivalence. Thus we have
proved Theorem 7.3 in the case R = Z.

The case of a general R is proved as above, except one has to take a little extra care at
the three places.

The first is in Step 1. Here we should replace the application of Theorem 5.6 by one of
Corollary 5.7.

The second is just after Step 1. There we used an arbitrary basis {x1, · · · , xm}. However
in the general case, we should choose the basis such that each xi ∈ Kk(f ;R) = R⊗Kk(f ; Z)
lies in the image of Kk(f ; Z) under the canonical homomorphism. Furthermore if 2 ∈ R×

then we can and should assume that each xi = 2vi for some vi in the image of Kk(f ; Z).

This will guarantee that if X̂ and h′i are as in Step 2 then µX̂(h′i) = 0.
The third is in Step 4. In the general case, the complementary basis elements fi,g should

be taken so that they also lie in the image of Kk(f ; Z) and (8.5) should be replaced by

(8.6)

(resG
{1}Bf )(fi,g, ei,g) are integers invertible in R,

(resG
{1}Bf )(fi,g, ei′,g′) = 0 if (i, g) 6= (i′, g′),

(resG
{1}Bf )(fi,g, fi′,g′) = 0 if (i, g) 6= (i′, g′), and

(resG
{1}qfff )(fi,g) = 0 ∈ R/(1 − λ)R.

With these modifications, Step 1 – Step 4 will prove Theorem 7.3 in the general case.
Q.E.D.

9. Special metabolic stabilization in G-surgery
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This section is devoted to the proof of Theorem 8.1.
If M is an oriented smooth manifold of dimension m1 +m2, if M1 and M2 are oriented

submanifolds of M of dimension m1 and m2, respectively, and if M1 and M2 transversally
intersect at only finitely many points of Int(M), let M1 ·M2 denote the intersection number
of M1 and M2.

Lemma 9.1. Let 〈s〉 be a group of order 2 and let R (resp. R±) be the 1-dimensional,
real 〈s〉-module with trivial (resp. nontrivial) 〈s〉-action. Let M = Rk ⊕ Rk

± with standard
orientation. Let

M1 = {(x1, · · · , xk, y1, · · · , yk) ∈ Rk ⊕ Rk
± | x1, · · · , xk ∈ R; y1 = x1, · · · , yk = xk}.

Then M1 · sM1 = λ (where λ = (−1)k).

Proof. It is clear that

sM1 = {(x1, · · · , xk,−y1, · · · ,−yk) | x1, · · · , xk ∈ R; y1 = x1, · · · , yk = xk}.

Thus the matrix corresponding to the standard ordered basis of M1 ⊕ sM1 is

P =




1 0 · · · 0 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0

0 0 · · · 1 0 0 · · · 1
1 0 · · · 0 −1 0 · · · 0
0 1 · · · 0 0 −1 · · · 0

0 0 · · · 1 0 0 · · · −1




.

Since det(P ) = 2k(−1)k, we obtain M1 · sM1 = λ.

Let fff = (f, b), where f : X → Y , b : T (X)⊕ f∗(η) → f∗(ξ⊕ η), and let β = (c, r) be as
in Theorem 8.1. In particular, c : S → Z and r : S → Z satisfy the property c(g) ≡ r(g)
mod 2Z for all g ∈ S = S(G,X). It is helpful to prove first a special case of Theorem 8.1
in order to grasp an outline of the proof.

Special Case. Here we assume that ∃s ∈ S such that
∑
g∈S

c(g)g = s. Let γ ∈ Θ(G,X, k)

such that ρΠ(γ) 3 s (cf. Lemma 2.6). Take a point a ∈ Xγ such that Ga = ρΠ(γ). The
canonical inclusion Xγ → X is denoted by jγ . Let ν = ν(Xγ , X) be the normal bundle of
Xγ and regard it as an NG(ρΠ(γ))-tubular neighborhood of Xγ . Note that ρΠ(γ) = Gs

(the centralizer of s). Take a neighborhood E (∼= Rk) of a in FixG(= ρΠ(γ), Xγ) such
that E ∩ gE 6= ∅ =⇒ g ∈ ρΠ(γ). Then ν|E is a ρΠ(γ)-neighborhood of a in X, which is
ρΠ(γ)-diffeomorphic to E×V , where V = ν|a is a k-dimensional real ρΠ(γ)-representation
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space. Note that res
ρ(γ)
〈s〉 V

∼= Rk
±. Regard the point a as the origin 0 in E × V . Let

∆ : E → V be an R-linear map such that Ker(∆) = {0}. Then the graph Graph(∆) of
∆ is a k-dimensional linear subspace of E × V . We choose ∆ so that Graph(∆) is M1 in
Lemma 9.1 when the group action is restricted to 〈s〉. We orient Graph(∆) so that the
ordered direct sum Ta(Xγ)⊕Ta(Graph(∆)) has the same orientation as Ta(X). Let δ > 0
be a small real number and let Dδ(Graph(∆)) be the closed disk of Graph(∆) with radius
δ centered at the origin (i.e. a). Take an orientation preserving (linear) diffeomorphism
h′D : Dk → Dδ(Graph(∆)) such that h′D(0) = a. Fix a small real number δ′ such that
0 < δ′ � δ. There is a δ′-approximation hD : Dk → ν|E of h′D such that hD is also a
smooth embedding, hD(x) = h′D(x) if ‖x‖ 5 1/2, and h := hD|Sk−1 : Sk−1 = ∂Dk → X
satisfies the condition that if gh(x) = g′h(x′) (g, g′ ∈ G and x, x′ ∈ Sk−1) then g = g′ and
x = x′. Set D = Im(hD). Then it follows that

(9.2) the intersection number Xγ ·D = 1.

Since h extends to hD, the normal bundle of h is trivial. There is an orientation-preserving,
smooth embedding H : Sk−1 × Dk+1 → Free(G,X) such that h = H|Sk−1×{0} and such

that if gH(x) = g′H(x′) (g, g′ ∈ G and x, x′ ∈ Sk−1 × Dk+1) then g = g′ and x = x′.
Thus,

indGH : G× Sk−1 ×Dk+1 → Free(G,X), (g, x) 7→ gH(x) (g ∈ G, x ∈ Sk−1 ×Dk+1)

is a smooth embedding.
Perform G-surgery on X along h as follows. Let I = [0, 1] and W = I × X. Regard

indGH as a map to {1} ×X. Construct the attaching space

W ′ = W ∪indGH (G×Dk ×Dk+1).

Define X ′ by ∂W ′ = ({0} ×X) ∪X ′ (disjoint union). Then the map F = idI × f : W =
I×X → I×Y is extensible to a G-map F ′ : W ′ → I×Y such that F ′(X ′) j {1}×Y and
F ′(g, p, 0) = ghD(ϕ(p)) for g ∈ G, p ∈ Dk and 0 the origin of Dk+1, where ϕ : Dk → Dk

is the usual orientation reversing diffeomorphism from the upper hemisphere to the lower
hemisphere. Define f ′ : X ′ → Y by f ′ = F ′|X′ → ({1} × Y ) = Y . In addition, B =
idεI(R) × b is extensible to a G-vector bundle isomorphism B ′ : T (W ′) ⊕ (pY ◦ F ′)∗η →

(pY ◦ F ′)∗(εY (R) ⊕ ξ ⊕ η). Define b′′ : εX′(R) ⊕ T (X ′) ⊕ f ′∗η → f ′∗(εY (R) ⊕ ξ ⊕ η) by
b′′ = B′|X′ . Since η is large (i.e. satisfies (HC) in §7), b′′ is G-regularly homotopic to
idεX′ (R) ⊕ b′ where b′ : T (X ′)⊕ f ′∗η → f ′∗(ξ ⊕ η) (cf. Proposition 10.1). Let fff ′ = (f ′, b′).

We shall show that fff ′ satisfies the conclusion of Theorem 8.1.
If we forget the G-actions on X and X ′ then

(9.3) X ′ = [{X#({g1}×S
k ×Sk)}# · · · ]#({g|G|}×S

k ×Sk) (iterated connected sum),

where {g1, · · · , g|G|} = G and g1 = 1. Clearly, X ′ is 1-connected and f ′ is of degree 1.
Our next goal is to obtain elements x and y of Kk(f ′; Z) such that Bf ′(x, x) = 0,

qfff ′(x) = 0, Bf ′(y, x) = 1, and qfff ′(y) = 0. This will be done by the procedure. First
we define an element −x ∈ Kk(f ′; Z) such that Bf ′(−x,−x) = 0 and qfff ′(−x) = 0. The
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element x we are seeking is then defined to be −(−x). Next we define an element −λz ∈
Kk(f ′; Z) such that Bf ′(−λz, x) = −λ and qfff ′(−λz)(g) = 0 for all g ∈ {1}∪G(2)\(Q∪S).
Set z = −λ(−λz). Then Bf ′(z, x) = 1 and qfff ′(z)(g) = 0 for all g ∈ {1}∪G(2)\(Q∪S). By
the orthonormalization procedure in Lemma 6.1, there is an element v ∈ Z[G\({1}∪G(2))]
such that qfff ′(z + vx) = 0. Now we define y = z + vx. It follows that Bf ′(y, x) = 1 and
that the elements x and y have the properties sought above. To define the elements −x
and −λz in Kk(f ′; Z), we construct first embeddings j−x, j−λz : Sk → X ′ and then set −x
(resp. −λz) to be the image under the homomorphism (j−x)∗ : Hk(Sk; Z) → Hk(X ′; Z)
(resp. (j−λz)∗ : Hk(Sk; Z) → Hk(X ′; Z)) of the orientation class of Sk. Fix a point
pt ∈ Sk−1 and define j−x : Sk = ∂Dk+1 → X ′ by j−x(z) = H(pt, z) (z ∈ Sk). The map
j−x will be regarded as the meridian {1}×{pt}×Sk in (9.3). Clearly intsecG(j−x, jδ) = 0
(∀δ ∈ Θ(G,X ′, k) = Θ(G,X, k)) (equivalently Bf ′(x, αf ′(g)) = 0 (∀g ∈ S)). As j−x is an
embedding with trivial normal bundle such that Im(j−x) ∩ gIm(j−x) = ∅ whenever g ∈
G \ {1}, it follows that intsecG(j−x, j−x) = 0 (equivalently Bf ′(x, x) = 0), and qfff ′(x) = 0.

By choosing Im(H) sufficiently thin, we may suppose that D′ = D\H(Sk−1×Int(Dk+1)) is
diffeomorphic to the closed disk of dimension k. Define k− : Dk

− →W and k+ : Dk
+ →W ′

by

k− : Dk
− = Dk hD−−→ X = {1} ×X ↪→W, and

k+ : Dk
+ = Dk × {0} ↪→ {1} ×Dk ×Dk+1 ↪→W ′.

Define j′ : Sk = Dk
−∪Dk

+ →W ′ by gluing k− and k+. Pushing j′ intoX ′ within the handle

{1} ×Dk ×Dk+1, we obtain an isotopy from j ′ to a smooth embedding j−λz : Sk → X ′.
We may assume that Im(j−λz) = D′∪({1}×Dk×{pt′}) for some pt′ ∈ Sk. The embedding
j−λz will be regarded as the longitude {1}×Sk ×{pt′} in (9.3). Clearly Bf ′(z, αf ′(g)) = 0
(∀g ∈ S \ {s}), and (qfff ′(z))(g) = 0 (∀g ∈ {1} ∪G(2) \ (Q ∪ S)). Moreover

intsec(j−λz , j−x) =
ori
(
T(1,pt,pt′)({1} × Sk × {pt′}) ⊕ T(1,pt,pt′)({1} × {pt} × Sk)

)

ori
(
T(1,pt,pt′)(∂({1} × Sk ×Dk+1))

)

=
ori
(
T(1,pt,pt′)({1} × Sk × Sk)

)

(−1)kori
(
T(1,pt,pt′)({1} × Sk × ∂Dk+1)

)

= (−1)k = λ

and by construction intsec(j−λz, g
−1j−x) = 0 for all g 6= 1. Thus Bf ′(z, x) = 1.

Let the elements x, y, z ∈ Kk(f ′; Z) be determined by the procedures above. Obviously
〈x, z〉Z[G] = 〈x, y〉Z[G]. We claim that Kk(f ′;R) ∼= Kk(f ;R) ⊕ 〈x, z〉R[G]. This can be
shown by the following standard argument.

We identify X with {0}×X. Then Ki(F
′, f ; Z) = Ki(F

′, F ; Z) = Hi(W
′,W ; Z) ∼= Z[G]

(resp. 0) if i = k (resp. i 6= k). Since we can regard the element z to be in Hk(W ′,W ; Z),
we may identify Ki(F

′, f ; Z) with 〈z〉Z[G]. Consider the Mayer-Vietoris exact sequence

· · · −→ Ki+1(F
′, f ; Z) −→ Ki(f ; Z)

(κ1)i
−−−→ Ki(F

′; Z)
(τ1)i
−−−→ Ki(F

′, f ; Z) −→ · · · .

If i 6= k then Ki(f ; Z) = 0 and Ki(F
′, f ; Z) = 0 and so Ki(F

′; Z) = 0. Since we can regard
z ∈ Kk(F ′; Z), there is a Z[G]-splitting σ1 : Kk(F ′, f ; Z) → Kk(F ′; Z) for τ1 = (τ1)k such
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that σ1(z) = z. Thus Kk(f ; Z) ⊕ 〈z〉Z[G]

κ1⊕ι
∼= Kk(F ′; Z) where ι : 〈z〉Z[G] → Kk(F ′; Z) is

the canonical inclusion. Since W ∼=G W ′ ∪ (G×Dk+1 ×Dk) (the dual-handle attachment)
'G W ′∪(G×Dk+1×{0}), it follows thatKi(F

′, f ′; Z) = Hi(G×Dk+1×Dk , G×Sk×Dk; Z)
∼= Z[G] (resp. 0) if i = k+1 (resp. i 6= k+1). (This can be shown also using the universal
coefficient theorem and the Poincaré-Lefschetz duality, cf. [5, I.2.8].) Now consider the
Mayer-Vietoris exact sequence

· · · −→ Ki+1(F
′, f ′; Z)

(∂2)i+1
−−−−→ Ki(f

′; Z)
(κ2)i
−−−→ Ki(F

′; Z) −→ Ki(F
′, f ′; Z) −→ · · · .

If i 6= k then Ki+1(F
′, f ′; Z) = 0 and Ki(F

′; Z) = 0 and so Ki(f
′; Z) = 0. Hence f ′ is

k-connected. Consider the short exact sequence

0 −→ Kk+1(F
′, f ′; Z)

∂2−→ Kk(f ′; Z)
κ2−→ Kk(F ′; Z) −→ 0

obtained from the long exact sequence above, where ∂2 = (∂2)k+1 and κ2 = (κ2)k. Note
that ∂2(Kk+1(F

′, f ′; Z)) = 〈x〉Z[G]. Since Kk(F ′;R) = R⊗Kk(F ′; Z) is a projective R[G]-
module, there is an R[G]-splitting σ2 : Kk(F ′;R) → Kk(f ′;R) for κ2 (more precisely
for R ⊗ κ2) such that σ2(z) = z. Putting all this together, we get an R[G]-isomorphism
ω : Kk(f ;R)⊕ 〈x, z〉R[G] → Kk(f ′;R) such that ω(u, v1x, v2z) = σ2(κ1(u)) + v1x+ v2z for
u ∈ Kk(f ;R), v1, v2 ∈ R[G].

Let

M ′′ = 〈x, y〉R[G] = 〈x, z〉R[G] ⊂ Kk(f ′;R),

M0 = M ′′⊥ = {u1 ∈ Kk(f ′;R) | Bf ′(u2, u1) = 0 for all u2 ∈M ′′}, and

M1 = Im(σ2 ◦ κ1 : Kk(f ;R) → Kk(f ′;R)).

Let p′′ : Kk(f ′;R) → M ′′ be the projection associated to the decomposition Kk(f ′;R) =
M0 ⊕M ′′ and let pi : Kk(f ′;R) → Mi (i = 0, 1) be the projections associated to the
decompositions Kk(f ′;R) = Mi ⊕ M ′′ (i = 0, 1) respectively. By construction, M1 ⊂

〈x〉R[G]
⊥

. Thus

(9.4) M1 + 〈x〉R[G] = 〈x〉R[G]
⊥

and qfff ′(x) = 0.

Thus the isomorphism class of (M1, Bf ′|M1
, qfff ′ |M1

) is independent of the choice of σ2.
For each element a of Kk(f ;R), take an smooth immersion ha : Sk → X with trivial

normal bundle, representing a. Take ha so that Im(ha) ∩ Im(indGH) = ∅. Then ha can
be regarded as an immersion to X ′. Let a′ ∈ Kk(f ′;R) be the element represented by ha.
Clearly it follows that σ2 ◦κ1(a) ≡ a′ mod 〈x〉R[G]. For a, b ∈ Kk(f ;R), one can compute
Bf ′(σ2◦κ1(a), σ2◦κ1(b)) (resp. qfff ′(σ2◦κ1(a))) by using (9.4) and counting the equivariant
intersection number of ha and hb (resp. the equivariant selfintersection number of ha). This
makes it clear that σ2 ◦ κ1 is an isomorphism (Kk(f ;R), Bf , qfff ) ∼= (M1, Bf ′ |M1

, qfff ′ |M1
).

The map p0|M1
: M1 →M0 is determined by the formula

p0(u) = u−Bf ′(y, u)x (for u ∈M1).
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Again by (9.4), p0|M1
is an isomorphism (M1, Bf ′ |M1

, qfff ′ |M1
) ∼= (M0, Bf ′|M0

, qfff ′ |M0
). Thus

p0 ◦σ2 ◦κ1 : Kk(f ;R) →M0 is an isomorphism (Kk(f ;R), Bf , qfff ) ∼= (M0, Bf ′ |M0
, qfff ′ |M0

).
Set α′′ = p′′ ◦ αf ′ , and let g ∈ S. Obviously, αf ′(g) = p0(αf ′(g)) + α′′(g). ¿From

the equation Bf (a, αf(g)) = Bf ′(a′, αf ′(g)), it follows that σ2 ◦ κ1(αf (g)) = p1(αf ′(g)).
Note that p0(p1(u)) = p0(u) for all u ∈ Kk(f ′;R). Thus p0◦p1◦αf ′ = p0◦αf ′. Since p0|M1

:
(M1, Bf ′ |M1

, qfff ′ |M1
) ∼= (M0, Bf ′|M0

, qfff ′ |M0
), we obtain p0◦σ2◦κ1 : (Kk(f ;R), Bf , qfff , αf) ∼=

(M0, Bf ′ |M0
, qfff ′ |M0

, p0 ◦ αf ′).
Let B′′ = Bf ′ |M ′′ , q′′ = qf ′f ′f ′ |M ′′ . By Theorem 6.3, (M ′′, B′′, q′′, α′′) ∼=MMM(x, y, β′′) where

β′′ = (c′′, r′′) (c′′, r′′ ∈ Map(S,Z)) is determined by the equations

α′′(t) =
∑

g∈G

c′′(gtg−1)g−1x (∀t ∈ S) and Bf ′(y, y) =
∑

t∈S

r′′(t)t.

Next we compute that c′′ = c and calculate r′′.
Since Bf ′(x, αf ′(s)) = 0, α′′(s) = ux for some u ∈ Z[G]. Since Bf ′(z, x) = 1, we obtain

α′′(s) = Bf ′(z, α′′(s))x = Bf ′(z, αf ′(s))x. Furthermore intsec(jγ , j−λz) = −1 (ρΠ(γ) 3 s),
because D = Im(hD) is identified with the lower hemisphere of Domain(j−λz) by an orien-
tation reversing diffeomorphism. If g ∈ G then intsec(jγ , g

−1j−λz) = w(g)intsec(gjγ, j−λz)
and this is trivial if g /∈ Gs. Thus intsecG(jγ, j−λz) = −

∑
g∈Gs

w(g)g. This implies

Bf ′(αf ′(s),−λz) = −
∑

g∈Gs
w(g)g. Hence

(9.5) Bf ′(z, αf ′(s)) =
∑

g∈Gs

g =
∑

g∈Gs

g−1 (= ΣGs
).

Thus

(9.6) α′′(s) =
∑

g∈Gs

g−1x.

Furthermore if t ∈ S and t 6= s then α′′(t) = 0, since for γ′ 6= γ and g ∈ G, intsec(jγ′ , gj−λz) =
0. Clearly c′′(s) = 1 and c′′(t) = 0 if t 6= s. Thus c′′ = c holds.

Since Im(j−λz)∩gIm(j−λz) = ∅ whenever g2 = 1 and g 6= s, 1, it is clear that Bf ′(z, z) =
0 in Z[{1}∪G(2)\{s}] = Z[G]/Z[G\({1}∪G(2)\{s})]. By Lemma 9.1, we may suppose that
intsec(j−λz, sj−λz) = λ. Then Bf ′(z, z) = λs in Z[{1} ∪G(2)] = Z[G]/Z[G \ ({1}∪G(2))].
¿From the equations qfff ′(y) = 0 and y = z + vx (v ∈ Z[G \ ({1} ∪G(2))]), it follows that

(9.7) Bf ′(y, y) = λs

Thus r′′(s) = λ and r′′(t) = 0 for t 6= s. This completes the calculation of r′′.
Since c′′(g) = c(g) (and r′′(g) ≡ r(g) mod 2Z for all g ∈ S), it follows from Lemma 5.5

that MMM(x, y, β′′) ∼=MMM(x, y, β) and hence (M ′′, B′′, q′′, α′′) ∼=MMM(x, y, β).
Consequently MMMfff ′

∼=MMMfff ⊕MMM(x, y, β), and we have proved Theorem 8.1 in the special
case cited above.

General Case. Let S+ = {s ∈ S | c(s) > 0}, S− = {s ∈ S | c(s) < 0} and set
S′ = S+ ∪ S−. Let Γ = {(s, i) | s ∈ S′, 1 5 i 5 |c(s)| }. For each s ∈ S ′, take |c(s)|



32 ANTHONY BAK∗ AND MASAHARU MORIMOTO∗∗

distinct points x(s, 1), · · · , x(s, |c(s)|) of Xγ(s) (γ(s) ∈ Θ(G,X, k) and ρΠ(γ(s)) 3 s) such
that Gx(s,i) = ρΠ(γ(s)). Furthermore we can choose these points so that if (s, i) 6=

(s′, i′) then Gx(s, i) ∩ Gx(s′, i′) = ∅. Take neighborhoods E(s,i) (∼= Rk) of x(s, i) in
Xγ(s), respectively. Then each ν(Xγ(s), X)|E(s,i)

is a neighborhood of x(s, i) which is

diffeomorphic to E(s,i) × V(s,i), where V(s,i) = ν(Xγ(s), X)|x(s,i). We may assume that
Gν(Xγ(s), X)|E(s,i)

∩Gν(Xγ(s′), X)|E(s′,i′)
= ∅ whenever (s, i) 6= (s′, i′) and that if

ν(Xγ(s), X)|E(s,i)
∩ gν(Xγ(s), X)|E(s,i)

6= ∅ then g ∈ ρΠ(γ(s)). Let ∆(s,i) : E(s,i) → V(s,i) be

R-linear maps such that Ker(∆(s,i)) = {0}. The graphs Graph(∆(s,i)) are k-dimensional
linear subspaces of E(s,i) × V(s,i), respectively. For each (s, i) ∈ S+ (resp. S−), we orient
Graph(∆(s,i)) so that the ordered direct sum Tx(s,i)(Xγ(s))⊕Tx(s,i)(Graph(∆(s,i))) has the
same orientation (resp. opposite orientation) as Tx(s,i)(X). Take orientation preserving

(linear) diffeomorphisms h′D(s,i)
: Dk → Dδ(Graph(∆(s,i))) such that h′D(s,i)

(0) = x(s, i).

For each (s, i), there is a δ′-approximation hD(s,i)
: Dk → ν(Xγ(s), X)|E(s,i)

of h′D(s,i)
such

that hD(s,i)
is also a smooth embedding, that hD(s,i)

(x) = h′D(s,i)
(x) if ‖x‖ 5 1/2, and that

h(s,i) := hD(s,i)
|Sk−1 : Sk−1 → X satisfies the property that if gh(s,i)(x) = g′h(s,i)(x

′) (g,

g′ ∈ G and x, x′ ∈ Sk−1) then g = g′ and x = x′. Set D(s,i) = Im(hD(s,i)
). Instead of

(9.2), we have now

(9.2′) the intersection number Xγ(s) ·D(s,i) = sign(c(s)).

Let ord : Γ → {1, · · · , |Γ|} be a bijection. For each i = 1, · · · , |Γ| − 1, take a k-
dimensional band Bi

∼= I ×Dk−1 (in general position in Free(G,X) \
(⋃

t Int(Dord−1(t))
)
)

connecting ∂Dord−1(i) with ∂Dord−1(i+1). This done, we obtain an embedded k-dimensional
closed disk

D = Dord−1(1) ∪ B1 ∪Dord−1(2) ∪ · · · ∪ B|Γ|−1 ∪Dord−1(|Γ|)

in X. The bands Bi should be taken so that ∂D is the oriented connected sum of the
oriented ∂D(s,i)’s. Let hD : (Dk ∼=) D → X be the canonical inclusion and set h =

hD|∂D : (Sk−1 ∼=) ∂D → Free(G,X). Without loss of generality, we may assume that
if gh(x) = g′h(x′) (g, g′ ∈ G and x, x′ ∈ Sk−1) then g = g′ and x = x′. There is
a smooth embedding H : Sk−1 × Dk+1 → Free(G,X) such that h(x) = H(x, 0) for all

x ∈ Sk−1 and such that the induced G-map indGH : G × Sk−1 × Dk+1 → Free(G,X)
is an embedding. Construct the following spaces and maps as in Special Case: W ′ =
W ∪indGH (G×Dk ×Dk+1), X ′, F , F ′, f ′ : X ′ → Y , and b′ : T (X ′) ⊕ f ′∗η → f ′∗(ξ ⊕ η).
Then set fff ′ = (f ′, b′). As in Special Case, Kk(f ′;R) ∼= Kk(f ;R) ⊕ 〈x, z〉R[G]. Moreover,

−x and −λz have geometric realizations by embeddings j−x, j−λz : Sk → X ′, respectively,
and Bf ′(x, x) = 0, Bf ′(z, x) = 1, qfff ′(x) = 0, (qfff ′(z))(g) = 0 (∀g ∈ {1}∪G(2)\(Q∪S)), and
there is an element v ∈ Z[G\({1}∪G(2))] such that y = z+vx satisfies qfff ′(y) = 0. For each
s ∈ S, let jγ(s) : Xγ(s) → X be the canonical inclusion. Then intsec(jγ(s), j−λz) = −c(s)
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and hence
intsecG(jγ(s), j−λz) =

∑

g∈G

intsec(jγ(s), g
−1j−λz)g

=
∑

g∈G

w(g)intsec(gjγ(s), j−λz)g

=
∑

g∈G

w(g)intsec(jgγ(s), j−λz)g

=
∑

g∈G

w(g)intsec(jγ(gsg−1), j−λz)g

=
∑

g∈G

w(g)
(
−c(gsg−1)g

)
.

Thus
Bf ′(z, αf ′(s)) = λBf ′(αf ′(s), z)

= −Bf ′(αf ′(s),−λz)

= −
∑

g∈G

w(g) (−c(gsg−1)g)

=
∑

g∈G

c(gsg−1)g−1.

The equality (9.5) is replaced by the equality

(9.5′)

Bf ′(z, αf ′(s)) =
∑

g∈G

c(gsg−1)g−1

( =
∑

gGs∈G/Gs

c(gsg−1)ΣG
gsg−1 g

−1).

Let M ′′ = 〈x, y〉R[G] (= 〈x, z〉R[G]) and M0 = M ′′⊥. Let p0 : Kk(f ′;R) → M0 and
p′′ : Kk(f ′;R) →M ′′ denote the projections associated to the decomposition Kk(f ′;R) =
M0 ⊕ M ′′. Let α′′ = p′′ ◦ αf ′ , B′′ = Bf ′ |M ′′ , and q′′ = qf ′f ′f ′ |M ′′ . By Theorem 6.3,

(M ′′, B′′, q′′, α′′) ∼= MMM(x, y, β′′) where β′′ = (c′′, r′′) ( c′′, r′′ ∈ Map(S,Z)) is determined
by the equation

α′′(s) =
∑

g∈G

c′′(gsg−1)g−1x (∀s ∈ S), and Bf ′(y, y) =
∑

s∈S

r′′(s)s.

As in Special Case, we compute that c′′ = c. Since α′′(s) = Bf ′(z, αf ′(s))x, it follows
that

(9.6′) α′′(s) =
∑

g∈G

c(gsg−1)g−1x

and hence that c′′ = c.
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Next we calculate r′′. By Lemma 9.1, we may assume that intsec(j−λz, sj−λz)) = λ|c(s)|
for all s ∈ S. Since (qfff ′(z))(g) = 0 for any g ∈ {1} ∪ G(2) \ (Q ∪ S), it follows that
Bf ′(z, z) =

∑
s∈S

λ|c(s)|s in Z[{1} ∪ G(2)] = Z[G]/Z[G \ ({1} ∪ G(2))]. As qfff ′(y) = 0 and

y = z + vx for some v ∈ Z[G \ ({1} ∪G(2))], we have

(9.7′) Bf ′(y, y) =
∑

s∈S

λ|c(s)|s.

Thus for all s ∈ S, r′′(s) = λ|c(s)| and r′′(s) ≡ r(s) mod 2Z.
Since c′′ = c (and r′′ ≡ r mod 2), Lemma 5.5 implies MMM(x, y, β′′) ∼=MMM(x, y, β).
By the same arguments as in Special Case, we can check

(Kk(f ;R), Bf , qfff , αf) ∼= (M0, Bf ′|M0
, qfff ′ |M0

, p0 ◦ αf ′)

and conclude MMMfff ′
∼=MMMfff ⊕MMM(x, y, β). Q.E.D.

10. Appendix

We have invoked Assumption (HC) (see §7) in order to apply the next proposition.

Proposition 10.1. Let M be an n-dimensional, G-CW-complex and let η and η ′ be real
G-vector bundles with G-invariant Riemannian metrics over M . If η k εM (Rn+1) then
any G-vector bundle isomorphism b : εM (R)⊕η → εM (R)⊕η′ (⊕ denotes orthogonal sum)
is G-regularly homotopic to a G-vector bundle isomorphism idεM (R) ⊕ b′ where b′ : η → η′.

Proof. It is well-known that b isG-regularly homotopic to a metric preserving isomorphism.
(This follows from the fact that if 〈 , 〉 and 〈 , 〉′ are G-invariant Riemannian metrics on
the same underlying G-vector bundle ξ then (1 − t)〈 , 〉 + t〈 , 〉′ (t ∈ I) is a G-invariant
Riemannian metric on ξ, and from the equivariant covering homotopy property.) Thus we
may assume that b is metric preserving.

We shall prove Proposition 10.1 by double induction on n and the number of isotropy
types of n-dimensional cells. Suppose M = M ′ ∪

⋃
γ(G/H × Dn

γ ) where Dn
γ = Dn, and

invoke the induction hypothesis that b|M ′ has the form idεM′ (R) ⊕ b′′, where b′′ : η|M ′ →
η′|M ′ . Under this hypothesis, we shall find b′ as in the conclusion of the proposition. For
fixed γ, set E = H/H×Int(Dn

γ ). Then b(εM (R)|E\E) = εM (R)|E\E , but it is not necessary

that

(10.2) b(εM (R)|E) = εM (R)|E .

Let bH : εMH (R)⊕ηH → εMH (R)⊕η′H be the restriction of b to theH-fixed point set. Then
b|MH is decomposed into b|MH = bH ⊕ bH (NG(H)-orthogonal sum). We deform b keeping
b|M ′ and bH fixed. The obstruction σ to deforming b to satisfy (10.2) lies in πn−1(S

m−1),
where m = fiber-dim(ηH) + 1. Since fiber-dim(ηH) = fiber-dim(ηG) = n, the obstruction
group πn−1(S

m−1) is trivial. Hence the obstruction σ vanishes. If (10.2) is satisfied for all
γ then b(εM (R)) = εM (R). Since b is metric preserving, we have b(η) j η′. Moreover, we
can arrange b so that b|εM (R) = idεM (R), since fiber-dim(εM (R) ⊕ εM (Rn+1)) = 2. Q.E.D.
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