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proposed solution generalizes Milnor’s conjecture for quadratic forms, whose
proof has been announced by V. Voevodsky.
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§0. Introduction

We describe first our results presenting powers of the augmentation ideal
of an integral group ring and then relate these to the fundamental question of
finding all relations among n-fold Pfister classes.

Let G be a group, Z[G] its integral group ring and η : Z[G] → Z the
augmentation homomorphism. The kernel J(G) of the homomorphism η is
called the augmentation ideal of Z[G]. It is clear that J(G) is freely generated
as an abelian group by the elements

[g] := 1 − g, g ∈ G \ {1}

(cf. [3], [6]). This implies that the n-th power Jn(G) := J(G)
n

of the aug-
mentation ideal J(G) is generated as an abelian group by the products

[g1, . . . , gn] := (1 − g1) . . . (1 − gn), g1, . . . , gn ∈ G.

It is a classical unsolved problem in the theory of group rings to find the
relations among the generators [g1, . . . , gn] for Jn(G). There are two obvious
relations which hold for any group G. The first is the normalizing relation

(N) [g1, . . . , gn] = 0 (n ≥ 1), whenever some gi = 1.

The second is that the symbol [g1, g2] is a 2-cocycle:

[g2, g3] − [g1g2, g3] + [g1, g2g3] − [g1, g2] = 0.

This implies the relation
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(R) [g1, . . . , gn] (n ≥ 2) is a 2-cocycle in gi−1, gi

when the other variables are fixed. Other relations seem to depend essentially
on the subgroup structure of the group G. Even in the case of a finite abelian
group, these relations may be quite complicated and are not completely un-
derstood.

In the present article, we solve completely this problem in the important
special case when G is a group of exponent 2. It turns out that the only
relations one has to impose on the symbols [g1, . . . , gn], apart from (N) and
(R), are the relation

(S) [g1, . . . , gi, . . . , gj, . . . , gn] = [g1, . . . , gj, . . . , gi, . . . , gn] (n ≥ 2)

which follows from the commutativity of G (every group G of exponent 2 is
commutative), and the relation

(T) [f, g, fg, g4, . . . , gn] = 0 (n ≥ 3)

which is verified easily by direct computation.

Our main result is the following.

Theorem A. Let G be a group of exponent 2. Then the group Jn(G) is the
free abelian group on the symbols [g1, . . . , gn] (gi ∈ G, i = 1, . . . , n) modulo
the relations

(N), if n = 1;

(N), (R), and (S), if n = 2;

(N), (R), (S), and (T), if n ≥ 3.

In the process of proving Theorem A, we establish the following mod 2 result.
Let F2 denote the field of 2 elements. Let F2[G] denote the group ring over
F2, J2(G) the kernel of the augmentation homomorphism η2 : F2[G] −→ F2,
and Jn

2 (G) := J2(G)n. In the mod 2 situation, the relations (N), (R), and (S)
remain unchanged, but the relation (T ) is replaced by

(T′) [g, g, g3, . . . , gn] = 0 (n ≥ 2).
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Theorem B. Let G be a group of exponent 2. Then the group Jn
2 (G) is the

free abelian group on the symbols [g1, . . . , gn] (gi ∈ G, i = 1, . . . , n) modulo
the relations

(N) and 2[g] = 0, if n = 1;

(N), (R), (S), and (T’), if n ≥ 2.

For general groups G, the consecutive factors Jm(G)/Jm+1(G) of the
filtration . . . ⊇ Jm(G) ⊇ Jm+1(G) ⊇ . . . have been studied much more in-
tensively than the filtration itself. In [7], the consecutive factors have been
calculated when the ground ring is a field. In [9], a general homological proce-
dure for calculating these factors with integral coefficients has been proposed.
Finally, in the case of an elementary abelian p-group G = G(m) of rank m,
these factors are completely calculated in [5] (see also [3], [4]). Namely, it is
shown there that Jm(G)/Jm+1(G) ∼= Z[x1, . . . , xm]/(2xi, x

p
ixj − xp

jxi). Of
course, this result follows from ours when p = 2. However, our presentation
of Jm(G) provides more detailed information concerning Jm(G) than the re-
sult above, and it is not at all clear, how to recover this information from a
presentation of Jm(G)/Jm+1(G).

The relation of Theorem A above to n-fold Pfister classes and Milnor’s
conjecture is as follows. Let F be a field of characteristic 6= 2. In [2], J.Milnor
conjectured that

Kn(F )/2Kn(F ) ∼= In(F )/In+1(F ),

where I(F ) is the fundamental ideal of the Witt ring W (F ) of (anisotropic)
quadratic spaces over F and Kn(F ) the n’th Milnor K-group of F . The proof
of this conjecture has been announced by V. Voevodsky [11]. In terms of group
rings, the conjecture takes the following form. For an element a ∈ F ∗ :=
units(F ), let qa denote the quadratic form qa : F −→ F , x 7→ ax2. It is well
known that W (F ) is generated as an F2-algebra by the isomorphism classes
〈a〉 of the one dimensional quadratic spaces (F, qa). (We refer the reader to
[1], [8] for the fundamentals of the algebraic theory of quadratic forms.) The
map F ∗ −→ W (F ), a 7→ 〈a〉, is a homomorphism of F ∗ into the group of
multiplicative units of W (F ) and induces a surjective ring homomorphism
Z[F ∗/F ∗2] →W (F ) which takes Jn(F ∗/F ∗2) onto In(F ) and maps a typical
generator [a1F

∗2, . . . , anF
∗2] of Jn(F ∗/F ∗2) onto the n-fold Pfister class

〈〈a1, . . . , an〉〉 := (〈1〉 − 〈a1〉) . . . (〈1〉 − 〈an〉)

in In(F ).

Lemma C. Suppose n = 1 or 2. Then a complete set of additive relations for
the generators 〈〈a1, . . . , an〉〉 of In(F ) is given by the relations in Theorem A
for the symbols

{a1, . . . , an} := [a1F
∗2, . . . , anF

∗2]
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and the additional relations

{a} + {−a} − {−1} = 0 = {a} + {b} − {a+ b} − {(a+ b)ab},

if n = 1 and a, b, a+ b ∈ F ∗;

{a, b} = {a,−ab} = {a, (1 − a)b},

if n = 2 and a, 1 − a, b ∈ F ∗.

The lemma above follows routinely from [1, II § 4] and [10, (6.3)]. The
proof will be omitted. The following question has fundamental significance
for the algebraic theory of quadratic forms. It was posed independently two
decades ago by R. Elman and the first author and generalized Milnor’s con-
jecture.

Fundamental Question. Is every additive relation among the n-fold Pfister
classes 〈〈a1, . . . , an〉〉 in In(F ) for n ≥ 3 a consequence of the relations (N),
(R), (S), and (T) for the symbols {a1, . . . , an} and the additional relation

(Q) {a, b, a3, . . . , an} = {a,−ab, a3, . . . , an} = {a, (1− a)b, a3, . . . , an},

if a, 1− a, b, a3, . . . , an ∈ F ∗?

A positive answer to this question allows one to show easily that the
assignment

〈〈a1, . . . an〉〉 7→ a1 ⊗ . . .⊗ an ∈ Kn(F )/2Kn(K)

defines a surjective homomorphism In(F ) −→ Kn(F )/2Kn(K) whose kernel
is In+1(F ), which proves Milnor’s conjecture.

Whereas Milnor’s conjecture proposed how to account for all additive
relations among the images of n-fold Pfister classes in the consecutive fac-
tor In(F )/In+1(F ), the question above proposes an account in In(F ) itself.
Thanks to Witt cancellation, the latter would provide an answer to the ques-
tion when orthogonal sums of n-fold Pfister forms are isomorphic or more
generally differ by an orthogonal sum of hyperbolic planes.

The remainder of the article is organized as follows. In § 1, we review
well known relations in Jn(G) for general groups G. For groups G of exponent
2, 2Jn−1(G) ⊆ Jn(G). It follows that the relations in Jn(G) are essentially
visible already modulo 2. Thus, we prove first Theorem B for Jn

2 (G) and then
lift the result to Jn(G) to obtain Theorem A. The case Jn

2 (G) is handled in
§ 2 and the case Jn(G) in § 3.
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§1. General relations

The purpose of this section is to review in a convenient form well known
results concerning powers of the augmentation ideal in any group ring.

Let G be a group and R a commutative, associative ring with identity.
Let RG denote the group ring of G with coefficients in R. Thus, the elements
of R are all formal, finite sums

∑

g∈G

rgg such that rg ∈ R and rg = 0 for almost

all g. Addition is defined by the rule
∑
rgg+

∑
r′gg =

∑
(rg + r′g)g and mul-

tiplication by (
∑
rgg)(

∑
r′gg) =

∑

g∈G

(
∑

fh=g

rfr
′
h)g. The ring homomorphism

ηR : RG −→ R,
∑
rgg 7−→

∑
rg, is called the augmentation homomorphism.

The Ker(ηR) will be denoted by JR(G) and is called the augmentation ideal
of RG. We let Jn

R(G) denote the n’th power ideal JR(G)n of JR(G). By def-
inition, Jn

R(G) is additively generated by all products x1, · · · , xn of elements
xi such that xi ∈ JR(G). For g1, . . . , gn ∈ G, let

[g1, . . . , gn] = (1 − g1) . . . (1 − gn) ∈ RG.

Lemma 1.1. The R-module JR(G) is the free R-module generated by the
elements [g] (g ∈ G) modulo the relation [1] = 0.

Proof. Let
∑
rgg ∈ JR(G). By definition,

∑
rg = 0. Thus,

∑
rgg = −(

∑
rg−∑

rgg) = −
∑
rg(1−g) = −

∑
rg[g]. Thus, the elements [g] (g ∈ G) generate

JR(G) as an R-module. Clearly, [1] = 0. Suppose
∑
rgg [g] = 0. Since [1] = 0,

we conclude that
∑

g 6=1

rg[g] = 0. Thus,
∑

g 6=1

rg −
∑

g 6=1

rgg = 0. Since, R[G] is a

free R-module on the elements of G, it follows that rg = 0 for all g 6= 1. Thus,
JR(G) is a free R-module on {[g]| g ∈ G, g 6= 1}. Q.E.D.

Corollary 1.2. The R-module Jn
R(G) is generated as an R-module by the el-

ements [g1, . . . , gn] (gi ∈ G, 1 ≤ i ≤ n) and these elements satisfy the relation
(N); namely, [g1, . . . , gn] = 0 whenever some gi = 1.

Proof. By definition, [g1, . . . , gn] = [g1] . . . [gn]. Thus, the corollary is a trivial
consequence of (1.1).

Lemma 1.3. For n ≥ 2, the generators [g1, . . . , gn] (gi ∈ G, 1 ≤ i ≤ n)
satisfy relation (R); namely, the symbol [g1, . . . , gn] is a cocycle in gi, gi+1

when the other variables are fixed.
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Proof. Since [g1, . . . , gn] = [g1] . . . [gi][gi+1] . . . [gn], it suffices to prove the
result when n = 2. But, this is a straightforward computation, which anyone
can check for himself.

Lemma 1.4. The R-module Jn+1
R (G) measures the failure of the generators

[g1, . . . , gn] of Jn
R(G) to be n-multiplicative. Specifically, [g1, . . . , g

(1)
i g

(2)
i , . . . , gn]

−[g1, . . . , g
(1)
i , . . . , gn] − [g1, . . . , g

(2)
i , . . . , gn] = −[g1, . . . , g

(1)
i , g

(2)
i , . . . , gn].

Proof. Since [g1, . . . , gn] = [g1] . . . [gn], it suffices to prove the result for the
case n = 1. But, this is a trivial computation.

Lemma 1.5. If G is abelian then the generators [g1, . . . gn] (gi ∈ G, 1 ≤ i ≤
n) satisfy relation (S); namely, [g1, . . . , gi, . . . , gj, . . . , gn] = [g1, . . . , gj, . . . , gi,
. . . , gn].

Proof. This follows from the fact that [g1, . . . , gn] = [g1] . . . [gn] and the group
ring RG is commutative when G is abelian.

§2. Relations modulo 2

Throughout this section, G denotes a group of exponent 2. Thus, G must
be abelian. Let F2 denote the field of 2 elements, F2G the group ring of G
with coefficients in F2, J2(G) the kernel of the augmentation homomorphism
η2 : F2G −→ F2,

∑

g∈G

ngg 7−→
∑

g∈G

ng, and Jn
2 (G) the n’th power ideal J2(G)n

of J2(G). Let

[g1, . . . , gn] = (1 + g1) . . . (1 + gn), gi ∈ G.

By (1.2), the elements [g1, . . . , gn] generate additively the ideal Jn
2 (G). We

are interested in the relations among these generators.

Lemma 2.1. The generators [g1, . . . , gn] satisfy the relations (N), (R), (S),
and (T’) in the introduction.

Proof. By easy, direct computation.

Eventually, we shall show that (N), (R), (S), and (T’) form a complete
set of relations for Jn

2 (G).
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Lemma 2.2. Under the relations (N), (R), and (S), the relation (T’) is
equivalent to the relation

(T′′) [f, g, g2, . . . , gn] = [f, fg, g3, . . . , gn] (n ≥ 2).

Moreover, under (N), (R), (S), and (T’) (or (T”), one has

(2.2.1) 2[f, g, g2, . . . , gn] = 0.

Proof. In our notation, we shall suppress g3, . . . , gn. The assertion (T”) =⇒
(T’) follows from the equations [f, f ] = (by (T”)) [f, 1] = (by (N)) 0. Con-
versely,

(2.2.1) [f, g] = −[f, fg]

because [f, g] = (by (R)) = −[f, fg]+[f 2, g]+[f, f ] = −[f, fg]+[1, g]+[f, f ] =
(by (N), (T’)) = −[f, fg]. Thus, (T”) will follow from (T’), once we show that
for any symbol [f, g], 2[f, g] = 0. For any f and g, [f, fg] = (by (S)) [fg, f ] =
(by (2.2.1)) = −[fg, (fg)f ] = −[fg, g]. Coupling this result with (2.2.1),
one obtains [f, g] = [fg, g]. But, [f, g] = (by (S)) [g, f ] = (by (2.2.1)) =
−[g, fg] = (by (S)) = −[fg, g]. Thus, [f, g] = −[f, g]. Q.E.D.

For g1, . . . , gn ∈ G, set

Hg1,...,gn
= subgroup of G generated by g1, . . . , gn.

Lemma 2.3. Let g ∈ Hg1,...,gn
and write g =

n∏

i=1
gei

i where ei = 0 or 1. Then

relations (S) and (T”) imply that [ge1

1 , g2, . . . , gn] = [g, g2, . . . , gn].

Proof. The result follows from (2.2) by an easy computation.

Corollary 2.4. The relations (N), (S), and (T”) imply that the symbol
[g1, . . . , gn] (n ≥ 1) depends on the group Hg1,...,gn

as follows:

(2.4.1) If |Hg1,...,gn
| < 2n then [g1, . . . , gn] = 0.

(2.4.2) If Hg1,...,gn
= Hg′

1
,...,g′

n
then [g1, . . . , gn] = [g′1, . . . , g

′
n].

Proof. One can prove the assertion easily, using (2.3). Details are left to the
reader.
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On the basis of the lemma above, we make the following definition.

Definition 2.5. If H ⊆ G is a subgroup of order |H| 5 2n, let

[H] = [g1, . . . , gn] ∈ Jn
2 (G)

where g1, . . . , gn ∈ G such that H = Hg1
, . . . , gn. (The fact that [H] is well

defined depends only on (N), (R), (S), and (T ′).)

Theorem 2.6. The abelian group Jn
2 (G) is generated by the symbols [g1, . . . , gn]

where g1, . . . , gn ∈ G, subject to the defining relations (N), (R), (S), (T’).

Proof. Let F(G) denote the set of all finite subgroups of G. Since

Jn
2 (G) = lim−→

F∈F(G)

Jn
2 (F ),

one can reduce to the case G = G(m) is an elementary abelian 2-group of
order 2m.

Let Jn(m) denote the abelian group whose generators and relations are
as in the theorem with G = G(m). By (2.2.1), Jn(m) is an F2-vector space
of finite dimension over F2. We shall construct by induction in n and m a
basis B(n,m) of Jn

2 (G(m)) consisting of symbols [H] as in (2.5), |H| = 2n

such that the F2-linear map ϕn,m : Jn
2 (G(m)) −→ Jn

2 (m) obtained by sending
each basis element [H] of B(n,m) to its class in Jn

2 (m) is surjective. Since the
canonical linear map Jn

2 (m) −→ Jn
2 (G(m)) is also surjective and the groups

are finite, it will follow that ϕn,m is an isomorphism and the proof will be
complete.

If n > m then by (2.3.1), Jn
2 (G(m)) = Jn

2 (m) = 0. So we are done
in this case. Suppose n ≤ m. We take as a base for induction in n and m
the cases (1,m) and (m,m). Set B(1,m) = {[H] | H ⊆ G(m), |H| = 2}
and B(m,m) = {G(m)}. By (1.1) and (2.3), respectively, the sets B(1,m)
and B(m,m) are bases for Jn

2 (G(m)) and Jm
2 (G(m)), respectively. In these

cases, it is clear that the map ϕn,m : Jn
2 (G(m)) −→ Jn

2 (m) is surjective,
because B(1,m) and B(m,m) exhaust the nonzero generators of Jn

2 (m). We
assume now that n < m and that B(i, j) have been constructed when i +
j < n + m. We construct B(n,m) from B(n − 1,m − 1) and B(n,m − 1).
Fix an embedding G(m − 1) ⊆ G(m). This establishes embeddings B(n −
1,m − 1) ⊆ G(m) and B(n,m − 1) ⊆ G(m). Let g ∈ G(m) \ G(m − 1).
Set B(n,m) := {[〈g,H〉] | [H] ∈ B(n − 1,m − 1)} ∪ B(n,m − 1). We shall
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show that B(n,m) has the desired properties. The fact that the elements of
B(n,m) are linearly independent follows trivially from the observations that
B(n,m−1) ⊆ F2G(m−1), {[〈g, H〉]| [H] ∈ B(n−1,m−1)} ⊆ (1−g)F2G(m−
1),F2G(m− 1) ∩ (1 − g)F2G(m− 1) = 0, and the induction assumption that
the elements of B(n,m − 1) and B(n − 1,m − 1) are linearly independent.
Identify now each element of B(n,m) with its image in Jn

2 (m). Since the
canonical homomorphism Jn

2 (m) −→ Jn
2 (G(m)) is surjective, to complete the

proof it suffices to show that B(n,m) generates Jn
2 (m). Since by (2.3) the

symbols [H] such that H j G(m) and |H| = 2n generate Jn
2 (m), it suffices to

show that each [H] is a linear combination of elements of B(n,m). Suppose
first that H ⊆ G(m− 1). Then, by the induction assumption, [H] is a linear
combination of elements of B(n,m − 1). Suppose now that H " G(m − 1).
Thus, |H ∩G(m− 1)| = 2n−1. Assume g ∈ H. By the induction assumption,
[H ∩ G(m − 1)] is a linear combination of elements [K] ∈ B(n − 1,m − 1).
Thus, [H] = [〈g,H ∩G(m−1)〉] is a linear combination of elements [〈g,K〉] in
B(n,m). Assume g /∈ H. Then H = 〈gf,H∩G(m−1)〉 for some f ∈ G(m−1).
Choose L j H ∩G(m − 1) such that |L| = 2n−2. Let h ∈ H ∩G(m− 1) \ L.
Then [H] = [〈gf, h, L〉] = ( by (R)) [〈g, f, L〉] + [〈g, fh, L〉] + [〈f, h, L〉]. By
the induction assumption, [〈f, L〉] and [〈fh, L〉] are linear combinations of
elements in B(n− 1,m− 1) and [〈f, g, L〉] a linear combination of elements in
B(n,m− 1). Q.E.D.

It is tempting to give a presentation of Jn
2 (G), which uses only symbols

[H] such that H ⊆ G is a subgroup of order |H| = 2n. We do this next.

Lemma 2.7. Under the relations (N), (R), and (S), the relation (T’) is
equivalent to the relation

(T′′′) [f, g, g3, . . . , gn] + [g, h, g3, . . . , gn] + [h, f, g3, . . . , gn] =

[fg, fh, g3, . . . , gn] (n ≥ 2).

Proof. In our notation, we shall suppress g3, . . . , gn. Clearly, [fg, fh] =
( by (R) and (2.2.1)) [g, f ] + [g, f 2h] + [f, fh] = ( by (R) and (2.2.1)) [g, f ] +
[g, h]+ [f, h]+ [f2, h]+ [f, f ] = ( by (S), (N), (T ′)) [f, g]+ [g, h]+ [h, f ]. Con-
versely, setting g = h = 1, we get [f, f ] = [f, 1] + [1, 1] + [1, f ] = ( by (N)) 0.

Lemma 2.8. Let Hi j G (i = 1, 2, 3, 4) be subgroups of G of order 2n. Then
the following are equivalent:

(2.8.1) n ≥ 2, |Hi∩Hj | = 2n−1 and |Hi∩Hj∩Hk| = |H1∩H2∩H3∩H4| = 2n−2

for all pairwise distinct indices i, j, k.
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(2.8.2) There are elements f, g, h, g3, . . . , gn ∈ G with f, g, h linearly indepen-
dent such that H1 = Hf,g,g3,...,gn

, H2 = Hg,h,g3,...,gn
, H3 = Hh,f,g3,...,gn

, and
H4 = Hfg,fh,g3,...,gn

.

Proof. It is trivial to check that (2.8.2) =⇒ (2.8.1). To prove the converse,
one can reduce to the case n = 2. But here the conclusion is a routine exercise
finding bases for the vector spaces H1, H2, H3, and H4. Details are left to the
reader.

Lemma 2.9. Let Hi ⊆ G (i = 1, 2, 3, 4) be subgroups of G of order 2n. If n
and the Hi (i = 1, 2, 3, 4) satisfy (2.8.1) then the relation

(H) [H1] + [H2] + [H3] = [H4].

is satisfied in Jn
2 (G).

Proof. The conclusion follows immediately from (2.8) and (2.7).

Theorem 2.10. The abelian group Jn
2 (G) is generated by the symbols [H]

such that H ⊆ G is a subgroup of order |H| = 2n, subject to the relations
2[H] = 0 and (H) above.

Proof. The proof is the same as that of Theorem (2.6), except one replaces
the equation [〈gf, h, L〉] = (by (R)) [〈g, f, L〉]+[〈g, fh, L〉]+[〈f, h, L〉] towards
the end of the proof by the equation [〈gf, h, L〉] = ( setting h = f ′f with f ′ ∈
G(m− 1)) [〈gf, f ′f, L〉] = (by (H)) = [〈g, f ′, L〉] + [〈g, f, L〉] = [〈f ′, f, L〉].

One interesting aspect of the result above is that the cocycle relation (R)
does appear. It turns out, one can also eliminate the cocycle relation from
the presentation of Jn

2 (G) in Theorem (2.6), as follows.

Lemma 2.11. Under relations (N) and (S), the relations (R) and (T’) are
equivalent to the relations (T”) and (T”’).

Proof. In our notation, we shall suppress as usual g3, . . . gn. By (2.2) and (2.7),
(T”) and (T”’) follow from (R) and (T’). Conversely, the proof of (2.7) shows
that (T’) follows from (N) and (T”’). We establish now (R). Let h′ = fh.
Then [gf, h′] = [fg, h′] = [fg, fh] = (by (T”’)) = [f, g] + [g, h] + [h, f ] =
( by (S)) = [g, f ] + [g, h] + [f, h] = [g, f ] + [g, fh′] + [f, fh′] = (by (T”)) =
[g, f ] + [g, fh′] + [f, h′], which proves (R).
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§3. Relations over Z

Throughout this section, G denotes a group of exponent 2. Let Z denote
the natural integers, Z[G] the group ring of G with coefficients in Z, J(G) the
kernel of the augmentation homomorphism η : Z[G] −→ Z,

∑
ngg 7−→

∑
ng,

and Jn(G) the n’the power ideal J(G)n of J(G). Let

[g1, . . . , gn] = (1 − g1) . . . (1 − gn) (gi ∈ G, 1 ≤ i ≤ n).

By (1.2), the elements [g1, . . . , gn] generate additively the ideal Jn(G). We
shall determine the relations among these generators.

Lemma 3.1. Under the relations (N), (R), and (S), the relation

(T) [f, g, fg, g4, . . . gn] = 0 (n ≥ 3)

is equivalent to the relation

(t) [f, f, g, g4, . . . , gn] = [f, g, g, g4, . . . , gn] (n ≥ 3).

Proof. In our notation, we suppress g4, . . . , gn. Trivially, the equivalence of
(T) and (t) follows from the equations [f, g, fg] = (by (R))−[f, g, g]+[1, g, g]+
[f, g, f ] = (by (N), (S)) − [f, g, g] + [f, f, g].

Lemma 3.2. In Jn(G) (n ≥ 1), 2[g, g2, . . . , gn] = [g, g, g2, . . . , gn].

Proof. Clearly 2[g] = 2(1 − g) = (1 − g)2 = [g]2. Thus, 2[g, g2, . . . gn] =
2[g][g2] . . . [gn] = [g]2[g2] . . . [gn] = [g, g, g2, . . . , gn].

Theorem 3.3. The abelian group Jn(G) is generated by the symbols [g1, . . . ,
gn] (gi ∈ G, 1 ≤ i ≤ n), subject to the defining relations (N), (R), (S), and
(T).

Proof. Let Jn denote the abelian group whose generators and relations are
as in the theorem. Consider the canonical homomorphism ψ : Jn −→ Jn(G).
By (1.1), this map is an isomorphism for n = 1. We procede now by induction
on n and suppose that the canonical homomorphism Jn−1 −→ Jn−1(G) is an
isomorphism. Let Jn

double denote the subgroup of Jn generated by all symbols
[g, g, g3, . . . , gn]. We shall show that ψ|Jn

double
is injective. Assume this has been
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done. We want to show that ψ is an isomorphism. It is clearly surjective. But,
it is also injective, because by (3.1) and (2.6), Ker ψ ⊆ Jn

double.

Let ψ′ = ψ|Jn

double
. By (3.2), image ψ′ = 2Jn−1(G). Since Z[G] is

Z-torsion free, so is Jn−1(G). Thus, from our induction assumption that
Jn−1 = Jn−1(G), is follows that 2Jn−1(G) has as generators and relations
the set {[[g1, . . . , gn−1]] | [[g1, . . . , gn−1]] = 2[g1, . . . , gn−1]} and the relations
(N), (R), (S), and (T) for the symbol [[g1, . . . , gn−1]]. We shall show that
the assignment [[g1, . . . , gn−1]] 7−→ [g1, g1, g2, . . . , gn−1] ∈ Jn

double defines a
homomorphism ϕ : 2Jn−1(G) −→ Jn

double. It is clear that it ϕ must be inverse
to ψ′, which finishes the proof of the theorem. It is trivial to check that
the assignment preserves relations (N) and (T). By (3.1), the assignment is
the same as the assignment [[g1, . . . , gn−1]] 7−→ [[gi, g1, . . . , gn−1]] for any i. It
follows that relation (S) is preserved and that relation (R) is preserved, except
possibly when (n−1) = 2. For (n−1) = 2, the relation (R) [[fg, h]]+[[f, g]]−
[[f, gh]]− [[g, h]] is taken to the element

x = [fg, fg, h] + [f, f, g]− [f, f, gh]− [g, g, h] ∈ J3
double.

But, by (R) for J3,

[fg, fg, h] = −[f, g, h] + [g, g, h] + [fg, f, h].

Thus,

x = −[f, g, h] + [fg, f, h] + [f, f, g]− [f, f, gh]

= (by (S)) = −[f, g, h] + [f, fg, h] + [f, f, g]− [f, f, gh]

= (by (R)) = 0.
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