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Notations

L(E,F ) Vector-space of bounded linear operators from the Banach space E
to the Banach space F .

Ck Vector-space of k-times differentiable mappings.

R(P ) Range of the operator P .

N (P ) The null space of the operator P .

v∗ Complex conjugate and transposed of a vector v ∈ C
l.

〈u, v〉 Euclidean inner product of vectors u and v ∈ C
l.

|v| Euclidean norm of a vector v ∈ C
l.

|v|∞ Maximum norm of a vector v ∈ C
l.

|M | Matrix norm to the Euclidean vector norm.

‖M‖∞ Sup norm for a matrix-valued function M ∈ C(J).

dist Hausdorff semi-distance.

|u|2Γ Boundary norm of u ∈ C([x−, x+]) given by |u|2Γ := |u(x−)|2 + |u(x+)|2.
‖u‖ = ‖u‖L2

L2-norm of a function u.

(u, v)L2
L2-inner product for functions u and v.

|J | Length of the compact interval J .

E∗ Dual space of the Banach space E.

〈f, v〉 Evaluation of f ∈ E∗ at v ∈ E.

codim(U) If U is a subspace of V the codimension of U in V is
denoted by codim(U).

ind(P ) Fredholm index of the operator P .

ρ(P ) Resolvent set of the operator P .

σess(P ) Essential spectrum of the operator P .

σeig(P ) Eigenspectrum of the operator P .

σp(P ) Point-spectrum of the operator P .

σ∆(P ) σ∆(P ) := σ(P ) \ σp(P ).
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1 Introduction

The aim of this thesis is to analyze the spectral properties of linear partial differ-
ential operators on the whole real line and how the properties are related to the
same operator ’restricted’ to a finite interval.

In many applied problems in biology, physics or chemistry there arise travelling
waves as solutions of systems of partial differential equations PDE of the form

Ut = f(U,Ux, Uxx) in [0,∞) × R, (1.1)

for example see [Mur93] or [KS94]. A solution U of (1.1) is called a travelling

wave solution if it satisfies

U(t, x) = W (x− ct) (1.2)

for some c ∈ R and some function W . One calls c the speed and W the profile

of the wave. The travelling wave is called a pulse if the limits

lim
x→∞

W (x) and lim
x→−∞

W (x)

exist and are equal.

A travelling wave has the special property that it is constant if one looks at it
in a moving frame. More precisely this means that the function

Ũ(t, x) := U(t, x+ ct) = W (x)

is constant in time and therefore the function Ũ is a steady state of the transformed
PDE

0 =Ũt(t, x) =
d

dt
U(t, x+ ct) = Ut(t, x+ ct) + cUx(t, x+ ct)

=f(Ũ(t, x), Ũx(t, x), Ũxx(t, x)) + cŨx(t, x) in [0,∞) × R.
(1.3)

In [KKP94] the asymptotic stability of a steady state of equation (1.3) is deduced
from spectral properties of the linearization∗ of that equation at the steady state.
The linearization of (1.3) at a steady state Ũ reads

Ṽt = fU (Ũ , Ũx, Ũxx)Ṽ + fUx(Ũ , Ũx, Ũxx)Ṽx + fUxx(Ũ , Ũx, Ũxx)Ṽxx + cṼx =: PṼ ,
(1.4)

where the indices denote the partial derivatives of f with respect to the corre-
sponding component.

∗See [KL89, Chapter 1] for linearization of partial differential equations.
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1 Introduction

More precisely in [KKP94, Chapter 6] the authors show with the help of resol-
vent estimates and under some assumptions on the structure of P the following
“linearized stability implies nonlinear stability” result.

If zero is a simple eigenvalue of P and the rest of the spectrum is strictly to the
left of the imaginary axis, solutions Ṽ = Ũ+δU of (1.3), with δU a small perturba-
tion, converge to some shift W̃ (x) = W (x+x0) of the steady state Ũ(t, x) = W (x)
as t→ ∞.

For the original system this means that initial values close to the travelling wave
solution U converge to some shifted version of the travelling wave. This is known
as ’stability with asymptotic phase’, for example see [VVV94, Chapter 5].

Remark. In the case that (1.4) is obtained by linearization about a travel-
ling wave solution there always is a zero eigenvalue. This is caused by the shift
invariance of equation (1.3).

If Ũ(t, x) = W (x) is a solution of (1.3) all its shifts Ũα(t, x) = W (x + α) are
also solutions of (1.3). This shows that for every c ∈ R the equality

0 = f
(

W (x+ c),Wx(x+ c),Wxx(x+ c)
)

+ cWx(x+ c)

holds such that differentiation with respect to c and evaluation at c = 0 leads to

0=fU(W,Wx,Wxx)(Wx)+fUx(W,Wx,Wxx)(Wx)x+fUxx(W,Wx,Wxx)(Wx)xx+c(Wx)x.

This shows that for a non constant wave profile W the derivative Wx 6= 0 is an
eigenfunction of the operator P .

As indicated above the ’stability with asymptotic phase’ of a travelling wave
solution is closely related to spectral properties of the operator linearized at the
wave-profile.

In [BL99] the case that P from (1.4) is a parabolic operator is analyzed. The
authors show that if one restricts the operator P to a finite interval and uses
’suitable’ boundary conditions, the spectral properties of the all line operator P
are preserved by this finite interval approximation. This is important if one for
example wants to decide numerically for the ’stability with asymptotic phase’ of
a travelling wave.

We extend the results from [BL99] to strictly hyperbolic and mixed hyperbolic-
parabolic systems in this thesis and we improve some of the resolvent estimates
from [KKP94]. We also give an algebraic criterion whether the considered artificial
boundary conditions are ’suitable’.

A main starting point besides the article [BL99] were personal notes by J. Lorenz
[Lor99] which mainly consist of a guide of what to do and were very helpful for
the analysis in Section 3.2.

We now give a brief overview of the contents of this thesis.
In Chapter 3 we assume that the linearized equation is strictly hyperbolic and

in Chapter 4 we consider mixed hyperbolic-parabolic systems.
The structure of Chapters 3 and 4 is quite similar:
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1 Introduction

I

II

Figure 1.1: Regions in the complex plane. We will see that for the operators we
consider there is no spectrum of the all-line operator and its restriction
to finite intervals in Region I. Furthermore there are only isolated
eigenvalues of the all-line operator in Region II.

After some prelimary considerations we first analyze in Sections 3.2 and 4.4 the
behavior of the spectrum in region I of Figure 1.1. In Section 4.4 we combine the
results we obtain in the analysis of the hyperbolic case (Section 3.2) for this region
with the results from [BL99, Chapter 2] in order to obtain similar results in the
mixed case.

In the second part we then analyze in Sections 3.3 and 4.5 the spectral behavior
in compact regions of the complex plane.

In the last part of the spectral analysis we show in Sections 3.4 and 4.6 the
approximation of isolated eigenvalues of the operator P in the right half-plane.

For the analysis in the second and third part we make use of a generalization
of the theory of discrete approximations to directed sets. This generalization is
presented in Chapter 2 and might be useful also in other applications.

We use the rather abstract theory since it appeared during retracing the proofs
in [BL99, Chapter 4] that the main problem is to show that for every sequence of
solutions of the approximative problems a subsequence converges to a solution of
the all line problem which lead to ’regular convergence’. We use the ideas of the
proofs in [BL99, Chapter 4] to show that the finite interval approximations of the
all line boundary value problem ’regularly converge’ to the all line problem. The
resulting, and for the analysis in Chapters 3 and 4 basic Theorem 2.29 is given in
Section 2.5.

This abstraction simplifies and harmonizes the analysis of the spectral properties
in compact regions of the complex plane and of the eigenvalue approximations of
isolated eigenvalues in the hyperbolic and the mixed case.

By adaption of a result from [Bey80] we are also able to allow for so called
’s-dependent’ boundary conditions for the approximation of simple eigenvalues.
These boundary conditions should lead to better approximations of the eigenvalues
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1 Introduction

and allow for shorter intervals.
We finish the thesis with an analysis of the sufficient conditions obtained for

the artificial boundary operators. We show that certain natural choices namely
periodic boundary conditions and characteristic boundary conditions satisfy the
requirements for the resolvent estimates from Chapter 3 and Chapter 4. This
is done in Section 5.1 for the hyperbolic case and in Section 5.2 for the mixed
hyperbolic-parabolic case. Finally we numerically test our theoretical results at
the FitzHugh-Nagumo system in Section 5.3 which is of the form analyzed in
Chapter 4.

In the Appendices we collect and show basic results which are used throughout
the thesis. In particular in Appendix A we show a perturbation Lemma (Lemma
A.7) which is essential for the analysis in Section 3.2. In Appendix B we introduce
and review some results from the theory of exponential dichotomies which basic
for most of the analysis in Chapters 3 and 4.

At this place I would like to thank W.-J. Beyn for this interesting task that
lead into a fascinating area of applied mathematics. I am very grateful for his
very good support and his interest in my advancements. I also would like to
thank V. Thümmler for her providence of numerical data.
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2 Discrete approximations

In this chapter we introduce the concept of discrete approximations. The con-
cept was developed in the 1970s for example in [Stu71a, Stu71b, Stu72], [Gri75a,
Gri75b, Gri76], and [Vai77a, Vai77b]. We will need a generalization of the theory
to the case when the index set is not the set of integers but more generally a
directed set. The aim is to treat the approximation of boundary value problems
on the infinite line by finite boundary value problems.

Therefore we also have to consider nets and subnets instead of sequences and
subsequences. In Section 2.1 we give the exact definitions and basic results which
will be used in this thesis. The next Section 2.2 is concerned with the review
and reformulation of some results to our setting. The most important results in
this chapter which are essential for the application in Chapter 3 and Chapter 4
are Theorem 2.26 presented in Section 2.3, Theorem 2.28 from Section 2.4, and
Theorem 2.29 in Section 2.5.

2.1 The language of discrete approximations

As already mentioned in the introduction we will present in this section some basics
of the theory of directed sets, nets, and discrete approximations. Especially the
theory of nets is streamlined for our demands and differs in some points from the
usual theory. More general definitions and further results on nets and subnets as
well as some enlighting basic examples can be found in texts on general topology
for example see [Wil70, §11] and [Kel75, Chapter 2]. Our presentation of the
theory of discrete approximations follows the book of G. Vainikko [Vai76].

Definition 2.1. A directed set (H,≻) is a nonempty set H together with a
relation ≻, called direction, that has the properties

(D1) for all J ∈ H holds J ≻ J ,

(D2) for all J1, J2, J3 ∈ H with J1 ≻ J2, J2 ≻ J3 holds J1 ≻ J3,

(D3) for all J1, J2 ∈ H exists J3 ∈ H with J3 ≻ J1, J2.

Notice the lack of antisymmetry so that a directed set is not necessarily a
partially ordered set. We will simply write H for the directed set (H,≻) if the
direction ≻ is clear from the context.

Example 1. 1. The integers with the usual order forms a directed set (N,≥).

2. The pair ({1},≻) with 1 ≻ 1 is a directed set.
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2.1 The language of discrete approximations

3. The set H := {J : J = [a, b]; a ≤ b ∈ R} with the direction J1 ≻ J2 :⇔ J1 ⊃
J2 is a directed set. This is the archetype of a directed set we will always
have in mind since it will be the directed set we consider in Chapters 3 and
4.

4. The set Hζ := R \ {ζ} together with the direction x ≻ y :⇔ |ζ − x| ≤ |ζ − y|
is a directed set. This is an example of a directed set which is not partially
ordered.

Definition 2.2. A nonempty subset H ′ ⊂ H is called a cofinal subset of H if
and only if for every J ∈ H there is an element J ′ ∈ H ′ with J ′ ≻ J .

It is clear that H ′ together with the relation ≻ restricted to H ′ is a directed
set again. By subsets H ′,H ′′, . . . of a directed set H we will always mean cofinal
subsets of H together with the direction of H restricted to the subset.

Definition 2.3. Let (H,≻H) and (I,≻I) be two directed sets. We call a mapping
φ : I → H

• cofinal if and only if for every J ∈ H there is an i0 ∈ I with φ(i) ≻H J for
all i ∈ I with i ≻I i0,

• monotone if and only if i1, i2 ∈ I with i1 ≻I i2 implies φ(i1) ≻H φ(i2),

• strictly monotone if and only if for all i1, i2 ∈ I (i1 ≻I i2 and i2 6≻I i1)
implies (φ(i1) ≻H φ(i2) and φ(i2) 6≻H φ(i1)).

Now we can define the notion of a cofinal sequence in a directed set. Most of the
results from [Vai76] will be transferred to the setting of directed sets considered
here by using cofinal or strictly monotone cofinal sequences which are defined next.

Definition 2.4. Let (H,≻) be a directed set and consider N as a directed set as
in example 1. A cofinal sequence in H is a cofinal map φ : (N,≥) → (H,≻).
The cofinal sequence is called monotone respectively strictly monotone if the
map φ is monotone respectively strictly monotone. By setting Jn := φ(n) we will
simply write (Jn)n∈N for the cofinal sequence φ.

The most important property of the natural numbers we need to imitate for a
directed set in order to adapt the proofs of [Vai76] will be formulated in the next
definition.

Definition 2.5. A directed set H is called (sequentially) unbounded if there is
a strictly monotone cofinal sequence in H.

Example (Example 1 continued). One easily sees that ({1},≻) is not un-
bounded but the other examples are. A strictly monotone cofinal sequence for
the third example is given by Jn = [−n, n], n ∈ N.

Lemma 2.6. Let H be an unbounded directed set. Then every cofinal subset H ′

of H is also an unbounded directed set.

11



2 Discrete approximations

Proof. The property of H ′ being directed simply follows from the cofinality and
the properties of the direction. To see the unboundedness of H ′ let (Jn)n∈N be any
strictly monotone cofinal sequence in H. Take any J ′

0 ∈ H ′. Assume that elements
J ′

0, . . . , J
′
n in H ′ with J ′

i ≻ J ′
i−1 and Ji−1 6≻ Ji for i = 1, . . . , n are constructed.

Then there is n0 ∈ N with Jm ≻ J ′
n for all m ≥ n0. Since H ′ is cofinal there

is an element J ′
n+1 ∈ H ′ with J ′

n+1 ≻ Jn0+1. It follows from (D2) J ′
n+1 ≻ J ′

n

and J ′
n 6≻ J ′

n+1. Therefore the sequence (J ′
n)n∈N in H ′ constructed in this way is

strictly monotone and cofinal and so H ′ is unbounded.

After these basic definitions about directed sets we are able to introduce our
notion of nets and convergence of nets.

Definition 2.7. Let H be a directed set and assume that for every J ∈ H a
complex Banach space XJ is given. A family of elements (zJ)J∈H with zJ ∈ XJ

for all J ∈ H is called a net in (XJ ).
If H ′ ⊂ H is a cofinal subset of H then we call the net (zJ )J∈H′ a subnet of

(zJ )J∈H .

Remark 2.8. If (Jn)n∈N is a cofinal sequence in an unbounded directed set H
we identify the sequence (zJn)n∈N with the subnet (zJ)J∈H′ where H ′ ⊂ H is the
image of the sequence (Jn)n∈N. By subsets N

′,N′′, . . . of N we always mean infinite
subsets of N and then (zJn)n∈N′ is a cofinal subsequence of the cofinal sequence
(zJn)n∈N.

Definition 2.9. A net (zJ )J∈H in (XJ) is called bounded if and only if there is
an index J0 ∈ H and a C > 0 so that ‖zJ‖XJ

≤ C for all J ≻ J0.

Definition 2.10. If (zJ )J∈H is a net in a (constant) Banach space X, i.e. zJ ∈
X ∀J ∈ H, we say zJ converges to z ∈ X if and only if for every ε > 0 there is a
J0 ∈ H with ‖zJ − z‖ ≤ ε ∀J ≻ J0. We will simply write this as zJ → z (J ∈ H).

We say z ∈ X is a cluster point of the net (zJ )J∈H iff some subnet (zJ )J∈H′

of (zJ) converges to z.

When we consider subnets we will write zJ → z (J ∈ H ′) as a shorthand for
the convergence of the subnet (zJ )J∈H′ of (zJ )J∈H to the element z.

From now on we always assume that the index set H is an arbitrary unbounded
directed set. Most of the definitions will also make sense if H is not unbounded
but some of the Theorems and Lemmata will not hold if we drop the condition of
unboundedness. Furthermore we assume that E, F , and for every index J ∈ H
also EJ and FJ will denote separable complex Banach spaces with norms ‖ · ‖∗,
∗ ∈ {E,F,EJ , FJ}. Sometimes we simply write ‖ · ‖ or ‖ · ‖J if it is clear from the
context which norm is meant. The lower index J then indicates the corresponding
index of the spaces EJ and FJ .

By P and Q we denote nets of linear continuous operators P := (pJ)J∈H and
Q := (qJ)J∈H with pJ ∈ L(E,EJ ) and qJ ∈ L(F,FJ ). Here and in the sequel
L(X,Y ) always denotes the set of linear bounded operators from the Banach
space X to the Banach space Y . We require

‖pJz‖EJ
→ ‖z‖E (J ∈ H) for every z ∈ E, (2.1)

‖qJr‖FJ
→ ‖r‖F (J ∈ H) for every r ∈ F. (2.2)

12



2.1 The language of discrete approximations

Lemma 2.11. The nets P and Q are bounded.

Proof. Assume P is unbounded. Then there is a cofinal sequence (Jn)n∈N in H
with ‖pJn‖L(E,EJn ) ≥ n. Now (pJn)n∈N satisfies

sup
n∈N

‖pJnz‖EJn
<∞ for all z ∈ E

because of the convergence limn→∞ ‖pJnz‖EJn
= ‖z‖E . The Theorem of Banach-

Steinhaus (see [Alt99, 5.3] or [Yos78, p. 73]) therefore implies

sup
n∈N

‖pJn‖L(E,EJn) <∞

what contradicts the assumption.

Notice that the proof of the Theorem of Banach-Steinhaus presented in [Alt99,
5.3] does not use the image space of the operators but uses that the family of
functions fpJn

∈ C0(E,R) defined by fpJn
(z) = ‖pJn(z)‖EJn

is point-wise bounded
and so the theorem can be applied in the setting considered here.

Definition 2.12 (cf. [Vai76, §1]). Let P be as above. A net (zJ )J∈H , zJ ∈ EJ ,
is called

P-convergent to z ∈ E if and only if ‖zJ −pJz‖EJ
→ 0 (J ∈ H). We abbreviate

this by writing zJ
P−→ z (J ∈ H) and call z the P-limit (or simply the limit)

of the net (zJ)J∈H .

P-compact if and only if for every subnet (zJ)J∈H′ , H ′ ⊂ H, there is a subnet

H ′′ ⊂ H ′ and a z ∈ E with zJ
P−→ z (J ∈ H ′′).

Moreover every point z ∈ E so that there is a subnet (zJ )J∈H′ of (zJ )J∈H with

zJ
P−→ z (J ∈ H ′) is called a cluster-point of (zJ)J∈H .

The definition directly implies that for every z ∈ E the net (pJz)J∈H in (EJ)
P-converges to z.

Remark (Remark 2.8 continued). The unboundedness condition in Remark
2.8 cannot be dropped since otherwise the notion of a P-convergent subnet is not
well-defined. For example consider (H,≻) with H = {a, b} and a ≻ b, b ≻ a,
a ≻ a, b ≻ b, and the net za = 0 ∈ R and zb = 1 ∈ R. Then the net is not
convergent. Consider the cofinal sequence

J0 = a, and Jn = b ∀n ≥ 1.

Then the sequence (zJn)n∈N is convergent but the subnet under the identification
from above is not. The next Lemma shows that this cannot happen if we have an
unbounded directed set H.

13



2 Discrete approximations

Lemma 2.13. Let H be an unbounded directed set and let (zJ)J∈H be a net in
(EJ ). Then for every cofinal sequence (Jn)n∈N in H the following equivalence
holds.
The sequence (zJn)n∈N P-converges to z ∈ E if and only if
the subnet (zJ )J∈H′ where H ′ = {J ∈ H : J = Jn for some n ∈ N}, P-converges
to z ∈ E.

Proof. “⇒” Let (J ′
n)n∈N be a strictly monotone cofinal sequence in H. Let ε > 0

be given. Then by assumption there is n0 ∈ N with ‖zJn − pJn(z)‖J ≤ ε for all
n ≥ n0. By cofinality of the sequence (J ′

n)n∈N there is m ∈ N with J ′
m ≻ Jn for all

n < n0 and by cofinality of the sequence (Jn)n∈N there is N0 ∈ N with Jn ≻ J ′
m+1

for all n ≥ N0. Because J ′
m 6≻ J ′

m+1 it follows

‖zJn − pJnz‖Jn ≤ ε ∀Jn ∈ H ′ with Jn ≻ JN0
.

“⇐” Let ε > 0 be given. By definition there is J0 ∈ H ′ with ‖zJ − pJz‖J ≤ ε for
all J ∈ H ′ with J ≻ J0. Because of the cofinality of (Jn)n∈N there is n0 ∈ N with
Jn ≻ J0 for all n ≥ n0 and so

‖zJn − pJnz‖Jn ≤ ε ∀n ≥ n0.

The proof shows that the backward implication holds for every cofinal sequence,
but the forward implication needs the unboundedness of the underlying directed
set H.

Lemma 2.14. Every P-compact net (zJ )J∈H is bounded.

Note that this in particular states that every P-convergent net is bounded.

Proof. Assume that (zJ)J∈H is an unbounded P-compact net. Then there must
be a cofinal sequence (Jn)n∈N with ‖zJn‖EJn

≥ n. Since (zJn)n∈N is a subnet of
(zJ )J∈H (recall that we assume H is unbounded) there is a subnet N

′ ⊂ N and

an element z ∈ E with zJn

P−→ z (n ∈ N
′). Hence the sequence (zJn)n∈N′ must be

bounded because of property (2.1). This contradicts the assumption.

Lemma 2.15. The P-limit of a P-convergent net (zJ)J∈H in EJ is unique.

Proof. Let z1, z2 ∈ E be P-limits of the net (zJ ). Then

‖pJ(z1 − z2)‖J = ‖(zJ − pJz1) − (zJ − pJz2)‖J ≤ ‖zJ − pJz1‖J + ‖zJ − pJz2‖J .

By property (2.1) this implies ‖pJ(z1 − z2)‖J → 0 (J ∈ H) and so

0 = ‖z1 − z2‖E .
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2.1 The language of discrete approximations

Example 2. In this example we take (N,≥) as (H,≻) and denote by E the
Banach-space l1 of summable sequences x = (x0, x1, . . .) ∈ R

N with the norm
‖x‖E =

∑∞
n=0 |xn|. Denote by En the space of n+1-vectors x = (x0, . . . , xn) with

the norm ‖x‖En =
∑n

i=0 |xn|. Furthermore denote by pn ∈ L(E,En) the operator
pn : E ∋ x = (x0, x1, . . .) 7→ (x0, . . . , xn) ∈ En. Then (2.1) is obviously satisfied.

Let A ∈ L(E,F ) and for every J ∈ H let AJ ∈
L(EJ , FJ ), be given. The situation is illustrated
in the diagram to the right which in general does
not commute.

z ∈ E
A //

pJ

��

F ∋ r

qJ

��
zJ ∈ EJ AJ

// FJ ∋ rJ

Definition 2.16 (cf. [Vai76, §2]). A net (AJ)J∈H of linear continuous operators
AJ ∈ L(EJ , FJ ) is called

• PQ-convergent to an operator A ∈ L(E,F ) if and only if for every P-

convergent net (zJ )J∈H , zJ
P−→ z (J ∈ H), holds AJzJ

Q−→ Az (J ∈ H). We

write this as AJ
PQ−−→ A.

• PQ-regularly convergent to an operator A ∈ L(E,F ) if and only if

AJ
PQ−−→ A and in addition the following regularity condition holds:

Every bounded net (zJ )J∈H for which the net (AJzJ)J∈H is Q-compact, is

P-compact. We simply write this as AJ
PQ−−→ A regularly.

• PQ-stably convergent to an operator A ∈ L(E,F ) if and only if there is
an index J0 ∈ H so that for all J ≻ J0 the inverse operator A−1

J ∈ L(FJ , EJ)
exists and satisfies ‖A−1

J ‖L(FJ ,EJ ) ≤ const with a constant independent of

J . This is again abbreviated to AJ
PQ−−→ A stably.

• In the special case where FJ = F = C and qJ = idC ∀J ∈ H we say that

fJ ∈ E∗
J weakly P-converges to f ∈ E∗ and write fJ

P
⇀ f iff fJ

PQ−−→
f (J ∈ H). Here E∗ denotes the dual space of E.

The following lemma is obvious and we omit the proof.

Lemma 2.17. If a net of linear continuous operators (AJ)J∈H is (regularly/stably)-
PQ-convergent then every subnet (AJ)J∈H′ , H ′ ⊂ H, has the same property.

Lemma 2.18 (cf. [Vai76, §2 (8)]). With the notation from above

AJ
PQ−−→ A if and only if the net (AJ)J∈H is bounded and for all z ∈ E holds

AJpJz
Q−→ Az.

Proof. First we show the necessity. The property AJpJz
Q−→ Az ∀z ∈ E obviously

follows from the PQ-convergence and therefore it remains to show the boundedness
of (AJ)J∈H . Assume the net (AJ)J∈H is not bounded and let (Jn)n∈N be a cofinal
sequence in H. Then for every n ∈ N there is J ′

n in H with J ′
n ≻ Jn so that there

exists a zn ∈ EJ ′
n

with ‖zn‖EJ′
n

= 1 and ‖AJ ′
n
zn‖FJ′

n
≥ n + 1. For every n ∈ N

15



2 Discrete approximations

define z′n := zn

‖AJ′
n

zn‖F
J′

n

. Then z′n
P−→ 0 (n ∈ N). From the assumption of PQ-

convergence and Lemma 2.17 follows AJ ′
n
z′n

Q−→ 0 (n ∈ N) but ‖AJ ′
n
z′n‖FJ′

n
= 1 for

all n ∈ N which contradicts (2.2).

Second we show the sufficiency. Assume zJ
P−→ z (J ∈ H). Then by the triangle

inequality we obtain

‖AJzJ − qJAz‖ ≤ ‖AJ(zJ − pJz)‖ + ‖AJpJz − qJAz‖
≤ ‖AJ‖L(EJ ,FJ)‖zJ − pJz‖EJ

+ ‖AJpJz − qJAz‖.

The second summand converges to zero by assumption and the first summand

converges to zero because the net (AJ)J∈H is bounded and zJ
P−→ z (J ∈ H).

Example (Example 2 continued). Let Fn = En, F = E, and Q = P. Denote
by In the identity map on En and by I the identity map on E. It is easy to see

In
PQ−−→ I regularly and stably.

Consider the operators

An(x0, . . . , xn) = (
x0

n+ 1
, . . . ,

xn

n+ 1
), A(x0, x1, . . .) = (0, 0, . . .).

Then An
PQ−−→ A, but the convergence is neither regular nor stable.

Let n0 ∈ N be fixed and consider the operators An which are arbitrarily defined
for 0 ≤ n ≤ n0 − 1 and for n ≥ n0 they shall be defined by

An(x0, . . . , xn) = (0, . . . , 0, xn0
, . . . , xn) and A = (x0, x1, . . .) = (0, . . . , 0, xn0

, . . .),

i.e. the first n0 elements are mapped to zero. Then An
PQ−−→ A regularly, but not

stably. The regularity follows from the compactness of the closed unit ball in R
n0.

Finally consider the operators

An = (x0, . . . , xn) = (xn, x0, . . . , xn−1) and A = (x0, x1, . . .) = (0, x0, x1, . . .).

Then An
PQ−−→ A stably, but not regularly, as one observes by looking at the

sequence zn = (0, . . . , 0, 1) whose image under An is Q-compact, but the sequence
(zn)n∈N is not P-compact.

2.2 Review of basic results

In this section we state some results presented in [Vai76] which we adapt to the
setting here and which will be used in the sequel.

Lemma 2.19 (cf. [Vai76, §1 (12)]). Let (u1, . . . , uk) be a basis of a subspace
U ⊂ E and assume for j = 1, . . . , k there are given nets (uj,J)J∈H with

uj,J
P−→ uj (J ∈ H).

16



2.2 Review of basic results

Moreover let (uJ)J∈H be a bounded net in (EJ) of the form uJ =
∑

j αj,Juj,J with
αj,J ∈ C for all j ∈ {1, . . . , k} and for all J ∈ H. Then there is J0 ∈ H and C ≥ 0
with

∑

j

|αj,J | ≤ C ∀J ∈ H, J ≻ J0.

Proof. Assume the assertion is false. Then as in the proof of Lemma 2.18 there is
a cofinal sequence (Jn)n∈H with

∑

j |αj,Jn | ≥ n+1. Define a sequence (ũJn)n∈N in

(EJn) by ũJn =
∑

j βj,nuj,Jn where βj,n :=
αj,Jn

P

i |αi,Jn | . Then there is a subsequence

N
′ ⊂ N and scalars β1, . . . , βk ∈ C with βj,n → βj (n ∈ N

′). Define ũ :=
∑

j βjuj.

By construction holds ũJn

P−→ ũ (n ∈ N
′) as well as ‖ũJn‖ → 0 (n ∈ N

′) which
implies ‖ũ‖ = 0 by property (2.1). But the construction of the β1, . . . , βk also
shows

∑k
j=1 |βj | = 1 and therefore the linear independency of u1, . . . uk in E

yields ũ :=
∑

j βjuj 6= 0. This contradicts ‖ũ‖ = 0.

We will use the previous lemma to show that the images of linearly independent
elements in E under pJ are still linearly independent for sufficiently ’large’ indices
J .

Let u1, . . . , uk and u1,J , . . . , uk,J be given as in Lemma 2.19 and define for all
j = 1, . . . , k and all J ∈ H the subspaces

Gj,J := span{u1,J , . . . , uj−1,J , uj+1,J , . . . , uk,J},
GJ := span{u1,J , . . . , uk,J},
Gj := span{u1, . . . , uj−1, uj+1, . . . , uk},
G := span{u1, . . . , uk}.

Lemma 2.20 (cf. [Vai76, §1 (13)]). Under the assumptions and notations from
above there is J0 ∈ H so that

dj,J := dist(uj,J , Gj,J) ≥ 1

2
dist(uj , Gj) =:

1

2
dj ∀J ≻ J0, j = 1, . . . , k.

Proof. Assume the lemma does not hold. Then there is a j ∈ {1, . . . , k} and a
cofinal sequence (Jn)n∈N in H such that

‖uj,Jn −
∑

i6=j

αi,Jnui,Jn‖ = dj,Jn <
1

2
dj ∀n ∈ N.

From Lemma 2.19 follows that the sequence
∑

i6=j |αi,Jn | is bounded. Hence there
exist a subsequence N

′ ⊂ N and scalars αi ∈ C, i 6= j, with αi,Jn → αi (n ∈

17



2 Discrete approximations

N
′), i 6= j. This implies

dj

2
≥ dj,n = ‖uj,Jn −

∑

i6=j

αi,Jnui,Jn‖

≥ ‖pJn(uj −
∑

i6=j

αiui)‖ − ‖pJn(
∑

i6=j

(αi,Jn − αi)ui)‖

− ‖uj,Jn −
∑

i6=j

αi,Jnui,Jn − pJn(uj −
∑

i6=j

αi,Jnui)‖

−−−→
n→∞
n∈N′

‖uj −
∑

i6=j

αiui‖ ≥ dj,

where we used the P-convergence ul,Jn

P−→ ul (n ∈ N
′) for all l = 1, . . . , k, and the

boundedness of the net P (see Lemma 2.11). This convergence contradicts the
assumption.

In Sections 2.3 and 2.4 we will considerably make use of the following Lemma.

Lemma 2.21 (cf. [Vai76, §2 (60)]). Assume AJ ∈ L(EJ , FJ ) for all J ∈ H,

A ∈ L(E,F ), N (A) = {0}, and AJ
PQ−−→ A regularly. Furthermore assume there

is an index J0 ∈ H so that AJ is Fredholm of index zero for all J ∈ H with J ≻ J0.

Then AJ
PQ−−→ A stably.

Proof. Contrary to the assertion assume there is a cofinal sequence (Jn)n∈N in
H so that for every n ∈ N there is an element vn ∈ EJn with ‖vn‖EJn

= 1 and
‖AJnvn‖FJn

≤ 1
n+1 . Then the sequence (AJnvn)n∈N is Q-compact and thus by

regularity (cf. Lemma 2.17) there exist N
′ ⊂ N and v ∈ E with vn

P−→ v (n ∈ N
′).

Then ‖v‖E = 1 and from the assumption follows Av 6= 0.

This contradicts AJnvn
Q−→ 0 (n ∈ N

′) and AJnvn
Q−→ Av (n ∈ N

′).

Similarly we can adapt the proof of [Vai76, §1 (37)] and show the following
lemma. Note that in the proof the unboundedness of H is indispensable since it
uses a kind of diagonal sequence argument, which is not possible if we drop the
unboundedness assumption. Recall that we assume that all spaces are separable.

Lemma 2.22. Let f ∈ E∗ then there is a net of linear functionals (fJ)J∈H in
(E∗

J ), with the properties

fJ
P
⇀ f (J ∈ H) and ‖fJ‖E∗

J
→ ‖f‖E∗ .

Proof. Let f ∈ E∗ be arbitrary. Without loss of generality f 6= 0. Let {x0, x1, . . .}
be linearly independent elements in E with span{x0, x1, . . .} being dense in E. The
set {x0, . . .} may also be finite. Let Xk := span{x0, . . . , xk} and set xk

J := pJx
k.

Then xk
J

P−→ xk and by Lemma 2.20 for every k ∈ N there exists Jk ∈ H so that
{x0

J , . . . , x
k
J} are linearly independent in EJ for all J ≻ Jk.

For J ≻ Jk define fk
J on Xk

J := span{x0
J , . . . , x

k
J} by

〈fk
J , x

i
J 〉 := 〈f, xi〉, i = 0, . . . , k.

18



2.2 Review of basic results

Then it holds

sup
xJ∈Xk

J

‖xJ‖=1

|〈fk
J , xJ 〉| −→ sup

x∈Xk

‖x‖=1

|〈f, x〉| ≤ sup
x∈E
‖x‖=1

|〈f, x〉| (J ∈ H).

For every J ∈ H we continue fk
J to the whole space EJ with preserving its norm

by applying the Hahn-Banach Theorem (cf. [Alt99, 4.15]). So for every ε > 0 and
every k ∈ N we find a Jk

ε ∈ H with Jk
ε ≻ Jk and with

‖fk
J ‖ ≤ ‖f‖ + ε ∀J ≻ Jk

ε , J ∈ H.

By the unboundedness of H we can find a strictly monotone cofinal sequence
(J ′

n)n∈N with J ′
n ≻ Jn

1

n+1

∀n ∈ N, i.e. with

‖fn
J ‖ ≤ ‖f‖ +

1

n+ 1
∀J ≻ J ′

n, J ∈ H.

Now define fJ by

fJ =

{

0, if J 6≻ J ′
0,

fk
J , if J ≻ J ′

k and J 6≻ J ′
k+1, k = 1, 2, . . .

then for every ε0 > 0 there is a J̄ε0
∈ H with

‖fJ‖ ≤ ‖f‖ + ε0 ∀J ≻ J̄ε0
.

Assume xJ
P−→ x and let ε > 0 be given. Let k > 0 be so large so that there

exist α0, . . . , αk ∈ C with ‖x − x̃‖ ≤ ε, where x̃ =
∑k

j=0 αjx
j, which is possible

by the separability assumption. Choose J̄ ≻ J ′
k, J̄ε with ‖xJ − pJx‖ ≤ ε and

‖pJ(x− x̃)‖ ≤ 2ε for all J ≻ J̄ . For all J ≻ J̄ one obtains because of

〈fJ , pJ x̃〉 = 〈f, x̃〉 ∀J ≻ J ′
k

the estimates

|〈fJ , xJ〉 − 〈f, x〉| ≤ |〈fJ , xJ − pJx〉| + |〈fJ , pJ (x− x̃)〉| + |〈fJ , pJ x̃〉 − 〈f, x〉|
≤ ‖fJ‖ε+ ‖fJ‖2ε + ‖f‖‖x̃− x‖

≤ (‖f‖ + ε)ε + (‖f‖ + ε)2ε + ‖f‖ε ≤ (4‖f‖ + ε)ε.

This shows fJ
P
⇀ f since ε > 0 was arbitrary.

We have already seen that for every ε > 0 there is J0 ∈ H with

‖fJ‖E∗
J
≤ ‖f‖E∗ + ε ∀J ≻ J0.

Let ε > 0 be given. It exists x ∈ E with ‖x‖ = 1 and

|〈f, x〉| ≥ ‖f‖ − ε

3
.
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2 Discrete approximations

By the computations from above there is J ′
ε ∈ H with

|〈fJ , pJx〉 − 〈f, x〉| ≤ ε

3
∀J ≻ J ′

ε.

Thus |〈fJ , pJx〉| ≥ ‖f‖ − 2 ε
3 for all J ≻ J ′

ε. Choose J1 ∈ H with J1 ≻ J ′
ε so that

‖pJx‖ ≤ 1 +
ε

3‖f‖ − 3ε
∀J ∈ H with J ≻ J1

which is possible since ‖pJx‖ → 1 (J ∈ H). Now for all J ≻ J1 holds

‖fJ‖E∗
J
≥ ‖f‖E∗ − ε.

This finishes the proof.

The next result will be needed in the next section and also in Chapter 3. We
do not give the proof.

Lemma 2.23. Assume families of linear operators P and Q as above and fur-
thermore O with oJ ∈ L(G,GJ ) with the same properties as P and Q.

Then AJ
PQ−−→ A (regularly/stably), BJ

QO−−→ B (regularly/stably) implies

BJAJ
PO−−→ BA (regularly/stably).

The benefit of the previous lemma for the next section will lie in the combination
with the next lemma.

Lemma 2.24. If AJ
PQ−−→ A regularly and stably and if exists A−1 ∈ L(F,E) then

there is J0 ∈ H such that

A−1
J

QP−−→ A−1 (J ∈ H ′) regularly and stably,

where H ′ := {J ∈ H : J ≻ J0}.

Proof. Let (uJ )J∈H be a net in FJ with uJ
Q−→ u (J ∈ H ′). Then the stability

assumption and Lemma 2.14 imply that (A−1
J uJ)J∈H′ is a bounded net. Obviously

(AJ(A−1
J uJ))J∈H′ is Q-compact. Thus by the regularity assumption (A−1

J uJ)J∈H′

is P-compact. Let v := A−1u and assume (A−1
J uJ)J∈H′ does not converge to v.

Then there is a cofinal subset H ′′ ⊂ H ′ and η > 0 with ‖A−1
J uJ − pJv‖ ≥ η for

all J ∈ H ′′. By compactness there is a convergent subnet A−1
J uJ

P−→ ṽ (J ∈ H ′′′)
with H ′′′ ⊂ H ′′. But then

AJ(A−1
J uJ) → Aṽ (J ∈ H ′′′)

and

AJ(A−1
J uJ) → u (J ∈ H ′′′),

thus ṽ = A−1u and this shows the QP-convergence of A−1
J to A−1.

The stable convergence follows directly from the boundedness of the net (AJ)J∈H .
The regularity is shown as follows: Let (uJ)J∈H′ be a bounded net in (FJ)

and assume that (A−1
J uJ)J∈H′ is P-compact. Then (uJ)J∈H′ is Q-compact since

uJ = AJ(A−1
J uJ).
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2.3 Generalized eigenvalue problems

2.3 Generalized eigenvalue problems

The main result in this section is Theorem 2.26 which basically is a reformulation
of [Vai76, §4 Konvergenzsatz(62)]. It is already presented in a similar version in
[Vai77a, §7], but the proof is only indicated there.

We assume that H is an unbounded directed set and we denote its elements by
J . We use the same notations and assumptions on P, Q, EJ , FJ , E, and F as
in sections 2.1 and 2.2. To simplify notation we do not distinguish in notation
between the different norms and write ‖ · ‖ since it is obvious from the context
which norm is used. We also write IJ for the identity map on EJ and I for the
identity map on E. Finally dist stands for the usual Hausdorff semi distance of
sets in a Banach space, defined by dist(A,B) = supa∈A infb∈B ‖a − b‖ and in the
case that a ∈ A one defines dist(a,B) = infb∈B ‖a− b‖.

Theorem 2.25 (cf. [Vai76, §4 (62)]). Let T ∈ L(E,E) and for every J ∈ H let
TJ ∈ L(EJ , EJ). Consider the operator-valued functions AJ(µ) := µIJ − TJ ∈
L(EJ , EJ ) for all J ∈ H and A(µ) := µI − T ∈ L(E,E) for all µ ∈ C. Let Λ ⊂ C

be an open domain in C and assume that the operators A(µ) and for each J ∈ H
the operators AJ(µ) are Fredholm of index zero for all µ ∈ Λ. Furthermore assume

AJ(µ)
PP−−→ A(µ) (J ∈ H) regularly for all µ ∈ Λ and that σ(T ) ∩ Λ only consists

of isolated points. Then the following properties hold true.

(i) For every µ0 ∈ σ(T )∩Λ there is a net (µJ)J∈H and an element J0 ∈ H such
that µJ ∈ σ(TJ ) for all J ∈ H with J ≻ J0 and µJ converges to µ0.

(ii) If µ0 ∈ Λ is a clusterpoint of a net (µJ)J∈H with µJ ∈ σ(TJ) ∀J ∈ H,J ≻ J0,
for some J0 ∈ H then it holds µ0 ∈ σ(T ).

(iii) If (µJ)J∈H is a net in C and (vJ)J∈H is a net in (EJ) with µJ → µ0 (J ∈ H)
and ‖vJ‖EJ

= 1, so that there is J0 ∈ H with µJ ∈ σ(TJ) for all J ≻ J0

and with AJ(µJ)vJ = 0. Then the net (vJ )J∈H is P-compact and every
cluster-point v0 ∈ E is a normalized eigenfunction of T to the eigenvalue
µ0.

(iv) For the eigenvalues and eigenfunctions from (iii) the following estimates hold

(a) |µJ − µ0| ≤ Cǫ̃
1
κ

J ,

(b) infv0∈N (A(µ0)) ‖vJ − pJv0‖EJ
≤ Cǫ̃

1
κ

J ,

where κ is the smallest integer so that N
(

(µ0I−T )κ
)

=
⋃∞

j=0 N
(

(µ0I−T )j
)

and ǫ̃J is given at the end of the Theorem.

(v) Let δ > 0 be so small that Kδ(µ0) ⊂ Λ and Kδ(µ0) ∩ σ(T ) = {µ0}. Denote
by WJ := WJ(TJ , µ0) the linear hull of all generalized eigenspaces of TJ

to eigenvalues µJ ∈ σ(TJ) ∩ Kδ(µ0) and denote by W := W (T, µ0) the
generalized eigenspace of T to the eigenvalue µ0. Then there is a J0 ∈ H so
that for all J ∈ H with J ≻ J0 hold
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2 Discrete approximations

(c) dimW (T, µ0) = dimW (TJ , µ0) <∞,

(d) ϑ(W,WJ) := sup v∈W
‖v‖=1

dist(pJ(v),WJ ) ≤ Cǫ̃J ,

(e) ϑ(WJ ,W ) := supvJ∈WJ

‖vJ‖=1

dist(vJ , pJ(W )) ≤ Cǫ̃J .

Moreover constants in (iv) and (v) are independent of J for J ≻ J0 with a suitable
J0 ∈ H and ǫ̃J in (iv) and (v) is given by

ǫ̃J := max
v∈W
‖v‖=1

‖TJpJv − pJTv‖.

Remark. Note that κ in (iv) is finite because of the Fredholm properties (cf.
[Vai76, §4 Satz(26)]).

We do not give the proof here but rather indicate what must be done in case
one wants to follow the proof in [Vai76].

Indication of a proof. One has to be careful in several points. First one needs the
unboundedness of H since in one step of the proof (cf. [Vai76, §4 (18)]) Lemma
2.22 is needed. Second the measure of non-compactness has to be generalized for
our setting. It is used for the proof of [Vai76, §4 (55)] which is a crucial part in
the proof of (v). We have used the following definition: For every net (zJ)J∈H in
(EJ ) the measure of non-compactness is defined as

µ(zJ ) := inf{ε > 0 : ∀ cofinal H ′ ⊂ H ∃ cofinal H ′′ ⊂ H ′, z′ ∈ E

so that ‖zJ − pJz
′‖ ≤ ε (J ∈ H ′′)}.

It is clear that µ has the properties [Vai76, §2 (72)-(77)], where one uses the
unboundedness ofH for the proof of [Vai76, §2 (73)] because of a diagonal sequence
argument. In the proof one also needs the result of [Vai76, §2 (78)] in the easier
setting of [Vai76, §2 (79)] (it also holds in the case of unbounded directed sets,
but we omit its proof) and so the proof of [Vai76, §4 (55)] can be adapted to our
setting. The remaining steps in the proof of [Vai76, §4 (62)] do not cause any
trouble if one tries to prove them in the setting of directed sets.

The next Theorem is the main result in this section. It will be proved by
application of Theorem 2.25.

Theorem 2.26 (cf. [Vai77a, §7 (89)]). Assume an unbounded directed set H
and families of operators P and Q as above. Let A, B ∈ L(E,F ), and AJ ,
BJ ∈ L(EJ , FJ ) for all J ∈ H. Denote by A the operator-valued function A(s) =
sB−A ∈ L(E,F ) and by AJ the function AJ(s) = sBJ −AJ ∈ L(EJ , FJ). Let Σ′

be an open and bounded domain in C and let Σ be an open connected neighborhood
of the closure Σ′ of Σ′. Assume that for all s ∈ Σ the operators A(s) and AJ(s)
are Fredholm of index zero and assume there is s ∈ ρ(A)∩Σ\Σ′.∗ Finally assume
that for every s ∈ Σ the operators AJ(s) regularly PQ-converge to A(s). Then the
following properties hold.

∗For the definition of ρ(A) and σ(A) see Definition C.6.
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(1) For every s0 ∈ σ(A) ∩ Σ′ there is a net (sJ)J∈H and J0 ∈ H so that for all
J ≻ J0 sJ ∈ σ(AJ) and sJ → s0 (J ∈ H).

(2) If (sJ)J∈H is a net so that there is J0 ∈ H with sJ ∈ σ(AJ) for all J ≻ J0,
then every cluster point of (sJ)J∈H which lies in Σ′ is an eigenvalue of A(·).

(3) Assume (sJ)J∈H is a net in C and (vJ )J∈H is a net in (EJ) so that there is
J0 ∈ H with sJ is an eigenvalue of AJ(·) and vJ is a normalized eigenelement
of AJ(·) to the eigenvalue sJ for all J ≻ J0

∗. Then the net (vJ)J∈H is P-
compact and every cluster-point v0 ∈ E is a normalized eigenfunction of A(·)
to the eigenvalue s0.

(4) For the nets from (3) the following estimates hold

(a) |sJ − s0| ≤ Cǫ
1
κ

J ,

(b) infv0∈N (A(s0)) ‖vJ − pJv0‖ ≤ Cǫ
1
κ

J ,

where κ is the largest order of all root-polynomials to the eigenvalue s0 and
ǫJ is given at the end of the theorem.

(5) Let s0 ∈ Σ′ ∩ σ(A) and ε0 > 0 with Kε0
(s0) ⊂ Σ′ and Kε0

(s0) ∩ σ(A) =
{s0}. Let W denote the root-subspace† of A to the eigenvalue s0 and let
WJ denote the linear hull of all root-subspaces of AJ to eigenvalues sJ ∈
σ(AJ) ∩Kε0

(s0). Then there is an index J0 ∈ H so that for all J ∈ H with
J ≻ J0 hold

(c) dimWJ = dimW <∞,

(d) ϑ(W,WJ ) := sup v∈W
‖v‖=1

dist(pJv,WJ ) ≤ CǫJ .

(e) ϑ(WJ ,W) := supvJ∈WJ

‖vJ‖=1

dist(vJ , pJW) ≤ CǫJ ,

The constants in (a), (b), (d), and (e) are independent of J for J ≻ J0 with a
suitable J0 ∈ H. Finally ǫJ in (4) and (5) is given by

ǫJ = max
v,v′∈W
‖v‖=1

A(s0)v=Bv′

‖AJ(s0)pJv −BJpJv
′‖.

Before we prove the theorem, we show a characterization of the root-subspaces
of A(·) which will be essential for the application of Theorem 2.25 in the proof of
Theorem 2.26.

Lemma 2.27. Let A,B ∈ L(E,F ) and assume A(s) = sB − A ∈ L(E,F ) is
Fredholm of index zero for all s ∈ Σ with Σ an open domain in C. Assume there
is s ∈ Σ with A(s)−1 ∈ L(F,E) and denote by T the linear operator

T := A(s)−1B ∈ L(E,E).

∗See Definition C.6.
†See Definition C.6.
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2 Discrete approximations

Let s0 6= s and set µ0 := 1
s−s0

. Then the generalized eigenspace of T to the
eigenvalue µ0 given by

W (T, µ0) :=
⋃

k≥0

{v ∈ E : (µI − T )kv = 0}

coincides with the root-subspace of A(·) to the eigenvalue s0

W(A, s0).

Moreover we have the equivalence
0 6= v ∈ E with (µ0I − T )kv 6= 0 and (µ0I − T )k+1v = 0 for some k ∈ N

if and only if
there is a sequence v0, . . . , vk of nonzero elements in E with vk = v and

A(s0)v0 = 0,

A(s0)vi+1 = Bvi, i = 0, . . . , k − 1.
(2.3)

Furthermore for every v ∈W there is a unique v′ ∈W with A(s0)v = Bv′.

Remark. Note that [Vai76, §4 (26)] states that the order of the eigenelements
of A(s0) is bounded.

Proof. We prove the first part of the lemma by induction. Clearly 0 ∈ W and
0 ∈ W so without loss of generality assume 0 6= v ∈ E.

It holds (µ0I − T )v = 0 if and only if A(s)(I − (s− s0)T )v = A(s0)v = 0. Thus
the case k = 0 is shown and in particular yields the equality

N (µ0I − T ) = N (A(s0)). (2.4)

Now show k − 1 → k:
Necessity. Assume (µ0I − T )kv 6= 0 and (µ0I − T )k+1v = 0. From (2.4) follows
0 6= (µ0I − T )kv ∈ N (A(s0)). This implies

0 = A(s0)(µ0I − T )kv = A(s0)

k
∑

i=0

(

k

i

)

µk−i
0 (−T )iv

= µk
0A(s0)v −A(s0)T

k
∑

i=1

(

k

i

)

µk−i
0 (−T )i−1v.

The equation above is equivalent to

A(s0)v = A(s0)T

k
∑

i=1

(

k

i

)

µ−i
0 (−T )i−1v

= B(I − (s− s0)T )

k
∑

i=1

(

k

i

)

µ−i
0 (−T )i−1v

= B(µ0I − T )

k
∑

i=1

(

k

i

)

µ−1−i
0 (−T )i−1v.
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2.3 Generalized eigenvalue problems

Now define vk−1 := (µ0I − T )
∑k

i=1

(

k
i

)

µ−1−i
0 (−T )i−1v and note that (µ0I − T )

commutes with the sum. Hence vk−1 satisfies (µ0I −T )kvk−1 = 0 and also (µ0I −
T )k−1vk−1 6= 0. Since if (µ0I − T )k−1vk−1 is zero, then

(µ0I − T )k
k
∑

i=1

(

k

i

)

µ−1−i
0 (−T )i−1v = 0.

But because of k2 ≥ k + 1 this leads to

0 = (µ0I − T )k(µ0I − T )kv

= (µ0I − T )kµk
0v − T (µ0I − T )k

k
∑

i=1

(

k

i

)

µk−i
0 (−T )i−1v = µk

0(µ0I − T )kv

⇒ (µ0I − T )kv = 0

what contradicts the assumption. This also implies that vk−1 cannot be equal to
zero. Thus by the induction hypothesis there are nonzero elements v0, . . . , vk−2 ∈
E with (2.3) and so by setting vk := v the necessity follows.
Sufficiency. Let v0, . . . , vk with (2.3) be given. Then from the equality A(s0)vk =
Bvk−1 we obtain (using A(s)−1A(s0) = I − (s− s0)T )

0 = (s− s0)
kB(µ0I − T )kvk−1 = B(I − (s− s0)T )kvk−1

= (A(s0)A(s)−1)kA(s0)vk = A(S0)
(

A(s)−1A(s0)
)k
vk

= A(s0)
(

I − (s− s0)T
)k−1

vk, (2.5)

where we use the induction hypothesis for vk−1 and

B
(

I − (s− s0)A(s)−1
)

= A(s0)A(s)−1B.

By the equality N (A(s0)) = N (µ0I − T ) we thus find

(µ0I − T )k+1vk = 0.

Now assume (µ0I − T )kvk = 0. One shows similar to (2.5) the equalities

0 = (A(s0)A(s))k−1A(s0)vk = (s− s0)
k−1B(µ0I − T )k−1vk−1.

By multiplication this equation from the left with A(s)−1 one obtains

0 = (µ0I − T )kvk = µ0(µ0I − T )k−1vk−1 6= 0

where we used the induction hypothesis and T = A(s)−1B. This finishes the proof
of the equality W (T, µ0) = W(A, s0). We denote by W this space.

Uniqueness of v′. To show that for every v ∈ W there is atmost one v′ ∈ W
with A(s0)v = Bv′ assume there is v′′ 6= v′, v′′ ∈ W with A(s0)v = Bv′′. Then
w := v′ − v′′ ∈ W satisfies w 6= 0 and Bw = 0. But then w ∈ N (T ) and since
µ0 6= 0 we obtain w 6∈W which is a contradiction and proves the uniqueness.
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2 Discrete approximations

Remark. The proof also shows that the lengths of the Jordan chains for T
coincide with the orders of the root-polynomials. Therefore the maximal length
of all Jordan chains of T to the eigenvalue s0 is the same as the maximal order of
all root-polynomials of A(·) to the eigenvalue s0.

Now we can prove Theorem 2.26 by application of Theorem 2.25.

Proof of Theorem 2.26. Lemma 2.24 shows the existence of J1 ∈ H so that by
setting H1 := {J ∈ H : J ≻ J1} one obtains

AJ(s)−1 QP−−→ A(s)−1 (J ∈ H1) regularly and stably.

Therefore Lemma 2.23 yields

AJ(s)−1AJ(s)
PP−−→ A(s)−1A(s) (J ∈ H1) regularly for all s ∈ Σ.

Define TJ := AJ(s)−1BJ ∈ L(EJ , EJ) for all J ∈ H1 and also T := A(s)−1B ∈
L(E,E). With this choice we have

AJ(s)−1AJ(s0) = (IJ − (s− s0)TJ ) ∀J ∈ H1 and

A(s)−1A(s0) = (I − (s− s0)T ).
(2.6)

Define the map η : Σ′ → C, s 7→ 1
s−s and set Λ := η(Σ′). From the assumptions

on s and Σ′ we obtain

0 < C2 :=
1

dist(Σ′, s)
≤ |µ| ≤ 1

dist(s,Σ′)
=: C1 ∀µ ∈ Λ. (2.7)

Furthermore the assumptions on A and AJ yield that for all J ∈ H1 and all µ ∈ Λ
the operators µIJ − TJ ∈ L(EJ , EJ) and µI − T ∈ L(E,E) are Fredholm of index
zero and σ(T ) ∩ Λ consists of isolated points (cf. [Vai76, §4 (7)]). From (2.6) we
conclude

µJ ∈ σ(TJ ) with µJ 6= 0 if and only if s− 1

µJ
∈ σ(AJ ) and

µ ∈ σ(T ) with µ 6= 0 if and only if s− 1

µ
∈ σ(A).

(2.8)

Now Theorem 2.25 is applicable.

(1) Let µ0 := 1
s−s0

with s0 ∈ σ(A) ∩ Σ′. Then (2.8) implies µ0 ∈ σ(T ) ∩ Λ. By

Theorem 2.25 (i) there is a net (µJ)J∈H1
with µJ ∈ σ(TJ) for all J ≻ J2

where J2 is some element of H1, and with µJ → µ0 (J ∈ H1). Because of
µ0 ∈ Λ and (2.7), J2 ∈ H1 can be chosen such that |µJ | ≥ C2

2 for all J ∈ H1

with J ≻ J2. Thus, again by (2.8), it is sJ := s− 1
µJ

∈ σ(AJ) for all J ∈ H1

with J ≻ J2 and sJ satisfies the estimate

|sJ − s0| = | 1

µ0
− 1

µJ
| = |µJ − µ0

µ0µJ
| ≤ 2

C2
2

|µJ − µ0|.

This implies (1).
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2.3 Generalized eigenvalue problems

Σ′
Σ

Λ = { 1

s−s
∈ C : s ∈ Σ′}

η(Kε0
(s0))

µ0 = η(s0)

K2δ(µ0)

η : s 7→ 1

s−sKε0
(s0)s0

s

η−1(K2δ(µ0))

Figure 2.1: Visualization of the sets in the proof of Theorem 2.26.

(2) Let (sJ)J∈H and s0 ∈ Σ′ be given as in Theorem 2.26 (2). Then µ0 := 1
s−s0

is an element of Λ. Furthermore sJ 6= s for all J ≻ J0 and so µJ := 1
s−sJ

is a

net in C with µJ ∈ σ(TJ ) ∀J ≻ J0. Now the assumption on (sJ)J∈H shows
that the net (µJ)J∈H has µ0 ∈ Λ as a cluster point. Then from Theorem
2.25 (ii) follows µ0 ∈ σ(T ) ∩ Λ and the equivalence (2.8) proves (2).

(3) Assertion (3) follows from (iii) of Theorem 2.25 by application of (1), (2),
equivalence (2.8), and the equivalences of N (AJ(s)) and N ( 1

s−sIJ − TJ) for

all J ∈ H1 and of N (A(s)) and N ( 1
s−sI − T ) (cf. Lemma 2.27).

(4,5) For the proof of (5) let ε0 > 0 be given as in Theorem 2.26. Note that
η : Σ′ → Λ is a homeomorphism. Set µ0 := η(s0) and choose δ > 0 so that
K2δ(µ0) ⊂ η(Kε0

(s0)). For a visualization see Figure 2.1.

The results of (1) and (2) imply that there is J3 ∈ H1 with

σ(AJ) ∩Kε0
(s0) ⊂ η−1(K2δ(µ0)) ∀J ≻ J3

since otherwise there would be a cluster point s̃ of (sJ)J∈H in the compact
set Kε0

(s0) \ η−1(Kδ(s0)) ⊂ Σ′. But then by property (2), s̃ would be an
element of σ(A) what contradicts the choice of ε0 and s0. Together with the
result of Lemma 2.27 this yields that for J ∈ H with J ≻ J3 the space

WJ := W (TJ , µ0) :=linear hull of all generalized eigenfunctions of TJ

to eigenvalues µj with |µJ − µ0| ≤ 2δ

is equal to

WJ := W(AJ , s0) :=linear hull of the root-subspaces to

eigenvalues sJ of AJ(·) with |sJ − s0| ≤ ε0.

Now (v) of Theorem 2.25 shows with the definition

ǫ̃J := max
v∈W
‖v‖=1

‖pJTv − TJpJv‖EJ
, (2.9)
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2 Discrete approximations

that there is J4 ≻ J3 so that for all J ≻ J4 the estimates

dimWJ = dimW <∞

as well as

ϑ(WJ ,W) ≤ Cǫ̃J

and

ϑ(W,WJ ) ≤ Cǫ̃J

hold.

Therefore it remains to show that there is J5 ∈ H1 and a constant const > 0
such that

max
v∈W
‖v‖=1

‖pJTv − TJpJv‖EJ
≤ const max

v,v′∈W
‖v‖=1

A(s0)v=Bv′

‖AJ(s0)pJv −BJpJv
′‖ ∀J ≻ J5.

(2.10)

Recall that by Lemma 2.27 for every v ∈ W there is a unique v′ ∈ W with
A(s0)v = Bv′. Such a pair (v, v′) of elements of W satisfies

BTv′ = BA(s)−1A(s0)v = B(I − (s− s0)T )v = A(s0)Tv (2.11)

and also

AJ(s)−1
(

AJ(s0)pJTv −BJpJTv
′
)

= (I − (s− s0)TJ )pJTv − TJpJTv
′

= pJTv − TJpJ((s− s0)Tv + A(s)−1A(s0)v) = pJTv − TJpJv. (2.12)

Then by the stable convergence of AJ(s)
PQ−−→ A(s) (J ∈ H1) we find an

index J5 ∈ H1 so that ‖AJ(s)−1‖ ≤ const ∀J ≻ J5. Hence (2.12) shows

‖pJTv − TJpJv‖ ≤ const‖AJ(s0)pJTv −BJpJTv
′‖.

Finally the linearity of the operators pJ , BJ , AJ , and the inclusion

{(Tv, Tv′) : (v, v′) ∈ W2, ‖v‖ ≤ 1,A(s0)v = Bv′}
⊂ {(v, v′) ∈ W2 : ‖v‖ ≤ ‖T‖,A(s0)v = Bv′},

which is a result of (2.11), imply

max
v∈W
‖v‖=1

‖pJTv − TJpJv‖

≤ const max
v,v′∈W
‖v‖=1

A(s0)v=Bv′

‖AJ(s0)pJTv −BJpJTv
′‖

≤ const‖T‖ max
v,v′∈W
‖v‖=1

A(s0)v=Bv′

‖AJ(s0)pJv −BJpJv
′‖.
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2.4 Simple eigenvalues

So the required estimate (2.10) is shown.

Note that the last estimate does only depend on J5 and s0. Therefore it
directly implies (4) by using the results

|sJ − s0| ≤
2

C2
2

|µJ − µ0| ≤ ǫ̃
1
κ

J

and

inf
v0∈N (A(s0))

‖vJ − pJv0‖ ≤ Cǫ̃
1
κ

J

of Theorem 2.25 (iv) for the nets from (3).

2.4 Simple eigenvalues

In this section we present a result about the convergence of eigenvalue approxi-
mations for holomorphic operator-valued functions in the setting of discrete ap-
proximations.

The application of the Theorem 2.28 we have in mind is to allow for so called
projection boundary conditions in the approximation of eigenvalues of the bound-
ary value problems on the infinite line by finite interval approximations. The
advantages of projection-boundary conditions for the computation of connecting
orbits are discussed in [Bey90].

Note that the result of Theorem 2.26 does not apply to general holomorphic
operator functions since the proof makes substantial use of the polynomial struc-
ture of the operators. The result in this section is a reformulation of Lemma 1 of
[Bey80].

We use the same notations and assumptions as in the previous sections. Espe-
cially, we assume that H is an unbounded directed set and the spaces E, F , EJ ,
FJ are separable.

Theorem 2.28. Let Σ be an open subset of C. Let A : Σ → L(E,F ) be a
holomorphic and operator-valued function. Let s0 ∈ Σ be a simple eigenvalue of
A(·) with eigenfunction v0 ∈ E, v0 6= 0. Assume that (AJ)J∈H is a family of
holomorphic operator-valued functions AJ : Σ → L(EJ , FJ ) such that there is an
index J1 ∈ H with AJ(s0) is Fredholm of index zero for all J ∈ H, J ≻ J1.
Furthermore assume

(i) AJ(s0)
PQ−−→ A(s0) regularly,

(ii) A′
J(s0)

PQ−−→ A′(s0),

(iii) for every ε > 0 there is J2 ≻ J1, J2 ∈ H, and δ > 0 such that

‖A′
J(s) −A′

J(s0)‖ ≤ ε ∀s ∈ Kδ(s0) ⊂ Σ, J ≻ J2.
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2 Discrete approximations

Then there is an index J0 ∈ H and a positive constant δ0 such that for all J ≻ J0

the function AJ(·) has exactly one simple eigenvalue sJ ∈ Kδ0(s0).
Moreover, for each J ∈ H with J ≻ J0 there is a corresponding eigenfunction
vJ ∈ EJ with

|sJ − s0| + ‖vJ − pJv0‖ ≤ const‖AJ(s0)pJv0‖. (2.13)

We follow the proof of Lemma 1 in [Bey80], but rather than referring to [Vai76,
§3 (14)] for the existence part, we show this directly by applying the contraction
mapping Theorem (Lemma C.4) in order to circumvent the problem that [Vai76,
§3 (14)] is not formulated in the setting of directed sets. The idea for the existence
part lies in a kind of bordering the operators AJ(·) so that Lemma C.4 is appli-
cable. The second part, where simplicity of the eigenvalue is shown, is essentially
an adaption of the proof in [Bey80].

Proof. By a corollary of the Hahn-Banach Theorem (cf. [Alt99, Folgerung 4.17])
there is a linear and continuous functional g0 ∈ E∗ with 〈g0, v0〉 = 1. This leads
to a splitting E = span(v0) ⊕W , where W := N (g0). By Lemma 2.22 we find a

net (fJ)J∈H in (EJ )∗ with fJ
P
⇀ g0 (J ∈ H).

Thus there is J1 ∈ H with |〈fJ , pJv0〉| ≥ 1
2 for all J ∈ H with J ≻ J1 and so we

can define

gJ :=

{

1
〈fJ ,pJv0〉

fJ , for all J ≻ J1,

fJ , otherwise.

Since Lemma 2.11 and Lemma 2.18 imply that there is J2 ∈ H with ‖pJ‖, ‖fJ‖ ≤
const < ∞ for all J ≻ J2 it follows that ‖gJ‖ ≤ const < ∞ for all J ≻ J2. Thus
the inequality

|〈gJ , pJx〉 − 〈g, x〉| ≤
∣

∣

∣

∣

1

〈fJ , pJv0〉
− 1

∣

∣

∣

∣

|〈fJ , pJx〉| + |〈fJ , pJx〉 − 〈g, x〉|

which holds for all x ∈ E and all J ≻ J1, J2 shows

gJ
P
⇀ g0. (2.14)

Define the operators

B : Σ × E → C × F, (s, v) 7→ (〈g, v〉 − 1,A(s)v) (2.15)

and

BJ : Σ ×EJ → C × FJ , (s, v) 7→ (〈gJ , v〉 − 1,AJ (s)v). (2.16)

For the rest of this proof we denote by an upper index “0” the evaluation at s0,
v0, pJv0, (s0, v0), or (s0, pJv0), where the exact meaning will be clear from the
context.
Furthermore define families of linear continuous operators P̃ = (p̃J)J∈H and Q̃ =
(q̃J)J∈H by

p̃J : C × E → C × EJ , (s, v) 7→ (s, pJv)
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2.4 Simple eigenvalues

and

q̃J : C × F → C × FJ , (s, v) 7→ (s, qJv).

(On products of Banach space (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) we use the usual product
norm given by ‖(x, y)‖X×Y := ‖x‖X + ‖y‖Y .) It is clear that the families P̃ and
Q̃ satisfy the properties (2.1) and (2.2).

Step 1: It holds N (DB0) = {0}, where DB0 is the total derivative of B
evaluated at (s0, v0). (In the following D will always mean the total derivative
and ′ will stand for the derivative with respect to s.)

Let (ζ, φ) ∈ C × E with

0 = DB0(ζ, φ) = (〈g0, φ〉, ζA′(s0)v0 + A(s0)φ).

The simplicity assumption of the eigenvalue s0 implies ζ = 0 and so φ ∈ N (A(s0)).
This means φ = cv0 for some c ∈ C, but 〈g0, φ〉 = 〈g0, cv0〉 = c and so φ = 0. This
finishes step 1.

Step 2: The operators DB0
J are Fredholm of index zero for J ≻ J1.

The (Fréchet-)derivative of BJ at (s0, pJv0) can be written as an operator matrix
in the form

DB0
J =

[

0 gJ

A′
J(s0)pJv0 A0

J

]

: C × EJ → C × FJ .

Now the Bordering Lemma C.9 shows the second step.
Step 3: The operators DB0

J regularly-P̃Q̃-converge to DB0.

The convergence DB0
J

P̃Q̃−−→ DB0 follows directly from assumptions (i) and (ii),
(2.14), and the definitions of P̃ and Q̃. Thus it remains to show regularity.
Let (ζJ , φJ)J∈H be a bounded net in (C×EJ), so that the net (DB0

J(ζJ , φJ ))J∈H

is Q̃ compact.
Let (ζJ , φJ)J∈H′ , H ′ ⊂ H, be any cofinal subnet. From the boundedness follows
that there is a cofinal subset H ′′ ⊂ H ′ with ζJ → ζ (J ∈ H ′′). Because of
the Q̃ compactness of (DB0

J(ζJ , φJ))J∈H there is a cofinal subset H ′′′ ⊂ H ′′ and
(λ, ν) ∈ C × F with

DB0
J(ζJ , φJ)

Q̃−→ (λ, ν) (J ∈ H ′′′).

This implies ζJA′
J(s0)pJv0 + A0

JφJ
Q−→ ν (J ∈ H ′′′). Using the triangle inequality

and ζJA′
J(s0)pJv0 → ζA′(s0)v0, we obtain from this

A0
JφJ

Q−→ ν − ζA′(s0)v0 (J ∈ H ′′′).

This shows that the net (A0
JφJ)J∈H is Q compact and so by assumption (i)

(φJ)J∈H is P compact. So there is H ′′′′ ⊂ H ′′′ and φ ∈ E with

(ζJ , φJ )
P̃−→ (ζ, φ) (J ∈ H ′′′′).

Step 3 is proven.
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2 Discrete approximations

Step 4: There is J4 ∈ H and δ > 0 so that BJ has a unique zero (sJ , vJ ) in
Kδ(s0, pJv0) and this satisfies the estimate (2.13).

The results of steps 1–3 together with Lemma 2.21 imply

DB0
J

P̃Q̃−−→ DB0 regularly and stably.

Thus there are J3 ≻ J2 and κ, τ > 0 such that DB0
J is a homeomorphism for all

J ≻ J3 and satisfies

‖(DB0
J )−1‖L(C×FJ ,C×EJ) ≤ κ ∀J ≻ J3 (2.17)

as well as

‖DB0
J‖L(C×EJ ,C×FJ) < τ ∀J ≻ J3. (2.18)

Now choose 0 < q < 1 and ε > 0 such that

(

‖A′
J(s0)‖ + ‖pJv0‖ + ε

)

ε ≤ q

κ
∀J ≻ J3.

By assumption (iii) there is δ1 > 0 with

‖A′
J(s) −A′

J(s0)‖ ≤ ε for all s ∈ Kδ1(s0) ⊂ Σ and J ≻ J3, J2.

Choosing δ := min(ε, δ1) one finds for all (s, v) ∈ Kδ(s0, pJv0)

‖(DBJ (s, v) −DB0
J)(ζ, φ)‖C×FJ

=
∥

∥

(

〈gJ , φ〉 − 〈gJ , φ〉, ζ(A′
J (s)v −A′

J(s0)pJv0) + (AJ(s) −AJ(s0))φ
)∥

∥

≤|ζ|
∥

∥A′
J(s)v −A′

J(s0)pJv0
∥

∥+
∥

∥AJ(s) −AJ(s0)‖‖φ
∥

∥

≤
(

‖A′
J(s0)(v − pJv0)‖ + ‖(A′

J(s) −A′
J(s0))v‖

)

|ζ|

+
∥

∥

∫ 1

0
A′

J(s0 + t(s− s0))(s − s0)dt
∥

∥‖φ‖

≤
(

‖A′
J(s0)‖‖v − pJv0‖ + ‖A′

J(s) −A′
J(s0)‖‖v‖

)

|ζ|

+

∫ 1

0
‖A′

J(s0 + t(s− s0))‖dt|s − s0|‖φ‖

≤‖A′
J(s0)‖ε(|ζ| + ‖φ‖) + (‖pJv0‖ + ε)ε|ζ| + ε2‖φ‖

≤
(

‖A′
J(s0)‖ + ‖pJv0‖ + ε

)

ε(|ζ| + ‖φ‖)

≤ q
κ

(|ζ| + ‖φ‖EJ
) =

q

κ
‖(ζ, φ)‖C×EJ

,

which implies

‖DBJ(s, v) −DBJ(s0, pJv0)‖C×EJ→C×FJ
≤ q

κ
∀(s, v) ∈ Kδ(s0, pJv0). (2.19)
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2.4 Simple eigenvalues

Finally, B0
J Q̃-converges to B0 as seen by

‖B0
J − q̃JB

0‖ =
∥

∥

(

〈gJ , pJv0〉 − 〈g, v0〉,AJ(s0)pJv0 − qJA(s0)v0
)∥

∥

= |〈gJ , pJv0〉 − 〈g, v0〉| + ‖AJ(s0)pJv0 − qJA(s0)v0‖

and the convergences gJ
P
⇀ g and A0

J
PQ−−→ A0.

Thus there is J4 ∈ H with J4 ≻ J3 so that for all J ≻ J4 holds

‖B0
J‖C×FJ

≤ ‖B0‖C×F + δ
1 − q

κ
= δ

1 − q

κ
. (2.20)

The inequalities (2.17), (2.18), (2.19), (2.20) show that the assumptions of Lemma
C.4 with the choice y = 0 are fulfilled. Therefore for all J ≻ J4 there is a unique
zero (sJ , vJ) of BJ in Kδ(s0, pJv0) and moreover the estimate

‖(sJ , vJ) − (s0, pJv0)‖ ≤ κ

1 − q
‖B0

J − 0‖C×FJ
=

κ

1 − q
‖AJ(s0)pJv0‖FJ

holds. This finishes the proof of step 4.
Now it remains to prove the uniqueness of the eigenvalue in Kδ0(s0, pJv0) for a

suitable δ0 and its simplicity.
Step 5: There is J5 ≻ J4 and 0 < δ1 ≤ δ so that sJ is the only eigenvalue of

AJ in Kδ1(s0, pJv0) for all J ∈ H with J ≻ J5 and dimN (AJ(sJ)) = 1.
Assume the assertion is false. Then there is a cofinal sequence (Jn)n∈N in

H with (λn, φn) ∈ Σ × EJn so that |λn − s0| ≤ min( 1
n+1 , δ), ‖φn‖Jn = 1, and

AJn(λn)φn = 0, but λn 6= sJn or φn 6∈ span(vJn). Then it holds

‖AJn(s0)φn‖ = ‖
(

AJn(s0) −AJn(λn)
)

φn‖

≤
∫ 1

0
‖A′

Jn
(s0 + t(λn − s0))‖|λn − s0|dt

≤
∫ 1

0

(

‖A′
Jn

(s0)‖ + ε
)

dt|λn − s0|

and thus limn→∞ ‖AJn(s0)φn‖ = 0 which implies AJn(s0)φn
Q−→ 0. Therefore

assumption (i) together with Lemma 2.17 shows that (φn)n∈N is P-compact. Thus
there is a subsequence (φn)n∈N′ , N

′ ⊂ N, and φ ∈ E with ‖φ‖ = 1 so that

φn
P−→ φ (n ∈ N

′).

The definition of PQ-convergence shows

AJn(s0)φn
Q−→ A(s0)φ (n ∈ N

′) and also AJn(s0)φn
Q−→ 0(n ∈ N

′).

By Lemma 2.15 we have A(s0)φ = 0 and the simplicity assumption of the eigen-
value s0 implies φ = cv0 for some 0 6= c ∈ C.
This form of φ now implies

〈gJn , φn〉 → 〈g0, cv0〉 = c (n ∈ N
′)
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2 Discrete approximations

and therefore there is n0 ∈ N with |〈gJn , φn〉| ≥ |c|
2 for all n ∈ N

′ with n ≥ n0.
Define

φ̃n :=

{

φn

〈gJn ,φn〉
, n ∈ N

′, n ≥ n0,

φn, n ∈ N
′, n < n0.

For this sequence we obtain φ̃n
P−→ v0 (n ∈ N

′) because of the inequality

‖φ̃n − pJnv0‖ ≤
∥

∥

∥

∥

(

1

〈gJn , φn〉
− 1

c

)

φn

∥

∥

∥

∥

+

∥

∥

∥

∥

1

c
(φn − pJnφ)

∥

∥

∥

∥

which holds for all n ∈ N
′ with n ≥ n0. Since the right hand side converges to

zero and by the choice of the sequence λJn follows that there is N0 ≥ n0 such that

‖φ̃n − pJnv0‖ + |λn − s0| < δ ∀n ∈ N
′ with n ≥ N0. (2.21)

Note that the choice of (λn, φ̃n) ∈ Σ × EJn for all n ∈ N
′ with n ≥ n0 leads to

BJn(λn, φ̃n) =
(

〈gJn , φ̃n〉 − 1,AJn(λn)φ̃n

)

= 0. (2.22)

In step 4 it is shown that a point (λn, φ̃n) with (2.21) and (2.22) must equal
(sJn , vJn) and therefore λn = sJn and φn ∈ span(vJn) for all n ∈ N

′ with n ≥ N0

what contradicts the assumption. Step 5 is proven.

Step 6: There is J6 ∈ H with J6 ≻ J5 so that for all J ∈ H with J ≻ J6 the
eigenvalue sJ is a simple eigenvalue.

Always assume J ∈ H with J ≻ J5. First we show DBJ(sJ , vJ )
P̃Q̃−−→ DB0

stably. Note that for all (ζ, φ) ∈ C ×EJ holds

‖
(

DB0
J −DBJ(sJ , vJ)

)

(ζ, φ)
∥

∥

=
∥

∥

(

〈gJ , φ〉 − 〈gJ , φ〉, ζ
(

A′
J(s0)pJv0 −A′

J(sJ)vJ

)

+
(

AJ(s0) −AJ(sJ)
)

φ
)

‖

≤
∥

∥A′
J(s0)pJv0 −A′

J(sJ)vJ

∥

∥|ζ| +
∥

∥AJ(s0) −AJ(sJ)
∥

∥‖φ‖

≤
{

‖A′
J(s0)(pJv0 − vJ)‖ + ‖(A′

J(s0) −A′
J(sJ))vJ‖

}

|ζ|

+
∥

∥

∫ 1

0
A′

J(s0 + t(sJ − s0))(sJ − s0)dt
∥

∥‖φ‖

≤
(

‖A′
J(s0)‖‖pJv0 − vJ‖ + ‖A′

J(s0) −A′
J(sJ)‖‖vJ‖

)

|ζ|

+

∫ 1

0
‖A′

J(s0 + t(sJ − s0))‖ dt |sJ − s0|‖φ‖. (2.23)

Now the convergence result (2.13), proven in step 4, together with (2.23) imply

‖DB0
J −DBJ(sJ , vJ )‖L(C×EJ ,C×FJ) → 0 (J ≻ J4), (2.24)

where (J ≻ J4) stands for (J ∈ {J ∈ H : J ≻ J4}).

34



2.5 Discrete approximations and exponential dichotomies

The convergence (DBJ(sJ , vJ ))
P̃Q̃−−→ DB0 follows from

‖DBJ(sJ , vJ)p̃J(ζ, φ) − q̃JDB
0(ζ, φ)‖

≤ ‖(DBJ(sJ , vJ ) −DB0
J)p̃J(ζ, φ)‖ + ‖DB0

J p̃J(ζ, φ) − q̃JDB
0(ζ, φ)‖

and (2.24) together with the boundedness of the nets p̃J(ζ, φ) and (DBJ(sJ , vJ ))

(what is a result of (2.23)), and DB0
J

P̃Q̃−−→ DB0.
Finally the stability of the convergence is obtained via Lemma A.1 from (2.17)
and (2.24).

Therefore there is J6 ∈ H with J6 ≻ J5 and a constant C0 > 0 so that

‖(DBJ(sJ , vJ ))−1‖L(C×FJ ,C×EJ) ≤ C0 ∀J ≻ J6.

This shows the stability inequality

‖(ζ, φ)‖C×EJ
≤ C0‖DBJ(sJ , vJ )(ζ, φ)‖C×FJ

∀J ≻ J6. (2.25)

Now assume there is J ∈ H with J ≻ J6 so that sJ is not a simple eigenvalue of
AJ(·). From step 5 we know that this implies A′

J(sJ)vJ ∈ R(AJ(sJ)).
Let ζ = 1 and choose φ0 ∈ EJ with

A′
J(sJ)vJ = −AJ(sJ)φ0

and define φ := φ0 − 〈gJ , φ0〉vJ . Then 0 6= (ζ, φ) ∈ C × EJ , but

‖(ζ, φ)‖C×EJ
≤ C0‖DBJ (sJ , vJ )(ζ, φ)‖C×FJ

= C0

(

|〈gJ , φ〉| + ‖ζA′
J(sJ)vJ + AJ(sJ)φ‖FJ

)

= 0

since J ≻ J1. This is a contradiction and shows that sJ must be a simple eigenvalue
which is the claim of step 6.

Taking sJ , vJ and J0 := J6 finishes the proof.

2.5 Discrete approximations and exponential dichotomies

We consider the following setup of spaces and operators:
We take as index set H := {J = [x−, x+] : x± ∈ R, x− ≤ 0 ≤ x+, x− < x+} with
the direction J1 ≻ J2 :⇔ J1 ⊃ J2.

Consider the complex Banach-spaces

(E, ‖ · ‖E) = (H1(R,Cl), ‖ · ‖H1(R,Cl)),

(EJ , ‖ · ‖EJ
) = (H1(J,Cl), ‖ · ‖H1(J,Cl)),

(F, ‖ · ‖F ) = (L2(R,C
l), ‖ · ‖L2(R,Cl)),

(FJ , ‖ · ‖FJ
) = (L2(J,C

l) × C
l, ‖ · ‖L2(J,Cl)×Cl),
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2 Discrete approximations

where ‖ · ‖L2(J,Cl)×Cl is the usual product-norm given by

‖(hJ , s)‖L2(J,Cl)×Cl := ‖hJ‖L2(J,Cl) + |s|.
Furthermore we define families of bounded linear operators P = (pJ)J∈H and
Q = (qJ)J∈H by

pJ :
H1(R,Cl) → H1(J,Cl),

z 7→ z|J
and

qJ :
L2(R,C

l) → L2(J,C
l) × C

l,
h 7→ (h|J , 0).

Define the differential operator

L :
H1(R,Cl) → L2(R,C

l),
z 7→ Lz = zx −M(·)z,

where M ∈ C(R,Cl,l) with hyperbolic limit matrices M± := limx→±∞M(x).
This operator has exponential dichotomies (ED)s∗ on R+ and R− with data
(K+, β+, π+) and (K−, β−, π−), respectively (see Theorem B.5).

Define the linear boundary operator

R :
H1(J,Cl) → C

l,
z 7→ P−z(x−) + P+z(x+),

where P− and P+ are fixed elements of C
l,l. Finally denote by LJ , J ∈ H ′, the

differential operators

LJ :
H1(J,Cl) → L2(J,C

l) × C
l,

zJ 7→ (zJ,x −M(·)z,Rz).
The situation is summarized in the following diagram.

H1(R,Cl)
L

z 7→zx−M(·)z
//

pJz 7→z|J

��

L2(R,C
l)

qJ r 7→(r|J ,0)

��

H1(J,Cl)
LJ

zJ 7→(zJ,x−M(·)zJ ,RzJ )
// L2(J,C

l) × C
l

Theorem 2.29. Let M , L, LJ , and the data K±, β±, π± be given as above.
Furthermore let V I

+ ∈ C
l,r be a basis of the unstable subspace of M+ and let

V II
− ∈ C

l,p be a basis of the stable subspace of M− and assume p + r = l. Finally
assume that the boundary operator R satisfies

det
(

P−V
II
− P+V

I
+

)

6= 0.

Then
LJ

PQ−−→ L regularly (J ∈ H ′).

∗For a short review of the theory of exponential dichotomies see Appendix B.
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2.5 Discrete approximations and exponential dichotomies

Proof. First we show the PQ-convergence of LJ to L.
For any z ∈ EJ with ‖zJ‖EJ

≤ 1 holds

‖LJzJ‖FJ
= ‖zJ,x −M(·)zJ‖L2(J,Cl) + |RJzJ |

≤ ‖zJ,x‖L2(J,Cl) + ‖M‖∞‖zJ‖L2(J,Cl) + |P−zJ(x−)| + |P+zJ(x+)|.

By the Sobolev inequality (C.1) we have ‖zJ‖∞ ≤ const‖zJ‖H1 with a constant
independent of J for all J = [x−, x+] with |x+ − x−| ≥ 1. Therefore it follows

‖LJzJ‖FJ
≤ const‖zJ‖H1(J,Cm)

with a constant independent of J for all J with |J | ≥ 1.
Hence by Lemma 2.18 it suffices to show for all z ∈ E

‖LJpJz − qJLz‖FJ
→ 0 (J ∈ H). (2.26)

But for z ∈ E we have

‖LJpJz − qJLz‖FJ
= ‖Lz|J − (Lz)|J‖L2(J,Cl) + |P−z(x−) + P+z(x+)|

≤ |P−||z(x−)| + |P+||z(x+)| → 0 (J ∈ H),

by Lemma C.3.
Second we show the regularity of the convergence.

Let (zJ )J∈H be a bounded family, zJ ∈ EJ , ‖zJ‖EJ
≤ 1, such that (LJzJ)J∈H is

Q-compact.
Let H ′ ⊂ H be any cofinal subset of H. Since H is an unbounded directed set

there is a cofinal sequence (Jn)n∈N in H ′. We denote the endpoints of the interval
Jn by xn

− and xn
+, i.e. Jn = [xn

−, x
n
+].

From the Q-compactness of (LJzJ)J∈H we obtain N
′ ⊂ N and h ∈ F with

LJnzJn =

(

LzJn

RzJn

)

=

(

LzJn

P−zJn(xn
−) + P+zJn(xn

+)

)

=:

(

hn

sn

)

Q−→ h (n ∈ N
′)

by definition this means

‖LJnzJn − qJnh‖FJn
= ‖hn − h|Jn‖L2(Jn,Cl) + |sn| → 0 (n ∈ N

′). (2.27)

Because of the dichotomy property and the result of Theorem B.2 we can write
zn := zJn , using the notation from there, as

zn(x) =

{

S(x, 0)π+(0)zn(0) + S(x, xn
+)(I − π+(xn

+))zn(xn
+) + ρ+(x, xn

+) x ≥ 0,

S(x, 0)(I − π−(0))zn(0) + S(x, xn
−)π−(xn

−)zn(xn
−) + ρ−(x, xn

−) x ≤ 0,

(2.28)
where

ρ+(x, xn
+) =

∫ xn
+

0
G+(x, y)hn(y)dy, x ≥ 0

and

ρ−(x, xn
−) =

∫ 0

xn
−

G−(x, y)hn(y)dy, x ≤ 0.
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2 Discrete approximations

Here G± are the Green’s functions from Theorem B.2. Notice that the right hand
side of (2.28) is well-defined because of the uniqueness result in Theorem B.2.

By the Sobolev-inequality (C.1) and the boundedness of the sequence ‖zn‖E(Jn)

there exist N
′′ ⊂ N

′ and η ∈ C
l with

zn(0) → η (n ∈ N
′′).

We define

z(x) :=

{

S(x, 0)π+(0)η + ρ+(x) x > 0,

S(x, 0)(I − π−(0))η + ρ−(x) x < 0,
(2.29)

where

ρ+(x) =

∫ ∞

0
G+(x, y)r(y)dy, x ≥ 0

and

ρ−(x) =

∫ 0

−∞
G−(x, y)r(y)dy, x ≤ 0.

By construction z is an element of L2(R,C
l).

Step 1: The subsequence (zn)n∈N′′ converges to z in the sense

‖zn − z|Jn‖L2(Jn) → 0 (n ∈ N
′′). (2.30)

From the definition of η we find

∫ 0

xn
−

|S(x, 0)(I − π−(0))(zn(0) − η)|2dx

≤
∫ 0

−∞
K2

−e
−2β−|x||zn(0) − η|2dx =

K2
−

2β−
|zn(0) − η|2 → 0 (n ∈ N

′′) (2.31)

and similarly

∫ xn
+

0
|S(x, 0)π+(0)(zn(0) − η)|2dx→ 0 (n ∈ N

′′). (2.32)

The estimates (2.31) and (2.32) show

‖S(x, 0)π+(0)(zn(0) − η)‖L2([0,∞)) + ‖S(x, 0)(I − π−(0))(zn(0) − η)‖L2((−∞,0])

→ 0 (n ∈ N
′′). (2.33)

Furthermore, we find

∫ 0

xn
−

∣

∣

∫ 0

xn
−

G−(x, y)hn(y)dy −
∫ 0

−∞
G−(x, y)h(y)dy

∣

∣

2
dx

≤ 2

∫ 0

xn
−

(

∫ 0

xn
−

|G−(x, y)||hn(y) − h(y)|dy
)2

dx+2

∫ 0

xn
−

(
∫ xn

−

−∞
|G−(x, y)||h(y)|dy

)2

dx,
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2.5 Discrete approximations and exponential dichotomies

where we used (a + b)2 ≤ 2a2 + 2b2. Using the Cauchy-Schwarz inequality, the
Theorem of Fubini and the convergence (2.27) we obtain for the first summand

∫ 0

xn
−

(

∫ 0

xn
−

|G−(x, y)||hn(y) − h(y)|dy
)2

dx

≤
∫ 0

xn
−

(

∫ 0

xn
−

K−e
−β−|x−y||hn(y) − h(y)|dy

)2

dx

≤
∫ 0

xn
−

∫ 0

xn
−

K2
−e

−β−|x−y|dy

∫ 0

xn
−

e−β−|x−y||hn(y) − h(y)|2dydx

≤ 2K2
−

β−

∫ 0

xn
−

|hn(y) − h(y)|2
∫ 0

xn
−

e−β−|x−y|dx dy

≤ 4K2
−

β2
−

‖hn − h|Jn‖2
L2(Jn) → 0 (n ∈ N

′′).

Similarly it holds

∫ 0

xn
−

(
∫ xn

−

−∞
|G−(x, y)||h(y)|dy

)2

dx ≤ K2
−

β2
−

∫ xn
−

−∞
|h(y)|2dy → 0 (n ∈ N

′′)

since h ∈ L2(R,C
l). These computations show

∫ 0

xn
−

∣

∣

∫ 0

xn
−

G−(x, y)hn(y)dy −
∫ 0

−∞
G−(x, y)h(y)dy

∣

∣

2
dx→ 0 (n ∈ N

′′) (2.34)

and in the same fashion
∫ xn

+

0

∣

∣

∫ xn
+

0
G+(x, y)hn(y)dy −

∫ +∞

0
G+(x, y)h(y)dy

∣

∣

2
dx→ 0 (n ∈ N

′′). (2.35)

The estimates (2.34) and (2.35) prove

‖ρ−(x, xn
−)−ρ−(x)‖L2([xn

−,0])+‖ρ+(x, xn
+)−ρ+(x)‖L2([0,xn

+]) → 0 (n ∈ N
′′). (2.36)

Now we show

∫ 0

xn
−

|S(x, xn
−)π−(xn

−)zn(xn
−)|2dx+

∫ xn
+

0

∣

∣S(x, xn
+){I − π+(xn

+)}zn(xn
+)
∣

∣

2
dx

→ 0 (n ∈ N
′′). (2.37)

Because of the estimates
∫ 0

xn
−

|S(x, xn
−)π−(xn

−)zn(xn
−)|2dx ≤ K2

−

2β−
|π−(xn

−)zn(xn
−)|2

and

∫ xn
+

0
|S(x, xn

+)(I − π+(xn
+))zn(xn

+)|2dx ≤ K2
+

2β+
|(I − π+(xn

+))zn(xn
+)|2
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2 Discrete approximations

it suffices to prove

π−(xn
−)zn(xn

−) → 0 (n ∈ N
′′), and (I − π+(xn

+))zn(xn
+) → 0 (n ∈ N

′′). (2.38)

To get a hand on these terms we use |sn| = |P−zn(x−)+P+zn(x+)| → 0 (n ∈ N
′)

which follows from (2.27). We insert the representation (2.28) into the boundary
operator and obtain

Rzn = P−zn(xn
−) + P+zn(xn

+)

= P−π−(xn
−)zn(xn

−) + P+

(

I − π+(xn
+)
)

zn(xn
+)

+ P−S(xn
−, 0)

(

I − π−(0)
)

zn(0) + P+S(xn
+, 0)π+(0)zn(0)

+ P−

∫ 0

xn
−

G−(xn
−, y)hn(y)dy + P+

∫ xn
+

0
G+(xn

+, y)hn(y)dy.

(2.39)

The uniform boundedness of ‖zn‖∞, n ∈ N
′′, implies

|P−S(xn
−, 0)

(

I − π−(0)
)

zn(0)| +
∣

∣P+S(xn
+, 0)π+(0)zn(0)

∣

∣

≤
(

|P−|K−e
−β−|xn

−| + |P+|K+e
−β+|xn

+|)
)

|zn(0)| → 0 (n ∈ N
′′). (2.40)

Next we show

|P−

∫ 0

xn
−

G−(xn
−, y)hn(y)dy| → 0 (n ∈ N

′′), (2.41)

|P+

∫ xn
+

0
G+(xn

+, y)hn(y)dy| → 0 (n ∈ N
′′). (2.42)

Before we prove these, note that because of (2.27) and the density of C∞
0 (R,Cl)

in L2(R,C
l) (see [Alt99, Satz 2.14]), for every ε > 0 there is an index n0 ∈ N

′′ and
a function h̃ ∈ C∞

0 (R,Cl) with

‖hn − h̃|Jn‖2
L2(Jn,Cl) ≤ ε ∀n ≥ n0, n ∈ N

′′.

Now use this to prove (2.41) and (2.42). The triangle inequality yields

(

∫ 0

xn
−

e−β−|xn
−−y||hn(y)|dy

)2

≤ 2







(

∫ 0

xn
−

e−β−|xn
−−y||h̃(y) − hn(y)|dy

)2

+

(

∫ 0

xn
−

e−β−|xn
−−y||h̃(y)|dy

)2






.

With the Cauchy-Schwarz inequality one can estimate the first summand by

(

∫ 0

xn
−

e−β−|xn
−−y||h̃(y) − hn(y)|dy

)2

≤ 1

2β−
‖h̃|Jn − hn‖2

L2(Jn)≤
ε

2β−
∀n ≥ n0, n ∈ N

′′.

For the second summand we note that there is a constant C0 > 0 with

|h̃(y)| ≤ C0e
−max(β+,β−)|y|,
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2.5 Discrete approximations and exponential dichotomies

thus

(

∫ 0

xn
−

e−β−|xn
−−y||h̃(y)|dy

)2

≤ C2
0

(

∫ 0

xn
−

e−β−|xn
−−y|e−β−|y|dy

)2

≤ C2
0





∫

xn
−
2

xn
−

e−β−|xn
−−y|e−β−

|xn
−|

2 dy +

∫ 0

xn
−
2

e−β−
|xn

−|

2 e−β−|y|dy





2

≤ 4C2
0

β2
−

e−β−|xn
−| → 0 (n ∈ N

′′).

These estimates prove (2.41) and in a similar way one obtains (2.42).
Inserting the results of (2.27), (2.40), (2.41), and (2.42) into (2.39) shows

P−π−(xn
−)zn(xn

−) + P+

(

I − π+(xn
+)
)

zn(xn
+) → 0 (n ∈ N

′′). (2.43)

Now we denote by π̄± the projectors of the exponential dichotomies on R of the
constant coefficient operators L±z = zx −M±z. From Theorem B.5 we know

|π̄+ − π+(x)| −−−→
x→∞

0

and
|π̄− − π−(x)| −−−−→

x→−∞
0.

This convergence of the projectors and the equalities R(V II
− ) = R(π̄−) as well as

R(V I
+) = R(I − π̄+) yield that there is n0 ∈ N

′′ so that for all n ≥ n0, n ∈ N
′′,

there are αn ∈ C
p and βn ∈ C

r with

π−(xn
−)zn(xn

−) = π−(xn
−)V II

− αn, (I − π+(xn
+))zn(xn

+) = (I − π+(xn
+))V I

+βn.

Now we can write the left hand side of (2.43) in the form

P−π−(xn
−)zn(xn

−) + P+(I − π+(xn
+))zn(xn

+)

= P−π̄−V
II
− αn+P+(I−π̄+)V I

+βn+P−(π−(xn
−)−π̄−)V II

− αn+P+(π̄+−π+(xn
+))V I

+βn

=
(

P−V
II
− P+V

I
+

)

(

αn

βn

)

+
(

P−(π−(xn
−) − π̄−)V II

− P+(π̄+ − π+(xn
+))V I

+

)

(

αn

βn

)

.

Because of the convergence
(

P−(π−(xn
−) − π̄−)V II

− , P+(π̄+ − π+(xn
+))V I

+

)

→ 0 (J ∈ H)

the Banach-Lemma A.1 implies that there is N0 ≥ n0 so that for all n ∈ N
′′ with

n ≥ N0 the matrix

A(xn
−, x

n
+) :=

(

P−V
II
− P+V

I
+

)

+
(

P−

(

π−(xn
−) − π̄−

)

V II
− , P+(π̄+ − π+(xn

+))V I
+

)

is invertible and the inverse is uniformly bounded for all n ≥ N0, n ∈ N
′′. Therefore

αn and βn are uniquely determined for all n ∈ N
′′ with n ≥ N0 and because of

(2.43) we also obtain (αn, βn) → 0 (n ∈ N
′′).
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2 Discrete approximations

Then the boundedness of π−(x) and π+(x) and the convergence of αn, βn imply

π−(xn
−)zn(xn

−) = π−(xn
−)V II

− αn −−−→
n→∞

0, n ∈ N
′′,

(I − π+(xn
+))zn(xn

+) = (I − π+(xn
+))V I

+βn −−−→
n→∞

0, n ∈ N
′′.

Hence (2.38) follows. And this finishes the proof of (2.37) which states

‖S(x, xn
−)π−(xn

−)zn(xn
−)‖L2([xn

−,0]) + ‖S(x, xn
+)(I − π+(xn

−))zn(xn
+)‖L2([0,xn

+])

→ 0 (n ∈ N
′′). (2.44)

Now adding (2.33), (2.36), and (2.44) proves the assertion of step 1.
Step 2: The limit z from step 1 is an element of H1(R,Cl) and satisfies the

differential equation Lz = h in L2(R,C
l).

By construction z is an element of L2(R,C
l) thus it remains to show that the dis-

tributional derivative can be represented by some element w ∈ L2(R,C
l). There-

fore define
w := M(·)z + h. (2.45)

From the boundedness of M and z, h ∈ L2(R,C
l), w is an element of L2(R,C

l).
We show that w is the distributional derivative of z, i.e.

(w,φ)L2(R,Cl) = −(z, φ′)L2(R,Cl) ∀φ ∈ C∞
0 (R,Cl).

Let φ ∈ C∞
0 (R,Cl) be arbitrary. Because of the cofinality of the sequence

(Jn)n∈N there is n0 ∈ N
′′ with Jn ⊃ supp(φ) ∀n ≥ n0, n ∈ N

′′. For all n ≥ n0,
n ∈ N

′′, holds

|(w,φ)L2(R) + (z, φ′)L2(R)| = |(w|Jn , φ)L2(Jn) + (z|Jn , φ
′)L2(Jn)|

≤ |(w|Jn , φ)L2(Jn) − (zn,x, φ)L2(Jn)| + |(z|Jn , φ
′)L2(Jn) − (zn, φ

′)L2(Jn)|
≤ ‖w|Jn − zn,x‖L2(Jn)‖φ‖L2

+ ‖z|Jn − zn‖L2(Jn)‖φ′‖L2

≤ ‖φ‖H1

{

‖w|Jn − zn,x‖L2(Jn) + ‖z|Jn − zn‖L2(Jn)

}

≤ ‖φ‖H1

{

‖M‖∞‖z|Jn − zn‖L2(Jn) + ‖h|Jn − hn‖L2(Jn) + ‖z|Jn − zn‖L2(Jn)

}

where (u, v)L2
denotes the usual L2-inner product. In the estimates we have used

the definition of w and that zn ∈ H1(Jn,C
l) satisfies zn,x = M(·)zn + hn in

L2(Jn,C
l). Now (2.30) and (2.27) imply

|(w,φ)L2
+ (z, φ′)L2

| −−−→
n→∞

0, n ∈ N
′′.

Thus step 2 follows since the considerations from above show zx = w ∈ L2(R,C
l)

and therefore

Lz = zx −M(·)z = w −M(·)z = h in L2(R,C
l).

Now the P-convergence of (zn)n∈N′′ to z follows from

‖z|Jn − zn‖2
H1(Jn) = ‖z|Jn − zn‖2

L2(Jn) + ‖zx|Jn − zn,x‖2
L2(Jn)

≤ ‖z|Jn − zn‖2
L2(Jn) + 2

{

‖M‖2
∞‖z|Jn − zn‖2

L2(Jn) + ‖h|Jn − hn‖2
L2(Jn)

}

−−−→
n→∞

0, n ∈ N
′′.

This finishes the proof of Theorem 2.29.
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3 The hyperbolic case

In this chapter we consider a linear strictly hyperbolic PDE of the form

vt = Pv, in [0,∞) × R. (3.1)

The operator P is given by

Pv = Bvx + Cv. (3.2)

For example (3.1) may be obtained as in the introduction by linearization at a
travelling wave solution.

3.1 Assumptions

For the coefficients of P we make the following assumptions.

Assumption 1.

(H1) The matrix-valued functions B ∈ C2(R,Cm,m) and C ∈ C1(R,Cm,m) satisfy

∃ lim
x→±∞

B(x) =: B± and ∃ lim
x→±∞

Bx(x) = 0,

∃ lim
x→±∞

C(x) =: C±.

Furthermore we assume that their second respectively first derivative are
uniformly bounded

‖Bxx‖∞ <∞, ‖Cx‖∞ <∞.

(H2) For every x ∈ R the matrix B(x) is a real diagonal-matrix, where the first
r entries are positive and the last m − r entries are negative. The matrix
satisfies a uniform invertibility condition, i.e. ∃b0 > 0 with

bii(x) ≥ b0 ∀x ∈ R, 1 ≤ i ≤ r,

−bii(x) ≥ b0 ∀x ∈ R, r + 1 ≤ i ≤ m,
(3.3)

as well as a uniform gap condition. There is γ > 0 with

|bii(x) − bjj(x)| ≥ γ ∀x ∈ R, i 6= j. (3.4)

(H3) For the limit matrices C± the real parts of the diagonal elements are bounded
from above by

ReC±jj ≤ −2δ < 0

for some δ > 0.

43



3 The hyperbolic case

(H4) For any ω ∈ R it holds that

s ∈ σ(iωB+ + C+)

or

s ∈ σ(iωB− + C−)

implies Re s ≤ −δ. Here σ(iωB+ + C+) denotes the spectrum of the matrix
iωB+ + C+.

From assumption (H1) directly follows the boundedness of ‖B‖∞, ‖Bx‖∞ and
‖C‖∞. We define

‖B‖∞ =: B0 <∞. (3.5)

Throughout the text we denote by M(δ, c) the subset of the complex plane defined
by

M(δ, c) := {s ∈ C : Re s > −δ, |s| > c} . (3.6)

c

−δ

Figure 3.1: Illustration of the subset M(δ, c) in the complex plane.

3.2 Resolvent estimates for large |s|
This section is in many parts a rigorous carry out of the proofs from the personal
notes of J. Lorenz [Lor99]. At some places we also improved the estimates which
was necessary for the application of the results in the mixed case in Chapter 4. A
crucial part in this section is the application of Lemma A.7. We state and prove
the lemma in Appendix A since the proof is quite long and would interrupt the
line of argumentation.

The goal in this section is to show that the all line operator

Pv = Bvx + Cv, P : H1(R,Cm) → L2(R,C
m), (3.7)

and its restriction to a finite interval J = [x−, x+], J large enough, both have no
spectrum in the region M(δ, c) for large c. More specific we will show uniform
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3.2 Resolvent estimates for large |s|

resolvent estimates in this region. Analogous results for parabolic systems which
we will review in Section 4.2 are given in [BL99, Chapter 2].

Denote by P |J the operator P on the finite interval J = [x−, x+]. For the
boundary value problem on the infinite line the boundary conditions are given in
the domain of the operator P , but for the finite interval boundary value problem
one has to provide explicit boundary conditions. We will always assume linear
two point boundary conditions. Therefore consider

P |Jv = Bvx +Cv, P |J : H1(J) → L2(J)

Rv = R−v(x−) +R+v(x+), R : H1(J) → C
m

(3.8)

as an approximation of the all line operator on finite intervals. Here R± ∈ C
m,m

are constant matrices.

In the sequel we will often partition the boundary operator in the form R± =
(

RI
±, R

II
±

)

, where RI
± ∈ C

m,r and RII
± ∈ C

m,m−r, corresponding to the splitting of
B into positive and negative real parts.

Theorem 3.1. Assume that (H1), (H2), and (H3) hold. Then there exist positive
constants C0,K such that for all s ∈ M(δ, C0) and every F ∈ L2(R,C

m) the all
line problem

(sI − P )v = F in L2(R,C
m) (3.9)

has a unique solution v ∈ H1(R,Cm). Furthermore this solution can be estimated
by

‖v‖2 ≤ K‖F‖2. (3.10)

If in addition F ∈ H1(R,Cm), then the estimate can be improved to

‖v‖2 + ‖vx‖2 ≤ K(‖F‖2 + ‖Fx‖2). (3.11)

Moreover there exists δ′ > 0 such that for all s ∈ C with |s| > C0 and Re(s) > δ′

the estimates (3.10) and (3.11) can be improved to

Re(s)2‖v‖2 ≤ K‖F‖2 (3.12)

and

Re(s)2
{

‖v‖2 + ‖vx‖2
}

≤ K
{

‖F‖2 + ‖Fx‖2
}

(3.13)

respectively.
In all inequalities the constant K is independent of s and F .

The analogous result for the restricted problem is given in the next theorem.
In the theorem we consider functions at the endpoints of the intervals and use
|v|2Γ := |v(x−)|2 + |v(x+)|2 as a norm on the boundary. Note that the boundary
norm also makes sense for functions v ∈ H1(J) because of Lemma C.2.
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3 The hyperbolic case

Theorem 3.2. We assume (H1), (H2), (H3), as well as the determinant-condition

D∞ := det(RII
− , R

I
+) 6= 0. (3.14)

Then there exist positive constants C0, b, and K such that for all s ∈ M(δ, C0),
all J = [x−, x+] ⊃ [−b, b], all F ∈ L2(J,C

m), and all η ∈ C
m, there is a unique

solution v ∈ H1(J,Cm) of

(sI − P )v = F, in L2(J,C
m), Rv = η. (3.15)

This solution can be estimated by

‖v‖2 + |v|2Γ ≤ K{|η|2 + ‖F‖2}. (3.16)

Furthermore there exists δ′ > 0 so that for all s ∈ C with |s| > C0 and Re s > δ′,
the estimate (3.16) can be improved to

Re(s)2‖v‖2 + Re(s)|v|2Γ ≤ K
{

‖F‖2 + Re(s)|η|2
}

. (3.17)

In all inequalities the constant K does not depend on x−, x+, s, F , and η.

The inequalities (3.12), (3.13), and (3.17) are improvements of the resolvent
estimates claimed in the notes [Lor99]. These estimates are also necessary for the
operators P and P |J to generate C0-semigroups on the respective spaces, but they
are not sufficient since an estimate of this type is necessary for all powers of the
resolvent and the constant K must be independent of the powers. For the theory
of semigroups see for example [RR93, Chapter 11] or [Paz83].

Remark. Note that the improved estimates only hold if one is far enough to
the right of the imaginary axis, but the original estimates also hold in some parts
to the left of the imaginary axis.

In order to prove the Theorems we now follow the line of proof from [BL99,
Chapter 2] and [Lor99]:
In a first step we transform the resolvent equation such that it is written as a
perturbation of a diagonal system. For the diagonal system we show that it has
an (ED) on R and with the Roughness Theorem for (ED)s B.4 we conclude the
same for the perturbed system. This is done in 3.2.1.
In the second step we conclude in 3.2.2 from this result Theorem 3.1.
In 3.2.3 we follow the proof of [BL99][Theorem 2.1] to prove Theorem 3.2.

Until the end of this section we will always assume (H1), (H2), and (H3).

3.2.1 Exponential dichotomies for large |s|
Rewrite the resolvent-equation

(sI − P )v = F in L2(R,C
m)

in the form
vx = (sB−1 −B−1C)v −B−1F. (3.18)
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3.2 Resolvent estimates for large |s|

From the assumptions (H1) and (H2) one obtains the bounds

‖B−1‖∞ <∞, ‖B−1C‖∞ <∞, ‖(B−1)x‖∞ <∞, ‖(B−1C)x‖∞ <∞.

Furthermore by (H2) the matrix-valued functionB−1 fulfills a uniform gap-condition
of the form

∣

∣

∣

∣

1

bi(x)
− 1

bj(x)

∣

∣

∣

∣

≥ γ

‖B‖2
∞
> 0 ∀x ∈ R, i 6= j.

Therefore we can apply Lemma A.7 with D = B−1 and E = B−1C. This proves
the existence of an ε > 0 such that there is a matrix-valued function

T̃ : (x, r) 7→ T̃ (x, r) = I + rT̃1(x, r) ∈ C(R × {|r| < ε},GLm(C))

with for all (x, r) ∈ R × {|r| < ε} is T̃ (x, r)−1
(

B(x)−1 + rB(x)−1C(x)
)

T̃ (x, r)

a diagonal-matrix and ‖T̃1‖∞ ≤ CT,0 < ∞. The Lemma also shows that T̃1 is
differentiable with respect to x, T̃1,x is continuous and also uniformly bounded
‖T̃1,x‖∞ =: CT,1 <∞.
Now choose

Ca ≥ max(
1

ε
,

2

CT,0
) (3.19)

and define as in (A.5)

T1(x, s) := T̃1(x,
1

s
), for x ∈ R, |s| > Ca,

and

T (x, s) := I +
1

s
T1(x, s) for x ∈ R, |s| > Ca. (3.20)

By the choice of Ca the Banach-Lemma (Lemma A.1) is applicable and yields (see
(A.7))

‖T−1‖∞ ≤ 2. (3.21)

The construction of T shows that the matrix-valued function

Λ : (x, s) 7→ Λ(x, s) := T (x, s)−1
(

sB(x)−1 −B(x)−1C(x)
)

T (x, s)

is diagonal-matrix-valued.
Moreover Lemma A.6 and Lemma A.7 imply the estimate

|Λii(x, s) − (sbii(x)
−1 − bii(x)

−1cii(x))| ≤
CΛ

|s| (3.22)

for the eigenvalues. Here CΛ is a positive constant independent of x and s.
Now we transform the system (3.18) by using the variables

Tz := v. (3.23)

Then (3.18) becomes
zx = (Λ − T−1Tx)z + F̄ , (3.24)
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3 The hyperbolic case

where F̄ (x, s) = −T−1(x, s)B−1(x)F (x). We denote by L(·, s) the differential
operator

L(·, s)z = zx − (Λ(·, s) − T−1(·, s)Tx(·, s))z (3.25)

and write the transformed resolvent equation (3.24) in the form

L(x, s)z = F̄ . (3.26)

We show the property of (ED)s for the diagonal part of (3.26).

Lemma 3.3. There exists Cb > Ca such that for all s ∈ M(δ, Cb) the diagonal
operators L̃(x, s) given by

L̃(x, s)z = zx − Λ(x, s)z (3.27)

have an (ED) on R where the data (K̃, β̃, π̃) can be chosen independently of s. In
particular on can choose

π̃ =

(

0 0
0 Im−r

)

as projector of the (ED) and

β̃ =
δ

4B0

as exponent of the (ED).

For the proof of Lemma 3.3 we need the following auxiliary result for scalar
equations.

Lemma 3.4. Let λ ∈ C(R,C) and let ξ− ≤ ξ+ ∈ R with

Reλ(x) ≤ −α < 0, ∀x ∈ R \ (ξ−, ξ+), (3.28)

or

Reλ(x) ≥ α > 0, ∀x ∈ R \ (ξ−, ξ+). (3.29)

then the scalar equation
Lu = ux − λu (3.30)

has an (ED) on R with data (K,β, π), where we can choose

K = max
ξ−≤x≤y≤ξ+

exp(

∫ y

x
Reλ(ξ)dξ) exp(α(ξ+ − ξ−)), (3.31)

β = α, (3.32)

π = 1, (3.33)

in the case of (3.28) and it is possible to choose

K = max
ξ−≤x≤y≤ξ+

exp(

∫ y

x
−Reλ(ξ)dξ) exp(α(ξ+ − ξ−)), (3.34)

β = α, (3.35)

π = 0 (3.36)

in the case of (3.29).
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Proof. The solution-operator of (3.30) is given by

S(x, y) = exp(

∫ x

y
λ(ξ)dξ).

First we assume the case of (3.28). Then for the data as in (3.31)–(3.33) we have

0 = |S(x, y)(1 − π(y))| ≤ Ke−β|x−y| ∀x < y.

Therefore it remains to show that for all y ≤ x the inequality

|S(x, y)π(y)| ≤ Ke−β|x−y| (3.37)

holds.

1. In the case y ≤ x < ξ− we can estimate

|S(x, y)π(y)| = | exp(

∫ x

y
λ(ξ)dξ)| = exp(

∫ x

y
Reλ(ξ)dξ)

≤ exp(

∫ x

y
−αdξ) ≤ K exp(−β|x− y|)

and so inequality (3.37) holds.

2. In the case y ≤ ξ− ≤ x ≤ ξ+ we split the integral and obtain the estimate

|S(x, y)π(y)| = | exp(

∫ x

y
λ(ξ)dξ)| = exp(

∫ x

y
Reλ(ξ)dξ)

≤ exp(

∫ ξ−

y
−αdξ) exp(

∫ x

ξ−

Reλ(ξ)dξ) ≤ K exp(−β|x− y|).

This proves (3.37) for this case.

3. Similarly we split the integral in the case y ≤ ξ− ≤ ξ+ < x

|S(x, y)π(y)| = | exp(

∫ x

y
λ(ξ)dξ)| = exp(

∫ x

y
Reλ(ξ)dξ)

≤ exp(

∫ ξ−

y
−αdξ) exp(

∫ ξ+

ξ−

Reλ(ξ)dξ) exp(

∫ x

ξ+

−αdξ)

≤ K exp(−β|x− y|).

4. The cases ξ− < y ≤ x ≤ ξ+ and ξ− < y ≤ ξ+ < x are shown in the same
way.

The proof under the assumption (3.29) is similar.

We could apply Lemma 3.4 directly to (3.27) and see that these operators have
(ED)s on R for all s ∈ M(δ, Ca), where Ca is the constant given in (3.19). Since
we aim for estimates independent of s in Theorem 3.1 and Theorem 3.2 one has
to be more accurate.
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Proof of Lemma 3.3. By assumption (H3) for every i = 1, . . . ,m, there exist
ξ−(i) ≤ ξ+(i) ∈ R with

Re cii(x) ≤ −3

2
δ ∀x ∈ R \ (ξ−(i), ξ+(i)).

Let ξ− := mini=1,...,m ξ−(i) and ξ+ := maxi=1,...,m ξ+(i). By equation (3.22) one
can choose Cb > Ca such that for every i = 1, . . . ,m one has

|Λii(x, s) −
1

bii(x)
(s− cii(x))| ≤

δ

4B0
, ∀|s| ≥ Cb, x ∈ R.

Hence

|ReΛii(x, s) − Re
1

bii(x)
(s− cii(x))| ≤

δ

4B0
, ∀|s| ≥ Cb, x ∈ R. (3.38)

This shows that for all s ∈ M(δ, Cb) and all x ∈ R \ (ξ−, ξ+) one can estimate

Re Λii(x, s) ≥
1

bii(x)
Re(s− cii(x)) −

δ

4B0

≥ δ

2B0
− δ

4B0
=

δ

4B0
, for 1 ≤ i ≤ r.

(3.39)

In the case r + 1 ≤ i ≤ m one obtains

Re Λii(x, s) ≤ Re
1

bii(x)
(s− cii(x)) +

δ

4B0

≤ − 1

B0

δ

2
+

δ

4B0
= − δ

4B0
.

(3.40)

With Lemma 3.4 follows that the diagonal operators L(·, s) have (ED)s on R with
data (K̃(s), β̃, π̃), where

K̃(s) = exp(β(ξ+ − ξ−)) · max

(

max
1≤i≤r

max
ξ−≤x≤y≤ξ+

exp(

∫ y

x
−ReΛii(ξ, s)dξ),

max
r+1≤i≤m

max
ξ−≤x≤y≤ξ+

exp(

∫ y

x
Re Λii(ξ, s)dξ)

)

,

β̃ =
δ

4B0
,

π̃ =

(

0 0
0 Im−r

)

.

We still have to show that K̃(s) can be bounded uniformly in s. Therefore consider
equation (3.38). By estimation in the other direction one obtains
for 1 ≤ i ≤ r

−ReΛii(x, s) ≤
1

b0

(

δ + max
ξ−≤x≤ξ+

Re cii(x)
)

+
δ

4B0
=: si, (3.41)

50



3.2 Resolvent estimates for large |s|

and for r + 1 ≤ i ≤ m

ReΛii(x, s) ≤
1

b0

(

δ + max
ξ−≤x≤ξ+

Re cii(x)
)

+
δ

4B0
=: si. (3.42)

Hence

K̃(s) ≤ exp

(
∫ ξ+

ξ−

max( max
1≤i≤m

si, 0)dξ

)

exp(β|ξ+ − ξ−|) =: K̃.

For the proofs of the improved resolvent-estimates (3.12), (3.13), and (3.17) we
need another version of Lemma 3.3. The resulting version will also be needed in
the mixed parabolic-hyperbolic case for the proof of a Fredholm alternative.

Lemma 3.5. There exists a δ̃′ > 0 such that for all s ∈ C with Re s > δ̃′ the
diagonal operators (3.27) have (ED)s on R with data (K̃, β̃(s), π̃), where

K̃ = 1, β̃ = cRe(s), π̃ =

(

0 0
0 Im−r

)

, (3.43)

and c > 0 is some constant independent of s.

Proof. By assumption (H3) follows

sup
x∈R

max
i=1,...,m

Re cii(x) =: m+ <∞.

Choose δ̃′ > Ca, such that
1

2B0
>

|m+|
b0δ̃′

+
CΛ

δ̃′2
,

where CΛ is the constant from (3.22).
Then for 1 ≤ i ≤ r one can estimate by (3.22) for all s ∈ C with Re s ≥ δ̃′

ReΛii(x, s) ≥ Re

(

1

bii(x)
(s− cii(x))

)

− CΛ

Re s

≥ Re(s)

(

1

B0
− |m+|
b0 Re(s)

− CΛ

Re(s)2

)

≥ Re(s)

(

1

2B0

)

.

In the same way one finds for r + 1 ≤ i ≤ m for all s ∈ C with Re s ≥ δ̃′

ReΛii(x, s) ≤ −Re(s)

(

1

2B0

)

.

Now the Lemma follows from Lemma 3.4 with ξ− = ξ+.
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3 The hyperbolic case

In the next step we conclude that the operators L(·, s) defined in (3.25) have
exponential dichotomies on R by using the Roughness Theorem B.4. The aim is
the following Lemma.

Lemma 3.6. There exists C̃0 > 0 such that for all s ∈ M(δ, C̃0) the operators
L(·, s) have (ED)s on R with data (K,β, π(x, s)), where K and β do not depend
on s. Moreover there is a constant independent of x and s so that

|π(x, s) −
(

0 0
0 Im−r

)

| ≤ const

|s| . (3.44)

Proof. Take C̃0 ≥ Cb such that 3K̃
2CT,1

C̃0
< β̃.

By construction of T and equations (3.21), (3.20), (3.19) follows with Lemma A.1
for all |s| > C̃0 the estimate

|T−1(x, s)Tx(x, s)| ≤ 2|Tx(x, s)| ≤ 2

|s|CT,1

≤ 2CT,1

C̃0

=: ν.

(3.45)

Then we can apply the Roughness Theorem B.4 and obtain that the operators
L(·, s) also have (ED)s on R with data

K = K̃

(

2 +
4νK̃

β − 3νK̃

)

,

β = β̃ − 2νK̃.

And for the projectors holds the estimate

|π(x, s) −
(

0 0
0 Im−r

)

| ≤ KK̃

∫

R

e−(β+β̃)|x−y||T−1(y, s)Tx(y, s)|dy

≤ KK̃2CT,1

|s|

∫

R

e−(β+β̃)|x−y|dy

≤ 4KK̃CT,1

(β + β̃)|s|
=

const

|s| .

If we use Lemma 3.5 instead of Lemma 3.3 we find with much the same proof
stronger estimates that will be important for the proof of an (ED) in the mixed
hyperbolic-parabolic case in Chapter 4.

Lemma 3.7. There is a positive constant δ′, such that for all s ∈ C with Re s > δ′

the operators L(·, s) have an (ED) on R with data (K,β(s), π(·, s)), where the data
can be chosen such that

K = 3, (3.46)

β(s) = constRe(s), (3.47)
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3.2 Resolvent estimates for large |s|

and π(x, s) can be estimated by

∣

∣

∣

∣

(

0 0
0 Im−r

)

− π(x, s)

∣

∣

∣

∣

≤ const

|s|Re(s)
. (3.48)

Proof. Take δ′ ≥ δ̃′ with δ̃′ from Lemma 3.5 such that for all s ∈ C with Re s > δ′

we have
3ν(s) < β̃(s) = cRe(s),

where ν(s) is given by

ν(s) :=
2CT,1

Re s
≥ |T−1(x, s)Tx(x, s)|

(cf. (3.45)). Then we can apply Theorem B.4 because of the inequalities

β̃(s) > 3ν(s) ≥ 3 · |T−1(x, s)Tx(x, s)|

the required inequality (B.8) is satisfied. Hence Theorem B.4 yields an (ED) on
R for the operators L(·, s) with data

K = 2 +
8CT,1

Re(s)(cRe(s) − 6CT,1

Re(s) )
.

By enlarging δ′ we can assume K = 3.
For the exponent of the dichotomy we obtain

β(s) = β̃(s) − 2‖T−1Tx‖∞K̃ >
c

3
Re(s).

Finally the estimate (3.48) for the projectors are derived

|π(x, s) −
(

0 0
0 Im−r

)

| ≤ KK̃

∫

R

e−(β(s)+β̃(s))|x−y||T−1(y, s)Tx(y, s)|dy

≤ const

|s|

∫

R

e−c Re(s)|x−y|dy

≤ const

|s|Re(s)
.

Here the constant const is generic, but does never depend on s.

3.2.2 The all-line problem

Now we are ready to prove Theorem 3.1.
By Lemma 3.6 we know that for all s ∈ M(δ, C̃0) the operators L(·, s) from

(3.25) have an (ED) on R with data (K,β, π), where K and β do not depend on
s. Thus Theorem B.2 implies that for all F̄ ∈ L2(R) there is a unique solution
z ∈ H1(R) of (3.26). This solution can be estimated by

β2‖z‖2 ≤ 5K2‖F̄‖2,
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3 The hyperbolic case

which leads to

‖z‖2 ≤ K1‖F̄‖2

with some constant K1 > 0 which is independent of s and F̄ .

Transforming back to the original coordinates shows

‖v‖2 = ‖Tz‖2 ≤ ‖T‖2
∞‖z‖2 ≤ ‖T‖2

∞K1‖F̄‖2

= K2‖T−1(·, s)B−1F‖2

≤ Kalp‖F‖2. (3.49)

The constant Kalp thus depends on β, K, ‖T‖∞, and ‖T−1‖∞, but these values
do not depend on s and so (3.10) follows.

In order to prove equation (3.11), assume that F is an element of H1(R) and
differentiate (3.9) with respect to x. This leads to the following equation for vx

svx −Bvxx − (C +Bx)vx = Cxv + Fx in L2(R,C
m). (3.50)

By assumption (H1) the operator P ′, given by

P ′v = Bvx + (C +Bx)v,

has the same properties as P . Thus we can find a new C̃ ′
0 ≥ C̃0 such that for any

s from M(δ, C̃ ′
0) we can estimate vx in the same fashion as v in terms of the right

hand side and find

‖vx‖2 ≤ K ′
alp‖Cxv + Fx‖2

≤ K ′′
alp(‖v‖2 + ‖Fx‖2), (3.51)

with a constant K ′′
alp which does not depend on s.

Combination of the two equations (3.49) and (3.51) shows the claimed inequality
(3.11).

For the proof of the improved estimates (3.12) and (3.13) we assume, that s is
from M(−δ′, C̃ ′

0). Then Lemma 3.7 implies that K = 3 and β(s) = cRe(s) can be
chosen as dichotomy constant and dichotomy exponent. So we obtain by Theorem
B.2

Re(s)2‖z‖2 ≤ const‖F̄‖2,

where const does not depend on s or F̄ .

Transforming back shows

Re(s)2‖v‖2 ≤ constRe(s)2‖z‖2

≤ const‖F̄‖2 ≤ const‖F‖2,

where const is a generic constant, but does not depend on s and F , again. This
proves (3.12).

The H1-estimate (3.13) is again obtained by differentiation of the original equa-
tion and applying the L2-estimates.
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3.2 Resolvent estimates for large |s|

3.2.3 The finite interval problem

From now on we assume that J is a compact interval with endpoints x− and x+,
i.e. J = [x−, x+], and s ∈ M(δ, Ca), such that the transformations (3.23)–(3.25)
from 3.2.1 are justified. We rewrite (3.15) as before as

L(x, s) = zx − (Λ − T−1Tx)z = F̄ , in L2(J,C
m),

R1z = η,
(3.52)

where we have used the transformation Tz := v and F̄ := −T−1B−1F again. The
boundary conditions in these new variables are given as

η = R−v(x−) +R+v(x+)

= R̄−(x−, s)z(x−) + R̄+(x+, s)z(x+) =: R1z,
(3.53)

where

R̄±(x±, s) = R±T (x±, s). (3.54)

Notice that although the original boundary operator does not depend on x+, x−,
or s, the transformed operator R1 does because of the x and s dependence of the
transformation.

We show that the determinant-condition (3.14) for the boundary operator R
implies a similar determinant-condition for the transformed operator R1.

Lemma 3.8. There is Cc ≥ Ca such that for all s ∈ M(δ, Cc) and all x± ∈ R

holds

det
(

R̄II
− (x−, s) R̄I

+(x+, s)
)

6= 0, (3.55)

where R̄± =
(

R̄I
± R̄II

±

)

is partitioned in the same way as R±.

Proof. One obtains

R̄II
− (x−, s) = R̄−(x−, s)

(

0
Im−r

)

= R−(I +
1

s
T1(x−, s))

(

0
Im−r

)

= RII
− +

1

s
(R−T1(x−, s))

(

0
Im−r

)

, (3.56)

and similarly

R̄I
+(x+, s) =RI

+ +
1

s
(R+T1(x+, s))

(

Ir
0

)

. (3.57)

It follows

(

R̄II
− (x−, s) R̄I

+(x+, s)
)

=
(

RII
− RI

+

)

+
1

s

(

(

R−T1(x−, s)
)II (

R+T1(x+, s)
)I
)

.

By choosing Cc ≥ 2CT,0

(

|R−|+|R+|
)

‖(RII
− , R

I
+)−1‖∞ the Banach-Lemma (Lemma

A.1) implies (3.55).
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3 The hyperbolic case

Remark 3.9. Note that the definition of R̄± in (3.54) directly implies that for
all J = [x−, x+] and all s ∈ M(δ, Cc) holds the estimate

|R̄±| = |R±T (x+, s)| ≤ |R±|
(

1 +
CT,0

|s|

)

. (3.58)

Furthermore from the proof of Lemma 3.8 follows
∣

∣

∣

(

R̄II
− , R̄

I
+

)−1
∣

∣

∣ ≤ 2
∣

∣

∣

(

RII
− , R

I
+

)−1
∣

∣

∣ , (3.59)

for all J and all s ∈M(δ, Cc).

To simplify the argument, we assume that R̄± ∈ C
m,m are constant matrices.

This is no restriction, since we will see that all estimates we derive only depend on

the norms |R̄±| and on
∣

∣

(

R̄II
− R̄I

+

)−1 ∣
∣, but not on the exact entries. By Remark

3.9 we know that these are bounded independently of x and s if |s| is large enough.
So the same proofs also work for the case of non-constant matrices R̄± defined in
(3.54), as long as |s| is sufficiently large.

By the Fredholm-alternative for boundary value problems, it suffices to show
that there is a solution of (3.52) for arbitrary right hand sides. Then the unique
solvability follows from the Fredholm property.

Now we proceed as usual. First we determine a particular solution zsp ∈
H1(J,Cm) of L(x, s)z = F̄ in L2(J,C

m) and then we solve the semi-homogeneous
problem, i.e. for arbitrary ζ ∈ C

m we look for a solution zhom ∈ H1(J,Cm) of

L(x, s)z = 0 ∈ L2(J,C
m), R1z = ζ.

In the following proofs we will denote the solution-operator for L(·, s) by S(x, y),
suppressing the s-dependence of the solution operator. As in Lemma 3.6 we denote
the dichotomy data by (K,β, π(·, s)). We will also write π(·) instead of π(·, s) in
order to simplify notation.

Lemma 3.10. For every s ∈ M(δ, C̃0), with C̃0 from Lemma 3.6, and for every
F̄ ∈ L2(J,C

m) the differential equation

L(·, s)z = zx − (Λ − T−1Tx)z = F̄ in L2(J,C
m) (3.60)

has a solution zsp ∈ H1(J,Cm) that satisfies the estimates

‖zsp‖2 + |zsp|2Γ ≤ constK,β‖F̄‖2 (3.61)

and
|ηsp|2 ≤ constR1,K,β‖F̄‖2, (3.62)

where ηsp := R1zsp.
The constant constK,β only depends on the dichotomy-data K and β. Similarly the
constant constR1,K,β only depends on the dichotomy-data K, β and on the norm
of the matrices R̄±.
If in addition Re(s) ≥ δ′, with δ′ from Lemma 3.7, the estimate (3.61) can be
improved to

Re(s)2‖zsp‖2 + Re(s)|zsp|2Γ ≤ constK‖F̄‖2. (3.63)
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3.2 Resolvent estimates for large |s|

And the estimate (3.62) becomes

Re(s)|ηsp|2 ≤ constR1,K‖F̄‖2. (3.64)

In both equations the constants do not depend on s and J .

Proof. By Lemma 3.6 the operators L(·, s) have an (ED) on R with data (K,β, π)
for all s ∈ M(δ, C̃0). The data K and β are independent of s. Therefore we can
apply Theorem B.2. Note that G(x, y), defined in (B.2), is the Green’s function
to L(·, s)u = 0 with boundary operator u 7→ π(x−)u(x−) + π(x+)u(x+).
Theorem B.2 shows that

zsp(x) :=

∫

J
G(x, y)F̄ (y)dy

is a solution of (3.60) and can be estimated by

β2‖zsp‖2 + β|zsp|2Γ ≤5K2‖F̄‖2 (3.65)

which implies

‖zsp‖2 + |zsp|2Γ ≤5K2β + 1

β2
‖F̄‖2.

Thus (3.61) holds with a constant independent of s, J , F̄ .
If s ∈ C with Re s ≥ δ′ we can apply Lemma 3.7 and from (3.65) follows with
β(s) = cRe(s)

c2 Re(s)2‖zsp‖2 + cRe(s)|zsp|2Γ ≤ const‖F̄‖2.

This proves (3.63) and the constant is independent of s, J , and F̄ .
Inequality (3.62) is obtained from (3.61) via

|ηsp|2 = |R̄−zsp(x−) + R̄+zsp(x+)|2
≤ 2(|R̄−|2 + |R̄+|2)(|zsp(x−)|2 + |zsp(x+)|2)
≤ constR1,K,β‖F̄‖2.

For Re(s) ≥ δ′ we can use (3.63) instead of (3.61) and find

Re(s)|ηsp|2 ≤ 2(|R̄−|2 + |R̄+|2)Re(s)(|zsp(x−)|2 + |zsp(x+)|2)
≤ constR1,K‖F̄‖2.

So that in both estimates the constants are again independent of s, J , and F̄ .

In the next step we show the existence of a solution for the homogeneous equa-
tion with inhomogeneous boundary conditions.
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3 The hyperbolic case

Lemma 3.11. Assume that additional to (H1), (H2), and (H3) the determinant-
condition

det
(

R̄II
− R̄I

+

)

6= 0 (3.66)

is satisfied. Then there are positive constants b and C ′
0 ≥ C̃0 such that for all

s ∈ M(δ, C ′
0) and all J ⊃ [−b, b] the semi-homogeneous problem

L(·, s)z = 0, in L2(J,C
m),

R1z = ζ,
(3.67)

has a unique solution zhom ∈ H1(J,Cm).
Moreover, the solution can be estimated by

‖zhom‖2 + |zhom|2Γ ≤ constK,β,R1
|ζ|2, (3.68)

where the constant constK,β,R1
does not depend on s, J, or ζ.

If we in addition assume Re(s) > δ′, with δ′ as in Lemma 3.7, then equation (3.68)
becomes

Re(s)‖zhom‖2 + |zhom|2Γ ≤ constK,R1
|ζ|2, (3.69)

where the constant constK,R1
is independent of s, J , and ζ.

The proof mainly follows the same lines as the proof of Lemma 2.5 in [BL99].

Proof. We make the ansatz

zhom(x) = S(x, x−)α− + S(x, x+)α+, (3.70)

where α− ∈ R(π(x−)) and α+ ∈ R(I − π(x+)). Then by construction zhom is a
solution of the homogeneous problem L(·)z = 0 in J .

It remains to be shown that we can determine α− and α+ such that the boundary
condition in (3.67) is satisfied, too. From Lemma 3.6 we know

∣

∣

∣

∣

π(x) −
(

0 0
0 Im−r

)∣

∣

∣

∣

≤ const

|s| (3.71)

for all x ∈ R and all s ∈ M(δ, C̃0), where the constant const does not depend on

s. Let Q :=

(

0 0
0 Im−r

)

.

We choose C ′ ≥ C̃0 such that |π(x) − Q| ≤ 1
2 holds for all x ∈ R and all

s ∈ M(δ, C ′). Then Lemma A.2 implies the equalities

R(π(x−)) =R
(

π(x−)Q
)

,

and

R
(

I − π(x+)
)

=R
(

(

I − π(x+)
)(

I −Q
)

)

.
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Because of these results we can write α− and α+ from (3.70) as

α− = π(x−)Q

(

0
β−

)

= Q

(

0
β−

)

+
(

π(x−) −Q
)

Q

(

0
β−

)

=

(

0
β−

)

+
(

π(x−) −Q
)

(

0
β−

)

, (3.72)

and

α+ =
(

I − π(x+)
)

(I −Q)

(

β+

0

)

=

(

β+

0

)

+
(

Q− π(x+)
)

(

β+

0

)

, (3.73)

where β− ∈ C
m−r and β+ ∈ C

r. Insertion of the ansatz into the boundary term
R1zhom = ζ leads to

ζ = R1zhom = R̄−zhom(x−) + R̄+zhom(x+)

= R̄−α− + R̄+α+ + R̄−S(x−, x+)α+ + R̄+S(x+, x−)α−

=
(

R̄II
− R̄I

+

)

(

β−
β+

)

+R̄−(π(x−) −Q)

(

0 0
I 0

)(

β−
β+

)

+R̄+(Q− π(x+))

(

0 I
0 0

)(

β−
β+

)

+R̄−S(x−, x+)(I − π(x+))
(

I + (Q− π(x+))
)

(

0 I
0 0

)(

β−
β+

)

+R̄+S(x+, x−)π(x−)
(

I + (π(x−) −Q)
)

(

0 0
I 0

)(

β−
β+

)

. (3.74)

From Lemma 3.6 follow for all x ∈ R and all s ∈M(δ, C ′) the estimates

|S(x, x+)
(

I − π(x+)
)(

I + (Q− π(x+))
)

| ≤3

2
Ke−β|x+−x| (3.75)

and

|S(x, x−)π(x−)
(

I + (π(x−) −Q)
)

| ≤3

2
Ke−β|x−x−|, (3.76)

where we used ‖(Q− π)‖∞ ≤ 1
2 . By the determinant-condition (3.66) the matrix

(

R̄II
− R̄I

+

)

is nonsingular. Because of (3.71), (3.75), and (3.76) we can choose
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3 The hyperbolic case

C0 ≥ C ′ and b > 0 so large that for all s ∈ M(δ, C0) and x− ≤ −b, x+ ≥ b holds

|R̄−(π(x−) −Q)

(

0 0
I 0

)

+ R̄+(Q− π(x+))

(

0 I
0 0

)

+

R̄−S(x−, x+)(I − π(x+))(I + (Q− π(x+)))

(

0 I
0 0

)

+

R̄+S(x+, x−)π(x−)(I + (π(x−) −Q))

(

0 0
I 0

)

|

≤ 1

2
|
(

R̄II
− R̄I

+

)−1 |. (3.77)

Then we can apply Lemma A.1 to (3.74) and obtain a unique solution

(

β+

β−

)

∈ C
m.

By equations (3.70), (3.72), (3.73), and the Fredholm alternative we thus have that
zhom from (3.70) is the unique solution of (3.67).

To show the estimate (3.68) we note that from the Banach-Lemma (Lemma
A.1) together with inequality (3.77) we obtain the estimate

∣

∣

∣

∣

(

β−
β+

)∣

∣

∣

∣

≤ 2
∣

∣

∣

(

R̄II
− R̄I

+

)−1
∣

∣

∣
|ζ|.

By the construction (3.70), (3.72), (3.73) we have

zhom(x) = S(x, x−)π(x−)
(

I +
(

π(x−) −Q
)

)

(

0
β−

)

+ S(x, x+)
(

I − π(x+)
)

(

I +
(

Q− π(x+)
)

)

(

β+

0

)

such that the estimates (3.71), (3.75), (3.76) imply the following pointwise bound
for the solution

|zhom(x)| ≤constK,|[R̄II
− ,R̄I

+]−1|

(

e−β|x−x−| + e−β|x−x+|
)

|ζ|. (3.78)

From this we conclude

|zhom(x±)|2 ≤constK,R1
|ζ|2,

and by integration over J

‖zhom‖2 ≤constK,β,R1
|ζ|2.

This shows the estimate (3.68).
If in addition s satisfies Re(s) > δ′ with δ′ from Lemma 3.7, then we can choose

K = 3 and β = β(s) = cRe(s). Using these constants in (3.78) we obtain by
integration over J the improved L2-estimate

Re(s)‖zhom‖2 ≤constK,R1
|ζ|2
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3.2 Resolvent estimates for large |s|

and as before the boundary-estimate

|zhom(x±)|2 ≤constK,R1
|ζ|2.

These two estimates imply inequality (3.69).

Remark. One sees from equations (3.71), (3.75), and (3.76) that by assuming
Re(s) > δ′, it suffices to have b = 1 and to increase δ′.

Now we can finish the proof of Theorem 3.2.

Proof of Theorem 3.2. Let b and C0 be given as in Lemma 3.10 and in Lemma
3.11. Then for s ∈ M(δ, C0) and J ⊃ [−b, b] both Lemmas apply.
Hence we find a particular solution zsp ∈ H1(J,Cm) of

L(·, s)z =F̄ in L2(J,C
m),

and a solution zhom ∈ H1(J,Cm) of

L(·, s)z =0 in L2(J,C
m),

R1z =η −R1zsp.

By linearity of the boundary value problem we obtain by addition

z := zsp + zh ∈ H1(J,Cm)

the unique solution of (3.52).
To show the asserted inequalities we collect the estimates (3.61), (3.62), and (3.68)
and find for v = Tz ∈ H1(J,Cm), the unique solution of equation (3.15), the
estimates

‖v‖2 + |v|2Γ = ‖Tz‖2 + |Tz|2Γ ≤ ‖T‖2
∞

{

‖z‖2 + |z|2Γ
}

≤ const
{

‖zsp‖2 + |zsp|2Γ + ‖zhom‖2 + |zhom|2Γ
}

≤ constK,β,R1

{

‖F̄‖2 + |η|2 + |R1zsp|2
}

≤ constK,β,R1

{

‖T−1B−1F‖2 + |η|2
}

≤ constK,β,R

{

‖F‖2 + |η|2
}

,

where the constant has to be adapted during the estimates, but still does not
depend on s, J , η, and F .
If in addition we assume Re(s) > δ′ and use the inequalities (3.63), (3.64), and
(3.69) we find

Re(s)2‖zsp‖2 + Re(s)|zsp|2Γ ≤ constK‖F̄‖2.

This implies Re(s)|R1zsp|2 ≤ constR1,K‖F̄‖2 which then leads to

Re(s)2‖zhom‖2 + Re(s)|zhom|2Γ ≤ Re(s)constK,R1

(

|R1zsp|2 + |η|2
)

≤ constK,R1

(

‖F̄‖2 + Re(s)|η|2
)

.

Adding zhom and zsp and using the same calculations as before then shows in-
equality (3.17).
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3 The hyperbolic case

3.3 Resolvent estimates in compact regions

In this section we consider the all line operator P defined in (3.7) and the operator
defined in (3.8) which is obtained after truncation to a finite interval. We always
assume that Assumption 1 holds and our aim is to show that if the all line
operator P has no spectrum in some compact set in {s ∈ C : Re s > −δ}, then also
the finite interval approximation P |J with suitable additional boundary conditions
has this property. We will give a sufficient condition for the boundary operator
under which we will show a uniform resolvent estimate in the compact set.

As in the previous section we rewrite the resolvent-equation

sv − Pv = F

in the form

L(x, s)v = vx −M(x, s)v = −B−1F (3.79)

where M(x, s) := B−1(x)(sI − C(x)).

For the formulation of the condition which we will require for the extra boundary
operator, we prove hyperbolicity of the limit matrices.

Lemma 3.12. For every s ∈ C with Re s > −δ the limit matrices

M±(s) := lim
x→±∞

M(x, s) (3.80)

exist and, counted with multiplicities, they have r eigenvalues with real parts larger
than zero and m− r eigenvalues with real parts less than zero.

Proof. The existence of the limit matrices immediately follows from assumptions
(H1) and (H2). The mapping s 7→M±(s) is affine linear and so the eigenvalues of
M±(s), which are the roots of κ 7→ det(κI −M±(s)), are algebraic functions of s
and therefore depend continuously on s. Without loss of generality consider ’+’.

For every κ ∈ iR with κ ∈ σ(M+(s)) for some s ∈ C we have

0 = det(κI −M+(s)) = det(κI −B−1
+ (sI − C+))

⇔ 0 = det(κB+ + C+ − sI),

which implies Re s ≤ −δ by assumption (H4). Therefore for all s ∈ C with
Re s > −δ the dimensions of the stable and unstable subspaces of M+(s), i.e.
the subspaces corresponding to the eigenvalues with negative real parts and with
positive real parts, respectively, are constant, since the eigenvalues cannot cross
the imaginary axis.

In Section 3.2 we saw that for large |s| with Re s > −δ, the eigenspace to the
eigenvalues with negative real parts has dimension m − r and the eigenspace to
the eigenvalues with positive real parts has dimension r.

Justified by Lemma 3.12, we denote by V I
±(s) and V II

± (s) bases of the stable
and unstable subspaces of M±(s), respectively. That means that for every s ∈ C
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3.3 Resolvent estimates in compact regions

with Re s > −δ there are matrices V I
±(s) ∈ C

m,r and V II
± (s) ∈ C

m,m−r with the
properties

M±(s)V I
±(s) = V I

±(s)ΛI
±(s) (3.81)

for some ΛI
±(s) ∈ C

r,r with Reσ(ΛI
±(s)) > 0 and

M±(s)V II
± (s) = V II

± (s)ΛII
± (s) (3.82)

for some ΛII
± (s) ∈ C

m−r,m−r with Re σ(ΛII
± (s)) < 0. Notice that we do not assume

any smoothness of V I,II
± or ΛI,II

± although this is possible by Lemma A.4.
From (3.81) we obtain that for all z0 ∈ C

r the function

z+(x) = V+(s)IeΛ+(s)xz0

is a backward decaying solution of the constant coefficient equation

L+(s)z = zx −M+(s)z = 0.

Similar for all z1 ∈ C
m−r the function

z−(x) = V−(s)IIeΛ−(s)xz1

is a forward decaying solution of the constant coefficient equation

L−(s)z = zx −M−(s)z = 0.

z+

backward decayingforward decaying
z−

x+x−

Figure 3.2: The growing and decaying modes of the differential operator. Heuristi-
cally these must be controlled by the boundary conditions if one wants
to obtain uniform solution estimates of the boundary value problem
on a finite line. This motivates the determinant-condition (3.86) in
Theorem 3.14.

We assume linear boundary conditions of the form

R :
H1(J,Cm) → C

m

v 7→ R−v(x−) +R+v(x+),
(3.83)
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3 The hyperbolic case

with matrices R± ∈ C
m,m. Because of the Sobolev Embedding Theorem (Lemma

C.3) the operator R is well defined.

Now we can state the main results of this section which correspond to the the
main results of Section 3.2.

Theorem 3.13. Let Ω ⊂ {s ∈ C : Re s > −δ} ∩ ρ(P ) be a compact set. Then for
every s ∈ Ω and every F ∈ L2(R,C

m) there is a unique solution v ∈ H1(R,Cm)
of the resolvent equation

(sI − P )v = F in L2(R) (3.84)

and the solution can be estimated in terms of the right hand side

‖v‖H1 ≤ const‖F‖ (3.85)

with a constant independent of F and s.

The analogous result for the finite interval problem is stated next.

Theorem 3.14. Let Ω ⊂ {s ∈ C : Re s > −δ} ∩ ρ(P ) be a compact set. Let V I,II
±

be given as in (3.82) and (3.81) and let R be of the form in (3.83). Assume the
determinant-condition

D(s) := det
(

R−V
II
− (s) R+V

I
+(s)

)

6= 0 ∀s ∈ Ω. (3.86)

Then there is a compact interval J0 such that for all compact intervals J ⊃ J0,
for every s ∈ Ω, and for every right hand side, the finite interval boundary value
problem

(sI − P )v = F in L2(J),

Rv = R−v(x−) +R+v(x+) = η
(3.87)

has a unique solution v ∈ H1(J). This solution can be estimated by

‖v‖2
H1 + |v|2Γ ≤ const{‖F‖2 + |η|2},

where const does not depend on J , s, F , and η.

Note, that the determinant-condition (3.86) does not depend on the choice of
the actual bases V II

− (s), and V II
+ (s).

Remark. Recall that one only obtains L2-estimates in Theorem 3.1 and The-
orem 3.2 for F ∈ L2, but in Theorems 3.13 and 3.14 one finds H1-estimates. This
was already observed in the paper [BL99].

To prove the “all line” Theorem 3.13 we will mainly follow the same steps as in
the case of large |s| and for the “finite interval” Theorem 3.14 we use the theory
of discrete approximations presented in Chapter 2.
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3.3 Resolvent estimates in compact regions

3.3.1 Exponential dichotomies

First we prove (ED)s for the operators

L±(s)v = vx −M±(s)v. (3.88)

This follows directly from Lemma 3.12 and the result is stated in the following
corollary.

Corollary 3.15. For every s ∈ {Re s > −δ} the constant coefficient operators
L̃±(s) have exponential dichotomies on R with data (K̃±(s), β̃±(s), π̃±(s)), where

R(π̃±(s)) = R(V II
± (s)) and R(I − π̃±(s)) = R(V I

±(s))

Proof. The corollary follows immediately from the hyperbolicity of the matrices
M±(s) and the uniqueness of the range and kernel of the projectors for (ED)s on
the whole real line.

Lemma 3.16. For every s ∈ {Re s > −δ} the variable coefficient differen-
tial operators (3.79) have (ED)s on both half-lines R− and on R+ with data
(K−(s), β−(s), π−(x, s)) and (K+(s), β+(s), π+(x, s)), respectively. The projectors
satisfy

|π−(x, s) − π̃−(s)| → 0, as x→ −∞,

and

|π+(x, s) − π̃+(s)| → 0, as x→ +∞.

Proof. The Lemma follows from Corollary 3.15 and Lemma B.5.

Next we show that if s does not only satisfy Re s > −δ, but also is an element
of ρ(P ), the variable coefficient differential operator L(·, s) has an (ED) on the
whole real line.

Lemma 3.17. Let s ∈ {Re s > −δ} ∩ ρ(P ). Then L(·, s) has an (ED) on R with
data (K(s), β(s), π(·, s)) where the projectors satisfy

lim
x→±∞

π(x, s) = π̃±(s). (3.89)

Proof. Lemma 3.16 implies that L(·, s) has an (ED) on R+ and on R− with data
(K+(s), β+(s), π+(·, s)) and (K−(s), β−(s), π−(·, s)), respectively. In the rest of
the proof we suppress the s-dependence of the data and the solution-operator.

Since the mappings

R− → C
m,m, x 7→ π−(x) and R+ → C

m,m, x 7→ π+(x)

are continuous in x, we obtain from Lemma A.3 and Lemma 3.16

rank(I − π−(0)) = rank(I − π̃−) = r and rankπ+(0) = rank π̃+ = m− r.
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3 The hyperbolic case

Hence by Theorem B.6 it suffices to show R(π+(0)) ∩R(I − π−(0)) = {0}.
Let v0 ∈ R(π+(0)) ∩R(I − π−(0)). Then

v(x) := S(x, 0)v0

solves
vx(x) −M(x, s)v(x) = 0 ∀x ∈ R. (3.90)

Furthermore v satisfies the estimates

|v(x)| = |S(x, 0)v0| = |S(x, 0)π+(0)v0|
≤ K+e

−β+|x||v0|, for all x ≥ 0,

and

|v(x)| ≤ K−e
−β−|x||v0|, for all x ≤ 0.

This shows that v is in fact an element of L2(R). The differential equation (3.90)
then implies v ∈ H1(R) and v is a solution of (sI − P )v = 0 in L2(R,C

m). Since
we assumed s ∈ ρ(P ) we obtain v = 0 in L2(R) and therefore v0 = 0. Now
Theorem B.6 is applicable and the Lemma follows.

3.3.2 Proof of the all-line theorem

Let s0 ∈ {Re s > −δ} ∩ ρ(P ), let F ∈ L2(R). After multiplication with −B−1,
which is a homeomorphism of L2(R,C

m), the resolvent equation (3.84) reads

L(·, s0)v = −B−1F =: F̄ in L2(R,C
m) (3.91)

with L(·, s0) from (3.79).
By Lemma 3.17 and Theorem B.2 there is a unique solution v ∈ H1(R,Cm) of

(3.91) and this satisfies the estimate

β(s0)
2‖v‖2 ≤ 5K(s0)

2‖F̄‖2.

Hence there exists a constant const with ‖v‖ ≤ const‖F̄‖. Then the differential
equation (3.91)implies

‖vx‖ ≤ ‖M(·, s0)‖∞‖v‖ + ‖F̄‖ ≤ const‖F̄‖,

and therefore there is a constant c0(s0) > 0 with

‖v‖H1 ≤ c0(s0)‖F̄‖. (3.92)

To deduce the uniformity of the constant for compact sets Ω from the pointwise
result (3.92), we recall that M(x, s) is given by M(x, s) = −B(x)−1(sI − C(x)).
Assumption (H1) implies that we can find ε0 = ε0(s0) > 0 with

‖M(·, s) −M(·, s0)‖∞ <
1

2c0(s0)
for all s ∈ Kε0

(s0).
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3.3 Resolvent estimates in compact regions

Hence we obtain

L(·, s)v = vx −M(·, s)v
=

(

IL2(R) +
(

M(·, s0) −M(·, s)
)

L(·, s0)−1
)

L(·, s0)v,

where the multiplication by M(·, s0)−M(·, s) is viewed as a mapping from H1(R)
into L2(R).

Equation (3.92) and the choice of ε0 imply for every h ∈ L2(R) the estimate

‖
(

M(·, s0) −M(·, s)
)

L(·, s0)−1h‖L2
≤ 1

2
‖h‖L2

.

Now we can use Lemma A.1 to show the invertibility of L(·, s) : H1(R) → L2(R)
for each s ∈ Kε0

(s0) as well as the estimate

‖L(·, s)−1‖L2→H1

≤ ‖L(·, s0)−1‖L2→H1

∥

∥

(

I +
(

M(·, s0) −M(·, s)
)

L(·, s0)−1
)−1∥

∥

L2→L2

≤ c0(s0)2 =: c̃(s0).

Now let Ω be given as in Theorem 3.13. Then the same considerations hold
for every point s0 ∈ Ω and the union of the resulting neighborhoods is an open
covering of Ω. By compactness of Ω we can choose a finite sub-covering. Finally,
taking c1 as the maximum of the constants c̃(s0) from this finite sub-covering, we
find a uniform resolvent estimate for all s ∈ Ω

‖v‖H1
≤ c1‖F̄‖ ≤ c1‖B−1‖∞‖F‖

and the assertion follows.

3.3.3 The proof of the finite interval theorem

Before we can prove the Theorem we have to show some auxiliary results. Assume
that the assumptions of Theorem 3.14 hold.

We analyze the finite interval problem (3.87) in the transformed form

L(·, s)v = F̄ in L2(J,C
m),

Rv = R−v(x−) +R+v(x+) = η.

One can write this equation with the operator-matrix

LJ(s) :=

(

L(·, s)
R

)

: H1(J,Cm) → L2(J,C
m) × C

m

in the form

LJ(s)v =

(

L(·, s)v
Rv

)

=

(

F̄
η

)

in L2(J,C
m) × C

m. (3.93)
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3 The hyperbolic case

Consider the setting of spaces and operators as in Theorem 2.29. Let the index
set be given by H = {J = [x−, x+] : 0 ∈ J, x+ − x− ≥ 1} with the direction
J1 ≻ J2 :⇔ J1 ⊃ J2.

By the assumptions on the coefficients of P and on R the assumptions of The-
orem 2.29 are satisfied and the Theorem implies that the finite interval operators
LJ(s) from (3.93) regularly PQ-converge to the all line operator L(·, s) from (3.91).

By the Fredholm alternative for boundary value problems the operator LJ(s) is
Fredholm of index zero for all compact intervals J ∈ H and all s ∈ C. Finally in
the proof of Theorem 3.13 it is shown that L(·, s) : H1(R,Cm) → L2(R,C

m) is a
linear homeomorphism for all s ∈ ρ(P ).

Now Lemma 2.21 applies and shows for all s0 ∈ ρ(P ) ∩ {Re s > −δ}

LJ(s0)
PQ−−→ L(s0) stably.

Hence there is a compact interval J0 = J0(s0) ∈ H and a positive constant cs0
> 0,

so that for all compact intervals J = [x−, x+] ⊂ R with J0 ⊂ [x−, x+] the operator
LJ(s0) ∈ L

(

H1(J,Cm), L2(J,C
m)×C

m
)

is a linear homeomorphism and its inverse
is bounded

‖LJ (s0)
−1‖L2×Cm→H1 ≤ cs0

∀J ⊂ J0,

where we abbreviate ‖·‖L2(J,Cm)×Cm to ‖·‖L2×Cm . With application of the Sobolev
inequality (C.1) this proves the following pointwise result.

Lemma 3.18. For every s0 ∈ {Re s > −δ}∩ρ(P ) there is a compact interval J0 ∈
H and a positive constant c0 so that for all compact intervals J = [x−, x+] ⊃ J0

there is for all F̄ ∈ L2(J,C
m) and all η ∈ C

m a unique solution vJ ∈ H1(J,Cm)
of the transformed resolvent equation (3.93) and this satisfies the estimate

‖vJ‖H1 + |vJ |Γ ≤ c0(‖F̄‖L2
+ |η|). (3.94)

Now it remains to prove that it is possible to choose a uniform minimal interval
J0 and a uniform constant c0 in (3.94) for all s from the compact set Ω.

Let s0 ∈ Ω be arbitrary and let J0 and c0 be the data obtained by Lemma 3.18.
Then there is an ε = ε(s0) > 0 with

‖M(·, s0) −M(·, s)‖∞ = sup
x∈R

|M(x, s0) −M(x, s)| ≤ (2c0)
−1 ∀s ∈ Kε(s0).

This yields for every v ∈ H1(J,Cm) the estimate

‖(LJ(s) − LJ(s0))v‖L2(J)×Cm = ‖(L(·, s) − L(·, s0))v‖L2(J) + |Rv −Rv|
= ‖(M(·, s) −M(·, s0))v‖L2(J)

≤ 1

2c0
‖v‖L2(J) ≤

1

2c0
‖v‖H1(J).

Thus Lemma A.1 implies that for all compact intervals J with J ⊃ J0 and all
s ∈ Kε(s0) the operator

LJ(s) =
(

LJ(s0) + (LJ(s) − LJ(s0))
)

: H1(J) → L2(J) × C
m
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3.3 Resolvent estimates in compact regions

is a linear homeomorphism. Moreover, it also shows the estimate
∥

∥LJ(s)−1
∥

∥

L2(J)×Cm→H1(J)
≤ 2c0,

for all such s and J .
This construction therefore yields for every s0 ∈ Ω an open neighborhood

Kε(s0)(s0) so that for all s in this neighborhood the same minimal interval J0 =
J0(s0) and the same constant c(s0) = 2c0(s0) can be chosen. The family of all
these neighborhoods is an open covering of Ω and because of compactness one can
choose a finite sub-covering. Let J ′ be the union of the finitely many compact
intervals J0(s0) corresponding to this sub-covering and let c′ be the maximum of
the finitely many c(s0) from this sub-covering. Note that J ′ is a compact interval
since 0 ∈ J for all J ∈ H.

Then for every s ∈ Ω and every compact interval J ⊃ J ′ there is a unique
solution vJ ∈ H1(J,Cm) of (3.93) for each choice of F̄ ∈ L2(J,C

m) and η ∈ C
m.

This solution can be estimated by

‖vJ‖H1(J) + |vJ |Γ ≤ c′
(

‖F̄‖ + |η|
)

. (3.95)

The assertions of Theorem 3.14 now follow by using F̄ = −B−1F since ‖B‖∞ is
bounded.

Remark. The uniformity of the minimal intervals and the independence of the
resolvent constant from s could also be obtained by using the continuity of the
dichotomy data in s and uniformity of the convergence of the projectors π(x, s) →
π̃±(s) as x→ ±∞. To show these one has to prove continuity of the data for the
constant coefficient operators L̃±(s). The continuity of the data of the variable
coefficient operators then follows from the Theorems B.4–B.6 since they carry
over the continuity to the variable coefficient operators and also show uniformity
of the convergence of the projectors in compact parameter sets. For results in this
direction see [BL99] and [San93].

3.3.4 Convergence of finite interval approximations

Here we briefly state a convergence result for the solutions of the finite interval
problems to the solutions of the all line problem. It shows the consistency of the
restricted problems in the sense that for J → R the distances of the solution of
the all line problem to the finite interval boundary value problems converges to
zero.

Theorem 3.19. Let the assumptions of Theorem 3.14 hold. Let Ω ⊂ {Re s >
−δ} ∩ ρ(P ) be a compact subset of C and let J ⊃ J0 be a compact interval, where
J0 is the interval obtained in Theorem 3.14. Let v ∈ H1(R) be the solution of the
resolvent equation on the whole real line

(sI − P )v = F in L2(R) (3.96)

and let vJ ∈ H1(J) denote the solution of the finite interval approximation

(sI − P )vJ = F |J in L2(J),

RvJ = 0.
(3.97)
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3 The hyperbolic case

Then the approximation error yJ := v|J − vJ satisfies

‖yJ‖H1(J) + |yJ |Γ → 0 as J → R (3.98)

uniformly in s ∈ Ω.

If there exists a constant κ > 0 with F̃ := eκ|·|F ∈ L2(R) the convergence is
exponential, i.e. there exists a β > 0 so that for every 0 < α < min(β, κ), there
exists a constant C > 0, independent of s ∈ Ω, with

‖yJ‖H1(J) + |yJ |Γ ≤ C e−α min(x+,−x−)‖F̃‖L2(R). (3.99)

Although the theorem is of some interest on its own we do not give a proof
here because we do not need the result for the further analysis of the spectral
properties. One can prove the theorem for example in the same way as Theorem
3.2 in [BL99].

3.4 Convergence of eigenvalues in the right half-plane

Throughout this section we always assume that Assumption 1 holds. We will
show that in the half-plane {Re s > −δ} the eigenvalues and generalized eigenspaces
of the finite interval approximation of the differential operator (3.2) with suitable
boundary conditions converge to the eigenvalues and generalized eigenspaces of
the all-line operator.

3.4.1 The general set-up of the eigenvalue-problem in the hyperbolic
case

First of all we will explain that there is no essential spectrum∗ of the all line
operator in this set and therefore it makes sense to consider isolated eigenvalues
of finite algebraic multiplicity.

Lemma 3.20. There is no essential spectrum of the all line operator (3.2) in
{Re s > −δ}.

We only sketch a proof of the Lemma which follows an idea from [San02, Remark
3.2].

Sketch of proof. The first step in the proof is to show that the operators L(·, s) :
H1(R) → L2(R) from (3.79) are invertible for s ∈ {Re s > −δ}, except for isolated
points. This can be done in the following steps:

• Show that the constant coefficient operators L±(s) from (3.88) have EDs
on R± with data analytical in s. This can be obtained similarly to the
proof of Theorem A.7 with the Dunford-Taylor calculus from the analytic
dependence of M(·, s) on s.

∗See Definition C.1.
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3.4 Convergence of eigenvalues in the right half-plane

• Applying the Roughness Theorem B.4 on R± shows that the variable coeffi-
cient operators also have EDs on R± with data analytical in s. (A proof of
a parameter dependent version of the Roughness Theorem can be found in
[San93, Lemma 1.1]. The same proof also holds for analytic dependence on
the parameter.)

• In Lemma 3.12 it is shown that dimR(π+(·, s)) + dimR
(

I − π−(·, s)
)

= m
and so by Lemma B.7 L(·, s) are Fredholm of index zero and therefore also
sI − P is Fredholm of index zero.

• In [Kat66, II §4.2] it is shown that one can construct bases

span(ϕ1(s), . . . , ϕm−r(s)) of R(π+(0, s))

and
span(ϕm−r+1(s), . . . , ϕm(s)) of R

(

I − π−(0, s)
)

which are analytical in s.

• Then one can define a holomorphic function (see also [Hen81, p. 139])

△ :
{Re s > −δ} → C

s 7→ det(ϕ1(s), . . . , ϕm(s)).

The value △(s) is different from 0 if and only if L(·, s) has an (ED) on R

(see Theorem B.6) and in this case L(·, s) is bijective (see Theorem B.2).

• The results of Section 3.2 imply △ 6≡ 0 and the analyticity then shows that
there are no limit points of {s ∈ C : △(s) = 0} in {Re s > −δ} . Therefore
σ(P ) ∩ {Re s > −δ} is discrete.

• From [Kat66, III §6.4, IV §5.4] then follows that any s0 ∈ σ(P )∩{Re s > −δ}
is an eigenvalue of finite algebraic multiplicity since s0I − P is Fredholm of
index zero.

From now on we assume s0 ∈ σ(P )∩{Re s > −δ}. Note that Lemma 3.16 shows
that the transformed operator L(·, s0) has (ED)s on R+ and R−. Denote by β+

and β− the exponents of the (ED)s on R+ and R−, respectively.
By Lemma 3.20 s0 is an isolated eigenvalue of finite algebraic multiplicity and

so we can find ε0 > 0 with Kε0
(s0) ⊂ {Re s > −δ} and σ(P ) ∩Kε0

(s0) = {s0}.
Consider the directed set H := {J = [x−, x+] ⊂ R : x− ≤ 0 ≤ x+, x+ −x− ≥ 1}

with the direction J1 ≻ J2 :⇔ J1 ⊃ J2. In the sequel J will always stand for an
element from H.

We analyze the spectrum of the all line operator P in a neighborhood of s0 and
write this problem as the eigenvalue problem (in the sense of Definition C.6) for
the holomorphic operator-polynomial

A(s) := sI − P ∈ L
(

H1(R,Cm), L2(R,C
m)
)

.

71



3 The hyperbolic case

We denote by W the root-subspace of A(·) to the eigenvalue s0. By Remark C.8
W is the set of all elements v ∈ H1(R,Cm) so that there is a sequence of elements
v0, . . . , vk =: v in H1(R,Cm) with

(s0I − P )v0 = 0 (3.100)

(s0I − P )vi+1 = vi in L2 ∀i = 0, . . . , k − 1. (3.101)

Since vi ∈ H1(R,Cm) the equality (3.101) also holds in H1(R,Cm) and the map-
ping

(s0I − P )|W : W →W

is nilpotent. From Lemma C.7 one obtains that the length κJ of the longest Jordan
chain of (s0I−P )|W , i.e. κJ = min{n ∈ N : N ((s0I−P )|nW ) = N ((s0I−P )|n+1

W )},
coincides with the highest order κ of all root-polynomials of A(·) to the eigenvalue
s0.

Remark. Another way of describing W is to define the space as the range
R(Π0), where Π0 is the Riesz-Projector given by

Π0 =
1

2πi

∫

|s−s0|=ε0

(sI − P )−1ds ∈ L(L2(R,C
m), L2(R,C

m)).

Here P is viewed as a closed linear operator in L2(R,C
m) with domain D(P ) =

H1(R,Cm). (See for example [Kat66, III §6.4 and III §6.5].)
The idea is to use Theorem 2.26 and Theorem 2.28 to obtain results about

approximation of eigenvalues and eigenfunctions of the all line operator by finite
interval approximations. First we describe the setting in which we will apply the
theorems.

Consider the net of holomorphic operator valued functions

AJ(s) :=

(

sI − P |J
R

)

:
H1(J,Cm) → L2(J,C

m) × C
m

v 7→
(

(sI − P |J )v,Rv)

as an approximation on the compact interval J of the all line operator on the
compact. Here R is a boundary operator of the form (3.83) which satisfies the
determinant-condition (3.86) for all s in some open neighborhood Σ ⊂ {Re s >
−δ} of Kε0

(s0). By Lemma A.4 this is always possible by choosing suitable R−

and R+ for s0, i.e. det
(

R−V
II
− (s0) R+V

I
+(s0)

)

6= 0 and then taking a sufficiently
small ε0.

Denote by σJ the s0–group of eigenvalues of AJ(·) in Kε0
(s0), i.e. σJ is the set

of all s ∈ Kε0
(s0) for which there is 0 6= v ∈ H1(J,Cm) with

(sI − P |J)v = 0 and Rv = 0.

Similar to the all line case we denote by WJ the closed linear hull of all root
subspaces of AJ(·) to eigenvalues sJ ∈ σJ . Remark C.8 shows that v is an element
of the root subspace WJ(sJ) of AJ(·) to an eigenvalue sJ ∈ σJ if and only if there
is a sequence v0, . . . , vk := v in H1(J,Cm) with

(sJI − P |J)v0 = 0 and Rv0 = 0, (3.102)

(sJI − P |J)vi+1 = vi in L2(J,C
m) and Rvi+1 = 0. (3.103)
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3.4 Convergence of eigenvalues in the right half-plane

Since vi ∈ H1(J,Cm) the equality (3.103) holds in H1(J,Cm).

Remark. If one considers the closed linear operator PJ :L2(J,C
m)→L2(J,C

m),
where D(PJ) = {v ∈ H1(J,Cm) : Rv = 0} and PJv = P |Jv, then one sees that
WJ(sJ) coincides with the generalized eigenspace of PJ to the eigenvalue sJ .
By Theorem 3.14 there is J0 ∈ H with ∂Kε0

(s0) ⊂ ρ(PJ ) for all compact intervals
J with J ⊃ J0. Then (see [Kat66, §6.4]) for all such J the space WJ can be written
as WJ = R(ΠJ), where ΠJ is the Riesz-projector given by

ΠJ =
1

2πi

∫

∂Kε0 (s0)
(sI − PJ )−1ds.

Define the families of operators (cf. Chapter 2.5)

P := (pJ)J∈H , where pJ :
H1(R,Cm) → H1(J,Cm),

v 7→ v|J ,

and

Q := (qJ)J∈H , where qJ :
L2(R,C

m) → L2(J,C
m) × C

m,
u 7→ (u|J , 0).

These families of operators satisfy the properties (2.1) and (2.2). We use the same
notations as in Section 2.5, namely

E := H1(R,Cm) with the norm ‖v‖E = ‖v‖H1 ,

EJ := H1(J,Cm) with the norm ‖v‖EJ
= ‖v‖H1(J),

F := L2(R,C
m) with the norm ‖u‖F = ‖u‖L2

,

FJ := L2(J,C
m) × C

m with the norm ‖(u, η)‖FJ
= ‖u‖L2(J) + |η|.

Lemma 3.21. For every 0 < β′ < min(β−, β+) there exists a constant C = C(β′)
so that for all v ∈W with ‖v‖E = 1 holds

|v(x)| ≤ Ce−β′|x| ∀x ∈ R.

Proof. For every v ∈ W there is a (finite) sequence of elements v0, v1, . . . , vk = v
in W so that

(s0I − P )v0 = 0 in L2(J,C
m)

and (s0I − P )vi+1 = vi in L2(J,C
m), for i = 0, . . . , k − 1.

We prove by induction that for each v ∈ W and β′ < min(β−, β+) there is a
constant c = c(β′, v) with |v(x)| ≤ ce−β′|x| ∀x ∈ R.

In the case k = 0 we have (s0I − P )v = 0 ⇔ L(·, s0)v = 0 and so Theorem B.3
implies that there is c = c(v) > 0 with

|v(x)| ≤ ce−min(β−,β+)|x| ∀x ∈ R.

Now assume k ≥ 1. Then (s0I − P )vk = vk−1 and by induction for each
0 < β̃ < min(β−, β+) there is c = c(β̃, vk−1) with

|vk−1(x)| ≤ ce−β̃|x| ∀x ∈ R.
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3 The hyperbolic case

Therefore |B−1(x)vk−1(x)| ≤ ‖B−1‖∞ce−β̃|x| ∀x ∈ R. It holds

L(·, s0)vk = B−1vk−1

and so Theorem B.3 implies that for each 0 < β′ < β̃ there is c1 = c1(β
′, c, vk)

with
|vk(x)| ≤ c1e

−β′|x| ∀x ∈ R.

Since vk−1 is uniquely determined by vk we can also write c1 = c1(β
′, vk).

Because of Lemma 3.20 it holds dimW < ∞. Choose a basis v1, . . . , vr of
W , then every v ∈ W can uniquely be written as v =

∑

i αi(v)vi. Since the
coefficients depend continuously on v one finds

∑

i |αi(v)| ≤ const for all v ∈ W
with ‖v‖E = 1. This leads to

|v(x)| ≤ |
∑

i

αi(v)vi(x)| ≤
∑

i

|αi(v)||vi(x)|

≤
(

∑

i

|αi(v)|c(vi, β
′)

)

e−β′|x| ≤ conste−β′|x| ∀x ∈ R,

where the constant depends on β′, but does not depend on v.

3.4.2 The convergence theorem in the hyperbolic case

Using the abstract theory of Chapter 2 we will now prove the following theorem
about the approximation of the eigenvalues and eigenspaces in the right half-plane.

Theorem 3.22. With the assumptions and notations from above, in particular
Assumption 1 and the assumptions on Σ hold, there is a compact interval J0 ⊂ R

such that for all compact intervals J = [x−, x+] ⊂ R with J ⊃ J0 the following
properties hold.

The s0-group of eigenvalues σJ converges to s0 in the sense that for each 0 <
β′ < min(β−, β+) there is a constant const = const(β′) with

max
s∈σJ

|s− s0| = dist(σJ , s0) ≤ conste−
β′

κ
min(x+,x−). (3.104)

Each net (vJ)J≻J0
of normalized eigenelements to eigenvalues sJ ∈ σJ , i.e.

AJ(sJ)vJ = 0, ‖vJ‖H1(J,Cm) = 1,

is P-compact and it holds the estimate

sup
vJ∈EJ : ‖vJ‖EJ

=1
sJ∈ΣJ , RvJ=0
(sJI−P |J)vJ =0

inf
v0∈E

(s0I−P )v0=0

‖vJ − v0|J‖H1(J) ≤ conste−
β′

κ
min(x+,x−). (3.105)

Furthermore for the root-subspaces hold

dimWJ = dimW <∞. (3.106)
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3.4 Convergence of eigenvalues in the right half-plane

The root-subspace WJ approximates the root-subspace W in the sense

ϑ(WJ ,W ) = sup
vJ∈WJ

‖vJ‖EJ
=1

dist(vJ , pJW ) ≤ const e−β′ min(−x−,x+) (3.107)

and
ϑ(W,WJ ) = sup

v∈W
‖v‖E=1

dist(pJv,WJ) ≤ const e−β′ min(−x−,x+). (3.108)

The constants in (3.104), (3.105), (3.107), and (3.108) do not depend on J .

Before we can prove the Theorem we show some properties of the operator
functions A and AJ in the next two Lemmas. Recall that Σ ⊂ {Re s > −δ} is an
open neighborhood of Kε0

(s) such that

det
(

R−V
II
− (s) R+V

I
+(s)

)

6= 0 ∀s ∈ Σ.

Lemma 3.23. With the notations from above holds

(

sI − P |J
R

)

PQ−−→ sI − P regularly for all s ∈ Σ.

Proof. Let s ∈ Σ be arbitrary and let (vJ)J∈H be a bounded net in (EJ ) such that

((

sI − P |J
R

)

vJ

)

J∈H

is Q-compact. (3.109)

Then also the net
((

B−1(sI − P |J)
R

)

vJ

)

J∈H

=

((

L(·, s)|J
R

)

vJ

)

J∈H

(3.110)

is Q-compact:
Let H ′ ⊂ H be any cofinal subset of H. Then there is h ∈ F and H ′′ ⊂ H with

(

sI − P |J
R

)

vJ
Q−→ h (J ∈ H ′′),

but then

∥

∥

∥

∥

(

B−1(sI − P |J)vJ

RvJ

)

−
(

(B−1h)|J
0

)∥

∥

∥

∥

FJ

=
∥

∥B−1
(

(sI − P |J)vJ − h|J
)∥

∥

L2(J,Cm)
+ |RvJ |

≤ const
(

∥

∥(sI − P |J )vJ − h|J
∥

∥

L2(J,Cm)
+ |RvJ |

)

→ 0 (J ∈ H ′′).

Since B ∈ L(F,F ) is a linear homeomorphism this proves (3.110). By the equality
L(·, s) = −B−1(sI−P ), where L(·, s) is given in (3.79), Lemma 3.12, and Lemma
3.16 together with the determinant-condition for R show that the assumptions of
Theorem 2.29 are fulfilled and hence (vJ)J∈H is P-compact.
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3 The hyperbolic case

Lemma 3.24. For every s ∈ Σ and all J ∈ H the operators

sI − P ∈ L(E,F ) and

(

sI − P |J
R

)

∈ L(EJ , FJ )

are Fredholm of index zero.

Proof. From assumption (H2) follows that B−1 : F → F, v 7→ B−1v, is a lin-
ear homeomorphism. Therefore the operator sI − P is Fredholm if and only if
−B−1(sI − P ) = L(·, s) ∈ L(E,F ) is Fredholm. In this case they have the same
Fredholm indices. Lemma 3.12 and Lemma B.7 then yield the assertion.

For the analysis of the finite interval operator note that the bounded linear
operator

d

dx
: H1(J,Cm) → L2(J,C

m)

is Fredholm of index m and therefore the assumption (H2) implies the same for

B
d

dx
:
H1(J,Cm) → L2(J,C

m)
v 7→ Bvx.

Since sI|J − P |J ∈ L(H1(J,Cm), L2(J,C
m)) can be viewed as a compact pertur-

bation of −B d
dx because of the Rellich embedding theorem [Rob01, Chapter 5],

this operator is Fredholm of index m, too. Now by bordering with the boundary
operator R ∈ L(H1(J,Cm),Cm) Lemma C.9 shows that

(

sI − P |J
R

)

∈ L(EJ , FJ )

is a Fredholm operator of index zero.

Proof of Theorem 3.22. By Lemma 3.24 the operator-valued functions A(·) and
AJ(·) are Fredholm of index zero for all s ∈ Σ and by Lemma 3.23 for every s ∈ Σ
the operators AJ(s) regularly PQ-converge to A(s). Finally, because of Lemma
3.20 there is s ∈ Σ\Kε0

(s0) with s ∈ ρ(P ). Therefore the assumptions of Theorem
2.26 are verified and the theorem implies that there is a compact interval J0 ∈ H
such that (3.106) and the estimates

max
sJ∈σJ

|sJ − s0| ≤ Cǫ
1
κ

J , (3.104’)

sup
vJ∈N (AJ (sJ ))

sJ∈σJ ,‖vJ‖EJ
=1

inf
v0∈N (A(s0))

‖vJ − pJv0‖EJ
≤ Cǫ

1
κ

J , (3.105’)

ϑ(WJ ,W ) ≤ CǫJ , (3.107’)

ϑ(W,WJ ) ≤ CǫJ , (3.108’)

with

ǫJ = max
v,v′∈W
‖v‖E=1

(s0I−P )v=v′

∥

∥

∥

∥

(

s0I − P |J
R

)

pJv −
(

I
0

)

pJv
′

∥

∥

∥

∥

FJ

,

76



3.4 Convergence of eigenvalues in the right half-plane

hold. By application of Lemma 3.21 one can bound ǫJ by

ǫJ = max
v,v′∈W
‖v‖E=1

(s0I−P )v=v′

∥

∥

∥

∥

(

s0I − P |J
R

)

pJv −
(

I
0

)

pJv
′

∥

∥

∥

∥

FJ

= max
v,v′∈W
‖v‖E=1

(s0I−P )v=v′

(

‖(s0I − P |J)v|J − Iv′|J‖H1(J,Cm) + |Rv|J |
)

= max
v,v′∈W
‖v‖E=1

(s0I−P )v=v′

(

‖0‖H1(J,Cm) + |P−v(x−) + P+v(x+)|
)

≤ max
v∈W

‖v‖E=1

(

|P−| + |P+|
)(

|v(x−)| + |v(x+)|
)

≤ const e−β′ min(|x−|,|x+|)

with a constant which depends on 0 < β′ < min(β−, β+) only.

3.4.3 Convergence in the case of simple eigenvalues

In the case of a simple eigenvalue s0 ∈ σ(P ) ∩ {Re s > −δ} we prove a theorem
similar to Theorem 3.22 that also allows for s-dependent boundary conditions.
The aim is to have results similar to the ones from the previous theorem in the
case of projection boundary conditions (see [Bey90]) which should allow for shorter
intervals for the approximation of the eigenvalues.

We assume that the boundary operator R again is a linear two point boundary
operator but depends holomorphically on s in an open neighborhood Σ of s0. That
means that the matrices P± depend holomorphic on s and

R : Σ → L(H1(J),Cm), R(s)v = (P−(s)v(x−) + P+(s)v(x+)).

We consider the following determinant which is similar to the determinant from
Theorem 3.22 (see (3.86)

D(s) :=
(

P−(s)V−(s)II P+(s)V+(s)I
)

.

Here we assume that V±(s)I,II are bases of the stable and unstable subspaces
of M±(s) as above.

Theorem 3.25. Let Assumption 1 hold and consider the same setting of spaces
and operators as in 3.4.2. Furthermore assume

D(s0) 6= 0. (3.111)

Let s0 ∈ σ(P )∩{Re s > −δ} be a simple eigenvalue, i.e. s0 is a simple eigenvalue
of the holomorphic operator-valued function A(s) = sI − P , with eigenfunction
0 6= v0 ∈ N (s0I − P )∗.

∗See Definition C.6.
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3 The hyperbolic case

Then there is a compact interval J0 ∈ H and a positive constant δ0 such that
for all compact intervals J ⊃ J0 there exists exactly one simple eigenvalue sJ with
|s0 − sJ | ≤ δ0 of the approximation of A on the finite interval J given by

AJ(·) : s 7→
(

sI − P |J
R(s)

)

.

Moreover, there is a corresponding eigenfunction vJ ∈ EJ such that the estimate

|sJ − s0| + ‖vJ − pJv0‖ ≤ const|R−(s0)v0(x−) +R+(s0)v0(x+)| (3.112)

holds.

Proof. By the holomorphy assumption on R it is clear that A and AJ are holo-
morphic in s. Because of the determinant-condition (3.111) Lemma 3.23 shows

(

s0I − P |J
R(s0)

)

PQ−−→ (s0I − P ) regularly

and by Lemma 3.24 the operators A(s0) and AJ(s0) are Fredholm of index zero
for all J ∈ H.

Furthermore, A′
J(s0) =

(

I
R′(s0)

)

PQ−−→ IH1→L2
. To see this, note that since the

Sobolev-inequality (Lemma C.2) implies

‖A′
J(s0)‖L(H1(J,Cm),L2(J,Cm)×Cm) ≤ const ∀J ∈ H, [−1, 1] ⊂ J,

it suffices because of Lemma 2.18 to see

‖A′
J(s0)pJv − qJIv‖FJ

= ‖v|J − v|J‖L2(J) + |R′(s0)v|J | → 0.

This convergence in turn is a consequence of Lemma C.3.
Finally

‖A′
J(s) −A′

J(s0)‖ =

∥

∥

∥

∥

(

I
R′(s)

)

−
(

I
R′(s0)

)∥

∥

∥

∥

= |R′(s) −R′(s0)|H1(J)→Cm

implies because of the continuity of R′ that for every ε > 0 there is δ > 0 with

|R′
−(s) −R′

−(s0)| + |R′
+(s) −R′

+(s0)| < ε for all |s− s0| ≤ δ.

Applying the Sobolev-inequality again shows that for every ε > 0 there is δ > 0
such that

‖A′
J(s) −A′

J(s0)‖ ≤ ε ∀J ∈ H, J ⊃ [−1, 1], |s− s0| ≤ δ.

Now the theorem follows directly by application of Lemma 2.28.

Remark. In [Bey90] it is shown that if one considers so called projection bound-
ary conditions for the approximation of the zero eigenvalue the right hand side of
(3.112) converges faster to zero with a factor two in the exponent compared to
(3.104) and (3.105) from Theorem 3.22.

Possibly the projection boundary conditions also lead to better estimates for
the approximation of the other eigenvalues (cf. [HW80, Chapter 4]), but we do
not know about a general Theorem which states this.
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4 The mixed case

In this chapter we consider a linear mixed hyperbolic-parabolic PDE of the form

(

u
v

)

t

= P

(

u
v

)

, in [0,∞) × R, (4.1)

where the operator P : H2(R,Cn) × H1(R,Cm) → L2(R,C
n) × L2(R,C

m) is of
the form

P

(

u
v

)

=

(

A 0
0 0

)(

u
v

)

xx

+

(

B11 B12

0 B22

)(

u
v

)

x

+

(

C11 C12

C21 C22

)(

u
v

)

. (4.2)

Such systems for example can arise by linearization of a nonlinear PDE (1.1) at a
travelling wave solution as we will see in Chapter 5.3.

We analyze the system similarly to the analysis of Chapter 3.
We will see that the special structure of the operator P from (4.2) at least in

the case of large |s|, allows to derive resolvent estimates by combining the results
for the hyperbolic part presented in Section 3.2 and the results for the parabolic
part shown in [BL99, Chapter 2]. Therefore we give a review of the results from
[BL99] in Section 4.2 which we improve in one point. We also give an all line
version of [BL99, Theorem 2.1] which is needed for the all line resolvent estimates
of the mixed system. The coupling of the results for the hyperbolic and parabolic
systems is done with a transformation argument. For the resolvent estimates in
bounded regions of the complex plane we apply the abstract theory from Chapter
2 in the same fashion as in Chapter 3.

4.1 Assumptions

For the coefficients of the operator P from (4.2) we make the following assump-
tions.

Assumption 2. The coefficients of the parabolic part, i.e. of the operator

Ppar : H2(R,Cn) → L2(R,C
n), Pparu = Auxx +B11ux + C11u, (4.3)

satisfy the following conditions.

(P1) The coefficient matrices B11 and C11 belong to C(R,Cn,n) and

∃ lim
x→±∞

B11(x) =: B11±,

∃ lim
x→±∞

C11(x) =: C11±.
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4 The mixed case

(P2) The matrix A ∈ C
n,n is constant and there is α > 0 with A+A∗ ≥ αI.

The coefficients of the hyperbolic part, i.e. of the operator

Phyp : H1(R,Cm) → L2(R,C
m), Phypu = B22ux + C22u, (4.4)

satisfy (H1)–(H3) from Assumption 1.
Finally,

(M1) the coefficients B12, C12, and C21 are continuous matrix-valued functions
and

∃ lim
x→±∞

B12(x) =: B12±,

∃ lim
x→±∞

C12(x) =: C12±,

∃ lim
x→±∞

C21(x) =: C21±,

and B12 ∈ C1(R,Cn,m) with ‖B12,x‖∞ <∞.

(M2) There is δ > 0 such that, for all ω ∈ R and all s ∈ C,

det
(

− ω2

(

A 0
0 0

)

+ iω

(

B11+ B12+

0 B22+

)

+

(

C11+ C12+

C21+ C22+

)

− sIn+m

)

= 0

or

det
(

− ω2

(

A 0
0 0

)

+ iω

(

B11− B12−

0 B22−

)

+

(

C11− C12−

C21− C22−

)

− sIn+m

)

= 0

imply
Re s ≤ −δ < 0.

In the subsequent sections we will analyze the all line resolvent equation

(sI − P )

(

u
v

)

=

(

f + gx

F

)

in L2(R,C
n) × L2(R,C

m) (4.5)

and its restriction to a nonempty, compact interval J = [x−, x+], x+ > x−,

(sI − P |J)

(

u
v

)

=

(

f + gx

F

)

in L2(J,C
n) × L2(J,C

m) (4.6a)

As in the hyperbolic part one has to give additional boundary conditions for the
restricted operator to obtain similar solvability properties. This is due to the fact
that the boundary conditions of the all line operator P are hidden in its domain.
Therefore we consider linear two point boundary conditions again.

R

(

u
v

)

= η ∈ C
2n+m. (4.6b)

The exact assumptions for the boundary operator will be specified later.
As assumption (H4) the assumption (M2) is an assumption on the spectrum of

P . We will see that it implies a Fredholm property for the operator (sI − P ) to
the right of the algebraic curves defined by (M2).
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4.2 Review of results from the parabolic case

4.2 Review of results from the parabolic case

We briefly review some results for the parabolic part of (4.2) for large |s| which
are presented in [BL99]. We always assume (P1) and (P2) in this section.

In [BL99, Chapter 2] the resolvent equation

(sIn − Ppar)u = f + gx in L2(R,C
n), (4.7)

with f ∈ L2(R,C
n) and g ∈ H1(R,Cn) is transformed into a first order equation

by using the variables

z =

(

u
1
ρ(Aux + g)

)

,

with ρ = |s| 12 . Then (4.7) can be rewritten as

Lpar(s)z = zx −Mpar(·, s)z = h in L2(R,C
2n) (4.8)

with

Mpar(x, s) = ρ

(

0 A−1

s−C
ρ2 −1

ρB11A
−1

)

and h(x, s) =

( −A−1g
1
ρB11A

−1g − 1
ρf

)

. (4.9)

Note that by the structure of h the equality (4.8) in fact is an equality inH1(R,Cn)×
L2(R,C

n). The authors show some results about the asymptotic behavior of solu-
tions of (4.8) which we briefly review and then apply in order to obtain resolvent
estimates for the all line operator.

Lemma 4.1 ([BL99, Lemma 2.3]). There are positive constants c1, K̃1, K2, β̃1,
and ε so that the operators Lpar(s) have an (ED) on R if

s = re2iθ, r ≥ c1, |θ| ≤
π

4
+ ε.

The dichotomy data are given as (K̃1, ρβ̃1, π(x, s)), where π is continuous in s.

Remark. The proof presented in [BL99] only works for constant principal part
A, since it uses a rescaling method which is not correct if A is not constant.

Let Mθ(x) =

(

0 A−1(x)
e2iθI 0

)

and let z ∈ H1(R,C2n) be a solution of Lθz =

zx −Mθz = 0. Then the function u(x) := z(ρx) which is considered in [BL99, p.
211] satisfies

ux(x) = ρzx(ρx) = ρMθ(ρx)z(ρx) = ρMθ(ρx)u(x),

which in general is not the same as ρMθ(x)u(x).

Since we will make use of the results from [BL99, Chapter 2], we assume that
A is a constant matrix.
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π
2

+ 2ε

c1

Figure 4.1: The sector of the complex plane defined in Lemma 4.1.

As in Section 3.2.2 we obtain from Lemma 4.1 that if s is restricted to the
sector of the complex plane from Lemma 4.1, for each h ∈ L2(R,C

2n) there is a
unique solution z ∈ H1(R,C2n) of Lpar(s)z = h. Moreover, the solution satisfies
the estimate

ρ2‖z‖2 ≤ const‖h‖2.

Applying the differential equation (4.8) one finds

‖zx‖2 ≤ const‖h‖2,

where the constant does not depend on h and s for all s from that region.
Therefore recalling the connection of (4.8) and (4.7) one obtains unique solv-

ability of (4.7) for each f ∈ L2(R,C
n) and g ∈ H1(R,Cn). Furthermore, from the

inequalities

ρ2

∥

∥

∥

∥

(

u
1
ρ(Aux + g)

)∥

∥

∥

∥

2

≤ const

∥

∥

∥

∥

( −A−1g
1
ρB11A

−1g − 1
ρf

)∥

∥

∥

∥

2

and

∥

∥

∥

∥

(

ux
1
ρ(Auxx + gx)

)∥

∥

∥

∥

2

≤ const

∥

∥

∥

∥

( −A−1g
1
ρB11A

−1g − 1
ρf

)∥

∥

∥

∥

2

one derives the estimates

ρ2‖u‖2 ≤ const
(

‖g‖2 +
1

ρ2
‖f‖2

)

,

‖ux‖2 ≤ const
(

‖g‖2 +
1

ρ2
‖f‖2

)

,

‖uxx‖2 ≤ const
(

ρ2‖g‖2 + ‖gx‖2 + ‖f‖2
)

.

This proves the following theorem (cf. [KKP94]).
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4.2 Review of results from the parabolic case

Theorem 4.2. Let f ∈ L2(R,C
n) and g ∈ H1(R,Cn). Then there are positive

constants c1, K, and ε such that for all s ∈ C with s = re2iθ, r ≥ c1, |θ| ≤ π
4 + ε

the resolvent equation (4.7) has a unique solution u ∈ H2(R,Cn). This solution
satisfies estimates of the form

|s|2‖u‖2 + |s|‖ux‖2 ≤ K
(

‖f‖2 + |s|‖g‖2
)

(4.10)

and

‖uxx‖2 ≤ K
(

‖f‖2 + |s|‖g‖2 + ‖gx‖2
)

with a constant K independent of f , g, s.

In [BL99] the all line problem (4.7) is restricted to a finite interval with supple-
mentary boundary conditions, i.e.

(sIn − Ppar|J)u = f + gx in L2(J,C
n),

Rparu = γ.
(4.11)

The boundary operator Rpar : H2(J,Cn) → C
2n is assumed to be of the form

Rparu =

(

P I
− QI

−

P II
− 0

)(

u(x−)
ux(x−)

)

+

(

P I
+ QI

+

P II
+ 0

)(

u(x+)
ux(x+)

)

=

(

γI

γII

)

with rank(QI
− QI

+) = r, and matrices P I
−, P

I
+, Q

I
−, Q

I
+ ∈ C

r,n, P II
− , P II

+ ∈ C
2n−r,n,

γI ∈ C
r, γII ∈ C

2n−r. Note that this form can always be obtained by multiplica-
tion from the left with an invertible matrix.

The authors prove the following theorem.

Theorem 4.3 ([BL99, Theorem 2.1]). Consider the BVP (4.11) for s = reiφ,
|φ| ≤ π

2 + ε, r ≥ c1, and assume

det

(

QI
− QI

+

−P II
− A

1
2 P II

+ A
1
2

)

6= 0.

Then there are positive constants c1, K, ε so that for every J = [x−, x+] with
x+ − x− ≥ 1 the BVP (4.11) has a unique solution u ∈ H2(J,Cn). This solution
can be estimated by

ρ2‖u‖2 + ‖ux‖2 + ρ|u|2Γ +
1

ρ
|ux|2Γ ≤ K

( 1

ρ2
‖f‖2 + ‖g‖2 +

1

ρ
|γI |2 + ρ|γII |2 +

1

ρ
|g|2Γ

)

,

(4.12)

with ρ = |s| 12 . The constants c1, K, and ε are independent of the right hand side
from (4.11), of s, and of J .

Remark. In the estimate (4.12) we have the term 1
ρ |g|2Γ which is an improve-

ment of the original term ρ|g|2Γ derived in [BL99]. This is justified as follows. In
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4 The mixed case

[BL99, (2.12)] the values g(x−) and g(x+) enter the boundary value η only in the
first r components since

η = γ +Q−A
−1g(x−) +Q+A

−1g(x+) =

(

γI +QI
−A

−1g(x−) +QI
+A

−1g(x+)
γII

)

.

Therefore in [BL99, (2.33)] one obtains

|ηI |2 ≤ K6

(

|γI |2 + |g|2Γ
)

and |ηII |2 = |γII |2.
Thus the estimate (4.12) follows from

ρ2‖z‖2 + ρ|z|2Γ ≤ K3

(

‖h‖2 +
1

ρ
|ηI |2 + ρ|ηII |2

)

.

The improvement is essential for the analysis of coupled hyperbolic-parabolic sys-
tems (see (4.33) and (4.34)).

4.3 General properties of the mixed operator

In this section we show some general properties of the mixed operator

sI − P : H2(R,Cn) ×H1(R,Cm) → L2(R,C
n) × L2(R,C

m)

from (4.5) and of its restriction to finite intervals. We always assume that As-

sumption 2 holds.
The main results will be Fredholm properties of sI−P and of the finite interval

approximation of this operator. The idea is to transform the operator to a first
order operator and then apply the result of Lemma B.7. This means that we

transform the resolvent equation (sI−P )

(

u
v

)

=

(

f
F

)

into a first order equation.

Note that this coincides with equation (4.5) if g = 0. By using the transformation
(u, v) 7→ (u,Aux, v) this equation can be rewritten as

L(s)z := zx −M(x, s)z =





0

−f +B12B
−1
22 F

−B−1
22 F



 , (4.13)

where

L(s) : H2(R,Cn)×H1(R,Cn)×H1(R,Cm) → H1(R,Cn)×L2(R,C
n)×L2(R,C

m)

and

M(·, s) =





0 A−1 0

B12B
−1
22 C21 + (sIn −C11) −B11A

−1 −C12 −B12B
−1
22 (sIm − C22)

−B−1
22 C21 0 B−1

22 (sIm −C22)



 .

(4.14)
We make this unusual choice of domain of L(s) since by this we can directly relate
the Fredholm properties of L(s) and of sI − P .

Before we analyze the properties of L(s) and of sI−P we show that assumption
(M2) implies the hyperbolicity of the limit matrices limx→±∞M(x, s) =: M±(s)
for all s ∈ C with Re s > −δ. This follows directly from the next lemma.
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4.3 General properties of the mixed operator

Lemma 4.4. For s and κ in C the relation

s ∈ σ
(

κ2

(

A 0
0 0

)

+ κ

(

B11± B12±

0 B22±

)

+

(

C11± C12±

C21± C22±

)

)

holds if and only if
det(M±(s) − κI) = 0.

Proof. Consider the ‘+’ case. The equation det(M+(s)−κI) = 0 holds if and only
if there are u,w ∈ C

n, v ∈ C
m with (u,w, v) 6= 0 that satisfy

M+(s)





u
w
v



 = κ





u
w
v



 .

This is equivalent to

w = κAu,

κ2Au+ κB12+v + κB11+u+ C11+u+ C12+v = su,

κB22+v + C21+u+ C22+v = sv,

which proves the Lemma.

This result will now be used to show that L(s) is Fredholm of index zero for all
Re s > −δ, which in the end will be utilized to show that the operator sI − P is
Fredholm of index zero for all s ∈ C with Re s > −δ.

In view of Lemma B.7 and its Corollary B.8 together with Lemma B.5 it suffices
to show that the constant coefficient operators L±(s)z = zx −M±(s)z have an
(ED) on R with dimR(π+(s)) + dimR(I − π−(s)) = 2n + m, where π+ and π−
are the corresponding projectors of the constant coefficient operators L±(s).

From now on we assume |s| ≥ 1. The main idea for the analysis of the constant
coefficient operators L±(s) from (4.13) is to transform them such that the block-
diagonal entries are of the forms which are already analyzed in the hyperbolic and
in the parabolic case and simultaneously the outer block diagonal entries are small
compared to the block diagonal entries.

We use the transformation of variables

z̃ := S 1
ρ
TB12±z,

where ρ = |s| 12 and the matrices are defined by

S 1
ρ

=





In 0 0
0 1

ρIn 0

0 0 Im



 and TB12± =





In 0 0
0 In B12±

0 0 Im



 .

Note that S−1
1
ρ

= Sρ and T−1
B = T−B holds. Thus we obtain the operators

L̃±(s)z = zx − M̃±(s)z, (4.15)
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4 The mixed case

with

M̃±(s) =





0 ρA−1 −A−1B12±
1
ρ(sI −C11±) −B11±A

−1 1
ρB11±A

−1B12± − 1
ρC12±

−B−1
22±C21± 0 B−1

22±(sI − C22±)



 . (4.16)

Until Lemma 4.6 we suppress the ‘±’ in the notation.
First consider the block diagonal operators L̃d(s) given by

L̃d(s)z = zx −





0 ρA−1 0
1
ρ(sI − C11) −B11A

−1 0

0 0 B−1
22 (sI − C22)



 z.

In [BL99, Lemma 2.1–Lemma 2.3] it is shown that there are positive constants
K̃1, β̃1, c1, ε such that for all s ∈ C with s = re2iθ, where r ≥ c1 and |θ| ≤ π

4 + ε,
the operators

L̃d1(s) : z1 7→ z1,x −
(

0 ρA−1

1
ρ(sI − C11) −B11A

−1

)

z1,

have an (ED) on R. Moreover, the dichotomy data are given by (K̃1, ρβ̃1, π̃1(s))
and satisfy dimR(π̃1(s)) = n.

In Lemma 3.7 from Section 3.2 it is shown that there are positive constants
K̃2, β̃2, and c2 such that for all s ∈ C with Re s ≥ c2 the operators

L̃d2(s) : z2 7→ z2,x −B−1
22 (sI −C22)z2,

have an (ED) on R with dichotomy data (K̃2,Re(s)β̃2, π̃2(s)) and the projectors
satisfy dimR(π̃2(s)) = m− r.

Since
√

Re s ≤ |s|1/2 for all s ∈ C with Re s ≥ max(c2, c1, 1) =: c̃0, the block
diagonal operators L̃d(s) have EDs on R. The data can be chosen as

(

K̃0,
√

Re(s)β̃0,

(

π̃1 0
0 π̃2

)

(s)
)

,

where K̃0 = max(K̃1, K̃2) and β̃0 = min(β̃1, β̃2).
Let

∆(s) :=





0 0 −A−1B12

0 0 1
ρB11A

−1B12 − 1
ρC12

−B−1
22 C21 0 0





If Re s ≥ c̃0, then there is a constant C∆ such that |∆(s)| ≤ C∆.

Therefore by choosing c0 =: max
(

c̃0,
(

7K̃0C∆

β̃0

)2
,
(

2K̃2
0C∆

β̃0

)2
)

Theorem B.4 im-

plies for all s ∈ C with Re s ≥ c0 that the operators L̃(s) have EDs on R with
data (K̃, β̃(s), π̃) where one can choose

K̃ = 3K̃0,

and β̃(s) =
√

Re s
β̃0

2
.
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4.3 General properties of the mixed operator

Moreover, the projectors satisfy

∣

∣

∣

∣

π̃(s) −
(

π̃1 0
0 π̃2

)

(s)

∣

∣

∣

∣

≤ 1
√

Re(s)

K̃2
0C∆

β̃0

≤ 1

2
. (4.17)

Therefore it holds dimR(π̃(s)) = dimR
(

π̃1 0
0 π̃2

)

= n + m − r. This yields that

for all Re s ≥ c0 the matrices M̃±(s) are hyperbolic and in particular also the
matrices

M±(s) = S 1
ρ
TB12

M̃(s)T−B12
Sρ

are hyperbolic for all s ∈ C with Re s > c0. Moreover the dimension of the stable
subspaces of M±(s) is n+m− r and the dimension of the unstable subspaces of
M±(s) is n+ r.

Recall that Lemma 4.4 shows that there is no s ∈ {Re s ≥ −δ} for which the
matrix M(s) has purely imaginary eigenvalues. Since the eigenvalues of a con-
tinuously parametrized matrix depend continuously on the parameter, it follows
that the matrices M(s) are hyperbolic for all Re s > −δ and the dimension of the
stable subspace is n+m− r and the dimension of the unstable subspace is n+ r.

This shows that the constant coefficient operators L±(s) have (EDs) on R. Let

V I
±(s) ∈ C

2n+m,n+r be a basis of the unstable subspace of M±(s)

and let

V II
± (s) ∈ C

2n+m,n+m−r be a basis of the stable subspace of M±(s).

Finally let ΛI
±(s) ∈ C

n+r,n+r and ΛII
± (s) ∈ C

n+m−r,n+m−r with Reσ(ΛI
±(s)) > 0

and Reσ(ΛII
± (s) < 0 such that (3.81) and (3.82) hold. Note that we again do not

assume any smoothness for V± or Λ± since we only aim for a point-wise result.

The considerations from above prove the following Lemma.

Lemma 4.5. For every s ∈ C with Re s > −δ the constant coefficient operator

L±(s) : z 7→ zx −M±(s)z

has an (ED) on R. Moreover the corresponding projectors π±(s) are given by

R(π±(s)) = V II
± (s) and R(I − π±(s)) = V I

±(s).

By application of Theorem B.5 and Lemma B.7 one obtains from Lemma 4.5
an (ED) for the variable coefficient operators.

Lemma 4.6. For all s ∈ C with Re s > −δ the variable coefficient operators L(·, s)
from (4.13) have exponential dichotomies on R+ and on R−. The corresponding
projectors π±(·, s) satisfy

lim
x→+∞

|π+(x, s) − π+(s)| = 0 and lim
x→−∞

|π−(x, s) − π−(s)| = 0. (4.18)
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Moreover, for the ranges of the projectors one has

dimR(π+(0, s)) = n+m− r

dimR(I − π−(0, s)) = n+ r.

Finally, the operators L(·, s) : H2 × H1 × H1 → H1 × L2 × L2 from (4.13) are
Fredholm of index 0 for all s ∈ C with Re s > −δ.

From this Lemma we now conclude that also the original operator sI − P has
a Fredholm property. This will be used in Section 4.4 to show unique solvability
of the resolvent equation (4.5).

Lemma 4.7. For all s ∈ C with Re s > −δ the operator sI − P is Fredholm of
index 0.

Proof. We show that for all s ∈ C with Re s > −δ the operators sI−P and L(·, s)
are Fredholm of the same index. By Lemma 4.6 L(·, s) is Fredholm of index 0.

First we show dimN (sI − P ) = dimN (L(·, s)).
Let (u, v)T ∈ N (sI − P ), then (u,Aux, v)

T ∈ N (L(·, s)) and it follows

dimN (sI − P ) ≤ dimN (L(·, s)).

Now let (z1, z2, z3)
T ∈ N (L(·, s)). By the definition of L(·, s) it holds z1,x = A−1z2

and therefore z2 = Az1,x. One easily finds (z1, z3)
T ∈ N (sI−P ). Let (zi

1, z
i
2, z

i
3)

T ,
i = 1, . . . , l, be linearly independent elements in N (L(·, s)). Let α = (α1, . . . , αl) ∈
C

l with
∑

i

αi

(

zi
1

zi
3

)

= 0.

Then by linearity
∑

i αi(z
i
1, Az

i
1,x, z

i
3)

T = 0, but since the differential equation

shows Azi
1,x = zi

2, it follows α = 0 from the linear independency. Hence we find

dimN (sI − P ) ≥ dimN (L(·, s)).

Second show codimR(sI − P ) = codimR(L(·, s)).
Since (0,−f + B12B

−1
22 F,−B−1

22 F )T ∈ R(L(·, s)) implies (f, F )T ∈ R(sI − P ) we
obtain

codimR(sI − P ) ≤ codimR(L(·, s)).
Now let (f i, gi, hi), i = 1, . . . , l, be a cobasis of R(L(·, s)). Then the elements

(

−Af i
x − gi −B11f

i −B12h
i

−B22h
i

)

∈ L2(R,C
n) × L2(R,C

m)

are linearly independent elements of [L2(R,C
n) × L2(R,C

m)]/R(sI − P ):

Let α = (α1, . . . , αl) ∈ C
l and assume there is

(

u
v

)

∈ H2(R,Cn) × H1(R,Cm)

with

(sI − P )

(

u
v

)

=
∑

αi

(

−Af i
x − gi −B11f

i −B12h
i

−B22h
i

)

. (4.19)
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Consider





u
Aux −A

∑

αif
i

v



 which is an element of H2(R,Cn) × H1(R,Cn) ×

H1(R,Cm). Then

L(s)





u
Aux −A

∑

αif
i

v





=





ux

Auxx −A
∑

αif
i
x

vx



−M(·, s)





u
Aux −A

∑

αif
i

v





=





∑

αif
i

Auxx −B12B
−1
22 C21u+B12B

−1
22 (sI − C22)v − (sI −C11)u+B11ux + C12v

vx +B−1
22 C21u−B−1

22 (sI − C22)v





+





0
−B11

∑

αif
i −A

∑

αif
i
x

0





=





∑

αif
i

Auxx +B11ux +B12vx + C11u+ C12v − sIu
∑

αih
i





+





0
−B11

∑

αif
i −A

∑

αif
i
x −B12

∑

αih
i

0





=
∑

αi





f i

gi

hi



 ∈ R(L(·, s)),

where we used the differential equation (4.19). Since the elements form a cobasis
of R(L(·, s)) it follows α = 0. This shows codimR(sI−P ) ≥ codimR(L(·, s)).

Remark. Note that the proof does not make use of the property Re(s) > −δ,
but uses the Fredholm property of L(·, s). Hence the Lemma can be applied
everywhere in the complex plane, where L(·, s) is Fredholm. This will be used in
section 5.3 for the interpretation of the numerical results.

For the approximation of the operator sI − P on finite intervals J = [x−, x+]
with x+ > x−, as in (4.6) we consider the operators

sI − P |J :
H2(J,Cn) ×H1(J,Cm) → L2(J,C

n) × L2(J,C
m)

(

u
v

)

7→ (sI − P )

(

u
v

)

(4.20)
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and assume that the supplementary linear boundary operator is of the form

R :

H2(J,Cn) ×H1(J,Cm) → C
2n+m

(

u
v

)

7→ R

(

u
v

)

= R−





u(x−)
ux(x−)
v(x−)



+R+





u(x+)
ux(x+)
v(x+)





(4.21)
with matrices R−, R+ ∈ C

2n+m,2n+m. Then we obtain the Fredholm alternative
for the mixed second order boundary value problem (4.6).

Lemma 4.8. For every s ∈ C and every compact interval J = [x−, x+] with
x+ > x− the operators

(

sI − P |J
R

)

: H2(J,Cn) ×H1(J,Cm) → L2(J,C
n) × L2(J,C

m) × C
2n+m

are Fredholm operators of index zero.

Proof. Since the embedding H1(J,Cn) →֒ L2(J,C
n) is compact, the assertion

follows by application of Lemma C.10 and using that the pure parabolic and
pure hyperbolic part with their corresponding boundary operators are Fredholm
operators of index 0.

4.4 Resolvent estimates for large |s|
In this section we will combine the results from Chapter 3 and [BL99] as they
are presented in Section 4.2 to obtain similar results for the hyperbolic-parabolic
systems (4.5) and (4.6).

First we prove an all line result similar to the result from [KKP94, Section 4].
Note that in [KKP94] only resolvent estimates are shown. We improve the result
from there in the sense that we give stronger estimates and also an existence and
uniqueness result.

Theorem 4.9. Under Assumption 2 there are positive constants K and C0 such
that for all s ∈ M(δ, C0) the all line resolvent equation (4.5) has for all f ∈
L2(R,C

n), g ∈ H1(R,Cn), and F ∈ L2(R,C
m) a unique solution

(

u
v

)

∈ H2(R,Cn)×
H1(R,Cm).

Moreover, the solution can be estimated by

|s|‖u‖2 + ‖ux‖2 + ‖v‖2 ≤ K
( 1

|s|‖f‖
2 + ‖F‖2 + ‖g‖2

)

. (4.22)

If in addition F ∈ H1(R,Cm) and ‖C21,x‖∞ <∞, there exists K ′ > 0 so that the
solution satisfies the estimate

|s|‖u‖2 + ‖ux‖2 + ‖v‖2 + ‖vx‖2 ≤ K ′
( 1

|s|‖f‖
2 + ‖g‖2 + ‖F‖2 + ‖Fx‖2

)

. (4.23)
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4.4 Resolvent estimates for large |s|

Proof. Assume that

(

u
v

)

∈ H2(R,Cn) × H1(R,Cm) is a solution of (4.5). Let

C1 > 0 be so large that for all s ∈ M(δ, C1) the assumptions of Theorem 4.2 and
of Theorem 3.1 are satisfied. Then by Theorem 4.2 there is a positive constant
K1 so that u ∈ H2(R,Cn) is the unique solution of

(sIn − Ppar)u = (f + (C12 −B12,x)v) + (g +B12v)x in L2(R,C
n)

and satisfies the estimate

|s|2‖u‖2 + |s|‖ux‖2

≤ K1

{

‖f‖2 + 2
(

‖C12‖2
∞ + ‖B12,x‖2

∞

)

‖v‖2 + 2|s|
(

‖g‖2 + ‖B12‖2
∞‖v‖2

)

}

≤ K ′
1

(

‖f‖2 + |s|‖g‖2 + |s|‖v‖2
)

. (4.24)

Similarly by Theorem 3.1 there is a positive constant K2 so that v ∈ H1(R,Cm)
is the unique solution of

(sIm − Phyp)v = F + C21u in L2(R,C
m)

and satisfies

‖v‖2 ≤ K2

(

‖F‖2 + ‖u‖2
)

. (4.25)

If ‖C21,x‖∞ <∞, the function v also satisfies the estimate

‖v‖2 + ‖vx‖2 ≤ K2

(

‖F‖2 + ‖Fx‖2 + ‖u‖2 + ‖ux‖2
)

. (4.26)

Inserting (4.25) into (4.24) leads to

|s|2‖u‖2 + |s|‖ux‖2 ≤ K ′′
1

(

‖f‖2 + |s|‖g‖2 + |s|‖F‖2 + |s|‖u‖2
)

.

By choosing C0 ≥ max(2K ′′
1 , C1, 1) one obtains for all s ∈ M(δ, C0)

|s|2‖u‖2 + |s|‖ux‖2 ≤ 2K ′′
1

(

‖f‖2 + |s|‖g‖2 + |s|‖F‖2
)

(4.27)

which implies

‖u‖2 ≤ 2K ′′
1

( 1

|s|2 ‖f‖
2 +

1

|s|‖g‖
2 +

1

|s|‖F‖
2
)

.

This inserted into (4.25) shows

‖v‖2 ≤ K ′
2

( 1

|s|2 ‖f‖
2 +

1

|s|‖g‖
2 + ‖F‖2

)

. (4.28)

Combination of (4.27) and (4.28) proves (4.22). Similarly combining the estimates
(4.27) and (4.26) in the same fashion proves (4.23).

The solution estimates (4.22) and (4.23) imply that the operator sI − P is one
to one and the Fredholm alternative then shows that the operator is also onto.
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4 The mixed case

In a similar way we analyze the finite interval problem (4.6). Assume that the
boundary operator R from (4.6b) is of the form

R

(

u
v

)

=





P I
− QI

− Ra
−

P II
− 0 Rb

−

Rc
− Rd

− Rhyp
−









u(x−)
ux(x−)
v(x−)



+





P I
+ QI

+ Ra
+

P II
+ 0 Rb

+

Rc
+ Rd

+ Rhyp
+









u(x+)
ux(x+)
v(x+)



 (4.29)

with P I
±, Q

I
± ∈ C

r,n, P II
± ∈ C

2n−r,n, Ra
± ∈ C

r,m, Rb
± ∈ C

2n−r,m, Rc
±, R

d
± ∈ Cm,n,

Rhyp
± ∈ Cm,m, and rank(Q− Q+) = r. This form can always be achieved by

multiplying (4.6b) with an invertible matrix from the left.

Theorem 4.10. Assume the differential operator P from (4.2) satisfies (P1),
(P2), (H1), (H2), (H3), (M1). Consider the boundary value problem (4.6) with

f ∈ L2(J,C
n), g ∈ H1(J,Cn), F ∈ L2(J,C

m), η =
(

ηI ηII ηIII
)T ∈ C

n+n+m,
Assume the boundary operator R is of the form (4.29) with (Rd

−, R
d
+) = 0 and

satisfies the determinant-condition Assume

D∞ := det







QI
− QI

+ 0 0

−P II
− A

1
2 P II

+ A
1
2 0 0

0 0 Rhyp,II
− Rhyp,I

+






6= 0, (4.30)

where Rhyp
± =

(

Rhyp,I
± Rhyp,II

±

)

corresponds to the partition of B22 in (H2) of

Assumption 1.
Then there are positive constants C0, δ, b such that for all compact intervals J ⊃

[−b, b], for all s ∈ M(δ, C0), and all choices of f, g, F , η the following properties
hold.

(a) If (Rc
− Rc

+) = 0, then for every choice of Ra
± and Rb

± one obtains unique
solvability of the resolvent equation (4.6). Moreover there is a positive con-
stant K independent of J , s, η, f , g, and F so that for all s ∈ M(δ, C0) the
solution (u, v) can be estimated by

ρ2‖u‖2 + ‖ux‖2 + ρ|u|2Γ +
1

ρ
|ux|2Γ + ‖v‖2 + |v|2Γ (4.31)

≤ K

(

1

ρ2
‖f‖2 + ‖g‖2 + ρ‖F‖2 +

1

ρ
|g|2Γ +

1

ρ
|ηI |2 + ρ|ηII |2 + ρ|ηIII |2

)

with ρ =
√

|s|.

(b) If (Rb
− Rb

+) = 0 then for every choice of Ra
± and Rc

± one obtains unique
solvability of the resolvent equation (4.6). Moreover, there is a positive con-
stant K independent of J , s, η, f , g, and F such that the solution (u, v) can
be estimated by

ρ2‖u‖2 + ‖ux‖2 + ρ|u|2Γ +
1

ρ
|ux|2Γ + ‖v‖2 + |v|2Γ

≤ K

(

1

ρ2
‖f‖2 + ‖g‖2 + ‖F‖2 +

1

ρ
|g|2Γ +

1

ρ
|ηI |2 + ρ|ηII |2 + |ηIII |2

)

(4.32)

for all s ∈ M(δ, C0).
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4.4 Resolvent estimates for large |s|

Proof. In Lemma 4.8 it is shown that for all J = [x−, x+] with x+ > x− the

operator

(

sI − P |J
R

)

from (4.6) is a Fredholm operator of index 0. Hence an

estimate of the form (4.31) or (4.32) suffices to prove unique solvability.

Assume (u, v) ∈ H2(J,Cn)×H1(J,Cm) is a solution of (4.6). The determinant-
condition (4.30) implies that there are positive constants C0 and δ so that for all
s ∈ C with Re s > −δ and |s| > C0 the assertions of Theorem 3.2 and Theorem
4.3 hold for the hyperbolic and for the parabolic part, respectively.

By assumption (u, v) solve

(sI − Ppar|J )u = f + C12v −B12,xv + (g +B12v)x (4.33a)

(

P I
− QI

−

P II
− 0

)(

u(x−)
ux(x−)

)

+

(

P I
+ QI

+

P II
+ 0

)(

u(x+)
ux(x+)

)

=









ηI −
(

Ra
−, R

a
+

)

(

v(x−)
v(x+)

)

ηII −
(

Rb
−, R

b
+

)

(

v(x−)
v(x+)

)









,

(4.33b)

and

(sI − Phyp|J)v = F + C21u (4.34a)

Rhyp
− v(x−) +Rhyp

+ v(x+) = ηIII −
(

Rc
− Rc

+

)

(

u(x−)
u(x+)

)

−
(

Rd
− Rd

+

)

(

ux(x−)
ux(x+)

)

.

(4.34b)

Thus by Theorem 4.3 there is a constant Kp > 0 independent of J , s, and the
right hand side, so that the estimate

ρ2‖u‖2 + ‖ux‖2 + ρ|u|2Γ +
1

ρ
|ux|2Γ

≤ Kp

{ 1

ρ2
‖f‖2 + ‖g‖2 +

1

ρ
|g|2Γ +

1

ρ
|ηI |2 + ρ|ηII |2

+ ‖v‖2 +
1

ρ
|v|2Γ +

1

ρ
|(Ra

− Ra
+)|2|v|2Γ + ρ|(Rb

− Rb
+)|2|v|2Γ

}

(4.35)

holds.

Similarly one obtains from Theorem 3.2 a constant Kh > 0, independent of J ,
s, and the right hand side such that the estimate

‖v‖2 + |v|2Γ ≤ Kh

{

‖F‖2 + |ηIII |2 + ‖u‖2 + |(Rc
− Rc

+)|2|u|2Γ + |(Rd
− Rd

+)|2|ux|2Γ
}

(4.36)
is satisfied. Combining (4.35) and (4.36) similarly to the proof of Theorem 4.9
one obtains (a) and (b).

Remark. If the matrix-valued function B12 is equal to zero it is also possible
to analyze the case with Ra

± = 0 and Rb
± = 0 and arbitrary choices of Rc

± and Rd
±.

Then one obtains for the unique solution of the resolvent equation (4.6) under the
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4 The mixed case

same assumptions as in Theorem 4.10 the estimate

ρ2‖u‖2 + ‖ux‖2 + ρ|u|2Γ +
1

ρ
|ux|2Γ +

1

ρ
(‖v‖2 + |v|2Γ)

≤ K

(

1

ρ2
‖f‖2 + ‖g‖2 +

1

ρ
‖F‖2 +

1

ρ
|g|2Γ +

1

ρ
|ηI |2 + ρ|ηII |2 +

1

ρ
|ηIII |2

)

(4.37)

with a constant K independent of s, J , and the right hand side of (4.6).

For example in the FHN-System∗ the function B12 is zero.

4.5 Resolvent estimates in compact regions

In this section we always assume that Assumption 2 holds.

The main results will be uniform resolvent estimates for the all line problem (4.5)
in compact subsets of the resolvent set ρ(P ) in the half-plane {Re s > −δ}. For the
approximation (4.6) of the all line problem on finite intervals, we give sufficient
conditions for the supplementary boundary operator (4.6b) such that the finite
interval problem (4.6) satisfies resolvent estimates similar to the estimates for the
all line problem. We will first state the main Theorems 4.11 and 4.12 and then
provide the proofs.

Theorem 4.11. Let Ω ⊂ {Re s > −δ} ∩ ρ(P ) be a compact set. Then for every
s ∈ Ω, f ∈ L2(R,C

n), g ∈ H1(R,Cn), and F ∈ L2(R,C
m) the resolvent equation

(4.5) has a unique solution (u, v) ∈ H2(R,Cn) ×H1(R,Cm).

Moreover there is a positive constant K0 independent of s, f , g, and F so that
the solution can be estimated by

‖u‖2 + ‖ux‖2 + ‖v‖2 + ‖vx‖2 ≤ K0

(

‖f‖2 + ‖g‖2 + ‖F‖2
)

, (4.38)

and if one includes the derivative of g one can also estimate u in the H2-norm

‖uxx‖2 ≤ K0

(

‖f‖2 + ‖g‖2 + ‖gx‖2 + ‖F‖2
)

. (4.39)

Before we formulate the analogous theorem for the restricted problem (4.6) we
give a condition for the boundary operator R from (4.6b). We assume that the
boundary term R in (4.6b) is linear and of the form

R

(

u
v

)

=
(

RI
− RII

− RIII
−

)





u(x−)
ux(x−)
v(x−)



+
(

RI
+ RII

+ RIII
+

)





u(x+)
ux(x+)
v(x+)



 . (4.40)

By using the variable z = (u,Aux + g, v) the system (4.6a) transforms into the
first order equation

L(·, s)z = h in H1(J,Cn) × L2(J,C
n) × L2(J,C

m), (4.41a)

∗The FitzHugh-Nagumo system will be analyzed as an example in Section 5.3.

94



4.5 Resolvent estimates in compact regions

where
L(·, s)z = zx −M(·, s)z

with M from (4.14) and

h =





−A−1g

−B11A
−1g − f +B12B

−1
22 F

−B−1
22 F



∈ H1(J,Cn)×L2(J,C
n)×L2(J,C

m). (4.41b)

The boundary condition (4.40) transforms into

R1z = η1, (4.41c)

where

R1z =
(

RI
− RII

− A
−1 RIII

−

)

z(x−) +
(

RI
+ RII

+ A
−1 RIII

+

)

z(x+)

and
η1 = η +RII

− A
−1g(x−) +RII

+ A
−1g(x+).

In the sequel we will simply write H1(J) or L2(J) the exact dimension of the
image will be clear from the context.

As in (3.81) and (3.82) let

V II
− (s) =





X−(s)
Y−(s)
Z−(s)



 and V I
+(s) =





X+(s)
Y+(s)
Z+(s)





be bases of the stable subspace of M−(s) and of the unstable subspace of M+(s),
respectively. The equations (3.81) and (3.82) show

A−1Y−(s) = X−(s)ΛII
− (s) and A−1Y+(s) = X+(s)ΛI

+(s).

Define the determinant

D(s) := det





(

RI
− RII

− A
−1 RIII

−

)





X−(s)
Y−(s)
Z−(s)



 ,
(

RI
+ RII

+ A
−1 RIII

+

)





X+(s)
Y+(s)
Z+(s)









=det





(

RI
− RII

− RIII
−

)





X−(s)
X−(s)ΛII

− (s)
Z−(s)



 ,
(

RI
+ RII

+ RIII
+

)





X+(s)
X+(s)ΛI

+(s)
Z+(s)







 .

(4.42)

Now we can formulate the Theorem.

Theorem 4.12. Let Ω ⊂ {Re s > −δ} ∩ ρ(P ) be a compact set and assume

D(s) 6= 0 ∀s ∈ Ω.

Then there is a compact interval J0 and a constant K0 > 0 so that for all s ∈ Ω and
all compact intervals J ⊃ J0 we have for every f ∈ L2(J), g ∈ H1(J), F ∈ L2(J),
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η ∈ C
2n+m a unique solution

(

u
v

)

∈ H2(J,Cn) ×H1(J,Cm) of equation (4.6).

Moreover the solution can be estimated by

‖u‖H2(J) + ‖v‖H1(J) + |u|Γ + |ux|Γ + |v|Γ
≤ K0

(

‖f‖L2(J) + ‖g‖H1(J) + ‖F‖L2(J) + |g|Γ + |η|
)

. (4.43)

The proofs of the theorems are basically the same as in Section 3.3. We use
the same transformation of variables for the all line problem as for the restricted
problem, i.e. z = (u,Aux + g, v). Thus the all line problem (4.5) can be rewritten
as the first order equation

L(·, s)z = h in H1(R,Cn) × L2(R,C
n) × L2(R,C

m), (4.44a)

where

L(·, s)z = zx −M(·, s)z
with M from (4.14) and

h =





−A−1g

−B11A
−1g − f +B12B

−1
22 F

−B−1
22 F



 ∈ H1(R,Cn) × L2(R,C
n) × L2(R,C

m).

(4.44b)

We show that for every s ∈ Ω the first order operator L(·, s) has an (ED) on R.

Lemma 4.13. For all s0 ∈ {Re s > −δ} ∩ ρ(P ) the operator L(·, s0) has an (ED)
on R and the projectors π from the dichotomy data satisfy

lim
x→+∞

π(x, s0) = π+(s0) and lim
x→−∞

π(x, s0) = π−(s0),

where π±(s0) are the projectors of the constant coefficient operators in Lemma 4.5.

Proof. By Lemma 4.6 we know that for all s ∈ {Re s > −δ} the variable coefficient
operator L(·, s) from (4.44a) has an (ED) on R+ and on R− with projectors π+

and π− respectively. Similar to the proof of Lemma 3.17 it suffices to show that

z0 ∈ R(π+(0, s0)) ∩R(I − π−(0, s0)) implies z0 = 0.

Let S(x, y) denote the solution operator of L(·, s0) and define

z(x) := S(x, 0)z0, ∀x ∈ R.

It follows that z ∈ L2(R,C
2n+m) and zx = M(·, s0)z ∈ L2(R,C

2n+m). So by the
boundedness of M one obtains z ∈ H1(R,C2n+m). The structure of M implies

z =





z1
Az1,x

z3



 ∈ H1(R,Cn+n+m)
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and therefore

(

z1
z3

)

∈ H2(R,Cn) ×H1(R,Cm) and furthermore

(sI − P )

(

z1
z3

)

= 0 in L2(R,C
n+m).

From the assumption s0 ∈ ρ(P ) then follows

(

z1
z3

)

= 0 and so z = 0. Thus

z0 = z(0) = 0 and by application of Theorem B.6 the assertion follows.

We prove Theorem 4.11 in a similar way as Theorem 3.13.

Proof of Theorem 4.11. Let s0 ∈ Ω and write the resolvent equation (4.5) in the
form (4.44). By Lemma 4.13 and Theorem B.2 there is a constant cs0

so that for
all f , g, and F there is a unique solution z of (4.44) and this satisfies the estimate

‖z‖2 ≤ cs0
‖h‖2. (4.45)

By application of the differential equation

zx = M(·, s0)z + h in L2

we obtain that its derivative satisfies

‖zx‖2 ≤ c′s0
‖h‖2 (4.46)

where c′s0
only depends on cs0

and ‖M(·, s0)‖∞.
With the same argumentation as in the proof of Theorem 3.13 one uses the

compactness of Ω to derive from the pointwise estimates (4.45) and (4.46) an
estimate independent of s ∈ Ω. Thus there is a positive constant K so that for all
s ∈ Ω and all h ∈ L2 × L2 × L2 there is a unique solution z ∈ H1 ×H1 ×H1 of

L(·, s)z = h in L2 × L2 × L2

and this satisfies
‖z‖2 + ‖zx‖2 ≤ K‖h‖2. (4.47)

If in addition h ∈ H1 × L2 × L2 one obtains from the structure of M and the
differential equation, that z in fact is an element of H2×H1×H1 and the equality

L(·, s)z = h holds in H1 × L2 × L2.

Now recall the structure of h (4.44b) and M . These imply that z is of the form

z =





z1
Az1,x + g

z3



. We set u := z1 ∈ H2(R,Cn) and v := z3 ∈ H1(R,Cm).

Then (4.47) implies the inequality

∥

∥

∥

∥

∥

∥





u
Aux + g

v





∥

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

∥





ux

Auxx + gx

vx





∥

∥

∥

∥

∥

∥

2

≤ K

∥

∥

∥

∥

∥

∥





−A−1g

−B11A
−1g − f +B12B

−1
22 F

−B−1
22 F





∥

∥

∥

∥

∥

∥

2
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4 The mixed case

which leads to

‖u‖2 + ‖ux‖2 + ‖v‖2 + ‖vx‖2 ≤ K0

(

‖f‖2 + ‖g‖2 + ‖F‖2
)

.

In order to estimate the second derivative of u one has to move the gx-term from
the left to the right hand side. Then one obtains

‖u‖2 + ‖ux‖2 + ‖uxx‖2 + ‖v‖2 + ‖vx‖2 ≤ K0

(

‖f‖2 + ‖g‖2 + ‖gx‖2 + ‖F‖2
)

.

Furthermore by the form of M and h we obtain that (u, v) is a solution of (4.5).
This finishes the proof.

As in the hyperbolic case we use the general convergence result Theorem 2.29
to prove Theorem 4.12.

Proof of Theorem 4.12. As above we use the variables z = (u,Aux + g, v) and
consider the transformed system (4.41) as one equation

LJ(s)z =

(

L(·, s)z
R1z

)

=

(

h
η1

)

in L2(J,C
n+n+m) × C

2n+m. (4.48)

Here we view L(·, s) as an operator defined on

L(·, s) : H1(J,C2n+m) → L2(J,C
2n+m)

or
L(·, s) : H1(R,C2n+m) → L2(R,C

2n+m).

In notation we do not distinguish between the operator on the whole real line
and the finite interval operator, but it will always be clear which definition is
considered.

From the assumption D(s) 6= 0 and the assumptions on the coefficients of P ,
we see that for every s ∈ Ω we are in the setting of Theorem 2.29 with l = 2n+m.
With the notation from there we therefore obtain

LJ(s)
PQ−−→ L(·, s) regularly (J ∈ H) ∀s ∈ Ω.

As in the proof of Theorem 3.14 we know LJ(s) is a Fredholm operator of index
zero for all s ∈ Ω and all J ∈ H by the Fredholm alternative for boundary value
problems. Furthermore we know from the proof of Theorem 4.11 that for all s ∈ Ω
the operator L(·, s) is a linear homeomorphism.

Now we can use the same arguments as in the hyperbolic case∗ and obtain
that there is a positive constant K and a compact interval J0 such that for all
compact intervals J ⊃ J0 we obtain that for every s ∈ Ω one has for every choice
of f ∈ L2(J,C

n), g ∈ H1(J,Cn), F ∈ L2(J,C
m), and η ∈ C

2n+m a unique solution
z ∈ H1(J,C2n+m) of (4.41). This solution can be estimated by

‖z‖2
H1(J,C2n+m) + |z|2Γ ≤ K

(

‖h‖2
L2(J,C2n+m) + |η1|2

)

. (4.49)

∗See Section 3.3.3.
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4.5 Resolvent estimates in compact regions

We split

z =





z1
z2
z3



 ∈ H1(J,Cn) ×H1(J,Cn) ×H1(J,Cm).

By using the structure of M we obtain from

L(·, s)z = h in L2(J,C
n) × L2(J,C

n) × L2(J,C
m)

and (4.41b) the equality

z1,x = A−1z2 −A−1g in L2(J,C
n).

This shows that z1,x is in fact an element of H1(J,Cn) and so z1 ∈ H2(J,Cn) and
z2 = Az1,x + g.

With the definition u := z1 and v := z3 we obtain that (u, v) ∈ H2(J) ×H1(J)
is a solution of the finite interval problem (4.6).

Finally from (4.49) we obtain by rewriting z in terms of u and v the estimate

∥

∥

∥

∥

∥

∥





u
Aux + g

v





∥

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

∥





ux

Auxx + gx

vx





∥

∥

∥

∥

∥

∥

2

+

∣

∣

∣

∣

∣

∣





u
Aux + g

v





∣

∣

∣

∣

∣

∣

2

Γ

≤K







∥

∥

∥

∥

∥

∥





−A−1g

−B11A
−1g − f +B12B

−1
22 F

−B−1
22 F





∥

∥

∥

∥

∥

∥

2

+
∣

∣RII
− A

−1g(x−) +RII
+ A

−1g(x+)
∣

∣

2






.

This shows

‖u‖2
H1(J) + ‖v‖2

H1(J) + |u|2Γ + |ux|2Γ + |v|2Γ
≤ K0

(

‖f‖2
L2(J) + ‖g‖2

L2(J) + ‖F‖2
L2(J) + |g|2Γ + |η|2

)

and

‖u‖2
H2(J) + ‖v‖2

H1(J) + |u|2Γ + |ux|2Γ + |v|2Γ
≤ K ′

0

(

‖f‖2
L2(J) + ‖g‖2

H1(J) + ‖F‖2
L2(J) + |g|2Γ + |η|2

)

.

4.5.1 Convergence of the finite interval approximations

As in the hyperbolic part we present a ‘consistency result’ about the approximation
of the all line problem by the finite interval problems. Consistency in our setting
means that the error of the all line solution inserted into the truncated problem
converges to zero as the interval converges to R.
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4 The mixed case

Theorem 4.14. Let Ω ⊂ {Re s > −δ} ∩ ρ(P ) be a compact set and let J0 be
the compact interval from Theorem 4.12. Let f ∈ L2(R,C

n), g ∈ H1(R,Cn), and
F ∈ L2(R,C

m) be arbitrary. Let (u, v) ∈ H2(R,Cn) × H1(R,Cm) be the unique
solution of

(sI − P )

(

u
v

)

=

(

f + gx

F

)

in L2(R)

which one obtains from Theorem 4.11. Finally let (uJ , vJ ) ∈ H2(J,Cn)×H1(J,Cm)
be the unique solution of

(

sI − P |J
R

)(

uJ

vJ

)

=





f |J + gx|J
F |J
0



 in L2(J) × L2(J) × C
2n+m

one obtains from Theorem 4.12. Then

‖u|J − uJ‖H2(J) + ‖v|J − vJ‖H1(J) + |u|J − uJ |Γ + |ux|J − uJ,x|Γ +
∣

∣v|J − vJ

∣

∣

Γ

→ 0 if J → R (4.50)

and the convergence is uniform in s ∈ Ω.

Assume there is some κ > 0 such that f̃ = eκ|x|f ∈ L2(R,C
n), g̃ = eκ|x|g ∈

L2(R,C
n), F̃ = eκ|x|F ∈ L2(R,C

m). Then for every α < min(κ, β), where β
is a uniform dichotomy exponent for L(·, s) in Ω, there is a constant const > 0
independent of s, f , g, F , J such that for all J ⊃ J0 holds the quantitative version
of (4.50) given by

‖u|J − uJ‖H2(J) + ‖v|J − vJ‖H1(J) +
∣

∣u|J − uJ

∣

∣

Γ
+
∣

∣ux|J − uJ,x

∣

∣

Γ
+
∣

∣v|J − vJ

∣

∣

Γ

≤ const
{

‖f̃‖ + ‖g̃‖ + ‖F̃‖ + |g̃|Γ
}

e−α min(x+,−x−).

For the proof one can use the same methods as mentioned in the hyperbolic
case (see 3.3.4).

4.6 Convergence of eigenvalues in the right half-plane

As in the hyperbolic case we now show that the eigenvalues and eigenspaces of
the finite interval operators approximate the eigenvalues and eigenspaces of the
operator on the whole real line. We will mainly follow the proof of the hyperbolic
case. Throughout the whole section we assume that Assumption 2 holds.

4.6.1 The general setup of the eigenvalue problem in the mixed case

First of all we show that in the half-plane {Re s > −δ} the operator P has isolated
eigenvalues of finite algebraic multiplicity only.

Lemma 4.15. There is no essential spectrum of the all line operator P in the
half-plane {Re s > −δ}.
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4.6 Convergence of eigenvalues in the right half-plane

Indication of a proof. As in the proof of Lemma 3.20 one shows that all eigenvalues
of the transformed operator L(·, s) in {Re s > −δ} are isolated points. Then one
concludes by using the Fredholm property from Lemma 4.7 that all eigenvalues of
P in the right half-plane are eigenvalues of finite algebraic multiplicity (cf. [Kat66,
III §6.4 and IV §5.4]).

We use the same notations as in the hyperbolic case.
Let s0 ∈ σ(P )∩{Re s > −δ} and let β+ and β− denote the exponents of the (ED)
of L(·, s0) on R+ and on R−, respectively.
Choose ε0 > 0 so that Kε0

(s0) ⊂ {Re s > −δ} and Kε0
(s0) ∩ σ(P ) = {s0}.

Let A(s) be the operator-polynomial defined by

A(s) := sI − P ∈ L(H2(R,Cn) ×H1(R,Cm), L2(R,C
n) × L2(R,C

m)).

As in the hyperbolic case let W denote the root-subspace∗ of A(·) to the eigenvalue
s0. Let κ be the highest order of all root-polynomials of A(·) to the eigenvalue s0.

Furthermore consider the same directed set (H,≻) as in Section 3.4, i.e. H =
{J = [x−, x+] ⊂ R : 0 ∈ J, |J | ≥ 1} with |[x−, x+]| := x+ − x−.

Finally, the finite interval approximation AJ(·) of A(·) is given by

AJ(s) :=

(

sI − P |J
R

)

:
H2(J,Cn)×H1(J,Cm) → L2(J,C

n)×L2(J,C
m)×C

2n+m
(

u
v

)

7→
(

sI − P |J
R

)(

u
v

)

.

(4.51)
Denote by σJ the s0-group of eigenvalues of AJ(·) in Kε0

(s0) and by WJ denote
the closed linear hull of all root-subspaces of AJ(·) to the eigenvalues sJ ∈ σJ .

The following lemma is a quantitative result about the decaying of the elements
from W . It is the analogon to Lemma 3.21, used in the hyperbolic case.

Lemma 4.16. For every 0 < β′ < min(β−, β+) there is a constant c = c(β) so

that for all

(

u
v

)

∈W with ‖
(

u
v

)

‖H2×H1 = 1 holds

|u(x)| + |ux(x)| + |v(x)| ≤ ce−β′|x| ∀x ∈ R. (4.52)

Proof. Let

(

u
v

)

∈W then there are

(

u0

v0

)

, . . . ,

(

uk

vk

)

=

(

u
v

)

in W with

(s0I − P )

(

u0

v0

)

= 0

and (s0I − P )

(

ui+1

vi+1

)

=

(

ui

vi

)

for i = 0, . . . , k − 1.

(4.53)

∗See Definition C.6.
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4 The mixed case

With the transformation

(

u
v

)

7→





u
Aux

v



 one can rewrite (4.53) as

L(·, s0)





u0

Au0,x

v0



 = 0

and L(·, s0)





ui+1

Aui+1,x

vi+1



 =





0
ui

vi



 for i = 0, . . . , k − 1.

The rest of the proof is the same induction argument as in the hyperbolic case
(see Lemma 3.21).

4.6.2 The convergence theorem in the mixed case

For the original problem (4.5) and its approximation on finite intervals (4.6) we
use the spaces

Ẽ := H2(R,Cn) ×H1(R,Cm),

F̃ := L2(R,C
n) × L2(R,C

m),

ẼJ := H2(J,Cn) ×H1(J,Cm),

F̃J := L2(J,C
n) × L2(J,C

m) × C2n+m

with the families of restrictions

P̃ := {p̃J : J ∈ H} p̃J :Ẽ → ẼJ ,

(

u
v

)

7→
(

u|J
v|J

)

,

Q̃ := {q̃J : J ∈ H} q̃J :F̃ → F̃J ,

(

f
g

)

7→





f |J
g|J
0



 .

They satisfy the properties (2.1). The next lemma is the main ingredient for the
proofs of the convergence Theorems 4.18 and 4.19.

Lemma 4.17. Let s ∈ {Re s > −δ} and assume that the boundary-operator R
satisfies D(s) 6= 0 with D(s) defined in (4.42).
Then the finite interval approximation AJ(s) regularly P̃Q̃ converges to the all
line operator A.

Proof. First we show the convergence

(

sI − P |J
R

)

P̃Q̃−−→ sI − P.
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4.6 Convergence of eigenvalues in the right half-plane

Let J ∈ H and let (uJ , vJ) ∈ ẼJ be arbitrary. Then Lemma C.2 implies
∥

∥

∥

∥

(

sI − P |J
R

)(

uJ

vJ

)∥

∥

∥

∥

≤
∥

∥

∥

∥

(sI − P |J )

(

uJ

vJ

)∥

∥

∥

∥

L2(J)

+

∣

∣

∣

∣

∣

∣

R−





uJ(x−)
uJ,x(x−)
vJ(x−)



+R+





uJ(x+)
uJ,x(x+)
vJ(x+)





∣

∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

(

A 0
0 0

)(

uJ

vJ

)

xx

+

(

B11 B12

0 B22

)(

uJ

vJ

)

x

+

(

C11 C12

C21 C22

)(

uJ

vJ

)∥

∥

∥

∥

L2(J)

+

∣

∣

∣

∣

∣

∣

R−





uJ(x−)
uJ,x(x−)
vJ(x−)



+R+





uJ(x+)
uJ,x(x+)
vJ(x+)





∣

∣

∣

∣

∣

∣

≤ c0

∥

∥

∥

∥

(

uJ

vJ

)∥

∥

∥

∥

H2(J)×H1(J)

,

with a constant c0 independent of J and (uJ , vJ ). Because of Lemma 2.18 it hence
suffices to show the convergence

(

sI − P |J
R

)(

u|J
v|J

)

Q̃−→ (sI − P )

(

u
v

)

(J ∈ H)

for every

(

u
v

)

∈ Ẽ. By definition of A, AJ , P̃, and Q̃ it holds

∥

∥

∥

∥

∥

∥

(

sI − P |J
R

)(

u|J
v|J

)

−





(sI − P )

(

u
v

)∣

∣

∣

∣

J
0





∥

∥

∥

∥

∥

∥

F̃J

=

∣

∣

∣

∣

R

(

u|J
v|J

)∣

∣

∣

∣

, ∀J ∈ H,

and Lemma C.2 shows
∣

∣

∣

∣

R

(

u|J
v|J

)∣

∣

∣

∣

→ 0 (J ∈ H).

It remains to show the regularity of the convergence. Consider the auxiliary
spaces

E := H1(R,Cn+n+m) = H1(R,Cn) ×H1(R,Cn) ×H1(R,Cm),

F := L2(R,C
n+n+m) = L2(R,C

n) × L2(R,C
n) × L2(R,C

m),

EJ := H1(J,Cn+n+m) = H1(J,Cn) ×H1(J,Cn) ×H1(J,Cm),

FJ := L2(J,C
n+n+m) × C

2n+m = L2(J,C
n) × L2(J,C

n) × L2(J,C
m) × C

2n+m,

and families of bounded linear operators given by

P := {pJ : J ∈ H} pJ :E → EJ ,





u
w
v



 7→





u|J
w|J
v|J



 ,

Q := {qJ : J ∈ H} qJ :F → FJ ,





h
f
g



 7→









h|J
f |J
g|J
0









.
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4 The mixed case

Note that these spaces and operators are the same as in Theorem 2.29.

Using the usual transformation, we rewrite the second order equation

(sI − P )

(

u
v

)

=

(

f
g

)

in F̃

as the first order equation

L(·, s)





u
Aux

v



 =





0

−f +B12B
−1
22 g

−B−1
22 g



 in F.

Similarly the finite interval problem

(

(sI − P |J)
R

)(

uJ

vJ

)

=





fJ

gJ

ηJ



 in F̃J

becomes

LJ(s)





uJ

AuJ,x

vJ



 =

(

L(·, s)
R1

)





uJ

AuJ,x

vJ



 =









0

−fJ +B12B
−1
22 gJ

−B−1
22 gJ

ηJ









in FJ .

In both cases L(·, s) is the operator defined in (4.13) with the appropriate do-
mains, i.e. L(·, s) : E → F and LJ(s) : EJ → FJ , which differs from the defi-
nition in (4.13). The boundary operator R is of the form (4.21) and R1 is given
by R1z =

(

RI
− RII

− A
−1 RIII

−

)

z(x−) +
(

RI
+ RII

+ A
−1 RIII

+

)

z(x+). Finally we
have the inclusions

ιE : Ẽ → E,

(

u
v

)

7→





u
Aux

v



 , ιF : F̃→F,

(

f
g

)

7→





0

−f +B12B
−1
22 g

−B−1
22 g



 ,

ιEJ
: ẼJ → E,

(

uJ

vJ

)

7→





uJ

AuJ,x

vJ



 , ιFJ
: F̃J →FJ ,





fJ

gJ

ηJ



 7→









0

−fJ +B12B
−1
22 gJ

−B−1
22 gJ

ηJ









.

The whole situation is presented in Figure 4.2. By the determinant-condition
D(s) 6= 0 and the assumptions on the coefficients of P , Theorem 2.29 implies

LJ(s)
PQ−−→ L(·, s) regularly.

Let

(

uJ

vJ

)

J∈H

be a bounded net in ẼJ such that the net

{(

sI − P |J
R

)(

uJ

vJ

)}

J∈H

is Q̃-compact. Then by construction of LJ(s) the net
{

LJ(s)
(

uJ , AuJ,x, vJ

)}

J∈H
in FJ is Q-compact.
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Figure 4.2: The setting of spaces and mappings in Lemma 4.17.

This is proven as follows. Let H ′ ⊂ H be any cofinal subset. Then there are
H ′′ ⊂ H ′ and (f, g) ∈ F̃ so that

(

sI − P |J
R

)(

uJ

vJ

)

:=





fJ

gJ

ηJ





Q̃−→
(

f
g

)

(J ∈ H ′′).

By the definitions of L(·, s) and R1 one obtains

LJ(s)





uJ

AuJ,x

vJ



 =









0

−fJ +B12B
−1
22 gJ

−gJ

ηJ









Q−→





0

−f +B12B
−1
22 g

−B−1
22 g



 (J ∈ H ′′)

and hence the Q-compactness.
Let H ′ ⊂ H be any cofinal subset. By the regular convergence of LJ(s) to

L(·, s) there is a cofinal subset H ′′ ⊂ H ′ and an element (u,w, v) ∈ E such that




uJ

AuJ,x

vJ





P−→





u
w
v



 (J ∈ H ′′). (4.54)

In addition, by the Q̃-compactness of

((

sI − P |J
R

)(

uJ

vJ

))

J∈H

there also are a

cofinal subset H ′′′ ⊂ H ′′ and (f, g) ∈ F̃ so that
((

sI − P |J
R

)(

uJ

vJ

))

Q̃−→
(

f
g

)

(J ∈ H ′′′).
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4 The mixed case

The construction of LJ(s) yields

LJ(s)





uJ

AuJ,x

vJ





Q−→





0

−f +B12B
−1
22 g

−B−1
22 g



 (J ∈ H ′′′). (4.55)

With (4.54) and (4.55) the PQ-convergence LJ(s) → L(·, s) implies the equality

L(·, s)





u
w
v



 =





0

−f +B12B
−1
22 g

−B−1
22 g



 in L2(R,C
n+n+m). (4.56)

Application of the differential equation (4.56) implies

w=Aux ∈ H1(R,Cn), u∈H2(R,Cn), and (sI − P )

(

u
v

)

=

(

f
g

)

in L2(R,C
n+m).

Finally, the convergence (4.54) shows

‖uJ − u|J‖H1(J,Cn) + ‖uJ,x − ux|J‖H1(J,Cn) + ‖vJ − v|J‖H1(J,Cm)

≤ const

∥

∥

∥

∥

∥

∥





uJ

AuJ,x

vJ



−





u|J
Aux|J
v|J





∥

∥

∥

∥

∥

∥

EJ

→ 0 (J ∈ H ′′′),

which by the definition of P̃ means

(

uJ

vJ

)

P̃−→
(

u
v

)

(J ∈ H ′′′).

Since H ′ was arbitrary the P̃-compactness of the net

(

uJ

vJ

)

J∈H

follows.

As in Chapter 3 we can now prove quantitative results about the convergence of
eigenvalues and eigenfunctions of the finite interval approximations by using the
abstract theory from Chapter 2. With the notations and assumptions from above
we have the following Theorem.

Theorem 4.18. With the assumptions and notations from above, in particular
Assumption 2 hold. Let Σ be an open neighborhood of the isolated eigenvalue s0
with D(s) 6= 0 for all s ∈ Σ and assume that ε0 is so small that Kε0

(s0) ⊂ Σ.

Then there is a compact interval J0 ⊂ R such that for all compact intervals
J = [x−, x+] ⊂ R with J ⊃ J0 the following properties hold.

The s0-group of eigenvalues σJ converges to the eigenvalue s0 in the sense that
for every 0 < β′ < min(β−, β+) there is a constant const = const(β′) > 0 with

max
s∈σJ

|s− s0| = dist(σJ , s0) ≤ conste−
β′

κ
min(x+,−x−), (4.57)
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4.6 Convergence of eigenvalues in the right half-plane

where κ is the maximal order of the eigenelements of A(·) to the eigenvalue s0
∗.

Each net

(

uJ

vJ

)

J≻J0

of normalized eigenelements to eigenvalues sJ ∈ σJ , i.e.

AJ(sJ)

(

vJ

uJ

)

= 0, ‖
(

uJ

vJ

)

‖ẼJ
= 1, is P̃-compact and the estimate

sup
‖( uJ

vJ
)‖EJ

=1

sJ∈ΣJ ,AJ (sJ )(uJ
vJ

)=0

inf
( u0

v0
)∈N (A(s0))

‖
(

uJ

vJ

)

−
(

u0|J
v0|J

)

‖ẼJ
≤ conste−

β′

κ
min(x+,x−)

(4.58)
holds.

Furthermore, for the root-subspaces we have

dimWJ = dimW <∞, (4.59)

and the family of root-subspaces WJ approximates the root-subspace W in the
following sense.

ϑ(WJ ,W ) = sup
( uJ

vJ
)∈WJ

‖( uJ
vJ

)‖ẼJ
=1

dist(

(

uJ

vJ

)

, p̃JW ) ≤ conste−β′ min(−x−,x+), (4.60)

and

ϑ(W,WJ) = sup
(u

v )∈W

‖(u
v )‖Ẽ

=1

dist(

(

u|J
v|J

)

,WJ) ≤ conste−β′ min(−x−,x+). (4.61)

The constants in (4.57), (4.58), (4.60), and (4.61) do not depend on J .

All the necessary properties of the operators A(·) and AJ(·) one needs for the
application of Theorem 2.26 are already shown in the Lemmas 4.7, 4.8, 4.17 so that
Theorem 4.18 can be deduced from Theorem 2.26. The speed of the convergence
is obtained by using the exponential decay of the functions from the root-subspace
W proven in Lemma 4.16. Since the details of the proof are already given in the
proof of Theorem 3.22, we do not carry out the proof.

4.6.3 Convergence in the case of simple eigenvalues

As in the hyperbolic case we finish this section with a theorem for the case of
simple eigenvalues where we also allow for s-dependent boundary conditions.

Assume that the boundary operator R is of the usual form (4.40), but depends
holomorphic on s in an open neighborhood Σ of the simple eigenvalue s0. That
means that the matrices R± depend holomorphic on s and so the mapping

R : Σ → L(ẼJ ,C
n+n+m),

∗See Definition C.6.
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given by

R(s)

(

u
v

)

= (R−(s)





u(x−)
ux(x−)
v(x−)



+R+(s)





u(x+)
ux(x+)
v(x+)



)

is holomorphic. Recall the determinant D(s) from (4.42) which has the form

D(s) = det



R−(s)





X−(s)
X−(s)ΛII

− (s)
Z−(s)



 R+(s)





X+(s)
X+(s)ΛI

+(s)
Z+(s)









where X±(s), Λ±(s), and Z±(s) are as in Section 4.5.

Theorem 4.19. Let the assumptions from above hold.
Let s0 ∈ σ(P )∩{Re s > −δ} be a simple eigenvalue∗ of the holomorphic operator-
valued function† A(s) = sI − P . Let (u0, v0) be a nontrivial eigenelement of A(·)
for the eigenvalue s0. Furthermore assume D(s0) 6= 0.

Then there is a compact interval J0 ∈ H and δ0 > 0 so that for all compact
intervals J ⊃ J0 there exists exactly one simple eigenvalue sJ with |s0 − sJ | ≤ δ0

of the finite interval approximation AJ(·) : s 7→
(

sI − P |J
R(s)

)

. Moreover there is a

corresponding eigenfunction

(

uJ

vJ

)

∈ ẼJ so that we have the estimate

|sJ − s0|+
∥

∥

∥

∥

(

uJ

vJ

)

−
(

u0|J
v0|J

)∥

∥

∥

∥

ẼJ

≤ C

∣

∣

∣

∣

∣

∣

R−(s0)





u0(x−)
u0,x(x−)
v0(x−)



+R+(s0)





u0(x+)
u0,x(x+)
v0(x+)





∣

∣

∣

∣

∣

∣

(4.62)
with a constant C independent of J .

One proves Theorem 4.19 in the same way as Theorem 3.25 in the hyperbolic
case. Therefore we do not give the proof here.

∗See Definition C.6.
†See Definition C.5.
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5 Analysis of the boundary conditions
and an application

In this Chapter we will briefly look at the Assumptions 1 and 2. We give condi-
tions that imply the validity of (H4) of Assumption 1 and (M2) of Assumption 2.
Furthermore, we show that the determinant-conditions D∞ 6= 0 and D(s) 6= 0 are
satisfied for some natural choices of boundary conditions. We finish the chapter
with an application of our theory to the FitzHugh-Nagumo equation.

5.1 Boundary conditions in the hyperbolic case

Consider the operator P from (3.2). We analyze the validity of the spectral as-
sumption (H4) of Assumption 1 in this section and show that the characteristic
and in some important cases also the periodic boundary conditions satisfy the
determinant-conditions (3.14) and (3.86).

The characteristic boundary conditions prescribe the values of the ingoing vari-
ables at the endpoints of the interval.

Example 3. Consider the equation ut = λux on R× [0,∞) subject to boundary
conditions u(x, 0) = f(x). From the differential equation follows u(x, t) = f(λt+
x), thus the solution “propagates” along the characteristics given by x(t) = −λt+
x0.

x

t

Outgoing (λ > 0)

Ingoing (λ > 0)

Outgoing (λ < 0)

Ingoing (λ < 0)

Figure 5.1: In and outgoing characteristics for different values of λ in Example 3.

Remark. In [KL89, Chapter 7.6] it is shown that linear hyperbolic initial
boundary value problems subject to characteristic boundary conditions are well-
posed if the boundary is not characteristic.
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5 Applications

Because of assumption (H2) the equation (3.1) is already in characteristic vari-
ables and the boundary operator R has the simple form

Rcharv =

(

0 0
0 Im−r

)

v(x−) +

(

Ir 0
0 0

)

v(x+). (5.1)

If one considers periodic boundary conditions, the boundary operator is of the
form

Rperv = Iv(x−) + (−I)v(x+). (5.2)

Next we give a further assumption which implies the spectral assumption (H4).
We will also show that under this assumption the characteristic boundary condi-
tions satisfy the determinant-conditions from Chapter 3.

Assumption 3. There is a positive definite diagonal matrix H = H∗ such that

HC± + C∗
±H < 0.

Let Assumption 3 hold. By P̂ we denote the symbol of P and P̂H denotes the
symbol of HBvx + HCv. Then there is a constant δ > 0 such that for every
u, v ∈ C

m holds the estimate

−u∗(HB −B∗H∗)v + v∗(HC +C∗H)v = v∗(HC + C∗H)v < −δv∗v. (5.3)

With the choice u = iωv this implies

v∗iωHBv + v∗HCv + v∗ − iωB∗Hv + v∗C∗Hv

=v∗P̂H(iω)v + v∗P̂H(iω)∗v

=v∗HP̂ (iω)v + v∗P̂ (iω)∗Hv. (5.4)

Now assume P̂ (iω)v = sv then it follows from (5.4) and (5.3) the equality

v∗HP̂ (iω)v + v∗P̂ (iω)∗Hv = 2Re(s)v∗Hv < −δv∗v

what implies (H4).
Before we analyze the boundary conditions we need another auxiliary result

which shows that the characteristic parts of the bases of the stable and unstable
subspaces, which appear in the determinant-condition (3.86) are nonsingular. The
Lemma follows the ideas of [BL99, Lemma 5.1], but we directly included a rescaling
since it will be necessary for the application to the FHN-system.

Lemma 5.1. Let the assumptions 1 and 3 hold and assume s is an element of C

such that
HC + C∗H − 2Re(s)H < 0.

Let V II
− (s) =

(

V II
−,1(s)

V II
−,2(s)

)

∈ C
(m−r)+r,r be a basis of the stable subspace of M−(s)

as in (3.82).

Let V I
+(s) =

(

V I
+,1(s)

V I
+,2(s)

)

∈ C
(m−r)+r,m−r be a basis of the unstable subspace of

M+(s) as in (3.81).
Then the matrices V II

−,2(s) and V I
+,1(s) are nonsingular.
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5.1 Boundary conditions in the hyperbolic case

Proof. Without loss of generality consider V II
−,2(s).

Let φ ∈ C
r with V II

−,2(s)φ = 0. The function

z(x) := V II
− (s)eλ−(s)xφ

is an exponentially decaying solution of

Bzx + (C − sI)z = 0 in [0,∞).

Therefore by multiplication from the left with z∗H, integration by parts, and
taking real parts one obtains

0 =

∫ ∞

0
z∗HBzx + z∗(HC − sH)z + z∗xB

∗Hz + z∗(C∗H − s̄H)zdx

=

∫ ∞

0
z∗(HB −B∗H)zx + z∗(HC +C∗H − 2Re(s)H)zdx + [z∗B∗Hz]∞0 ,

where s̄ stands for the complex conjugate of s.

From the assumptions on B, H, and φ it follows z∗(0)B∗Hz(0) ≥ c0z
∗(0)z(0)

with a positive constant c0 which implies

∫ ∞

0
z∗(HC + C∗H − 2Re(s)H)zdx = z∗(0)B∗Hz(0) ≥ c0z

∗(0)z(0) ≥ 0.

Since HC + C∗H − 2Re(s)H < 0 we obtain z(0) = V II
− (s)φ = 0 and therefore

φ = 0.

For the proof of the non-singularity of V I
+,1(s) one has to consider the left half-

line.

Now we analyze the determinant-conditions from 3.2 and 3.3 for the case of
periodic and characteristic boundary conditions.

Characteristic BC. In the case of characteristic boundary conditions the bound-
ary operator R from (3.8) is of the form (5.1) and the determinant-conditions
read

D∞ = det

(

0 Ir
Im−r 0

)

and

D(s) =

((

0 0
0 Im−r

)

V II
− (s)

(

Ir 0
0 0

)

V I
+(s)

)

= det

(

0 V I
+,1(s)

V II
−,2(s) 0

)

,

where V I,II
± are as in Lemma 5.1. Obviously D∞ 6= 0 is satisfied and by

Lemma 5.1 also D(s) 6= 0 for all Re s > −δ for some positive δ.
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Periodic BC. Periodic boundary conditions in (3.8) which are of the form (5.2)
are a natural choice if the coefficients of the operator P from (3.2) satisfy
B− = B+ and C− = C+. For example this is the case if P is obtained by
linearization of (1.3) at a pulse solution. The determinant-conditions then
take the form

D∞ = det

(

0 −Ir
Im−r 0

)

and

D(s) = det
(

V II
− (s) −V I

+(s)
)

,

where V I,II
± are as in Lemma 5.1. As in the case of characteristic boundary

conditions one directly obtains D∞ 6= 0. If B− = B+ and C− = C+ one
finds R(V II

− (s)) = R(V II
+ (s)) as well as R(V I

−(s)) = R(V I
+(s)) and since

V−(s) and V+(s) are bases of C
m one also obtains D(s) 6= 0.

5.2 Boundary conditions in the mixed case

For the mixed case we proceed as in the hyperbolic case. We consider the operator
P from (4.1) which is of the form (4.2). Similar to the analysis of the boundary
conditions for the hyperbolic case in Section 5.1 we give a sufficient condition for
assumption (M2) that will also imply that some typical choices of boundary con-
ditions satisfy the determinant-conditions (4.30) and (4.42). As in the hyperbolic
case the assumption is easier to check than the original condition (H4).

Assumption 4. Assume there is a matrix H =

(

H1 0
0 H2

)

∈ C
n+m,n+m with

H = H∗ > 0 and

H1A+A∗H1 > 0, H2 is a diagonal matrix

such that

HB = B∗H and HC + C∗H < −2δH for some δ > 0.

From Assumption 4 follows (M2) of Assumption 2.
Let u, v ∈ C

n+m, Assumption 4 yields

− u∗
(

H1A+A∗H1 0
0 0

)

u− u∗(HB −B∗H)v + v∗(HC + C∗H)v

≤ −2δv∗Hv. (5.5)

Therefore assume P̂ (iω)v = sv and let u = iωv. Now (5.5) implies

−2δv∗Hv ≥− ω2v∗
(

H1A 0
0 0

)

v + iωv∗HBv + v∗HCv

+

(

−ω2v∗
(

A∗H1 0
0 0

)

v − iωv∗B∗Hv + v∗C∗Hv

)

=v∗HP̂ (iω)v + v∗P̂ (iω)∗Hv = 2Re(s)v∗Hv.
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5.2 Boundary conditions in the mixed case

Therefore (M2) follows.
Next we prove a result similar to Lemma 5.1 in this case. It will be used to

show that the theory is applicable to the FHN-System (see Section 5.3).

Lemma 5.2. Let the Assumptions 2 and 4 hold. Assume that s is an element of
C such that HC + C∗H − 2Re(s)H < 0 holds.

Let





X−(s)
X−(s)ΛII

− (s)
Z−(s)



 ∈ C
n+n+m,n+(m−r) be a basis of the stable subspace of M−(s)

and let





X+(s)
X+(s)ΛII

+ (s)
Z+(s)



 ∈ C
n+n+m,n+r be a basis of the unstable subspace of

M+(s). Partition the last m rows of these matrices in the form Z±(s) =

(

ZI
±(s)

ZII
± (s)

)

with the partitioning corresponding to the partitioning of B22 in (H4) of Assump-
tion 2. Then the matrices





X−(s)
0

ZII
− (s)



 and





X+(s)
ZI

+(s)
0





have maximum rank.

Proof. Without loss of generality consider





X−(s)
0

ZII
− (s)



. Let φ ∈ C
n+m−r with





X−(s)
ZI
−(s)

ZII
− (s)



φ =





0
ZI
−(s)φ
0



 .

Then the function z(x) :=

(

X−(s)
Z−(s)

)

e−ΛII
− (s)φ is an exponentially decaying solu-

tion of
(

A 0
0 0

)

zxx +Bzx + Cz − sIz = 0 in [0,∞).

Multiplication from the left with z∗H, integration, and taking real parts yields

0 =

∫ ∞

0
z∗H

(

A 0
0 0

)

zxx + z∗xx

(

A∗ 0
0 0

)

Hz

+ z∗HBzx + z∗xB
∗Hz + z∗

(

HC + C∗H − 2Re(s)H)zdx.

Integration by parts leads to
∫ ∞

0
−z∗x

(

H1A+A∗H1 0
0 0

)

zx

+ z∗
(

HB −B∗H)zx + z∗
(

HC + C∗H − 2Re(s)H)zdx

= −
[

z∗H

(

A 0
0 0

)

zx + z∗x

(

A∗H1 0
0 0

)

z

]∞

0

−
[

z∗B∗Hz
]∞

0

= z∗(0)B∗Hz(0) ≥ b0z
∗(0)Hz(0),
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where b0 is given (H2). Therefore the left hand side must be zero and this is only

possible if z ≡ 0. This implies





X−(s)
X−(s)ΛII

− (s)
Z−(s)



φ = 0 and therefore φ = 0.

Now we can analyze some natural choices for the boundary operator R from
(4.6b). The determinants from Chapter 4 are

D∞ = det







QI
− QI

+ 0 0

−P II
− A

1
2 P II

+ A
1
2 0 0

0 0 Rhyp,II
− Rhyp,I

+







and

D(s)=det



(RI
−, R

II
− , R

III
− )





X−(s)
X−(s)ΛII

− (s)
Z−(s)



 , (RI
+, R

II
+ , R

III
+ )





X+(s)
X+(s)ΛI

+(s)
Z+(s)







 .

The first given name stands for the boundary conditions for the parabolic part
and the second for the boundary conditions for the hyperbolic part of the equation.

Dirichlet-characteristic boundary conditions. In this case the matrices read

R− =









I 0 0
0 0 0

0 0

(

0 0
0 Im−r

)









and R+ =









0 0 0
I 0 0

0 0

(

Ir 0
0 0

)









.

We directly obtain

D∞ = det











−A 1
2 0 0

0 A
1
2 0

0 0

(

0 Ir
Im−r 0

)











6= 0.

And for bounded |s| with Re s > −δ one obtains

D(s) = det









X−(s) 0
0 X+(s)
0 ZI

+(s)
ZII
− (s) 0









which also satisfies D(s) 6= 0 by Lemma 5.2.

Periodic boundary conditions. Again this is the natural choice if B− = B+ and
C− = C+. The boundary operator is of the form

R− = I and R+ = −I
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5.3 The FitzHugh-Nagumo System

and so the determinants are

D∞ = det









−A 1
2 −A 1

2 0
I −I 0

0 0

(

0 −Ir
Im−r 0

)









6= 0

and

D(s) = det





X−(s) −X+(s)
X−(s)ΛII

− (s) −X+(s)ΛI
+(s)

Z−(s) −Z+(s)



 6= 0.

5.3 The FitzHugh-Nagumo System

In this section we will show that our theoretical results apply to the FitzHugh-
Nagumo System (FHN) (see [Fit61] and [Mur93]). Furthermore we also present
some numerical results which in some sense seem to validate the theoretically
predicted behavior in practice.

5.3.1 Theoretical embedding of the FitzHugh-Nagumo System

The FitzHugh-Nagumo system (FHN) is a simplification of the Hodgkin-Huxley
system [HH52] which models the electrical signalling in nerve cells. The intention
of the (FHN) system is not to approximate the Hodgkin-Huxley system itself, but
to model its behavior [Fit61]. The (FHN) system reads

ut =uxx + f1(u, v), (5.6a)

vt =f2(u, v), (5.6b)

where f1(u, v) = u− 1
3u

3 − v and f2(u, v) = Φ(u+a− bv), and a, b, Φ are positive
constants.

We consider the parameter values a = 0.7, b = 0.8, Φ = 0.08 which were already
chosen in [Miu82] for the computation of a stable travelling wave solution.

For these values the System (5.6) has a stable and an unstable pulse. A proof of
the stability of the fast travelling pulse using centre manifold theory is presented
in [BJ89].

Let

(

ūs

v̄s

)

be a stable pulse with speed cs and with profile Ws this means

(

ūs

v̄s

)

(t, x) = Ws(x− cst)

and let

(

ūu

v̄u

)

be an unstable pulse with speed cu and profile Wu.

As in the introduction the pulses lead to steady states of the equation

(

u
v

)

t

=

(

1 0
0 0

)(

u
v

)

xx

+ cI

(

u
v

)

x

+

(

f1(u, v)
f2(u, v)

)

, (5.7)
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where c = cs for the stable pulse and c = cu for the unstable pulse.

Now let

(

ū
v̄

)

be a pulse solution of (5.6) with speed c. Linearization of (5.7) at

the pulse leads to the linear PDE
(

u
v

)

t

= P

(

u
v

)

:=

(

A 0
0 0

)(

u
v

)

xx

B

(

u
v

)

x

+ C

(

u
v

)

, (5.8)

where A = 1, B =

(

c 0
0 c

)

, C =

(

1 − ū2 −1
Φ −Φb

)

.

With an abuse of notation we will also write A for the matrix

(

1 0
0 0

)

. Here

ū stands for some shifted version of the first component of the profile W , i.e.
ū(x) = W1(x+ x0).

Furthermore, the pulses are homoclinic connecting orbit of the stationary point
(

ū∞
v̄∞

)

=

(

−1.1994
−0.6243

)

. Therefore one easily sees that the assumptions (P1), (P2),

(H1), (H2), (H3), and (M1) are satisfied.
For the validation of assumption (M2) we consider the positive definite hermitian

matrix H =

(

1 0
0 1

Φ

)

∈ C
2,2. It holds

1A+A∗1 > 0, HB∞ =

(

c 0
0 c

Φ

)

= B∗
∞H,

and

HC∞ + C∗
∞H =

(

1 − ū2
∞ −1

1 −b

)

+

(

1 − ū2
∞ 1

−1 −b

)

=

(

2 − 2ū2
∞ 0

0 −2b

)

< −2δH

for some δ > 0. Thus Assumption 4 is satisfied and implies (M2) of Assumption 2
and so our results from Chapter 4 are applicable. Furthermore the analysis of the
boundary conditions from Section 5.2 show that the Dirichlet-characteristic and
the periodic boundary conditions are suitable for analyzing the spectrum at least
in the right half-plane {Re(s) > −ε}, where ε is some positive constant.

5.3.2 Numerical experiments

For the numerical experiments we used an approximation of the profile of the sta-
ble pulse provided by V. Thümmler who used the interval [−80, 80] with stepsize
h = 0.2 for the numerical computation of the stable travelling wave and its speed.
We also used an approximation obtained by Claudia Nölker who chose the inter-
val [0, 65] with stepsize h = 0.1. The latter person also computed the unstable
pulse’s profile for the given parameter values on the same lattice by a continuation
method. The shapes of the profiles of the stable and unstable pulses computed by
C. Nölker are shown in Figure 5.2.

In the theory of Chapters 3 and 4 we did not analyze the spectral behavior
in the left half-plane, where the essential spectra∗ of the operators lie. In the

∗See Definition C.1.
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(a) The stable pulse, c ≈ −0.8117.
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(b) The unstable pulse, c ≈ −0.5414.

Figure 5.2: Numerical approximations of the stable and the unstable pulse of the
FHN system, on the interval [0, 65], stepsize h = 0.1.

explanations of the following figures we do not intend to give rigorous proves, we
only give an idea of why the spectra obtained in the numerical experiments look
as they do.

Dispersion relations
By Lemma 4.7 and its remark we know that the mixed operator sI − P has
a Fredholm property if and only if the operator L(·, s) obtained by rewriting the
resolvent equation as a first order system, has one. Moreover the Fredholm indices
coincide.

By the results of K. Palmer (Lemma B.7 and [Pal88]) about the relation of the
Fredholm property of L(·, s) and the presence of exponential dichotomies, one sees
with the help of Lemma B.5 that the operator L(·, s) is Fredholm if and only if
the limit matrices M±(s) are hyperbolic. In the special case of pulses one obtains
M+(s) = M−(s) and so directly has that L(·, s) is Fredholm index 0 if and only
if the limit matrix is hyperbolic. This shows that σ∆, the part of the spectrum
where the operator is not Fredholm of index 0∗, exactly coincides with the set of
all s ∈ C for which there is a real solution ω of the characteristic equation

det(M±(s) − iωI) = 0.

Thus we define the set S ⊂ C as the set of all s ∈ C for which the quadratic
eigenvalue problem

det

(

ω2

(

1 0
0 0

)

+ ω

(

c 0
0 c

)

+

(

1 − ū2
∞ − s −1
Φ −Φb− s

))

= 0 (5.9)

has a purely imaginary solution ω and this set is the same as the spectral set σ∆.
Note that in [Hen81, 5.4 Theorem A.2] a very similar result is shown for elliptic

second order operators with constant principle part.

∗See the remark after Definition C.1.
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The relation (5.9) is sometimes known as dispersion relation (for example see
[Kev00, p. 216] or [Zau89, Chapter 3.5]). The solutions of the dispersion relation
correspond to solutions of the constant coefficient differential equation

ut = uxx + cux + (1 − ū2
∞)u− v

vt = cvx + Φu− Φbv

of the form
(

u
v

)

(t, x) = est−iωx

(

u0

v0

)

which are spatially not elements of L2(R).

In Chapters 3 and 4 we only analyzed the influence of the restriction to finite
intervals on the spectra, but for the numerical computations it is also necessary
to consider the effect the discretization has on the spectra. We do not analyze
this here, but give a discrete analogon to the dispersion relation (see also [Thü98,
Chapter 4.3]).

After discretization of the operator P one obtains an operator P̃ on the grid
functions Ωh = {U : Jh = h ·Z → R

2}. We write the grid functions as U = (Uj)j∈Z

with Uj ∈ R
2.

Consider the constant coefficient limit operator P± which is given by

P±

(

u
v

)

= AUxx +BUx + CU

with A and B from (5.8) and C is of the form

C =

(

1 − ū∞ −1
Φ −Φb

)

.

We next describe the discretization P̃± of P± with finite differences to the grid
Jh = hZ for several different approximations of the first order derivatives. Then
we insert the discrete analogon of the continuous functions from the dispersion
relation. This means we make the ansatz of grid functions of the form

Uj =

(

u
v

)

j

= eiωjh

(

uω

vω

)

= eiωjhUω, j ∈ Z (5.10)

and insert these into the resulting formulas. As in the continuous case these
functions are bounded elements in Ωh, but they are not in the discrete analogons
of the spaces H1 or L2. They are not even decaying. (One usually uses the square
summable sequences as a discrete analogon of the space L2.)

• If one uses central differences for the approximation of ux and vx one obtains

(P̃±U)j = A
Uj+1 − 2Uj + UJ−1

h2
+B

UJ+1 − UJ−1

2h
+ CUJ .

118



5.3 The FitzHugh-Nagumo System

Inserting the functions from the ansatz into this formula leads to

(P̃±U)j =
eiωh + e−iωh − 2

h2
AUJ +B

eiωh − e−iωh

2h
UJ + CUJ

=

{

2

h2
(cos(ωh) − 1)A +

i

h
B sin(ωh) + C

}

UJ .

Hence there is an eigenfunction (Uj)j∈Z of P̃± to the eigenvalue s of the form
(5.10) if and only if

det

{

A
2

h2
(cos(ωh) − 1) +

i

h
B sin(ωh) + C − sI

}

= 0. (5.11)

• Similar, if one uses forward differences for the approximation of ux and vx

one obtains

(P̃±U)j = A
Uj+1 − 2Uj + UJ−1

h2
+B

UJ+1 − UJ

h
+CUJ .

Now inserting the functions from the ansatz as before implies

(P̃±U)j =
eiωh + e−iωh − 2

h2
AUJ +B

eiωh − 1

h
UJ + CUJ

=

{

2

h2
(cos(ωh) − 1)A+

eiωh − 1

h
B + C

}

UJ

and so in this cases there is an eigenfunction (Uj)j∈Z of P̃± to the eigenvalue
s of the form (5.11) if and only if

det

{

2

h2
(cos(ωh) − 1)A +

eiωh − 1

h
B + C − sI

}

= 0. (5.12)

• Finally, using central differences for the approximation of ux and forward
differences for the hyperbolic part leads to

(

P̃±

(

u
v

))

j

=

(

uj+1−2uj+uj−1

h2 + c
uj+1−uj−1

2h + (1 − ū2
∞)uj − vj ,

c
vj+1−vj

h + Φuj − Φbvj

)

.

Inserting as before shows the relation
(

P̃±

(

u
v

))

j

=

(

2
h2 (cos(ωh) − 1)uj + ci

h sin(ωh)uj + (1 − ū2
∞)uj − vj

c
h(eiωh − 1)vj + Φuj − Φbvj

)

and so there is an eigenfunction of P̃± to the eigenvalue s of the assumed
type if and only if

det

[

{ 2

h2
(cos(ωh) − 1) +

ci

h
sin(ωh)

}

(

1 0
0 0

)

+
c

h
(eiωh − 1)

(

0 0
0 1

)

+

(

1 − u2
∞ −1

Φ −Φb

)

− sI

]

= 0.

(5.13)
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We call the equations (5.11)–(5.13) dispersion relations for the discrete

operator.

Numerical results
We computed the spectra of the spatially discretized operators P̃ as follows. First
we discretized the operator P on a finite interval [x−, x+] using either periodic
or Dirichlet-characteristic boundary conditions, which are a reasonable choice in
view of the results from Section 5.2. Then we computed the spectrum of the
resulting matrix using the matlab-eig- function. This function uses the lapack
DGEEV-routine see the matlab-help and [ABB+99]∗.

As an example we describe the structure of the resulting matrix in the case of
Dirichlet-characteristic boundary conditions with downwind discretization.

We choose the interval [x−, x+] with an equidistant grid of stepsize h = x+−x−

N
and N+1 grid points. Under the boundary conditions we have u0 = v0 = uN = 0.
We will write ūj for the value ū(x−+jh) of the u-component of the approximation
of the wave profile.

Semi-discretization with downwind (c < 0) of the linear PDE (5.8) on the grid
leads to

u′j =
uj−1 − 2uj + uj+1

h2
+ c

uj − uj−1

h
+ (1 − ū2

j )uj − vj, j = 1, . . . , N − 1

v′j = c
vj − vj−1

h
+ Φuj − Φbvj, j = 1, . . . , N.

By using the Dirichlet-characteristic boundary conditions we obtain

d

dt























(

u1

v1

)

(

u2

v2

)

...
(

uN−1

vN−1

)























=









Y1 Z1 0 · · ·
X2 Y2 Z2 · · ·

XN−2 YN−2 ZN−2

XN−1 YN−1































(

u1

v1

)

(

u2

v2

)

...
(

uN−1

vN−1

)























(5.14)
where we already eliminated vN which one directly obtains from vN−1. If we do not
eliminate this, it leads to an additional eigenvalue of the operator at c

h − Φb < 0.
The X, Y , and Z-parts of the big matrix from (5.14) are defined as

Xj =

(

1
h2 − c

h 0
0 − c

h

)

, j = 2, . . . , N − 1,

Yj =

(− 2
h2 + c

h + 1 − ū2
j −1

Φ −Φb+ c
h

)

, j = 1, . . . , N,

Zj =

(

1
h2 0
0 0

)

, j = 1, . . . , N − 2.

∗The function therefore first reduces the matrix to upper Hessenberg form and then reduces to
Schur form. The eigenvalues then are obtained as the diagonal elements or as conjugate pairs
of eigenvalues of 2 × 2 submatrices.
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5.3 The FitzHugh-Nagumo System

In Figures 5.3 and 5.4 we compare the spectrum of the discrete operator (down-
wind and periodic boundary conditions) with the dispersion relation and the dis-
persion relation for the discretized operator. Here we used the approximation of
the wave profile of the stable wave on the interval [0, 65] which was obtained by
C. Nölker (speed c ≈ −0.8117).
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Dispersion relation for discrete operator
Dispersion relation

Figure 5.3: The spectrum of the numerical operator for backward differences, com-
pared with the dispersion relation.
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Figure 5.4: Zoom into the origin for the spectra from Figure 5.3.

One obtains quite different pictures if one uses Dirichlet-characteristic boundary
conditions for the numerical spectrum as one sees in Figure 5.5. This phenomenon
is analyzed in [SS00]. There the authors show that under so called separated
boundary conditions the spectrum of the finite interval operator approaches the
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Figure 5.5: Dispersion relations and the numerical spectrum, downwind, Dirichlet-
characteristic bc.

absolute spectrum∗. They also analyzed the behavior of the spectrum under
periodic boundary conditions and show that under certain conditions the spectrum
of the finite interval operator approaches the spectral set σ∆.

Not only the boundary conditions, but also the choice of discretization have a
big influence on the spectrum. This can be seen if one compares Figures 5.3 and
5.6, where we chose the constant interval [0, 65], constant stepsize 0.1, and always
periodic boundary conditions, but varied the discretization of the derivative. Note
that it is nicely seen that in the case of the “wrong” choice of discretization, i.e.
upwind in the case c < 0, one obtains an operator with spectrum to the right of
the imaginary axis although the original operator does not have spectrum in this
region. This leads to an unstable steady state of the semi-discretization.

Finally, for fixed step-sizes we computed the convergence of the eigenvalue with
the largest real part. We have used up- respectively downwind for the discretiza-
tion of the first derivative and Dirichlet-characteristic boundary conditions. In
the case of the stable pulse this eigenvalue corresponds to the zero eigenvalue
and in the case of the unstable pulse it corresponds to the unstable eigenvalue.
The results can be seen in Figure 5.7. One observes that the eigenvalues seem
to converge exponentially, but the (numerical) limit is different from the limit of
the continuous problem. This effect is due to discretization errors. For the stable
pulses we have chosen the intervals J symmetric around the grid-point where ū
is maximal, so that we can compare the results for the two approximations for
different step-sizes. For the unstable pulse we are gone three times as fast to the
right than to the left, what was intended to reflect the profile of the pulse, see
Figure 5.2.]

∗See definition 3.5 in [SS00].
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(a) Upwind although c < 0.
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(b) Central differences.

Figure 5.6: The spectrum of the numerical operator for different possibilities of
discretizing the first derivative.
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(a) Convergence of the zero eigenvalue for the
approximation of the wave profile obtained by
V. Thümmler (c ≈ 0.8126, h = 0.2). Here we
plot the absolute value of the eigenvalue closest
to zero.
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(b) One sees exponential convergence if one
compares the eigenvalues closest to zero with
the eigenvalue closest to zero of the numerical
operator on the interval [−80, 80].
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(c) Convergence of the zero eigenvalue for the
approximation of the wave profile obtained by
C. Nölker (c = −0.8117, h = 0.1).
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(d) Convergence of the 0 eigenvalue. Here we
plot the logarithm of the distance of the (nu-
merical) eigenvalue on the interval [0, 65] with
an interval J of the length |J |.
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(e) Convergence of the unstable eigenvalue for the approx-
imation of the profile of the unstable pulse computed by C.
Nölker (c = −0.5414, h = 0.1)) to the unstable eigenvalue
for the interval [0, 65].

Figure 5.7: Convergence of the isolated eigenvalues.
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A Perturbation theory

An easy, but very useful result which one obtains with the help of a Neumann-
series argument is Lemma A.1. We do not give the proof.

Lemma A.1 (Banach-Lemma). Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces.
Assume that A : X → Y is a linear homeomorphism.

Then for every bounded linear operator B : X → Y with

‖B‖X→Y <
1

‖A−1‖Y →X

the operator A+B : X → Y is a linear homeomorphism and

∥

∥(A+B)−1
∥

∥

Y →X
≤
∥

∥A−1
∥

∥

Y →X

1

1 − ‖A−1‖Y →X ‖B‖X→Y

.

We apply Lemma A.1 for the proof of two easy results about perturbations of
continuous projectors.

Lemma A.2. Let (X, ‖ · ‖) be a Banach space, let P and Q be two continuous
projectors on X. If ‖P −Q‖ < 1 then R(P ) = R(PQ).

Proof. The Banach-Lemma A.1 implies that I−(P−Q) is a linear homeomorphism
so that R(I − (P − Q)) = X. This shows R(P (I − (P − Q))) = R(P ), but
P (I − (P −Q)) = PQ which proves the Lemma.

Corollary A.3. Let P : R → C
l,l be continuously parametrized projectors. Then

we have
dimR(P (x)) = dimR(P (y)) ∀x, y ∈ R.

Proof. This follows from Lemma A.2, since

RP = RPQ ⇒ dimRP ≤ dimRQ.

Symmetry implies dimRQ ≤ dimRP and this shows that x 7→ dimR(P (x)) is
locally constant. Finally, since R is connected, the map must be constant.

The next Lemma is mainly taken from [Bey90]. It states that for smoothly
parametrized hyperbolic matrices the bases of the stable and unstable subspaces
can be chosen as smooth in the parameter as the matrices are. In the paper [Bey90]
it is only presented for matrix-valued functions from the category Ck (k < ∞),
but the proof also holds in the analytic case since the implicit function Theorem
conserves analytic dependence. For an analytic version of the implicit function
Theorem see [Hen81, p. 15].
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Appendix

Lemma A.4 ([Bey90, Appendix C]). Let Σ ⊂ C and assume M : Σ → C
l,l is

an analytic matrix-valued function and there is some s0 ∈ Σ such that M(s0) is
a hyperbolic matrix. Then there is an open neighborhood U ⊂ Σ of s0 and there
are analytic matrix functions Bu : U → C

l,lu, Bs : U → C
l,ls, Λu : U → C

lu,lu,
and Λs : U → C

ls,ls , where Bs(s) and Bu(s) are bases of the stable and unstable
subspaces of M(s) for s ∈ Σ, respectively. The matrices satisfy

M(s)Bs(s) = Bs(s)Λs(s)

and

Λu(s)

where Λs(s) is a matrix whose spectrum coincides with the stable spectrum of
M(s) and Λu(s) is a matrix whose spectrum coincides with the unstable spectrum
of M(s).

Next we show two results about matrices for which the diagonal elements are
large compared to the outer diagonal elements. Both lemmas heavily rely on a
gap-condition of the diagonal entries.

In the proofs of the lemmas we will use the following theorem. It is a combination
of Theorem 3 and Theorem 4 from [Wil65, p.71].

Until the end of this section we will use the maximum norm |v|∞ = maxj |vj|
for vectors in C

l. The matrix norm |M |∞ is the corresponding operator norm and
we will use ‖M‖∞ = supx |M(x)|∞ for matrix-valued functions M . Note that we
usually use the Euclidean norm in C

l, but since all norms are equivalent in a finite
dimensional vector space this only introduces constant factors.

Theorem A.5 (Gershgorin). Let A ∈ C
l,l. Every eigenvalue of A lies in at least

one of the disks

Di := {λ ∈ C : |λ− aii| ≤
∑

i6=j

|aij |}, i = 1 . . . , l.

If k of these disks form a connected domain in C which is isolated from all other
disks, then there are exactly k eigenvalues of A within this domain.

The disks Di defined in Theorem A.5 are sometimes called Gershgorin disks.

Lemma A.6. Let D,E ∈ C
l,l with D = diag(d1, . . . , dl), where |di − dj | ≥ δ0 > 0,

∀i, j = 1, . . . , l, i 6= j. Then there is a positive constant C0 such that for all s ∈ C

with |s| > C0 the eigenvalues λk, k = 1, . . . , l of sD+E can be sorted so that they
can be estimated in the form

|λk − (sdk + ekk)| ≤ c
1

|s| , k = 1, . . . , l, (A.1)

where c does not depend on s.

The idea of the proof is a scaling trick that shrinks some Gershgorin disks and
increases others so that they still do not overlap.
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Proof. Take C0 := 5|E|∞
δ0

and let 0 < ε = ε(s) < 1
2 which will be specified later.

Define Rk := diag(r1, . . . , rl) where rk = ε and rj = 1 for j 6= k. The matrix
M := sD + E has the same eigenvalues as the matrix

(mk
ij)ij := Mk := RkMR−1

k .

The elements of the matrices M and Mk are related in the form

mk
ij =











εmkj , if i = k, j 6= k,

ε−1mik , if j = k, i 6= k,

mij , otherwise.

This implies for the Gershgorin disks Dk
i of Mk

Dk
i = {λ ∈ C : |λ−mk

ii| ≤
∑

j 6=i

|mk
ij|}

⊂ {λ ∈ C : |λ− (sdi + eii)| ≤ ε−1|E|∞}.

if i 6= k. In the case i = k one obtains

Dk
k = {λ ∈ C : |λ−mk

kk| ≤
∑

j 6=k

|mk
kj|}

⊂ {λ ∈ C : |λ− (sdk + ekk)| ≤ ε|E|∞}.

Let λ ∈ Dk
i with i 6= k. We can estimate the distance of λ to the center of Dk

k by

|λ−mk
kk| ≥ |mk

kk −mk
ii| − |λ−mk

ii|
≥ |sdk + ekk − sdi − eii| − ε−1|E|∞
≥ |s|δ0 − 2|E|∞ − ε−1|E|∞.

Now let |s| > C0 and choose ε = |E|∞
|s|δ0−3|E|∞

. Then it follows

|λ−mk
kk| ≥ |s|δ0 − 2|E|∞ − |s|δ0 + 3|E|∞

= |E|∞ >
1

2
|E|∞ ≥ ε|E|∞

which proves Dk
i ∩ Dk

k = ∅, ∀i 6= k. Therefore Theorem A.5 shows that there is
exactly one eigenvalue λk of M in the disk Dk

k and the choice of ε(s) implies the
estimate

|λk − (sdk + ekk)| ≤
|E|2∞

|s|δ0 − 3|E|∞
≤ 5

2δ0
|E|2∞

1

|s|
for this eigenvalue.

Since the choice of ε and C0 was independent of k the Lemma follows.

Next we state a result that is essential for the proof of the Theorems 3.1 and
3.2. It is used to show that one can smoothly (in the parameter s) diagonalize the
matrix sB−1 −B−1C from (3.18).
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Lemma A.7. Let D,E ∈ C1(R,Cl,l) where D is a diagonal matrix with a uniform
gap condition, i.e. there is a δ0 > 0 such that

|di(x) − dj(x)| > δ0 ∀x ∈ R. (A.2)

Furthermore, we assume

‖D‖∞ =: Cd,0 <∞, ‖Dx‖∞ =: Cd,1 <∞, (A.3)

and
‖E‖∞ =: Ce,0 <∞, ‖Ex‖∞ =: Ce,1 <∞. (A.4)

Then there exist ε > 0 and T ∈ C(R × {|s| < ε},Cl,l) of the form

T (x, s) = I + sT1(x, s) (A.5)

with the property that for all (x, s) ∈ R × {|s| < ε} =: Gε the inverse T (x, s)−1

exists and satisfies for all (x, s) ∈ Gε

T (x, s)−1(D(x) + sE(x))T (x, s) = Λ(x, s) = diag(λ11(x, s), . . . , λll(x, s)). (A.6)

Moreover, the matrix-valued function T1 is differentiable with respect to x for all
(x, s) ∈ R × {|s| < ε} and can be estimated in the form

‖T1‖∞ =: CT,0 <∞, ‖T1,x‖∞ =: CT,1 <∞. (A.7)

Proof. Choose ε0 := δ0
4 and ε := ε0

3Ce,0
and define

G := Gε, M(x, s) := D(x) + sE(x).

From Theorem A.5 follows that for every (x, s) ∈ G there is exactly one eigenvalue
inside each of the disks

Dj(x, s) = {λ ∈ C : |λ− dj(x) − sejj(x)| ≤ |s|
∑

i6=j

|eji(x)|}

⊂ {λ ∈ C : |λ− dj(x)| ≤ |s|
∑

i

|eji(x)|}

⊂ {λ ∈ C : |λ− dj(x)| ≤
ε0
3
}

⊂ {λ ∈ C : |λ− dj(x)| ≤
δ0
3

=
4

3
ε0} =: Gj(x),

(A.8)

since for i 6= j it holds Di(x, s) ∩Dj(x, s) ⊂ Gi(x) ∩Gj(x) = ∅.
Denote by Γj(x) the positively oriented contour with winding number 1 on the

boundary of Gj(x). Since Dj(x, s) lies in the interior of Γj(x) and there is no
spectrum of M(x, s) on Γj(x) one can define the Riesz-projectors (cf. [Kat66, I
§5.3], [BSU96, Ch. 10 4.2], and for the general case of closed operators [Kat66, III
§6.4])

Πj(x, s) :=
1

2πi

∫

Γj(x)
(zI −D(x) − sE(x))−1dz, (x, s) ∈ G, j = 1, . . . , l.
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The matrix Πj(x, s) projects C
l onto the eigenspace of M(x, s) corresponding to

the eigenvalue λj(x, s) of M(x, s) that lies inside Gj(x).

To see the continuity of the projector-valued functions in (x, s) note that we
have

|
(

zI −D(x0) − s0E(x0)
)−1 −

(

zI −D(x) − sE(x)
)−1|

≤ |
(

zI −D(x0) − s0E(x0)
)−1| · |D(x) −D(x0) + sE(x) − s0E(x0)|

· |
(

zI −D(x) − sE(x)
)−1|

−−−−−−−−→
(x,s)→(x0,s0)

0,

(A.9)

where we used the equality

A−1 −B−1 = A−1(B −A)B−1 (A.10)

for invertible operators A and B on a Banach space, the Banach-Lemma A.1, and
the continuity of the matrix-valued functions E, D, and M .

Let (x0, s0) ∈ G be given. The continuity of D implies that there is an η > 0
such that for all (x, s) ∈ G with |x− x0| < η it holds

Dj(x, s) ⊂ {λ ∈ C : |λ− dj(x0)| ≤
ε0
2
} ⊂ {λ ∈ C : |λ− dj(x0)| ≤ ε0} ⊂ Gj(x0).

Thus the Cauchy-Integral-Formula implies that one can take the same contour for
Πj(x, s) and Πj(x0, s0). Together with (A.9) this implies

|Πj(x, s) − Πj(x0, s0)|

= | 1

2πi

∫

Γj(x0)

(

zID(x) − sE(x)
)−1 −

(

zI −D(x0) − s0E(x0)
)−1

dz|

→ 0 as (x, s) → (x0, s0)

which proves the continuity.

Show that Πj(x, s)ej 6= 0, where ej denotes the j-th unit vector.
From Πj(x, 0)ej = ej we obtain

|Πj(x, s)ej − ej|∞ = | 1

2πi

∫

Γj(x)
(zI −D(x) − sE(x))−1 − (zI −D(x))−1dzej |∞

≤ 4

3
ε0|(I − (zI −D(x))−1sE(x))−1 − I|∞|(zI −D(x))−1|∞.

In order to estimate the integral we analyze the integrand and find

|(zI −D(x))−1sE(x)|∞ ≤ |s||(zI −D(x))−1|∞|E(x)|∞
≤ ε0

3Ce,0
max

j=1,...,l
| 1

z − dj(x)
|Ce,0

≤ ε0
3Ce,0

1

ε0
Ce,0 =

1

3
.
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Then Lemma A.1 implies that (I−(zI−D(x))−1sE(x))−1 exists and the integrand
can be estimated by

∣

∣

(

I − (zI −D(x))−1sE(x)
)−1 − I

∣

∣

∞
≤

∞
∑

j=1

∣

∣(zI −D(x))−1sE(x)|j ≤
∞
∑

j=1

(1

3

)j
=

1

2
.

Therefore
∣

∣Πj(x, s)ej − ej
∣

∣

∞
≤ 1

2π
2π
δ0
3

1

2

∣

∣(zI −D(x))−1
∣

∣

∞

≤ 1

2π
2π
δ0
3

· 1

2
· 4

δ0
=

2

3
< 1

(A.11)

and so Πj(x, s)ej 6= 0.
Define

T (x, s) :=
[

Π1(x, s)e1, . . . ,Πl(x, s)el
]

∈ C
l,l. (A.12)

We see T (x, s) ∈ GLl(C) since the columns Πi(x, s)ei are nonzero eigenvectors to
pairwise different eigenvalues and hence they form a basis of C

l. The continuity
of the columns implies T ∈ C(G,GLl(C)).

Now set T1(x, s) =
[

T1,1(x, s), . . . , T1,l(x, s)
]

, where the columns are defined by

T1,j(x, s) :=
1

2πi

∫

Γj(x)

(

zI−D(x)−sE(x)
)−1

E(x)
(

zI−D(x)
)−1

dz ej , j = 1, . . . , l.

(A.13)
Then the equality

T (x, s)ej − ej = Πj(x, s)ej − ej

=
1

2πi

∫

Γj(x)

(

zI −D(x) − sE(x)
)−1 −

(

zI −D(x)
)−1

dzej

=
s

2πi

∫

Γj(x)

(

zI −D(x) − sE(x)
)−1

E(x)
(

zI −D(x)
)−1

dzej

implies T (x, s) = I + sT1(x, s). Here we used (A.10) again.
It remains to show the differentiability of T1 with respect to x and the bounds

asserted in (A.7).
For j = 1, . . . , l, it holds

|T1,j(x, s)|∞ ≤ 1

2π

δ0
3

2π
∣

∣

∣

(

zI −D(x) − sE(x)
)−1
∣

∣

∣

∞

∣

∣E(x)
∣

∣

∞

∣

∣

∣

(

zI −D(x)
)−1
∣

∣

∣

∞
.

One can estimate the factors uniformly for (x, s) ∈ G
∣

∣

∣

(

zI −D(x) − sE(x)
)−1
∣

∣

∣

∞
≤

∣

∣

∣

(

I−
(

zI−D(x)
)−1

sE(x)
)−1
∣

∣

∣

∞

∣

∣

∣

(

zI −D(x)
)−1
∣

∣

∣

∞

≤ 3

2
max

l=1,...,l

∣

∣

∣

∣

1

z − dl(x)

∣

∣

∣

∣

≤ 6

δ0
,

∣

∣E(x)
∣

∣

∞
≤ Ce,0,

∣

∣

∣

(

zI −D(x)
)−1
∣

∣

∣

∞
≤ 4

δ0
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and this shows the estimate uniform in (x, s) ∈ G

|T1,j(x, s)|∞ ≤ 1

2π
2π
δ0
3

6

δ0
Ce,0

4

δ0
=

8Ce,0

δ0
<∞.

Because this inequality holds for every (x, s) ∈ G and every j = 1, . . . , l, the first
bound in (A.7) follows.

In the last step we show the differentiability of T1 with respect to x and the
uniform boundedness of the derivative. Let x0 ∈ R be arbitrary. With the same
η > 0 as above we can choose the same contour for all (x, s) ∈ G with |x−x0| ≤ η.

To justify differentiation under the integral sign with respect to x we must
estimate the derivative of the integrand uniformly in z ∈ Γj(x0) for all (x, s) ∈ G
with |x− x0| < η.

For every z ∈ Γj(x0) and (x, s) ∈ G with |x− x0| < η hold

d

dx
E(x) = Ex(x) (A.14)

d

dx

(

zI −D(x) − sE(x)
)−1

=
(

zI −D(x) − sE(x)
)−1

·
(

Dx(x)+sEx(x)
)(

zI−D(x) −sE(x)
)−1

(A.15)

d

dx

(

zI −D(x)
)−1

=
(

zI −D(x)
)−1

Dx(x)
(

zI −D(x)
)−1

. (A.16)

The bounds of the matrices and their derivatives assumed in (A.3) and (A.4)
lead to the following bounds, independent of z ∈ Γj(x0) and (x, s) ∈ G with
|x− x0| < η,

∣

∣Dx(x) + sEx(x)
∣

∣

∞
≤ Cd,1 +

ε0
3Ce,0

Ce,1 <∞, (A.17)

∣

∣

∣

(

zI −D(x)
)−1
∣

∣

∣
≤ 2

ε0
=

8

δ0
<∞, (A.18)

∣

∣

∣

(

zI −D(x) − sE(x)
)−1
∣

∣

∣

∞
≤ 6

ε0
=

24

δ0
<∞, (A.19)

where (A.18) and the Banach-Lemma A.1 is used for (A.19).
The equations (A.3), (A.4), and (A.17)–(A.19) imply the estimate
∣

∣

∣

d

dx

(

(

zI −D(x) − sE(x)
)−1

E(x)
(

zI −D(x)
)−1
) ∣

∣

∣

∞
≤ const <∞ (A.20)

with a constant const independent of z ∈ Γj(x0) and (x, s) ∈ G with |x− x0| < η.
Thus by [Bau92, §16 Lemma 2] we can differentiate under the integral sign and
obtain

d

dx
T1,j(x0, s) =

1

2πi

∫

Γj(x0)

d

dx

{

(

zI−D(x)sE(x)
)−1

E(x)
(

zI−D(x)
)−1
}∣

∣

∣

x=x0

dzej .

(A.21)
The estimate (A.20) also implies | d

dxT1,j(x0, s0)| ≤ const < ∞ with a constant
independent of (x0, s0) ∈ G. From this follows the existence of a CT,1 <∞ with

‖T1,x‖∞ ≤ CT,1 ∀(x, s) ∈ G.
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Remark. From the construction of T (x, s) we see that the entries λii(x, s),
i = 1, . . . , l, of Λ(x, s) from (A.6) satisfy

|λii(x, s) − di(x)| = min
j

|λii(x, s) − dj(x)|, i = 1, . . . , l.
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B Exponential dichotomies

In this section we give the definition of an exponential dichotomy and some results
which are essentially used in the proofs of Chapters 3 and 4. The results are mainly
presented in [BL99, Appendix] other references are [Cop78] and the papers by
Palmer [Pal84], [Pal88].

We will use in this section the notation 〈x−, x+〉 for intervals in R. Where
〈x−, x+〉 with x− ∈ R ∪ {−∞} and x+ ∈ R ∪ {∞} is defined by

〈x−, x+〉 =































∅, x− > x+,

[x−, x+], x− ∈ R, x+ ∈ R, x− ≤ x+,

(−∞, x+], x− = −∞, x+ ∈ R,

[x−,∞), x− ∈ R, x+ = ∞,

R, x− = −∞, x+ = ∞.

Let M ∈ C(J,Cl,l). We denote by S(·, ·) the solution-operator of

Lz = zx −M(x)z, x ∈ J. (B.1)

First we give the definition of an exponential dichotomy.

Definition B.1. We say, that the operator L has an exponential dichotomy (ED)
on J if there are positive constants K,β and for every x ∈ J there is a projection
π(x) : C

l → C
l such that

S(x, y)π(y) = π(x)S(x, y) ∀x, y ∈ J,

|S(x, y)π(y)| ≤ Ke−β(x−y) ∀x ≥ y ∈ J,
|S(x, y)(I − π(y))| ≤ Ke−β(y−x) ∀x < y ∈ J.

We call (K,β, π(·)) the data of the dichotomy and refer to K as dichotomy con-
stant, β as dichotomy exponent, and π as projectors of the dichotomy.

The data of the dichotomy are in general not unique, as one easily sees if J
is a finite interval. The benefit of (ED)s lie in semi-infinite or infinite interval
problems. If J = 〈x−, x+〉 contains an interval of the form [x0,∞), the range of
the projectors are unique and if it contains an interval of the form (−∞, x0], the
kernel of the projectors is unique. In particular, if the operator L has an (ED)
on the whole real line, the projectors are uniquely determined. For results in this
direction see [Cop78, Chapter 2].

Example 4. The equation zx =

(

1 0
0 −1

)

z on R has an (ED) on R and the

data can be chosen as K = 1, β = 1, π(x) =

(

0 0
0 1

)

.
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Next we state a result about the solvability solution estimates for boundary
value problems in the presence of an (ED).

Theorem B.2 ([BL99, Theorem A.1]). Assume the operator L has an (ED) on
J = 〈x−, x+〉, x− < x+, with data (K,β, π).

Define the Green’s function G with respect to π for all x, y ∈ J by

G(x, y) =

{

S(x, y)π(y), y ≤ x

S(x, y)(π(y) − I), x < y.
(B.2)

Then for every h ∈ L2(J), γ− ∈ R(π(x−)), γ+ ∈ R(I − π(x+)) there is a unique
solution z ∈ H1(J,Cl) of the boundary value problem

Lz = h, in L2(J),

(I − π(x+))z(x+) = γ+,

π(x−)z(x−) = γ−.

In the case x− = −∞ the boundary condition for z(x−) is hidden in the space and
there is no explicit boundary condition. The same is true for the case x+ = +∞.
The solution can be written in the form z = zsp + zh, where zsp and zh are given
by

zsp(x) =

∫

J
G(x, y)h(y)dy (B.3)

and

zh(x) = S(x, x−)γ− + S(x, x+)γ+. (B.4)

For the particular solution of the inhomogeneous equation given by (B.3) the fol-
lowing estimate holds

β2‖zsp‖2 + β|zsp|2Γ ≤ 5K2‖h‖2. (B.5)

The solution of the homogeneous equation with inhomogeneous boundary condi-
tions zh from (B.4) satisfies the estimate

β‖zh‖2 + |zh|2Γ ≤ (2 + 3K2)(|γ−|2 + |γ+|2). (B.6)

Recall that G(x, y) is the Green’s function for Lz = h in R with z(−∞) = 0,
z(+∞) = 0.

The next theorem, presented in [BL99, Theorem A.2], shows that the solution
of an initial value problem is exponentially decaying in forward time if the initial
data comes from the right subspace and the inhomogeneity is also exponentially
decaying.

Theorem B.3. Let L have an (ED) on J = [0,∞) with data (K,β, π). Then
every solution z ∈ H1(J) of the homogeneous initial value problem

Lz = 0 in L2(J),
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with initial data z(0) ∈ R(π(0)) satisfies

|z(x)| ≤ Ke−βx|z(0)|. (B.7)

Let z ∈ H1([0,∞),Cl) be the solution of the inhomogeneous initial value problem

Lz = h in L2(J),

with initial data z(0) ∈ Rπ(0) and inhomogeneity h ∈ L2([0,∞)) which is expo-
nentially bounded, i.e.

|h(x)| ≤ C1e
−β1x

with some constants C1, β1 > 0. Then for every 0 < β′ < min(β, β1) there is a
constant C > 0, with C depending on z(0) and β′ only such that

|z(x)| ≤ C(|π(0)z(0)|e−βx + e−β′x)), ∀x ≥ 0.

The same is true for J = (−∞, 0].

An important property of an (ED) is its roughness under perturbations, which
is stated in the next Theorem [BL99, Theorem A.3]. It is an improved version of
[Cop78, p. 34].

Theorem B.4. Let L̃z = zx −M(·)z have an (ED) on J = 〈x−, x+〉, x− < x+,
with data (K̃, β̃, π̃). Assume ∆ ∈ C(J,Cm,m) and this fulfills

3K̃‖∆‖∞ < β̃. (B.8)

Then the operator
Lz = zx − (M + ∆)z

has an (ED) on J , too. The data (K,β, π) of this dichotomy can be chosen so that

K = K̃(2 +
4‖∆‖∞K̃

β̃ − 3‖∆‖∞K̃
),

β = β̃ − 2‖∆‖∞K̃,

|π̃(x) − π(x)| ≤ K̃K

∫

J
e−(β̃+β)|x−y||∆(y)|dy

are fulfilled.
If the matrices M(x) and ∆(x) as well as the dichotomy data (K̃, β̃, π̃) depend

continuously on some additional parameter and the inequality (B.8) holds for all
parameter values, then the dichotomy data of the perturbed operator can be chosen
continuously in the parameter.

Note that the constant K for the perturbed equation differs from the constant
given in [BL99]. This reflects that by carrying out the proof indicated in [BL99]
we only obtained the weaker estimate.

The strength of this theorem lies in the estimate of the projectors, which shows,
that for small ‖∆‖∞ the projectors of the unperturbed and of the perturbed
operator are close to each other.

Using this Theorem one can proof the following Theorem (cf. [Pal84, Lemma
3.4] and [BL99, Theorem A.4]).
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Theorem B.5. Let L̃z = zx −M(·)z have an exponential dichotomy on a semi-
infinite interval J = [x0,∞) with data (K̃, β̃, π̃) and let ∆ ∈ C(J,Cm,m) with

|∆(x)| → 0, as x→ ∞.

Then for every fixed 0 < β < β̃ the operator Lz = zx−(M+∆)z has an exponential
dichotomy on J with data (K,β, π). Moreover for every allowable data (K,β, π)
the projector π satisfies

|π(x) − π̃(x)| → 0, as x→ ∞. (B.9)

If the data (K̃, β̃, π̃), the matrices M(x), and ∆(x) depend continuously on some
parameter from a compact set, then the perturbed data (K,β, π) can be chosen
continuously in this parameter so that the convergence (B.9) for these projectors
is uniform in the parameter.

The next theorem we extensively use for the proofs of exponential dichotomies
of the first order operators, obtained in Chapters 3 and 4, in compact intervals.

Theorem B.6 ([BL99, Theorem A.5]). Let Lz = zx −M(x)z have exponential
dichotomies on R− with data (K−, β−, π−) and on R+ with data (K+, β+, π+).
Then L has an (ED) on the whole real line R if and only if

R(π+(0)) ⊕R(I − π−(0)) = C
l.

In this case the data (K,β, π) for the ED on R can be chosen such that β =
min(β−, β+) and

|π(x) − π±(x)| ≤ Ce−2β|x| for x ∈ R±.

We also need a result about the Fredholm properties of ordinary differential
operators on the whole real line. On bounded intervals a similar property is easy
to verify by integration, but on unbounded domains it is not so easy. A general
result is given by K. J. Palmer in [Pal84, Lemma 4.2]. It is presented for bounded
and continuously differentiable functions, but the proof directly applies in the case
of the Sobolev space H1.

Lemma B.7. Let M ∈ C(R,Cl,l) be a bounded matrix-valued function so that the
differential operator

L(·) :
H1(R,Cl) → L2(R,C

l)
z 7→ zx −M(·)z

has an (ED) on R+ and on R− with projectors π±(·). Then L is Fredholm and
f ∈ R(L) if and only if

∫ ∞

−∞
u∗(t)f(t)dt = 0

for all solutions u ∈ H1(R,Cl) of the adjoint equation

Lad(·)u = ux +M(·)∗u = 0.

Furthermore the index of L is dimR(π+(0)) + dimR(I − π−(0)) − n.
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In the Lemma ’∗’ stands for transposed conjugated.

Remark. It is shown in [Pal88] that also the opposite direction holds, i.e. a
differential operator of the form considered in Lemma B.7 that is semi-Fredholm
has (ED)s on R+ and on R−.

When we show the Fredholm property for certain linear first order differential
operators obtained after transformation in Chapter 4 we need a slight modifica-
tion of the domain and image spaces in Lemma B.7. Therefore we will use the
characterization of the co-range to show a corollary of this Lemma.

Corollary B.8. Let M =

(

0 A
B C

)

be an l × l matrix-valued function with the

same properties as in Lemma B.7 and assume that A ∈ C
r,l−r is constant.

Then the ordinary differential operator

La : H2(R,Cr) ×H1(R,Cl−r) → H1(R,Cr) × L2(R,C
l−r), z 7→ zx −M(·)z,

is a Fredholm operator of the same index as

Lb : H1(R,Cl) → L2(R,C
l), z 7→ zx −M(·)z.

Proof. Let (u, v) ∈ N (Lb) ⊂ H1(R,Cl). Then ux = Av, where the equality holds
in L2(R,C

r). Since the right hand side is an element of H1(R,Cr) the equality also
holds in H1(R,Cr). Hence (u, v) ∈ H2(R,Cr) ×H1(R,Cl−r) and (u, v) ∈ N (La).
This shows N (La) = N (Lb) and especially

dimN (La) = dimN (Lb).

By Lemma B.7 (g, f) ∈ R(Lb) if and only if

∫ ∞

−∞
〈ψ,
(

g
f

)

〉dx = 0 ∀ψ ∈ N (Lad),

where Lad : H1(R,Cl) → L2(R,C
l) is the same operator as in Lemma B.7.

Let (g, f) ∈ R(La) ⊂ H1(R,Cr) × L2(R,C
l−r). Then

∫ ∞

−∞
〈ψ,
(

g
f

)

〉dx = 0 ∀ψ ∈ N (Lad),

since R(La) ⊂ R(Lb).

Let (g, f) ∈ H1(R,Cr) × L2(R,C
l−r) and assume

∫ ∞

−∞
〈ψ,
(

g
f

)

〉dx = 0 ∀ψ ∈ N (Lad).

By Lemma B.7 there is (z1, z2) ∈ H1(R,Cr) ×H1(R,Cl−r) with

(

z1
z2

)

x

−M

(

z1
z2

)

=

(

z1,x −Az2
z2,x −Bz1 − Cz2

)

=

(

g
f

)

.
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This implies that z1 is an element of H2(R,Cr).
Therefore for (g, f) ∈ H1(R,Cr) × L2(R,C

l−r) we have

(g, f) ∈ R(La) ⇔
∫ ∞

−∞
〈ψ,
(

g
f

)

〉dx = 0 ∀ψ ∈ N (Lad).

Thus R(La) is closed and codim(R(La)) = dimN (Lad) = codim(R(Lb)), as in
the end of the proof of [Pal84, Lemma 4.2].

Following an idea from [Thü98], one can use the roughness Theorem B.4 to
show uniformity of the data of an (ED) in compact parameter sets for parameter
dependent problems.

Lemma B.9. Let Ω ⊂ C be a compact set. Let M ∈ C(J × Ω,Cl,l) and assume
for every s0 ∈ Ω there exist consts0

> 0 and δs0
> 0 such that

‖M(·, s) −M(·, s0)‖∞ ≤ consts0
|s− s0| ∀s, s0 ∈ Ω with |s− s0| < δs0

.

Furthermore we assume that the operators L(·, s), as above, have an (ED) on
J with data (K(s), β(s), π(·, s)). Then the dichotomy constant K(s) and the di-
chotomy exponent β(s) can be chosen independently of s for all s ∈ Ω.

Proof. Let s0 ∈ Ω be arbitrary and let ε = ε(s0) > 0 so that

‖M(·, s0) −M(·, s)‖∞ ≤ 1

2

β(s0)

3K(s0)
∀s ∈ Kε(s0) ∩ Ω.

Theorem B.4 then implies that for every s ∈ Ω ∩Kε(s0) also the operator

L(·, s)v = L(·, s0)v + (M(·, s0) −M(·, s))v

has an (ED) on J with data (K,β, π), which can be estimated by

K ≤ K(s0)

(

2 +
4β(s0)

3(β(s0) − 1
2β(s0))

)

=
8

3
K(s0) =: Ks0

and

β ≥ β(s0) −
β(s0)

3
=

2

3
β(s0) =: βs0

.

Since s0 ∈ Ω was arbitrary the same argumentation is possible for every s ∈ Ω
and so a compactness argument shows the assertion.
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Throughout the text we use the following definitions of spectra.

Definition C.1. Let X and Y be complex Banach spaces. Let P be a bounded
linear operator from X to Y .

The resolvent set ρ(P ) of the operator P is defined as the set of all s ∈ C for
which sI − P is a linear homeomorphism.

The spectrum σ(P ) is defined as C \ ρ(P ). We split the spectrum into two
parts. The eigen spectrum σeig(P ) is the set of all s ∈ σ(P ) which are isolated
points in σ(P ) and eigenvalues of finite algebraic multiplicity of P . The essential

spectrum is then defined as σess := σ(P ) \ σeig(P ).

Remark. In the literature there are quite a few definitions of the essential
spectrum. Our definition is taken from [Hen81, p. 136]. Another widely used
definition is by defining the point spectrum σp as the set of all s ∈ σ for which
the operator sI−P is Fredholm of index 0. The essential spectrum is then defined
as the set σ∆ := σ \ σp. For example this definition is used in [SS00].

Lemma C.2. For every compact interval J = [x−, x+], |x+−x−| ≥ 1, every func-
tion f ∈ H1(J,Cl) is an element of C0(J,Cl) and satisfies the Sobolev inequality

‖f‖∞ ≤ const‖f‖H1 (C.1)

with const independent of J and f .

Proof. Let f ∈ C1(J,Cl) ∩H1(J,Cl) and choose xm ∈ J with

|f(xm)| = min
x∈J

|f(x)|.

The Fundamental Theorem of Calculus implies

|f(x)|2 ≤ |f(xm)|2 + 2

∫ x

xm

|〈f(ξ), f ′(ξ)〉|dξ ≤ 1

|x+ − x−|
‖f‖2

L2
+ ‖f‖2

L2
+ ‖f ′‖2

L2
,

where 〈u, v〉 := u∗v is the Euclidean inner product in C
l. Therefore

|f(x)| ≤ const‖f‖H1

with const independent of the length of the interval as long as |x+−x−| ≥ 1 holds.
This shows that there is a constant independent of the length of the interval J for
|J | ≥ 1 such that

‖f‖∞ ≤ const‖f‖H1(J,Cl) ∀f ∈ C1(J,Cl) ∩H1(J,Cl).

The density of C1(J,Cl) ∩ H1(J,Cl) in H1(J,Cl) (cf. [Rob01, Theorem 5.21]) is
then used to finish the proof.
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For H1-functions on the whole real axis one has a similar result (cf. [Rau91,
§2.6 Theorem 7] and [RR93, Theorem 6.91]):

Lemma C.3. Every f ∈ H1(R,Cl) is an element of C0(R,Cl) and satisfies the
Sobolev inequality

‖f‖∞ ≤ const‖f‖H1(R,Cl). (C.2)

Furthermore for each element f ∈ H1(R,Cl) holds limx→±∞ |f(x)| = 0.

Proof. We only prove the second part. Assume there is f ∈ H1(R,Cl) such that
there is a sequence (xn)n∈N with limn→∞ xn = ∞, but |f(xn)| ≥ c > 0 for all
n ∈ N and some c ∈ R. Since C∞

0 (R,Cl) is dense in H1(R,Cl) there is a sequence
(fn)n∈N in C∞

0 (R,Cl) with ‖fn − f‖∞ → 0 as n → ∞. Choose N0 so large that
‖fn−f‖∞ < c

2 ∀n ≥ N0. Then for every n ≥ N0 there is n′ ∈ N with xn′ 6∈ supp fn.
And so ‖fn −f‖∞ ≥ |fn(xn′)−f(xn′)| = |f(xn′)| > c which contradicts the choice
of N0. Therefore the second assertion follows.

From now on E, F always denote separable Banach spaces and Σ is an open
subset of the complex plane.

We next state a quantative version of the contraction mapping Theorem pre-
sented in [Vai76, §3 Hilfssatz 18].

Lemma C.4. Let A : Ω → F with Ω an open subset of E be (Fréchet-)differentiable
in Kδ0(x0) ⊂ Ω and assume that (A′(x0))

−1 ∈ L(F,E) exists and satisfies

1. ‖A′(x0)‖ < τ and ‖(A′(x0))
−1‖ ≤ κ,

2. supx∈Kδ0
(x0)

‖A′(x) −A′(x0)‖ ≤ q
κ ,

3. ‖A(x0) − y‖ ≤ δ0
1−q
κ ,

for some constants τ > 0, κ > 0, and 0 ≤ q < 1.

Then A(x) = y has a unique solution x̄ in Kδ0(x0) and the following estimates
(i) and (ii) hold.

1

1 + q
‖(A′(x0))

−1(A(x0) − y)‖ ≤ ‖x̄− x0‖ ≤ 1

1 − q
‖(A′(x0))

−1(A(x0) − y)‖. (i)

1

τ
‖A(x0) − y‖ ≤ ‖(A′(x0))

−1(A(x0) − y)‖ ≤ κ‖A(x0) − y‖. (ii)

Definition C.5. [DS58] A function A : Σ → E is called holomorphic on Σ iff
A is continuous and the first partial derivative exists at each point in Σ.

We need some definitions about root-spaces and root-elements. The following
definition is taken from [Vai76].

Definition C.6. Let A : Σ → L(E,F ) be a holomorphic operator-valued func-
tion. The resolvent set ρ(A) is the set of all s ∈ Σ so that A(s) is a linear
homeomorphism. A number s0 ∈ Σ is called an eigenvalue of A(·) if and only if
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N (A(s0)) 6= {0}. Every nonzero element of N (A(s0)) is called an eigenelement

of A(·) to the eigenvalue s0.
Let v0 be an eigenelement of A(·) to the eigenvalue s0. Then we call a polynomial

v(s) =
∑k

i=0(s− s0)
ivi with coefficients v1, . . . , vk in E a root-polynomial iff

dj

dsj
(A(s)v(s))s=s0

= 0 j = 0, . . . , k.

The coefficients are called root-elements and the closed linear hull of all possible
root-elements of A(·) to the eigenvalue s0 we denote by W(A, s0) and this space
is called the root-subspace of A(·) to the eigenvalue s0.

For a root-polynomial v we denote by ν(v) ∈ N the order of the polynomial,
where ν(v) is defined as the unique integer that satisfies

dj

dsj
(A(s)v(s))s=s0

= 0, j = 0, . . . , ν(v) − 1,

dj

dsj
(A(s)v(s))s=s0

6= 0, j = ν(v).

For an eigenelement v0 of A to the eigenvalue s0 we call

ν(v0) := sup{ν(v) : v is a rootpolynomial of A(·) to s0 with v(s0) = v0}
the order of the eigenelement v0.

An eigenvalue s0 of A(·) is called simple eigenvalue, iff dimN (A(s0)) = 1
and ν(v0) = 1 for all eigenelements v0 of A(·) to the eigenvalue s0.

Remark. Note that in the definition ν(v0) = ∞ is allowed. A trivial example

with this property is given by the constant matrix-polynomial

(

0 0
0 1

)

, where

v0 =

(

1
0

)

is an eigenelement for every eigenvalue s0 ∈ C.

The above concept of eigenvalues and eigenfunctions generalizes the usual con-
cept in the following way: Instead of the linear operator A ∈ L(E,E) one considers
the operator polynomial A(s) = sI − A. Then the eigenvalues of A(·) coincide
with those of A and the root-subspaces coincide with the generalized eigenspaces
(cf. Lemma 2.27). There is a whole theory about such polynomials in the finite
dimensional case, for example see [GLR82] and [WRL95, Part I].

The next characterization of root-vectors and root-polynomials directly follows
from the definition and we omit a proof.

Lemma C.7. Let v0 6= 0, v1, . . . , vk ∈ E. Then the polynomial

v(s) =

k
∑

i=0

(s− s0)
ivi

is a root-polynomial of A(·) for v0 if and only if

j
∑

i=0

1

i!
A(i)(s0)vj−i = 0, j = 0, . . . , k.
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Remark C.8. In the simple case that A(s) = sB−A with A,B ∈ L(E,F ) the
Lemma implies that v 6= 0 is a root vector of A(·) to the eigenvalue s0 if and only
if there are elements v0, . . . , vk−1, vk of E with v0 6= 0 and vk = v so that

A(s0)v0 = 0 and

A(s0)vi+1 = Bvi, i = 0, . . . , k − 1.

In the special case that A(s) = sI − B with B ∈ L(E,E) this implies that the
root-subspace of A(·) to the eigenvalue s0 simply is the generalized eigenspace of
B to the eigenvalue s0.

We finish the review of results from functional analysis with the presentation of
some results about operator matrices with Fredholm operators. For the definitions
and general theory see the textbook by Kato [Kat66, Chapter IV].

One result we use is a bordering lemma for Fredholm operators see [Bey90,
Lemma 2.3].

Lemma C.9. Let X and Y be complex Banach spaces and consider the operator

S =

(

A B
C D

)

∈ L(X × C
r, Y × C

s),

with bounded linear operators A ∈ L(X,Y ), B ∈ L(Cr, Y ), C ∈ L(X,Cs), D ∈
L(Cr,Cs). If A is Fredholm of index p then S is Fredholm of index p+ r − s.

The next Lemma is in some sense a simple generalization of the previous lemma.
It might by of some interest by itself.

Lemma C.10. Let X1, X2, Y1, Y2 be complex Banach spaces. Consider bounded
linear operators A ∈ L(X1, Y1), B ∈ L(X2, Y1), C ∈ L(X1, Y2), D ∈ L(X2, Y2),
and assume that A is a Fredholm operator of index r ≥ 0, D is a Fredholmoperator
of index s ∈ Z and C is a compact operator.

Then the operator matrix

(

A B
C D

)

: X1 ×X2 → Y1 × Y2 (C.3)

is Fredholm of index r + s.

Proof. Since A is Fredholm of index r there is a basis xa
1, . . . , x

a
m of N (A) and

a cobasis ya
1 , . . . , y

a
m−r of R(A) in Y1, i.e. ya

1 , . . . , y
a
m−r are linearly independent

in Y1/R(A) and R(A) ⊕ span(y1
1 , . . . , y

a
m−r) = Y1. Let x∗1, . . . , x

∗
m ∈ X∗

1 , be a
biorthogonal basis for xa

1, . . . , x
a
m, where X∗

i denotes the dual space of Xi. Define
the compact operator

KA :=

m−r
∑

i=1

〈x∗i , ·〉ya
i .

Hence the operator A + KA is also Fredholm of index r and by construction it
holds

R(A+KA) = Y1 and dimN (A+KA) = r.
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From the stability of the Fredholm property under compact perturbations (cf.

[Kat66, IV Theorem 5.26]) follows that

(

A B
C D

)

is Fredholm of index r+ s if and

only if M :=

(

A+KA B
0 D

)

is Fredholm of index r+ s. Since A+KA is onto we

obtain
(

u
v

)

6∈ R(M) ⇔
(

0
v

)

6∈ R(M) ⇔ v 6∈ R(D).

This shows the equality codimR(M) = codimR(D).
Let x1

1, . . . , x
1
r be a basis of N (A+KA) and let x2

1, . . . , x
2
p be a basis of N (D). By

choosing x̃i ∈ X1 so that

(A+KA)x̃i = −Bx2
i , i = 1, . . . , p

we find that

(

x1
1

0

)

, . . . ,

(

x1
r

0

)

,

(

x̃1

x2
1

)

, . . . ,

(

x̃p

x2
p

)

are linearly independent elements

of N (M). A simple computation shows that they are also a basis of N (M).
Therefore

ind(M) = dimN (M) − codimR(M) = r + dimN (D) − codimR(D) = r + s.

143



Bibliography

[ABB+99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide, Third Edition. SIAM, Philadelphia, August
1999. http://www.netlib.org/lapack/lug/lapack lug.html.

[Alt99] H. W. Alt. Lineare Funktionalanalysis. Springer, Berlin-Heidelberg, 3
edition, 1999.

[Bau92] H. Bauer. Maß- und Integrationstheorie. Walter de Gruyter & Co.,
Berlin, 2. edition, 1992.

[Bey80] W.-J. Beyn. On discretizations of bifurcation problems. In Bifurcation
problems and their numerical solution (Proc. Workshop, Univ. Dort-
mund, Dortmund, 1980), pages 46–73, Basel, 1980. Birkhäuser.
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Basel, 1972.
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