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Abstract

Two homology theories of multiplicative Lie rings are constructed, studied and compared with the usual homology theories of
groups and Lie rings. Central extensions of multiplicative Lie rings are introduced. It is shown that the Steinberg multiplicative Lie
ring of a ring is the direct product of the Steinberg group (viewed as a multiplicative Lie ring under the commutator bracket) and
the Steinberg Lie ring.
c© 2006 Published by Elsevier B.V.

MSC: 18G10; 18G50

1. Introduction

In [2] Ellis introduced multiplicative Lie algebras, which are called multiplicative Lie rings in the body of the
current paper, to investigate an interesting combinatorial problem on group commutators. In [10] Point and Wantiez
studied algebraic structural properties of multiplicative Lie algebras. In particular, they defined nilpotency and proved
several nilpotency results generalizing known ones for groups and Lie algebras.

In the current paper, we investigate further structural properties of multiplicative Lie rings. Then we introduce two
homology theories of multiplicative Lie rings and show they satisfy properties analogous to well known ones in the
homology theories of groups and Lie rings. Our main results compare our homology groups in degrees 1, 2 and 3 with
the corresponding ones for groups and Lie rings. We then introduce the Steinberg multiplicative Lie ring Stmlr(R) of a
unital ring R and show that its center is isomorphic to the direct product K2(R)× HC1(R) of the algebraic K -theory
group K2(R) and the cyclic homology group HC1(R). This result will be used in a subsequent paper to study the
relationship between a new definition of K -groups of gl(R) (via global actions) and the Lie homology of gl(R).

The rest of the paper is organized as follows. Immediately below, we review some basic notation and conventions.
In Section 2, we recall the notion of a multiplicative Lie ring, develop some of its elementary notions of structure, and
establish a basic adjointness principle. In Section 3, we introduce two homology theories for multiplicative Lie rings.
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We verify that they satisfy standard properties analogous to those for the homology theories of groups and Lie rings,
and compare our homology groups of degrees 1, 2 and 3 with the corresponding homology groups of groups and
Lie rings. In Section 4, we define central extensions of multiplicative Lie rings and show that our second homology
group of a perfect multiplicative Lie ring is equal to the kernel of its universal central extension. In Section 5, we
relate multiplicative Lie rings to K -theory and cyclic homology. In particular, we define the multiplicative Steinberg
Lie ring Stmlr via the obvious generators and relations and obtain that it is a universal central extension of the direct
product E[,] × sl where E[,] denotes the multiplicative Lie ring of the elementary group E under commutator bracket
and sl the Lie ring generated by all strictly upper and strictly lower triangular matrices.

Notation and conventions. Let Sets and Gr denote respectively the categories of sets and groups. For elements x, y
of a group, let x y = xyx−1 and [x, y] = xyx−1 y−1. For any group G, let [G,G] and Z(G) denote respectively its
commutator subgroup and center. By a ring R, we shall always mean an associative ring with identity.

2. Multiplicative Lie rings

We recall the notion of multiplicative Lie ring due to Ellis [2], give some important examples and establish some
structural results.

2.1. Definition of multiplicative Lie ring

A multiplicative Lie ring consists of a multiplicative (possibly non-abelian) group g together with a binary function
{, } : g × g → g, which we shall call Lie product, satisfying the following identities:

{x, x} = 1, (2.1.1)

{x, yy′
} = {x, y}

y
{x, y′

}, (2.1.2)

{xx ′, y} =
x
{x ′, y}{x, y}, (2.1.3)

{{x, y},
yz}{{y, z}, z x}{{z, x}, x y} = 1, (2.1.4)

z
{x, y} = {

z x, z y} (2.1.5)

for all x, x ′, y, y′, z ∈ g.
In [2] the following identities are deduced from (2.1.1) to (2.1.5):

{1, x} = {x, 1} = 1, (2.1.6)

{y, x} = {x, y}
−1, (2.1.7)

{x,y}
{x ′, y′

} =
[x,y]

{x ′, y′
}, (2.1.8)

{[x, y], x ′
} = [{x, y}, x ′

], (2.1.9)

{x−1, y} =
x−1

{x, y}
−1 and {x, y−1

} =
y−1

{x, y}
−1 (2.1.10)

for all x, x ′, y, y′
∈ g. Due to (2.1.2), (2.1.7) and (2.1.9) we obtain another useful identity

{x, y}{x, z} = {x, yz}{y, [z, x]}, x, y, z ∈ g. (2.1.11)

In fact,

{x, yz}{y, [z, x]} = {x, y}
y
{x, z}[y, {z, x}] = {x, y}{x, z}.

A morphism φ : g → g′ of multiplicative Lie rings is a group homomorphism such that φ{x, y} = {φx, φy} for all
x, y ∈ g. Let

LM

denote the category of multiplicative Lie rings and their morphisms.
We recall important examples of multiplicative Lie rings given in [2].
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2.2. Examples

(a) Any group G is a multiplicative Lie ring under {x, y} = xyx−1 y−1 for all x, y ∈ G. It is denoted by G[,].
(b) Any group G is also a multiplicative Lie ring under {x, y} = 1 for all x, y ∈ G. It is called the abelian

multiplicative Lie ring of G and is sometimes denoted by G•.
(c) Any ordinary Lie ring L is a multiplicative Lie ring under its Lie product. Moreover, if g is a multiplicative Lie

ring whose underlying group is abelian then g is an ordinary Lie ring.
(d) Let E � P denote a central extension of a group P . Then x ∈ P acts on u ∈ E by x u = x̄ux̄−1 where x̄ ∈ E

is any pre-image of x . The semi-direct product g = E o P of the action of P on E is a multiplicative Lie ring with
Lie product {, } : g × g → g given by {(u, x), (u′, x ′)} = ([ux̄, u′ x̄ ′], 1) for all u, u′

∈ E and x, x ′
∈ P .

A subgroup n of g will be subring of g if {x, y} ∈ n for all x, y ∈ n. It will be an ideal of g if it is a normal
subgroup and if {x, y} ∈ n for all x ∈ n and y ∈ g. It follows from (2.1.7) that if n is an ideal then {y, x} ∈ n for all
x ∈ n, y ∈ g.

By the kernel of a morphism φ : g −→ g′ in the category LM we just mean the kernel of φ considered as a group
homomorphism. Clearly the kernel kerφ is an ideal of g. Conversely, if n is an ideal of g, the quotient group g/n
inherits the structure of a multiplicative Lie ring. In fact, using (2.1.2) and (2.1.3) we have

{x, y} = {x, y′y′−1 y} = {x, y′
}

y′

{x, y′−1 y} = {x ′x ′−1x, y′
}

y′

{x, y′−1 y}

=
x ′

{x ′−1x, y′
}{x ′, y′

}
y′

{x, y′−1 y}

for all x, x ′, y, y′
∈ g such that x ′−1x, y′−1 y ∈ n. Thus

{x, y} = {x ′, y′
} mod n.

The following notions are taken from [10].

2.3. Some required notions

Let g denote a multiplicative Lie ring.

� Let f and h be subgroups of g. The subgroup of g generated by all elements {x, y}, x ∈ f, y ∈ h is denoted by {f, h}.
The subgroup {g, g} is an ideal and is called the Lie commutator of the multiplicative Lie ring g.

� The set ZL(g) = {x ∈ g| for all y ∈ g : {x, y} = 1} is an ideal and is called the Lie center of the multiplicative Lie
ring g.

� A multiplicative Lie ring g is called perfect if g = {g, g}.

By the above, we know that {g, g} and ZL(g) are ideals of g. Furthermore it is easy to check that the group
commutator [g, g] of g and the group center Z(g) of g are also ideals of the multiplicative Lie ring g. In fact, by
(2.1.6) and (2.1.9) we get

[{x, y}, z] = {[x, y], z} = 1

for all x ∈ Z(g), y, z ∈ g.

Proposition 2.4. Let g denote a multiplicative Lie ring.

(a) If g is perfect as a multiplicative Lie ring, then ZL(g) ⊆ Z(g) and [g, g] ⊆ {g, g}.
(b) If g is perfect as a group, then Z(g) ⊆ ZL(g) and {g, g} ⊆ [g, g].

Proof. (a) By assumption any y ∈ g can be written in the form
∏n

i=1{xi , yi } for some xi , yi ∈ g. Suppose x ∈ g. By
(2.1.2) and (2.1.9), we obtain

[x, y] =

[
x,

n∏
i=1

{xi , yi }

]
= [x, {x1, y1}] ·

{x1,y1}
[x, {x2, y2}] · · ·

n−1∏
i=1

{xi ,yi }

[x, {xn, yn}]

= {x, [x1, y1]} ·
{x1,y1}

{x, [x2, y2]} · · ·

n−1∏
i=1

{xi ,yi }

{x, [xn, yn]} .
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Suppose now x ∈ ZL(g). Then each {x, [xi , yi ]} = 1, (1 ≤ i ≤ n). Thus [x, y] = 1 and x ∈ Z(g). Moreover from
equality above it follows directly that [g, g] ⊆ {g, g}.

(b) is proved similarly to (a), replacing (2.1.2) by the corresponding rule for group commutators. �

Proposition 2.5. Let g be a perfect multiplicative Lie ring. Then the multiplicative Lie ring g/Z(g) has trivial center,
i.e.

ZL(g/Z(g)) = 1.

Proof. Let x ∈ g. If suffices to show that if {x, y} ∈ Z(g) for all y ∈ g then [x, y] = 1 for all y ∈ g. As in the proof
of 2.4(a), we can write

[x, y] =

[
x,

n∏
i=1

{xi , yi }

]
= [x, {x1, y1}] ·

{x1,y1}
[x, {x2, y2}] · · ·

n−1∏
i=1

{xi ,yi }

[x, {xn, yn}] .

But by (2.1.9) and (2.1.2), we also have

[x, {xi , yi }] = {x, [xi , yi ]} = {x, xi } ·
xi

{x, yi } ·
xi yi

{x, xi
−1

} ·
xi yi xi

−1
{x, yi

−1
} = 1.

It follows that [x, y] = 1. �

The construction G• in 2.2(b) defines a functor

Gr −→ LM, G 7→ G•,

which embeds Gr onto full subcategory of group objects of LM. We shall use this functor to identify Gr with its
image in LM. Define the abelianization functor

Ab : LM −→ Gr, g 7→
g

{g, g}
.

Remark. The underlying group of Ab(g) is in general non-abelian, as in the case G• above.
The following proposition is easy and left to the reader.

Proposition 2.6. The abelianization functor Ab : LM −→ Gr is left adjoint to the inclusion functor Gr ↪→ LM.

3. Homologies of multiplicative Lie rings

The rest of the paper is devoted to the investigation of multiplicative Lie rings from the homological point of view.
Two homology theories of multiplicative Lie rings are constructed as non-abelian derived functors of the abelianization
functor with respect to two different projective classes in the category LM. Standard properties analogous to those
for the homology theories of groups and Lie rings are established and our homology groups of degrees 1, 2, 3 are
compared with the corresponding homology groups of groups and Lie rings.

3.1. Free multiplicative Lie rings

We shall need the notions of free multiplicative Lie rings over a given set and over a given group.
Recall that a magma is a binary operation on a set M , i.e. a function M × M −→ M . Let X denote a set and M(X)

the free magma over X . M(X) is constructed as follows. Let X1 = X . Let n > 1 and assume the set X p has been
defined for all 1 ≤ p < n. Define Xn =

∐
p+q=n X p × Xq (=disjoint union). Then M(X) =

∐
n≥1 Xn with the

obvious binary operation. Let F(M(X)) denote the free group over the set M(X). Let {, } denote the binary operation
on F(M(X)). The formal rules expressed by (2.1.2), (2.1.3) and (2.1.10) provide a straightforward procedure for
extending {, } to a binary operation {, } on F(M(X)). For any subset S ⊆ F(M(X)), let N (S) denote the normal



A. Bak et al. / Journal of Pure and Applied Algebra 208 (2007) 761–777 765

subgroup of F(M(X)) generated by S and {{a, s}| a ∈ F(M(X)), s ∈ S}. Let N (S) = ∪i≥1 N i (S) where for
i > 1, N i (S) = N (N i−1(S)). Let relF(M(X)) denote the set of all elements

{a, a}, {a, bb′
}

b
{a, b′

}
−1

{a, b}
−1, {aa′, b}{a, b}

−1 a
{a′, b}

−1,

{{b, a}, ac}{{a, c}, cb}{{c, b}, ba}, c
{a, b}{

ca, cb}
−1

of F(M(X)) such that a, b, c ∈ F(M(X)). Let Q(M(X)) = N (relF(M(X))). It is easy to check that F(X) =

F(M(X))/Q(M(X)) is a multiplicative Lie ring, called the free multiplicative Lie ring over the set X, and that the
construction X 7→ F(X) defines a covariant functor

F : Sets −→ LM, X 7→ F(X).

Now let G denote a group and let F(G) denote the free multiplicative Lie ring over the underlying set G. Let Q(G)
denote the ideal of the multiplicative Lie ring F(G) generated by the elements

|g||h||gh|
−1 for all g, h ∈ G,

where |g| denotes the element of F(G) defined by the element g ∈ G. The quotient multiplicative Lie ring F(G)/Q(G)
will be called the free multiplicative Lie ring over the group G and will be denoted by L(G). This construction clearly
defines a covariant functor

L : Gr −→ LM, G 7→ L(G).

Let

U : LM −→ Sets

denote the forgetful functor assigning to each multiplicative Lie ring its underlying set and let

V : LM −→ Gr

denote the forgetful functor associating to each multiplicative Lie ring its underlying group.
The following proposition is straightforward and left to the reader.

Proposition 3.1.1. The functors U and V are right adjoints to the functors F and L, respectively.

We assume the reader is familiar with cotriples and projective classes. See, for example, [3, Chapter 2] or [13,
Section 8.6]. It is well known that every adjoint pair of functors induces a cotriple. Let (FU, τ, δ) (resp. (LV, τ ′, δ′))
denote the cotriple in LM defined by the adjoint pair (F,U) (resp. (L,V)) in 3.1.1. Let P andQ denote the projective
classes in the category LM induced by the cotriples (FU, τ, δ) and (LV, τ ′, δ′), respectively. The following lemma
describes these projective classes. It is easy to prove and will be very useful in the following.

Lemma 3.1.2. (i) A morphism g
φ

−→ g′ in the category LM is a P-epimorphism (resp. Q-epimorphism) if and only
if φ admits a set-theoretic (resp. group-theoretic) section.
(ii) A free multiplicative Lie ring over a set (resp. over a group) belongs to the projective class P (resp. Q).

It is easy to see that the category LM has finite limits. This implies, cf. [3, Definition 2.22], the existence of
non-abelian left derived functors LPn Ab : LM −→ Gr, n ≥ 0, and LQn Ab : LM −→ Gr, n ≥ 0, of the
abelianization functor Ab : LM −→ Gr relative to the projective classes P and Q, respectively. More explicitly,
the functors LPn Ab, n ≥ 0, and LQn Ab, n ≥ 0, are defined as n-th homotopy groups of the (pseudo)simplicial groups
(Ab(f∗),Ab(d0

0 ),Ab(g)) and (Ab(h∗),Ab(d0
0 ),Ab(g)) given by applying the functor Ab dimension-wise to a P-

projective (pseudo)simplicial resolution (f∗, d0
0 , g) and to a Q-projective (pseudo)simplicial resolution (h∗, d0

0 , g),
respectively.

A concise treatment of the special case of abelian derived functors is found in [13, Section 8.7] and examples of
non-abelian derived functors are given there also. It is known (see [3, Corollary 2.37]) that the derived functors relative
to the projective class induced by a cotriple are isomorphic to the derived functors relative to this cotriple.
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It is easy to check that Ab is a right exact functor, i.e. it sends a short exact sequence of multiplicative Lie
rings 1 → f → g → h → 1 to an exact sequence of groups Ab(f) → Ab(g) → Ab(h) → 1. Hence by [3,
Proposition 2.26],

LP0 Ab(g) ∼= Ab(g) ∼= LQ0 Ab(g).

Definition 3.2. Let g denote a multiplicative Lie ring and n ≥ 1. Define the n-th strong homology group of g by

H Smlr
n (g) = LPn−1Ab(g).

Define the n-th weak homology group of g by

H W mlr
n (g) = LQn−1Ab(g).

By the isomorphisms just preceding 3.2, we have

H Smlr
1 (g) = LP0 Ab(g) ∼= Ab(g) ∼= LQ0 Ab(g) = H W mlr

1 (g).

Let G denote an abelian group. Clearly L(G) is the ordinary free Lie ring over G. Therefore for a given Lie ring g,
the classical Chevalley–Eilenberg homology groups and our weak homology groups are isomorphic.

3.3. Hopf formula

For future calculations, we prove now the Hopf formula for H Smlr
2 and H W mlr

2 .

Call a short exact sequence r � f
φ
� g of multiplicative Lie rings a presentation of g in the projective class P (resp.

Q) if f ∈ P (resp. f ∈ Q) and φ is a P-epimorphism (resp. Q-epimorphism).

Theorem 3.3.1. Let g denote a multiplicative Lie ring and r � f
φ
� g (resp. s � h

ψ
� g) be a presentation of g in the

projective class P (resp. Q). Then there are isomorphisms of groups

H Smlr
2 (g) ∼=

r ∩ {f, f}

{f, r}
, H W mlr

2 (g) ∼=
s ∩ {h, h}

{h, s}
.

We shall prove only the first isomorphism. The proof of the second is similar. We need the following lemma.

Lemma 3.3.2. Let g∗ denote a simplicial multiplicative Lie ring. Then

{g1, ker d1
0 } = ker d1

0 ∩ {g1, g1}.

Proof. It suffices to show that

ker d1
0 ∩ {g1, g1} ⊆ {g1, ker d1

0 }. (3.3.3)

We begin by showing that

{g1, g1} = {g1, ker d1
0 } · ({g1, g1} ∩ s0g0). (3.3.4)

It suffices to show that the left hand side is contained in the right hand side. Let v,w ∈ ker d1
0 . Let x = s0d1

0 (x)v
and y = s0d1

0 (y)w. By (2.1.2) and (2.1.3),

{x, y} = {x, s0d1
0 (y)w} = {x, s0d1

0 (y)} ·
s0d1

0 (y)
{x, w} = {s0d1

0 (x)v, s0d1
0 (y)} ·

s0d1
0 (y)

{x, w}

=
s0d1

0 (x)
{v, s0d1

0 (y)} ·{s0d1
0 (x), s0d1

0 (y)} ·
s0d1

0 (y)
{x, w} .

But by (2.1.5)
s0d1

0 (x)
{v, s0d1

0 (y)},
s0d1

0 (y)
{x, w} ∈ {g1, ker d1

0 } and {s0d1
0 (x), s0d1

0 (y)} ∈ {g1, g1} ∩ s0g0. Thus

{g1, g1} ⊆ {g1, ker d1
0 } · ({g1, g1} ∩ s0g0).
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Now we are back to (3.3.3). By (3.3.4), we can write any element x ∈ ker d1
0 ∩ {g1, g1} as a product

x = x ′y,

where x ′
∈ {g1, ker d0} any y ∈ {g1, g1} ∩ s0g0. It follows that y = x ′−1x belongs to ker d1

0 ∩ s0g0 = 1. Whence
x = x ′ and (3.3.3) is proved. �

Proof of 3.3.1. Let (f∗, d0
0 , g) be a P-projective simplicial resolution (cf. [3]) of the multiplicative Lie ring g induced

by the free presentation f � g. The long exact homotopy sequence induced by the short exact sequence of augmented
simplicial groups

1 −→ {f∗, f∗} −→ f∗ −→ Ab(f∗) −→ 1,

gives by 3.2 the isomorphism of groups

H Smlr
2 (g) ∼=

ker ˜d0
0

˜d1
1 (ker ˜d1

0 )
.

Since d̃n
i is a restriction of dn

i to {fn, fn}, it follows that ker ˜d0
0 = ker d0

0 ∩ {f0, f0} = r ∩ {f, f} and ker ˜d1
0 =

ker d1
0 ∩ {f1, f1}.

Using 3.3.2, we obtain

˜d1
1 (ker ˜d1

0 ) =
˜d1
1 (ker d1

0 ∩ {f1, f1}) =
˜d1
1 {f1, ker d1

0 } = {f, r}. �

We continue the comparing of the strong and the weak homology groups of multiplicative Lie rings.
Let G denote a group. For a normal subgroup S ⊆ G, define the subgroups Γn(S,G) of L(G) inductively by

Γ1(S,G) = S and Γn(S,G) = {Γn−1(S,G),G}, n ≥ 2.

We shall write Γn(G) instead of Γn(G,G).

Lemma 3.4. Let τ : G → H be a group epimorphism. Then there is an exact sequence

0 −→

∏
n≥2

Γn(S,G) −→ {L(G),L(G)} −→ {L(H),L(H)} −→ 0,

where S = ker τ .

Proof. By [2, Lemma 15] there is a short exact sequence

0 −→

∏
n≥1

Γn(S,G) −→ L(G)
L(τ )
−→ L(H) −→ 0.

Obviously the subsequence

0 −→

(∏
n≥1

Γn(S,G)

)
∩ {L(G),L(G)} −→ {L(G),L(G)}

L(τ )
−→{L(H),L(H)} −→ 0

is exact.
Since (

∏
n≥2 Γn(S,G)) ⊂ {L(G),L(G)} and Γ1(S,G) ∩ {L(G),L(G)} = 1, we obtain(∏

n≥1

Γn(S,G)

)
∩ {L(G),L(G)} =

∏
n≥2

Γn(S,G). �

Proposition 3.5. Let G denote a group, h a multiplicative Lie ring and τ : G −→ h an epimorphism of groups. Then
there is a natural isomorphism

{L(G),L(G)}/{L(G), q} ∼= {L(h),L(h)}/{L(h), r},

where q = ker(L(G)
α

−→ h), r = ker(L(h)
β

−→ h), and α and β are induced respectively by τ and 1h.
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Proof. Clearly L(τ ) induces an epimorphism {L(G), q} −→ {L(h), r}. Moreover Γn(ker τ,G) ⊆ {L(G), q} for
n ≥ 2. Therefore by 3.4 we get the short exact sequence

0 −→

∏
n≥2

Γn(S,G) −→ {L(G), q}
L(τ )
−→{L(h), r} −→ 0.

The isomorphism in the proposition follows immediately from 3.4 and the sequence above. �

Theorem 3.6. The second strong and weak homology groups of a multiplicative Lie ring are isomorphic.

Proof. In 3.5, let G denote the free group on the elements of h and τ : G −→ h the canonical group homomorphism.
Then there is a diagram of multiplicative Lie rings

0 −→
q ∩ {L(G),L(G)}

{L(G), q}
−→

{L(G),L(G)}

{L(G), q}
−→ {h, h} −→ 0

L(τ )
y yL(τ ) ∥∥∥

0 −→
r ∩ {L(h),L(h)}

{L(h), r}
−→

{L(h),L(h)}

{L(h), r}
−→ {h, h} −→ 0

with exact rows. Hence 3.3.1, 3.5 and the “five lemma” complete the proof. �

Remark. As we mentioned above, if G is an abelian group then the multiplicative Lie ring L(G) is the ordinary
free Lie ring over G. Therefore the second Chevalley–Eilenberg homology group and the second Eilenberg–MacLane
homology group of a Lie ring are isomorphic.

Lemma 3.7. Let g denote a multiplicative Lie ring. Then there is an epimorphism H Smlr
3 (g) � H W mlr

3 (g).

Proof. Let X∗∗ denote the bisimplicial multiplicative Lie ring defined by applying a standard (FU, τ, δ)-cotriple
resolution to a Q-projective simplicial resolution g∗ → g of g. Now applying the functor Ab dimension-wise to X∗∗,
we obtain the bisimplicial group Ab(X∗∗). By [11] and 3.1.2(i), there is a spectral sequence

E2
pq = LQp H Smlr

q+1(g) ⇒ H Smlr
p+q+1(g).

It is clear that E2
p0 = H W mlr

p+1(g), p ≥ 0. By 3.6 and the fact that H W mlr
i (h) = 0 for all h ∈ Q and i ≥ 2, we get

E2
p1 = 0, p ≥ 0. Moreover since the spectral sequence is in the first quadrant, E∞

20 = E2
20 = H W mlr

3 (g) and hence

there is an epimorphism H Smlr
3 (g) � H W mlr

3 (g). �

Remark. In general H Smlr
3 (g) is not isomorphic to H W mlr

3 (g). For example, if g = L(G), where G is a group with
H3(G) 6= 0, then H W mlr

3 (g) = 0 and H Smlr
3 (g) maps onto H3(G).

Next we investigate the multiplicative Lie ring homology groups of multiplicative Lie rings G[,] (see 2.2(a)) where
G is a group.

3.8. Non-abelian exterior products

Given a group G, the non-abelian exterior product G∧G of Brown–Loday [1] is the group generated by all symbols
g ∧ h, (g, h ∈ G), subject to the following relations

gg′
∧ h = (

gg′
∧

gh)(g ∧ h),

g ∧ hh′
= (g ∧ h)(h g ∧

hh′),

g ∧ g = 1

for all g, g′, h, h′
∈ G. We give below another interpretation of this group.
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Proposition 3.8.1. The map

G ∧ G −→ Γ2(G), g1 ∧ g2 7→ {g1, g2},

is an isomorphism of groups.

Proof. It is easy to check that the map is well defined and a homomorphism of groups. Now we establish that the map
Γ2(G) → G ∧ G, {g1, g2} 7→ g1 ∧ g2, is well defined and a homomorphism of groups. This will complete the proof,
because the homomorphisms G ∧ G � Γ2(G) are obviously mutually inverse.

Let

0 −→ R −→ F −→ G −→ 0

denote a free presentation of G in the category of groups. By 3.4,

∏
n≥2

Γn(G) ∼=

(∏
n≥2

Γn(F)

)/(∏
n≥2

Γn(R, F)

)
. (3.8.2)

There is a natural homomorphism θ :
∏

n≥2 Γn(F) → [F, F] induced by L(F) → F[,]. Since θ(Γn(R, F)) ⊆ [R, F]

for n ≥ 2, it follows from (3.8.2) that there is a natural homomorphism θ :
∏

n≥2 Γn(G) → [F, F]/[R, F]. This
defines a natural homomorphism

θ : Γ2(G) −→ [F, F]/[R, F]. (3.8.3)

Moreover, it is well known by [8] that F ∧ F ∼= [F, F] under the map f1 ∧ f2 7→ [ f1, f2]. Therefore

G ∧ G ∼= (F ∧ F)/X ∼= [F, F]/[R, F], (3.8.4)

where X is the normal subgroup of F ∧F generated by all elements r ∧ f such that r ∈ R and f ∈ F . The composition
of the homomorphisms in (3.8.3) and (3.8.4) is the required homomorphism Γ2(G) → G ∧ G. �

Remark. 3.8.1 implies that if G is a cyclic group then H W mlr
n (G[,]) = 0 for n ≥ 2, because

(Γ2(G) = G ∧ G = 1) ⇒ (Γn(G) = 1 for n ≥ 2) ⇒
(
G = Ln(G) for n ≥ 1

)
.

Proposition 3.9. Let G denote a group. Then there is an isomorphism

H Smlr
2 (G[,]) ∼= H2(G)

and an epimorphism

H Smlr
3 (G[,]) � H3(G).

Proof. Let F∗ → G denote a free simplicial resolution of G. Let f∗∗ denote the bisimplicial multiplicative Lie ring
defined by applying a standard (FU, τ, δ)-cotriple resolution to a simplicial Lie ring F∗[,]. Applying the functor Ab
dimension-wise to f∗∗, we obtain the bisimplicial group Ab(f∗∗). By [11] there is a spectral sequence

E1
pq = H Smlr

q+1(Fp[,]) ⇒ H Smlr
p+q+1(G[,]).

It is clear that E2
p0 = Hp+1(G), p ≥ 0.

Thus in order to prove assertion, it suffices to show that H W mlr
2 (F[,]) = 0 for any free group F . Let θ : L(F) →

F[,] denote the canonical homomorphism induced by 1F . We must show that

ker θ ∩ {L(F),L(F)} = {L(F), ker θ}. (3.9.1)

For any x, y ∈ L(F),

{x, y} = {x, θ(y)θ(y)−1 y} = {x, θ(y)} θ(y){x, θ(y)−1 y} .

Therefore

{L(F),L(F)} = Γ2(F){L(F), ker θ}.
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Since the group F is free, the restriction of θ to Γ2(F) is injective, which proves the first assertion of the proposition.
Hence by 3.6, E2

p1 = 0, p ≥ 0 which clearly completes the proof. �

Remark. In general H Smlr
3 (G[,]) is not isomorphic to H3(G). For example, if G is a free group, then it is not difficult

to show that there is an epimorphism H Smlr
3 (G[,]) � Gab

∧ Gab
∧ Gab.

4. Central extensions of multiplicative Lie rings

In this section we introduce the notion of central extension of a multiplicative Lie ring and prove for multiplicative
Lie rings, the analogs of classical results for such extensions in the categories of groups, Lie algebras and Leibniz
algebras [7].

Definition 4.1. A central extension of multiplicative Lie ring g is an exact sequence

1 −→ c −→ h
φ

−→ g −→ 1 (h)

of multiplicative Lie rings such that {c, h} = 1, i.e. c ⊆ ZL(h). A central extension (h) splits if it admits a section, that
is, a multiplicative Lie ring homomorphism s : g → h such that φs = 1g. A central extension (h) is called universal
if, for every central extension (h′) of g there exists one and only one homomorphism f : h → h′ of multiplicative Lie
rings satisfying φ = φ′ f .

Clearly, if a universal central extension exists then it is unique up to isomorphism.

Proposition 4.2. (i) A central extension (h) of g is universal if and only if h is perfect and every central extension of
h splits.
(ii) A multiplicative Lie ring g admits a universal central extension if and only if g is perfect. Furthermore, the

kernel of a universal central extension is canonically isomorphic to the second homology group H Smlr
2 (g).

The proof of the proposition uses the following lemma.

Lemma 4.2.1. Let (h) denote a central extension of a multiplicative Lie ring g.

(a) If (h′) is another central extension of g and h is perfect then there exists at most one homomorphism from h to h′

over g.
(b) If h is not perfect then for a suitable chosen (h′) there exists more than one homomorphism from h to h′ over g.
(c) If g is perfect then the Lie commutator {h, h} is perfect and maps onto g.

Proof. (a) Let f1, f2 : h → h′ be homomorphisms of multiplicative Lie rings over g. Then for any u, v ∈ h

f1(u) = f2(u)c, f1(v) = f2(v)d,

for some c, d ∈ ker(φ′) ⊆ ZL(h′). By (2.1.2) and (2.1.3) and the centrality of c and d in the multiplicative Lie ring
h′, we have

f1{u, v} = { f1(u), f1(v)} = { f2(u)c, f2(v)d} = { f2(u), f2(v)} = f2{u, v}.

Since h is perfect, it follows that f1 = f2.
(b) Since h is not perfect, there exists a non-zero multiplicative Lie homomorphism f : h → a where a is some

abelian multiplicative Lie ring. Let (h′) denote the split multiplicative Lie ring extension such that h′
= g × a and

φ′
: g × a → g, (x, a) 7→ x . Let

f1, f2 : h −→ g × a

denote the homomorphisms defined by f1(u) = (φ(u), 1) and f2(u) = (φ(u), f (u)). Clearly, they are over g and are
distinct.

(c) Since g is perfect, every element u of h can be expressed as a product u′c with u′
∈ {h, h} and c ∈ ZL(h). By

(2.1.2) and (2.1.3),

{u1, u2} = {u′

1c1, u′

2c2} = {u′

1c1, u′

2}
u′

2
{u′

1c1, c2} =
u′

1
{c1, u′

2}{u
′

1, u′

2} = {u′

1, u′

2}. �
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Proof of 4.2. (i) Suppose h is perfect and every central extension of h splits. Given a central extension (h′) of g, form
the pullback

(pull)

h × h′

g

ν
−→ h′

µ ↓ ↓ φ′ ,

h
φ

−→ g

in the category LM. By definition, h × h′

g
is the subring of the multiplicative Lie ring h × h′ consisting of all (u, u′)

such that φ(u) = φ′(u′), and µ(u, u′) = u and ν(u, u′) = u′. It is clear that (h × h′

g
, µ) is a central extension of h,

and hence possesses by assumption a section s : h → h ×
g

h′. The multiplicative Lie ring homomorphism νs : h → h′

is clearly over g and by 4.2.1(a) is unique.
Conversely, let (h) be a universal central extension of g. It follows from 4.2.1(b) that h is perfect. It remains to

show that every central extension (f, ψ) of h splits. We show first that the composition

f
ψ

−→ h
φ

−→ g

is a central extension of g. Let x ∈ f such that φψ(x) = 1. Then {x, u} ∈ ZL(f) for all u ∈ f. Moreover by 4.2.1(c),
f = {f, f} ker(ψ). Hence to complete the proof, it suffices to show that {{y, z}, x} = 1 for all y, z ∈ f. By (2.1.4) and
(2.1.5)

{{y, z}, x} = {{
z−1

x, y},
yz}−1

{{z, z−1
x}, z−1xz y}

−1
= {

z−1
{x, z y},

yz}−1
{

z−1
{z, x}, z−1xz y}

−1

=
z−1
({{x, z y},

zyz}−1
{{z, x}, xz y}

−1) = 1.

(ii) Suppose g admits a universal central extension (h). Then by (i), h and consequently its homomorphic image g are
perfect.

Conversely, suppose g is perfect. Choose a surjective homomorphism v : F → g where F is a free multiplicative
Lie ring over some set. Let R = ker v. Then there is a natural surjective homomorphism of multiplicative Lie rings

ṽ :
F

{F, R}
−→

F

R
∼= g.

Clearly ker ṽ =
R

{F,R}
is included in the center of the multiplicative Lie ring F

{F,R}
. Thus by 4.2.1(c), the canonical

homomorphism

ψ :
{F, F}

{F, R}
−→ g (∼=F/R)

is a perfect central extension of g.
We claim that ψ :

{F,F}

{F,R}
→ g is universal. Let φ : h → g denote any central extension of g. Since F is free, there

exists a homomorphism h : F → h such that v = φh. Since h(R) ⊆ ZL(h), it follows that h{F, R} = 1. The induced
homomorphism h :

{F,F}

{F,R}
→ h has the property that φh = ψ and is unique by 4.2.1(a).

It is clear kerψ =
R∩{F,F}

{F,R}
, and by 3.3.1, R∩{F,F}

{F,R}
∼= H Smlr

2 (g). �

4.3. Perfect groups

If G is a perfect group then the multiplicative Lie ring G[,] (see 2.2(a)) is perfect. There is a natural question: what
is the universal central extension of G[,] in the category of multiplicative Lie rings?

Proposition 4.3.1. If U
Φ

−→ G is a universal central extension of a perfect group G then U[,]
Φ

−→ G[,] is a universal
central extension of multiplicative Lie rings.

First we need the following lemma.

Lemma 4.3.2. Let G be a perfect group and R = ker(L(G) → G[,]). Then {R,L(G)} = 1.
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Proof. Since G is perfect, it follows from (2.1.9) that Γn(G) ⊂ Γ2(G), n ≥ 2. Therefore, R is a normal subgroup of
L(G) generated by all [g1, g2]{g1, g2}

−1 such that g1, g2 ∈ G. Hence, it suffices to prove that

{[g1, g2]{g1, g2}
−1, x} = 1, and {[g1, g2]{g1, g2}

−1, {x, y}} = 1,

for all g1, g2 ∈ G and x, y ∈ L(G). Since G is perfect, it suffices by (2.1.2) and (2.1.3) to consider the case when
x = [x1, x2] and y = [y1, y2] where x1, x2, y1, y2 ∈ G. We compute

{[g1, g2]{g1, g2}
−1, x} = {[g1, g2]{g1, g2}

−1, [x1, x2]} = (by (2.1.9))

= [[g1, g2]{g1, g2}
−1, {x1, x2}] =

(
[g1,g2]{g1,g2}

−1
{x1, x2}

)
{x1, x2}

−1

= (by (2.1.8)) = 1,

and

{[g1, g2]{g1, g2}
−1, {x, y}} = {[g1, g2]{g1, g2}

−1, {x, [y1, y2]}} = (by (2.1.9))

= [[g1, g2]{g1, g2}
−1, {x, {y1, y2}}]

=

(
[g1,g2]{g1,g2}

−1
{x, {y1, y2}}

)
{x, {y1, y2}}

−1
= (by (2.1.8)) = 1. �

Proof of 4.3.1. It is well known by [1] that U ∼= G ∧ G, where ∧ is the non-abelian exterior product. On the other
hand, according to the proof of 4.2(ii), there is the universal central extension

{L(F(G)),L(F(G))}

{Q,L(F(G))}
−→ G[,]

of G[,] where F(G) is a free group over G and Q is the kernel of the natural homomorphism L(F(G)) → G[,]. Since
G is perfect, by 3.5 and 4.3.2 we have

{L(F(G)),L(F(G))}

{Q,L(F(G))}
−→ {L(G),L(G)}.

Identify G with its canonical image in L(G). Since the extension L(G) → G[,] is central (by 4.3.2) and maps G
onto G[,], it follows that {L(G),L(G)} = {G,G}. By definition, Γ2(G) = {G,G} and by 3.8.1, Γ2(G) ∼= G ∧ G ∼=

(by [1]) U .
To complete the proof, we must show that {x, y} = [x, y] for all x, y ∈ {G,G}. It suffices by (2.1.2) and (2.1.3) to

consider the case when x = {g1, g2} and y = {g3, g4} where g1, g2, g3, g4 ∈ G. In fact, by (2.1.3), (2.1.9) and 4.3.2

{{g1, g2}, {g3, g4}} = {[g1, g2][g1, g2]
−1

{g1, g2}, {g3, g4}}

=
[g1,g2]

{[g1, g2]
−1

{g1, g2}, {g3, g4}}{[g1, g2], {g3, g4}}

= {[g1, g2], {g3, g4}} = [{g1, g2}, {g3, g4}]. �

Remark. A similar result is true for Lie rings, i.e. if U
Φ

−→ G is a universal central extension in the category of Lie
rings then it is also a universal central extension in the category of multiplicative Lie rings.

5. Application to K-theory and cyclic homology

In this section we introduce the Steinberg multiplicative Lie ring, Stmlr(R), of a unital ring R and describe it
as a universal central extension of the multiplicative Lie ring E(R) × sl(R) where sl(R) = lim

−→
sln(R) and sln(R)

denotes the Lie subring of gln(R) generated by all strictly upper and lower triangular matrices, i.e. by all matrices
whose diagonal coefficients are zero. Then we show that the kernel of this universal central extension is isomorphic
to K2(R)× HC1(R) where HC1(R) denotes the first cyclic homology group of R.
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5.1. Steinberg multiplicative Lie rings

Let R be a ring with unit.

Definition 5.1.1. For n ≥ 3 the n-th Steinberg multiplicative Lie ring Stmlr
n (R) is the multiplicative Lie ring defined

by generators xi j (s), s ∈ R, 1 ≤ i 6= j ≤ n, subject to the relations

xi j (s)xi j (t) = xi j (s + t), (5.1.2)

{xi j (s), xkl(t)} =

{
1 if i 6= l, j 6= k
xil(st) if i 6= l, j = k.

(5.1.3)

Define the Steinberg multiplicative Lie ring Stmlr(R) by

Stmlr(R) = lim
−→

n

Stmlr
n (R).

By (5.1.3), every generator xi j (s) of Stmlr
n (R) satisfies

xi j (s) = {xik(s), xk j (1)} for k 6= i, j.

Thus Stmlr
n (R) and hence Stmlr(R) are perfect multiplicative Lie rings.

We deduce next the following identity in Stmlr
n (R), n ≥ 5:

[xi j (s), xkl(t)] = 1 for all i 6= l, j 6= k. (5.1.4)

Choose an index h distinct from i, j, k, l. Then using (2.1.3), (2.1.9) and (5.1.3), we compute

[xi j (s), xkl(t)] = [{xih(s), xhj (1)}, xkl(t)] = {[xih(s), xhj (1)], xkl(t)}

=
xih(s)xhj (1)xih(−s)

{xhj (−1), xkl(t)}
xih(s)xhj (1)

{xih(−s), xkl(t)}
xih(s)

{xhj (1), xkl(t)}{xih(s), xkl(t)} = 1.

Proposition 5.2. For n ≥ 5, every central extension of the multiplicative Lie ring Stmlr
n (R) splits.

Proof. Consider any central extension

1 −→ c −→ h
φ

−→ Stmlr
n (R) −→ 1.

Let x, x ′
∈ Stmlr

n (R). Then the set {φ−1(x), φ−1(x ′)} = {{y, y′
}|y ∈ φ−1(x), y′

∈ φ−1(x ′)} has precisely one
element. In fact, by (2.1.2) and (2.1.3) we have

{yc, y′c′
} = {yc, y′

}
y′

{yc, c′
} =

y
{c, y′

}{y, y′
} = {y, y′

}

for all c, c′
∈ c. By 4.2.1(c), we can suppose, without loss of generality, that h is perfect as a multiplicative Lie ring.

Then the set [φ−1(x), φ−1(x ′)] = {[y, y′
]|y ∈ φ−1(x), y′

∈ φ−1(x ′)} has also precisely one element. In fact, by
2.4(a) we have ZL(g) ⊆ Z(g) and thus

[yc, y′c′
] = [yc, y′

]
y′

[yc, c′
] =

y
[c, y′

][y, y′
] = [y, y′

].

Construct a section ψ : Stmlr
n (R) → h as follows: for each generator xi j (r) of Stmlr

n (R), let

ψ(xi j (r)) = {φ−1(xik(1)), φ−1(xk j (r))}

where k 6= i, j .

We should show that ψ does not depend on the choice of index k and commutes with the relations (5.1.2) and
(5.1.3).

The following lemma will be needed.
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Lemma 5.2.1. For any j 6= k and i 6= l we have the following equalities:

(a) {φ−1(xi j (r)), φ−1(xkl(s))} = 1,
(b) [φ−1(xi j (r)), φ−1(xkl(s))] = 1.

Proof. Since n ≥ 5, we can choose an index h 6= i, j, k, l. Let y ∈ φ−1(xih(1)), y′
∈ φ−1(xhj (r)) and

y′′
∈ φ−1(xkl(s)). Clearly {y, y′

} ∈ φ−1(xi j (r)) and {y, y′′
}, {y′, y′′

} ∈ c. Moreover, by (2.1.2), (2.1.5) and (2.1.10)

we deduce easily from the above that {y′−1
, y′′

}, {y−1, y′′
}, {y′,

y′−1

y′′
}, {

y′−1

y′′, y} ∈ c. Thus

{φ−1(xi j (r)), φ
−1(xkl(s))} = {{y, y′

}, y′′
} = {{y, y′

},
y′

(
y′−1

y′′)}
(2.1.4)
= {{

y′−1

y′′, y},
y y′

}
−1

{{y′,
y′−1

y′′
},

y′−1 y′′ y′

y}
−1

= 1

and

[φ−1(xi j (r)), φ
−1(xkl(s))] = [{y, y′

}, y′′
]

(2.1.9)
= {[y, y′

], y′′
}

(2.1.3)
=

yy′ y−1
{y′−1

, y′′
}

yy′

{y−1, y′′
}

y
{y′, y′′

}{y, y′′
}

2.4(a)
= 1. �

We return to the proof of 5.2. Choose four distinct indices i, j, k, l and consider any elements y ∈ φ−1(xik(1)), y′
∈

φ−1(xkl(r)), y′′
∈ φ−1(xl j (s)).

It follows from 5.2.1 that {y, y′′
} = 1 and y′′

y = y. Hence from (2.1.4) we have the equality

{{y, y′
},

y′

y′′
} = {y, {y′, y′′

}}.

Since {y, y′
} ∈ φ−1(xil(r)) and {{y, y′

}, y′′
} ∈ φ−1(xi j (rs)), it follows from (2.1.5) and 5.2.1(b) that

{{y, y′
},

y′

y′′
} =

y′

{
y′−1

{y, y′
}, y′′

} = {{y, y′
}, y′′

}.

Thus

{{y, y′
}, y′′

} = {y, {y′, y′′
}}

or in other words

{φ−1(xil(r)), φ
−1(xl j (s))} = {φ−1(xik(1)), φ−1(xk j (rs))}. (5.2.2)

Taking r = 1, we obtain that the element

{φ−1(xik(1)), φ−1(xk j (r))}

does not depend on the choice of k.
Moreover (5.2.2) implies that {ψ(xil(r)), ψ(xl j (s))} = ψ(xi j (rs)). This equality and 5.2.1(a) show that ψ

commutes with relation (5.1.3).
To show that ψ commutes with the relation (5.1.2), we apply the identity (2.1.11) to elements x ∈ φ−1(xik(1)), y ∈

φ−1(xk j (r)) and z ∈ φ−1(xk j (s)), i.e.

{x, y}{x, z} = {x, yz}[y, {z, x}].

By definition,

{x, y} = ψ(xi j (r)), {x, z} = ψ(xi j (s)), {x, yz} = ψ(xi j (r + s)).

By 5.2.1(b)

[y, {z, x}] = [φ−1(xk j (r)), φ
−1(xi j (−s))] = 1.

Thus

ψ(xi j (r))ψ(xi j (s)) = ψ(xi j (r + s)). �
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5.3. Steinberg groups and Steinberg Lie rings

Here we recall the classical definitions of stable and non-stable Steinberg groups and Lie algebras of a ring with
unit.

Definition 5.3.1. Let R denote a ring with unit. For n ≥ 3, the n-th Steinberg group Stn(R) is the group defined by
generators xi j (s), s ∈ R, 1 ≤ i 6= j ≤ n, subject to the relations

xi j (s)xi j (t) = xi j (s + t),

[xi j (s), xkl(t)] =

{
1 if i 6= l, j 6= k
xil(st) if i 6= l, j = k.

The Steinberg group St (R) is defined by

St (R) = lim
−→

n

Stn(R).

Definition 5.3.2. Let R denote a ring with unit. For n ≥ 3, the n-th Steinberg Lie ring stn(R) is the Lie ring defined
by generators xi j (s), s ∈ R, 1 ≤ i 6= j ≤ n, subject to the relations

xi j (s)+ xi j (t) = xi j (s + t),

[xi j (s), xkl(t)] =

{
0 if i 6= l, j 6= k
xil(st) if i 6= l, j = k.

The Steinberg Lie ring st (R) is defined by

st (R) = lim
−→

n

stn(R).

It is easy to see there are natural homomorphisms of multiplicative Lie rings

Θ : Stmlr(R) −→ St (R)[,]
xi j (t) 7→ xi j (t)

and Θ ′
: Stmlr(R) −→ st (R)
xi j (t) 7→ xi j (t).

Lemma 5.3.3. For n ≥ 5 the multiplicative Lie homomorphism Θ : Stmlr
n (R) → Stn(R)[,] admits a group theoretic

section.

Proof. Since any central extension of Stn(R) in the category of groups splits (see [9,4]), if suffices to check that
Θ : Stmlr

n (R) → Stn(R)[,] is a central extension in the category of groups. Since Stmlr
n (R) is a perfect multiplicative

Lie ring, it suffices to show that

[a, {b1, b2}] = 1 for all a ∈ ker Θ, b1, b2 ∈ Stmlr
n (R). (5.3.4)

Let N denote the normal subgroup of Stmlr
n (R) generated by all elements {x, y}[x, y]

−1 such that x, y ∈ Stmlr
n (R).

N is an ideal of Stmlr
n (R), since by (2.1.3), (2.1.9) and (2.1.10)

{{x, y}[x, y]
−1, z} =

{x,y}
{[x, y]

−1, z}{{x, y}, z} =
{x,y}

[{x, y}
−1, z]{{x, y}, z}

= [z, {x, y}]{z, {x, y}}
−1

for all x, y, z ∈ Stmlr
n (R). Clearly N ⊆ ker Θ . Moreover, it is straightforward to check that the assignment

xi j (r) 7→ |xi j (r)| ∈ Stmlr
n (R)/N defines an inverse for the natural map Stmlr

n (R)/N → Stn(R)[,]. Thus N = ker Θ .
Hence, in order to check (5.3.4), we can take a = {x, y}[x, y]

−1. By (2.1.8) we have

[{x, y}[y, x], {b1, b2}] =
{x,y}[y,x]

{b1, b2}{b1, b2}
−1

= 1. �

Proposition 5.3.5. For n ≥ 5 there is an isomorphism of multiplicative Lie rings Θ × Θ ′
: Stmlr

n (R) → Stn(R)[,] ×

stn(R).
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Proof. Since Θ maps [Stmlr
n (R), Stmlr

n (R)](⊆ker Θ ′) onto Stn(R), it is clear that Θ × Θ ′ is surjective. Thus
we only have to check injectivity. [Stmlr

n (R), Stmlr
n (R)] is an ideal (see Section 2) of Stmlr

n (R) and since the
assignment xi j (r) 7→ |xi j (r)| ∈ Stmlr

n (R)/[Stmlr
n (R), Stmlr

n (R)] defines an inverse to the natural homomorphism
Stmlr

n (R)/[Stmlr
n (R), Stmlr

n (R)] → stn(R) of multiplicative Lie rings, it follows that ker Θ ′
= [Stmlr

n (R), Stmlr
n (R)].

Moreover, by 5.3.3 there is a group theoretic homomorphism s : Stn(R) → Stmlr
n (R) such that Θs = 1. Therefore,

we get the following group theoretic isomorphism

Stmlr
n (R) ∼= ker Θ o Stn(R)

where Stn(R) acts on Stmlr
n (R) via s. Hence there is an isomorphism

[Stmlr
n (R), Stmlr

n (R)] ∼= [ker Θ, Stmlr
n (R)] o [Stn(R), Stn(R)].

Thus

ker Θ ∩ ker Θ ′
= ker Θ ∩ [Stmlr

n (R), Stmlr
n (R)] = [ker Θ, Stmlr

n (R)]
(5.3.4)
= 1. �

Let K ad
2 and K ad

3 denote the additive analogs [5] of algebraic K-functors. In particular, K ad
2 (R) =

H W mlr
2 (sl(R)) ∼= HC1(R), K ad

3 (R) = H W mlr
3 (st (R)). Now we come to the main result of the section.

Theorem 5.4. The center of multiplicative Lie ring Stmlr(R) is isomorphic to K2(R)× HC1(R) and for n ≥ 5 there
is an exact sequence

1 −→ K2,n(R)× HC1(R) −→ Stmlr
n (R) −→ En(R)[,] × sln(R) −→ 1.

Proof. By 5.3.5 we deduce an isomorphism

ZL(Stmlr
n (R)) ∼= Z(Stn(R))× ZL(stn(R)).

It is well known (we refer the reader to [9,4–6]) that

Z(St (R)) = K2(R) and ZL(stn(R)) ∼= HC1(R).

This implies the first part of the theorem. Moreover by definition, K2,n(R) is the kernel of the natural homomorphism
Stn(R) → En(R) and for n ≥ 5, the sequence

0 −→ HC1(R) −→ stn(R) −→ sln(R) −→ 0

is exact. Hence 5.3.5 completes the proof. �

Remark. For an arbitrary unital ring R, it is not known (and is probably false) that K2,n(R) ⊆ Z(Stn(R)). But if R
is commutative, or more generally module finite over its center, and n ≥ 4 then K2,n(R) = Z(Stn(R)) by [12].

Corollary 5.5. There is an isomorphism

H Smlr
2 (E(R)[,] × sl(R)) ∼= K2(R)× HC1(R).

Proof. The corollary follows directly from 4.2(ii), 5.2 and 5.4. �

Remark. We do not know if there is an isomorphism between H Smlr
3 (Stmlr(R)) and K3(R) × K ad

3 (R). But by 3.9,
3.7, 5.3.5 and [5] we have at least an epimorphism H Smlr

3 (Stmlr(R)) � K3(R)× K ad
3 (R).
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