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Notations

L(E,F) Vector-space of bounded linear operators from the Banach space E
to the Banach space F'.

ck Vector-space of k-times differentiable mappings.

R(P) Range of the operator P.

N (P) The null space of the operator P.

v* Complex conjugate and transposed of a vector v € C.

(u,v) Euclidean inner product of vectors v and v € C'.

] Euclidean norm of a vector v € C'.

V|00 Maximum norm of a vector v € C'.

| M| Matrix norm to the Euclidean vector norm.

|1 M || oo Sup norm for a matrix-valued function M € C(J).

dist Hausdorft semi-distance.

|ul2 Boundary norm of u € C([z_,z4]) given by |ul? = |u(z_)|* + Ju(z1)[?.

lull = ||u|l, Lo-norm of a function wu.

(u,v) L, Lo-inner product for functions u and v.

|J] Length of the compact interval J.

E* Dual space of the Banach space E.

(f,v) Evaluation of f € E* at v € E.

codim(U) If U is a subspace of V the codimension of U in V is
denoted by codim(U).

ind(P) Fredholm index of the operator P.
p(P) Resolvent set of the operator P.
Oess(P) Essential spectrum of the operator P.
Oeig(P) Eigenspectrum of the operator P.
op(P) Point-spectrum of the operator P.
on(P) oa(P) :==o(P)\ o,(P).



1 Introduction

The aim of this thesis is to analyze the spectral properties of linear partial differ-
ential operators on the whole real line and how the properties are related to the
same operator ‘restricted’ to a finite interval.

In many applied problems in biology, physics or chemistry there arise travelling
waves as solutions of systems of partial differential equations PDE of the form

U= f(U, Uz, Uyy) in [0,00) x R, (1.1)

for example see [Mur93] or [KS94]. A solution U of (1.1) is called a travelling
wave solution if it satisfies

Ut,z) = W(x — ct) (1.2)

for some ¢ € R and some function W. One calls ¢ the speed and W the profile
of the wave. The travelling wave is called a pulse if the limits

lim W(z) and lim W(x)
Tr— 00 r——0Q0
exist and are equal.

A travelling wave has the special property that it is constant if one looks at it
in a moving frame. More precisely this means that the function

Ut,z) :=U(t,x + ct) = W(z)

is constant in time and therefore the function U is a steady state of the transformed

PDE

~ d
0=Ut,z) = %U(t’ x +ct) = U(t,x + ct) + cUz(t, x + ct)

=f(U(t,x),Us(t,2), Uss(t,x)) + cUs(t,2) in [0,00) x R.

(1.3)

In [KKP94] the asymptotic stability of a steady state of equation (1.3) is deduced
from spectral properties of the linearization® of that equation at the steady state.
The linearization of (1.3) at a steady state U reads

‘7t - fU(U7 01‘7 Uxx)v + fo(U, 0J:7 0@‘&:)‘7@‘ + fox(07 01‘7 Uxx)vxx + CV$ = PV7
(1.4)
where the indices denote the partial derivatives of f with respect to the corre-
sponding component.

*See [KL89, Chapter 1] for linearization of partial differential equations.



1 Introduction

More precisely in [KKP94, Chapter 6] the authors show with the help of resol-
vent estimates and under some assumptions on the structure of P the following
“linearized stability implies nonlinear stability” result.

If zero is a simple eigenvalue of P and the rest of the spectrum is strictly to the
left of the imaginary axis, solutions V.= U+6U of (1.3), with 0U a small perturba-
tion, converge to some shift W (x) = W (x+x0) of the steady state U(t,z) = W (x)
as t — oo.

For the original system this means that initial values close to the travelling wave
solution U converge to some shifted version of the travelling wave. This is known
as 'stability with asymptotic phase’, for example see [VVV94, Chapter 5].

REMARK. In the case that (1.4) is obtained by linearization about a travel-
ling wave solution there always is a zero eigenvalue. This is caused by the shift
invariance of equation (1.3).

IfU(t,z) = W(z) is a solution of (1.3) all its shifts Uy(t,z) = W(z + ) are
also solutions of (1.3). This shows that for every ¢ € R the equality

0=f(W(z+c),We(x +c), Wea(z + ) + Wy(z +c)
holds such that differentiation with respect to ¢ and evaluation at ¢ = 0 leads to

This shows that for a non constant wave profile W the derivative W, # 0 is an
eigenfunction of the operator P.

As indicated above the ’stability with asymptotic phase’ of a travelling wave
solution is closely related to spectral properties of the operator linearized at the
wave-profile.

In [BL99] the case that P from (1.4) is a parabolic operator is analyzed. The
authors show that if one restricts the operator P to a finite interval and uses
’suitable’ boundary conditions, the spectral properties of the all line operator P
are preserved by this finite interval approximation. This is important if one for
example wants to decide numerically for the ’stability with asymptotic phase’ of
a travelling wave.

We extend the results from [BL99] to strictly hyperbolic and mixed hyperbolic-
parabolic systems in this thesis and we improve some of the resolvent estimates
from [KKP94]. We also give an algebraic criterion whether the considered artificial
boundary conditions are ’suitable’.

A main starting point besides the article [BL99] were personal notes by J. Lorenz
[Lor99] which mainly consist of a guide of what to do and were very helpful for
the analysis in Section 3.2.

We now give a brief overview of the contents of this thesis.

In Chapter 3 we assume that the linearized equation is strictly hyperbolic and
in Chapter 4 we consider mixed hyperbolic-parabolic systems.

The structure of Chapters 3 and 4 is quite similar:
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Figure 1.1: Regions in the complex plane. We will see that for the operators we
consider there is no spectrum of the all-line operator and its restriction
to finite intervals in Region I. Furthermore there are only isolated
eigenvalues of the all-line operator in Region II.

After some prelimary considerations we first analyze in Sections 3.2 and 4.4 the
behavior of the spectrum in region I of Figure 1.1. In Section 4.4 we combine the
results we obtain in the analysis of the hyperbolic case (Section 3.2) for this region
with the results from [BL99, Chapter 2] in order to obtain similar results in the
mixed case.

In the second part we then analyze in Sections 3.3 and 4.5 the spectral behavior
in compact regions of the complex plane.

In the last part of the spectral analysis we show in Sections 3.4 and 4.6 the
approximation of isolated eigenvalues of the operator P in the right half-plane.

For the analysis in the second and third part we make use of a generalization
of the theory of discrete approximations to directed sets. This generalization is
presented in Chapter 2 and might be useful also in other applications.

We use the rather abstract theory since it appeared during retracing the proofs
in [BL99, Chapter 4] that the main problem is to show that for every sequence of
solutions of the approximative problems a subsequence converges to a solution of
the all line problem which lead to 'regular convergence’. We use the ideas of the
proofs in [BL99, Chapter 4] to show that the finite interval approximations of the
all line boundary value problem ’'regularly converge’ to the all line problem. The
resulting, and for the analysis in Chapters 3 and 4 basic Theorem 2.29 is given in
Section 2.5.

This abstraction simplifies and harmonizes the analysis of the spectral properties
in compact regions of the complex plane and of the eigenvalue approximations of
isolated eigenvalues in the hyperbolic and the mixed case.

By adaption of a result from [Bey80] we are also able to allow for so called
’s-dependent’ boundary conditions for the approximation of simple eigenvalues.
These boundary conditions should lead to better approximations of the eigenvalues
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and allow for shorter intervals.

We finish the thesis with an analysis of the sufficient conditions obtained for
the artificial boundary operators. We show that certain natural choices namely
periodic boundary conditions and characteristic boundary conditions satisfy the
requirements for the resolvent estimates from Chapter 3 and Chapter 4. This
is done in Section 5.1 for the hyperbolic case and in Section 5.2 for the mixed
hyperbolic-parabolic case. Finally we numerically test our theoretical results at
the FitzHugh-Nagumo system in Section 5.3 which is of the form analyzed in
Chapter 4.

In the Appendices we collect and show basic results which are used throughout
the thesis. In particular in Appendix A we show a perturbation Lemma (Lemma
A.7) which is essential for the analysis in Section 3.2. In Appendix B we introduce
and review some results from the theory of exponential dichotomies which basic
for most of the analysis in Chapters 3 and 4.

At this place I would like to thank W.-J. Beyn for this interesting task that
lead into a fascinating area of applied mathematics. I am very grateful for his
very good support and his interest in my advancements. I also would like to
thank V. Thiimmler for her providence of numerical data.



2 Discrete approximations

In this chapter we introduce the concept of discrete approximations. The con-
cept was developed in the 1970s for example in [Stu7la, Stu71lb, Stu72], [Gri75a,
Gri75b, Gri76], and [Vai77a, Vai77b]. We will need a generalization of the theory
to the case when the index set is not the set of integers but more generally a
directed set. The aim is to treat the approximation of boundary value problems
on the infinite line by finite boundary value problems.

Therefore we also have to consider nets and subnets instead of sequences and
subsequences. In Section 2.1 we give the exact definitions and basic results which
will be used in this thesis. The next Section 2.2 is concerned with the review
and reformulation of some results to our setting. The most important results in
this chapter which are essential for the application in Chapter 3 and Chapter 4
are Theorem 2.26 presented in Section 2.3, Theorem 2.28 from Section 2.4, and
Theorem 2.29 in Section 2.5.

2.1 The language of discrete approximations

As already mentioned in the introduction we will present in this section some basics
of the theory of directed sets, nets, and discrete approximations. Especially the
theory of nets is streamlined for our demands and differs in some points from the
usual theory. More general definitions and further results on nets and subnets as
well as some enlighting basic examples can be found in texts on general topology
for example see [Wil70, §11] and [Kel75, Chapter 2]. Our presentation of the
theory of discrete approximations follows the book of G. Vainikko [Vai76].

Definition 2.1. A directed set (H,>) is a nonempty set H together with a
relation >, called direction, that has the properties

(D1) for all J € H holds J > J,
(D2) for all Jy, Jo, J3 € H with J; = Jo, Jo > J3 holds J; > Js,
(D3) for all Jy,Js € H exists J3 € H with J3 = Jy, Jo.

Notice the lack of antisymmetry so that a directed set is not necessarily a
partially ordered set. We will simply write H for the directed set (H, ) if the
direction > is clear from the context.

ExAMPLE 1. 1. The integers with the usual order forms a directed set (N, >).

2. The pair ({1},>) with 1 = 1 is a directed set.

10



2.1 The language of discrete approximations

3. The set H :={J : J = [a,b];a < b € R} with the direction Jy > Jy 1< J;3 D
Jo is a directed set. This is the archetype of a directed set we will always

have in mind since it will be the directed set we consider in Chapters 3 and
4.

4. The set Hs := R\ {(} together with the direction x >y := [ — x| < [( —y|
is a directed set. This is an example of a directed set which is not partially
ordered.

Definition 2.2. A nonempty subset H' C H is called a cofinal subset of H if
and only if for every J € H there is an element J' € H' with J' = J.

It is clear that H' together with the relation = restricted to H' is a directed
set again. By subsets H', H”,... of a directed set H we will always mean cofinal
subsets of H together with the direction of H restricted to the subset.

Definition 2.3. Let (H,>p) and (I, >7) be two directed sets. We call a mapping
¢: 1 —H

e cofinal if and only if for every J € H there is an iy € I with ¢(i) >z J for
all ¢ € I with i > g,

e monotone if and only if i1,is € I with 41 > i implies ¢(i1) =g ¢(i2),

e strictly monotone if and only if for all i1,io € I (i1 > i2 and is ¥ i1)

implies (¢(i1) =u @(iz) and ¢(iz2) #u ¢(i1)).

Now we can define the notion of a cofinal sequence in a directed set. Most of the
results from [Vai76] will be transferred to the setting of directed sets considered
here by using cofinal or strictly monotone cofinal sequences which are defined next.

Definition 2.4. Let (H,>) be a directed set and consider N as a directed set as
in example 1. A cofinal sequence in H is a cofinal map ¢ : (N, >) — (H,>).
The cofinal sequence is called monotone respectively strictly monotone if the
map ¢ is monotone respectively strictly monotone. By setting J,, := ¢(n) we will
simply write (J,,)nen for the cofinal sequence ¢.

The most important property of the natural numbers we need to imitate for a
directed set in order to adapt the proofs of [Vai76] will be formulated in the next
definition.

Definition 2.5. A directed set H is called (sequentially) unbounded if there is
a strictly monotone cofinal sequence in H.

EXAMPLE (Example 1 continued). One easily sees that ({1},>) is not un-
bounded but the other examples are. A strictly monotone cofinal sequence for
the third example is given by J, = [-n,n]|, n € N.

Lemma 2.6. Let H be an unbounded directed set. Then every cofinal subset H'
of H is also an unbounded directed set.

11



2 Discrete approximations

Proof. The property of H' being directed simply follows from the cofinality and
the properties of the direction. To see the unboundedness of H' let (J,,)nen be any
strictly monotone cofinal sequence in H. Take any J), € H'. Assume that elements
Jby ooy J) in H with J! = J/_; and J;_q % J; for i = 1,...,n are constructed.
Then there is ng € N with J,,, = J), for all m > ng. Since H' is cofinal there
is an element J), , € H' with J}_ | > Juo41. It follows from (D2) J;  ; > J}
and J), # J), ;. Therefore the sequence (J},)nen in H' constructed in this way is
strictly monotone and cofinal and so H’ is unbounded. O

After these basic definitions about directed sets we are able to introduce our
notion of nets and convergence of nets.

Definition 2.7. Let H be a directed set and assume that for every J € H a
complex Banach space X is given. A family of elements (z7)jen with z; € X
for all J € H is called a net in (X ).

If H C H is a cofinal subset of H then we call the net (z;) ey a subnet of
(27)Jem-

REMARK 2.8. If (J,)nen is a cofinal sequence in an unbounded directed set H
we identify the sequence (zj, )nen With the subnet (z;) jepr where H' C H is the
image of the sequence (J,)nen. By subsets N',N” ... of N we always mean infinite
subsets of N and then (z, )nen is a cofinal subsequence of the cofinal sequence
(ZJn)nGN'

Definition 2.9. A net (z7)jcp in (X;) is called bounded if and only if there is
an index Jy € H and a C' > 0 so that ||z||x, < C for all J > J.

Definition 2.10. If (z;) ey is a net in a (constant) Banach space X, i.e. z; €
X VJ € H, we say zj converges to z € X if and only if for every € > 0 there is a
Jo € H with ||z; — z|| < e VJ = Jy. We will simply write this as z;y — z (J € H).

We say z € X is a cluster point of the net (z7)jep iff some subnet (z7)jcp
of (z5) converges to z.

When we consider subnets we will write z; — z (J € H') as a shorthand for
the convergence of the subnet (z;)jcp of (25)jem to the element z.

From now on we always assume that the index set H is an arbitrary unbounded
directed set. Most of the definitions will also make sense if H is not unbounded
but some of the Theorems and Lemmata will not hold if we drop the condition of
unboundedness. Furthermore we assume that F, F', and for every index J € H
also Ey and F; will denote separable complex Banach spaces with norms || - ||+,
x € {E,F,Ey, Fy}. Sometimes we simply write || - || or || - |7 if it is clear from the
context which norm is meant. The lower index J then indicates the corresponding
index of the spaces FE; and F;.

By P and Q we denote nets of linear continuous operators P := (pj)jen and
Q = (qj)jen with py € L(E,Ej) and q; € L(F,Fy). Here and in the sequel
L(X,Y) always denotes the set of linear bounded operators from the Banach
space X to the Banach space Y. We require

\lpszllE, — ll2||E (J € H) for every z € E, (2.1)
lgsrllr, — |Irl|lF (J € H) for every r € F.

12



2.1 The language of discrete approximations

Lemma 2.11. The nets P and Q are bounded.

Proof. Assume P is unbounded. Then there is a cofinal sequence (Jp,)nen in H
with [[ps, |L(e,5,,) = 7 Now (pJ,)nen satisfies

sup ||pJ, 2||lg, <ooforall ze E
neN o

because of the convergence lim,, . ||pJ, 2| E;, = ||z||lz. The Theorem of Banach-
Steinhaus (see [Alt99, 5.3] or [Yos78, p. 73]) therefore implies

sup |p, |z, B,,) < o0
neN

what contradicts the assumption. O

Notice that the proof of the Theorem of Banach-Steinhaus presented in [Alt99,
5.3] does not use the image space of the operators but uses that the family of
functions f,, € C°(E,R) defined by f,, (z) = [|ps,(2)||&,, is point-wise bounded
and so the theorem can be applied in the setting considered here.

Definition 2.12 (cf. [Vai76, §1]). Let P be as above. A net (z7)sem, 27 € Ej,
is called

P-convergent to z € E if and only if ||z; —psz||g, — 0 (J € H). We abbreviate
this by writing z; iy (J € H) and call z the P-limit (or simply the limit)
of the net (z7)jen.

P-compact if and only if for every subnet (z2;)jep, H C H, there is a subnet
H" C H and a z € E with z; 2> 2 (JeH").

Moreover every point z € E so that there is a subnet (z7)jep of (z5)jen with

2y Dz (J € H') is called a cluster-point of (z7)jeq-

The definition directly implies that for every z € E the net (pjz)jem in (Ey)
P-converges to z.

REMARK (Remark 2.8 continued). The unboundedness condition in Remark
2.8 cannot be dropped since otherwise the notion of a P-convergent subnet is not
well-defined. For example consider (H,>) with H = {a,b} and a > b, b > a,
a > a, b= 0b, and the net z, = 0 € R and z, = 1 € R. Then the net is not
convergent. Consider the cofinal sequence

Jo=a, and J, =bVn > 1.
Then the sequence (zj, )nen is convergent but the subnet under the identification

from above is not. The next Lemma shows that this cannot happen if we have an
unbounded directed set H.

13



2 Discrete approximations

Lemma 2.13. Let H be an unbounded directed set and let (zj)jcp be a net in
(Ejy). Then for every cofinal sequence (Jp)nen in H the following equivalence
holds.

The sequence (zj, )nen P-converges to z € E if and only if

the subnet (z5)jepyr where H = {J € H : J = J,, for some n € N}, P-converges
toz € E.

Proof. “=7 Let (J])nen be a strictly monotone cofinal sequence in H. Let € > 0
be given. Then by assumption there is ng € N with ||z, — pJ,(2)]|; < € for all
n > ng. By cofinality of the sequence (J),)nen there is m € N with J/, > J,, for all
n < ng and by cofinality of the sequence (J,)nen there is Ny € N with J, > J], .,
for all n > Ny. Because J;,, # J),.; it follows

Iz, — 0,25, <eVJ, € H with J, = Jy,.

“<" Let € > 0 be given. By definition there is J° € H' with ||z; — psz||; < € for
all J € H' with J = J°. Because of the cofinality of (.J,,)nen there is ng € N with
J, = JO for all n > ng and so

|27, = P12l 5, < €VYn > ng.
O

The proof shows that the backward implication holds for every cofinal sequence,
but the forward implication needs the unboundedness of the underlying directed
set H.

Lemma 2.14. Every P-compact net (zj)jeg is bounded.

Note that this in particular states that every P-convergent net is bounded.

Proof. Assume that (z7)jem is an unbounded P-compact net. Then there must
be a cofinal sequence (J,)nen With |zy,[|g, > n. Since (2, )nen is a subnet of
(27)Jen (recall that we assume H is unbounded) there is a subnet N’ € N and

an element z € E with 2, Ky (n € N'). Hence the sequence (z, )neny must be
bounded because of property (2.1). This contradicts the assumption. O

Lemma 2.15. The P-limit of a P-convergent net (zj)jen in Ej is unique.
Proof. Let 21,29 € E be P-limits of the net (z;). Then

Ips(21 = 22)lls = (25 — ps21) = (20 = pa22)|ls < 20 — Pszalls + |20 — pzalls
By property (2.1) this implies ||ps(z1 — 22)||; — 0 (J € H) and so

0= ||Zl — ZQHE.

14



2.1 The language of discrete approximations

EXAMPLE 2. In this example we take (N,>) as (H,>) and denote by E the
Banach-space 1) of summable sequences © = (xg,1,...) € RN with the norm
lzlle = Y oy |zn|. Denote by E,, the space of n+ 1-vectors x = (o, ..., z,) with
the norm ||z|| g, = >_; |Tn|. Furthermore denote by p, € L(E, E,) the operator
pn: B3 x=(x9,21,...) — (To,...,2n) € E,. Then (2.1) is obviously satisfied.

Let A € L(E,F) and for every J € H let Ay € zeE F>r
L(Ey, Fy), be given. The situation is illustrated le l .
in the diagram to the right which in general does

not commute. zjebBy——F;>r;

Ay

Definition 2.16 (cf. [Vai76, §2]). A net (Ay)jem of linear continuous operators
Ay € L(Ey, Fy) is called

e PQ-convergent to an operator A € L(E,F) if and only if for every P-
convergent net (z7)jem, 25 L (J € H), holds Ajz; L Az (J € H). We
. . PO
write this as Ay — A.

e PQ-regularly convergent to an operator A € L(E,F) if and only if
Aj P2, A and in addition the following regularity condition holds:

Every bounded net (z7)jem for which the net (Ajzs)jem is Q-compact, is
P-compact. We simply write this as Ay Ny regularly.

e PQ-stably convergent to an operator A € L(E, F) if and only if there is
an index Jo € H so that for all J = Jy the inverse operator A;' € L(Fy, Ey)
exists and satisfies || A;|| L(F;,E,) < const with a constant independent of

J. This is again abbreviated to A P24 stably.

e In the special case where Fy = F' = C and gy = idc VJ € H we say that
f1 € E% weakly P-converges to f € E* and write f; A fift fy e,

f (J € H). Here E* denotes the dual space of E.
The following lemma is obvious and we omit the proof.

Lemma 2.17. If a net of linear continuous operators (Ay) jem is (reqularly/stably)-
PQ-convergent then every subnet (Ay)jen, H C H, has the same property.

Lemma 2.18 (cf. [Vai76, §2 (8)]). With the notation from above
Ay e 4 if and only if the net (Ay)jem is bounded and for all z € E holds
AJpJZ & .AZ

Proof. First we show the necessity. The property A pjz L AzVzeE obviously
follows from the P Q-convergence and therefore it remains to show the boundedness
of (Ajy)jen. Assume the net (Ay)jepm is not bounded and let (J,)nen be a cofinal
sequence in H. Then for every n € N there is J), in H with J] = J,, so that there
exists a z, € Ey with HanE% =1 and HAJ;LGHFJ;L > n+ 1. For every n € N

15



2 Discrete approximations

define 2], : Then 2/, 20 (n € N). From the assumption of PQO-

= 7’?;”

A, 2nlle,,
convergence and Lemma 2.17 follows A z, 20 (n € N) but [|[Ay 2,[|F, =1 for
all n € N which contradicts (2.2).

Second we show the sufficiency. Assume z; g (J € H). Then by the triangle
inequality we obtain

|Aszg — qrAz|| < [ As(zg — pi2)|| + [ Aspsz — a1 Az||
<N AslleE,,rpllzr —pizlle, + |Ampsz — g1 Az

The second summand converges to zero by assumption and the first summand

converges to zero because the net (Ajy)jcn is bounded and z; Ly (JeH) O

ExaMPLE (Example 2 continued). Let F,, = E,, F' = E, and Q = P. Denote
by I,, the identity map on E, and by I the identity map on E. It is easy to see
I, LNy regularly and stably.

Consider the operators

) T

An(m'o,...,xn):(n+1,...,n+1

), A(mo,xl,. . ) = (0,0,. . )

Then A, Pe, A, but the convergence is neither regular nor stable.
Let ng € N be fixed and consider the operators A,, which are arbitrarily defined
for 0 <n <ng—1 and for n > ng they shall be defined by

Ap(xo,...yzn) =(0,...,0,Zng,...,2,) and A = (zo,z1,...) = (0,...,0,Zng,...),

i.e. the first ng elements are mapped to zero. Then A, P24 regularly, but not
stably. The regularity follows from the compactness of the closed unit ball in R™,
Finally consider the operators

Ap = (z0,...,2n) = (Tn,T0s ..., Tn—1) and A = (zg,z1,...) = (0,20, 21, ...).
Then A, 7, A stably, but not regularly, as one observes by looking at the

sequence z, = (0,...,0,1) whose image under A,, is Q-compact, but the sequence
(2n)nen is not P-compact.

2.2 Review of basic results

In this section we state some results presented in [Vai76] which we adapt to the
setting here and which will be used in the sequel.

Lemma 2.19 (cf. [Vai76, §1 (12)]). Let (u1,...,ux) be a basis of a subspace
U C E and assume for j = 1,...,k there are given nets (u;.y)sjen with

ujJ&uj (JEH)
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2.2 Review of basic results

Moreover let (uy)jem be a bounded net in (Ey) of the form uy = Zj o g,y with
aj g €C forallje{l,...,k} and for all J € H. Then there is Jo € H and C > 0
with

> eyl <CVI€H, T .
J

Proof. Assume the assertion is false. Then as in the proof of Lemma 2.18 there is
a cofinal sequence (Jy)nem with > [a; s,| > n+1. Define a sequence (i, Jnen in
(Ey,) by @y, = > Bjntj,.g, where fj, = % Then there is a subsequence
N’ C N and scalars 31,...,0; € C with 8, — §; (n € N). Define @ := > B

By construction holds i, — @ (n € N') as well as ||iis, | — 0 (n € N) which
implies ||| = 0 by property (2.1). But the construction of the f,..., [ also
shows Zle |Bj| = 1 and therefore the linear independency of uq,...u; in E
yields @ := 3, Bju; # 0. This contradicts [|a[| = 0. O

We will use the previous lemma to show that the images of linearly independent
elements in F under p; are still linearly independent for sufficiently 'large’ indices
J.

Let uq,...,u; and uq g,...,us s be given as in Lemma 2.19 and define for all
j=1,...,k and all J € H the subspaces

GjJ = span{ul,J, ey Uj—1,J,Uj41,T5 - - - ,’l,Lk,J}7
GJ = span{ul,‘], . ,uk,J},
Gj = span{ul, sy Uj—1,Uj41,y - - ,uk},

G :=spanf{uq, ..., ug}.

Lemma 2.20 (cf. [Vai76, §1 (13)]). Under the assumptions and notations from
above there is Jy € H so that

1 1
dj g = diSt(Uj,J,Gj,J) > B diSt(uj,Gj) =: 5(1]' V= Jo, j=1,...,k.

Proof. Assume the lemma does not hold. Then there is a j € {1,...,k} and a
cofinal sequence (Jp,)nen in H such that

1
||”UJJ‘7Jn — ZaiJnui,JnH = dj,Jn < §dj Vn € N.
i#£]

From Lemma 2.19 follows that the sequence }_,,; [a;,,| is bounded. Hence there
exist a subsequence N' C N and scalars o; € C, @ # j, with a5 5, — «; (n €

17



2 Discrete approximations

N),i # j. This implies

d.
5 2 din = g0, — > il
i#]
> s (ug = > asud) | = 1ps, O (i, — ai)us)|
i#] i#]
uggn = igatti g, — P (g — Y o gui)
i#] i#]
— lluy =Y il = dj,
neN’ i#£j
where we used the P-convergence vy g, 2, u (neN)foralll=1,...,k, and the
boundedness of the net P (see Lemma 2.11). This convergence contradicts the
assumption. ]

In Sections 2.3 and 2.4 we will considerably make use of the following Lemma.

Lemma 2.21 (cf. [Vai76, §2 (60)]). Assume A; € L(E;, Fy) for all J € H,
A€ L(E,F), N(A) = {0}, and Ay P2, A reqularly. Furthermore assume there
is an index Jy € H so that Ay is Fredholm of index zero for all J € H with J > Jy.
Then Aj LNy stably.

Proof. Contrary to the assertion assume there is a cofinal sequence (J,)nen in
H so that for every n € N there is an element v, € E;, with |lv,[g, =1 and
I Az, o7, < %H Then the sequence (Aj,vp)nen is Q-compact and thus by

regularity (cf. Lemma 2.17) there exist N' C N and v € E with v, i (n e N).
Then ||[v||g = 1 and from the assumption follows Av # 0.
This contradicts Ay, v, 20 (n e N') and A, v, 2, Av (n e N'). O

Similarly we can adapt the proof of [Vai76, §1 (37)] and show the following
lemma. Note that in the proof the unboundedness of H is indispensable since it
uses a kind of diagonal sequence argument, which is not possible if we drop the
unboundedness assumption. Recall that we assume that all spaces are separable.

Lemma 2.22. Let f € E* then there is a net of linear functionals (fi)jem in
(E7%), with the properties

fr 2 f(J € H) and || 1))

gy = || flle~

Proof. Let f € E* be arbitrary. Without loss of generality f # 0. Let {20, z!,...}

be linearly independent elements in E with span{z®, 2!, ...} being dense in E. The

set {20, ...} may also be finite. Let X* := span{z?,... 2"} and set x§ = pyzP.

Then x§ P, % and by Lemma 2.20 for every k € N there exists Ji, € H so that
{x?,, . ,xf}} are linearly independent in Ey for all J = J.
For J > Jj define fff on XLI} := span{zY, ... ,xﬁ} by

(ff}‘,xfﬂ = <f,xi>, 1=0,...,k.

18



2.2 Review of basic results

Then it holds

sup |(ff,zs)| — sup [(f,z)| < sup |(f,x)| (J € H).
zyexh zeX” Tk
s )|=1 |lz][=1 ll]=1

For every J € H we continue f f} to the whole space F; with preserving its norm
by applying the Hahn-Banach Theorem (cf. [Alt99, 4.15]). So for every € > 0 and
every k € N we find a J* € H with J¥ = J; and with

L5 < Ifll + e VT = JE,J € H.
By the unboundedness of H we can find a strictly monotone cofinal sequence

(J!)nen With J, = J" Vn €N, ie. with

n+1
2 < Il + —— VT = J, J e H
T = n+1 w ’

Now define f; by

= 0, it J ¥ Jp,
TTSE T - JLand J# Ty, k=1,2, .
then for every 9 > 0 there is a J., € H with

£ < W fI +e0 VT = e

Assume z; P, 2 and let £ > 0 be given. Let k£ > 0 be so large so that there
exist ag,...,ar € C with ||z — Z|| < &, where & = Z?:o ajx?, which is possible
by the separability assumption. Choose J > J;,J. with ||z; — pyz| < € and
|lps(x — )| < 2 for all J = J. For all J = J one obtains because of

(fr.psE) = (f,2)VJ = Jj,

the estimates

(Frwg) = {Fa)l < [{frwr —pre)l + [(fr,ps (@ = 2)| + [(f7,p57) = (f,2)|
< |If5lle +1Ifs112e + £l — =]
< (IfIF+e)e + (If1l + £)2e + [ flle < (4[] + e)e.

This shows f; L f since € > 0 was arbitrary.
We have already seen that for every € > 0 there is J° € H with

1£7]

Let € > 0 be given. It exists € F with ||z|| =1 and

E% < ||f||E* +eVJ = JO.

.2 2 A= 5.
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2 Discrete approximations

By the computations from above there is J. € H with
€
[(fr,psz) — (f.x)] < ks J!.

Thus |(f7, psz)| > ||f]| — 25 for all J = J.. Choose J' € H with J! = J! so that

<
3£l = 3e

which is possible since ||pjz| — 1 (J € H). Now for all J = J! holds

[ frlles > [1flles —e.

This finishes the proof. O

Ipszl| <1+ VJ € H with J > J!

The next result will be needed in the next section and also in Chapter 3. We
do not give the proof.

Lemma 2.23. Assume families of linear operators P and Q as above and fur-
thermore O with oy € L(G, G y) with the same properties as P and Q.

Then Aj LNy (regularly/stably), By 9.5 (regularly/stably) implies

B,A; 22 BA (reqularly/stably).

The benefit of the previous lemma for the next section will lie in the combination
with the next lemma.

Lemma 2.24. If A; 24 regularly and stably and if exvists A~1 € L(F, E) then
there is Jg € H such that

.»4}1 2P, A1 (J € H') regularly and stably,
where H' :=={J € H : J > Jy}.
Proof. Let (uy)jem be a net in Fy with uy 2 (J € H'). Then the stability
assumption and Lemma 2.14 imply that (.Ajlu 7)sen is a bounded net. Obviously
(As(A ' uy)) senr is Q-compact. Thus by the regularity assumption (A5 uy) sep

is P-compact. Let v := A~'u and assume (A uy)sep does not converge to v.
Then there is a cofinal subset H” C H' and 1 > 0 with || A, u; — pyo| > 7 for

all J € H”. By compactness there is a convergent subnet A;l'LLJ LNy (J € H")
with H” ¢ H”. But then

AJ(AjlzLJ) — Ao (J € H”/)
and
AJ(A;1UJ) —u(J € H”/),

thus ¥ = A~ 'u and this shows the QP-convergence of .Ajl to AL
The stable convergence follows directly from the boundedness of the net (Ay) jeq.
The regularity is shown as follows: Let (uj)jem be a bounded net in (Fy)
and assume that (A;l'lLJ)JeH/ is P-compact. Then (uy)jep is Q-compact since
Uy = AJ(A;LLLJ). |
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2.3 Generalized eigenvalue problems

2.3 Generalized eigenvalue problems

The main result in this section is Theorem 2.26 which basically is a reformulation
of [Vai76, §4 Konvergenzsatz(62)]. It is already presented in a similar version in
[Vai77a, §7], but the proof is only indicated there.

We assume that H is an unbounded directed set and we denote its elements by
J. We use the same notations and assumptions on P, Q, Ej, Fj, E, and F as
in sections 2.1 and 2.2. To simplify notation we do not distinguish in notation
between the different norms and write || - || since it is obvious from the context
which norm is used. We also write I for the identity map on E; and I for the
identity map on E. Finally dist stands for the usual Hausdorff semi distance of
sets in a Banach space, defined by dist(A, B) = sup,c 4 infpep ||a — b|| and in the
case that a € A one defines dist(a, B) = infyep [|a — b]|.

Theorem 2.25 (cf. [Vai76, §4 (62)]). Let T € L(E, E) and for every J € H let
Ty € L(E;,Ey). Consider the operator-valued functions Aj(u) = uly — Ty €
L(E;,Ey) forall J € H and A(p) :== ul — T € L(E,E) for allpe C. Let A C C
be an open domain in C and assume that the operators A(u) and for each J € H
the operators Aj(u) are Fredholm of index zero for all u € A. Furthermore assume

Ag(p) P, A(p) (J € H) regularly for all p € A and that o(T) N A only consists
of isolated points. Then the following properties hold true.

(i) For every uo € o(T)NA there is a net (py) e and an element Jy € H such
that wy € o(Ty) for all J € H with J = Jy and py converges to pg.

(i) If po € A is a clusterpoint of a net (py)jeq with py € o(Ty) ¥YJ € H,J = Jo,
for some Jy € H then it holds po € o(T).

(i53) If (1.g)jem is a net in C and (vy)jem is a net in (Ey) with puy — po (J € H)
and ||vy||g, = 1, so that there is Jo € H with py € o(Ty) for all J = Jy
and with Aj(puy)vy = 0. Then the net (vy)jem is P-compact and every
cluster-point vg € E is a normalized eigenfunction of T to the eigenvalue

Ho-

(iv) For the eigenvalues and eigenfunctions from (iii) the following estimates hold

1
(a) |uy — po| < Ce5,

1
(b) infy cnraquo)) Vs — pavolle, < CE5,

where r is the smallest integer so that N (oI =T)*) = ;2o N ((oI =T)7)
and €y is given at the end of the Theorem.

(v) Let 6 > 0 be so small that Ks(po) C A and Ks(po) No(T) = {po}. Denote
by Wy := Wi(Ty, o) the linear hull of all generalized eigenspaces of Ty
to eigenvalues py € o(Ty) N Ks(ug) and denote by W := W(T, uo) the
generalized eigenspace of T to the eigenvalue pg. Then there is a Jo € H so

that for all J € H with J > Jy hold
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2 Discrete approximations

(c) dim W(T, po) = dim W (T, o) < o0,
(d) (W, Wy) = Sup||v€||‘iV1 dist(ps(v), Wy) < Céy,
(e) (W, W) := supﬁ(,e”WJ dist(vy,ps(W)) < Cé;.
vyl|=1
Moreover constants in (iv) and (v) are independent of J for J = Jy with a suitable
Jo € H and €; in () and (v) is given by

€y = max [ Typjv —psTo|.
s

REMARK. Note that k in (iv) is finite because of the Fredholm properties (cf.
[Vai76, §4 Satz(26)]).

We do not give the proof here but rather indicate what must be done in case
one wants to follow the proof in [Vai76].

Indication of a proof. One has to be careful in several points. First one needs the
unboundedness of H since in one step of the proof (cf. [Vai76, §4 (18)]) Lemma
2.22 is needed. Second the measure of non-compactness has to be generalized for
our setting. It is used for the proof of [Vai76, §4 (55)] which is a crucial part in
the proof of (v). We have used the following definition: For every net (z;)jcp in
(E7) the measure of non-compactness is defined as

w(zy) :=inf{e > 0:V cofinal H' C H 3 cofinal H" C H',2' € E
so that ||z — ps2/|| <e (J € H")}.

It is clear that p has the properties [Vai76, §2 (72)-(77)], where one uses the
unboundedness of H for the proof of [Vai76, §2 (73)] because of a diagonal sequence
argument. In the proof one also needs the result of [Vai76, §2 (78)] in the easier
setting of [Vai76, §2 (79)] (it also holds in the case of unbounded directed sets,
but we omit its proof) and so the proof of [Vai76, §4 (55)] can be adapted to our
setting. The remaining steps in the proof of [Vai76, §4 (62)] do not cause any
trouble if one tries to prove them in the setting of directed sets. U

The next Theorem is the main result in this section. It will be proved by
application of Theorem 2.25.

Theorem 2.26 (cf. [Vai77a, §7 (89)]). Assume an unbounded directed set H
and families of operators P and Q as above. Let A, B € L(E,F), and Ay,
Bj € L(Ey, Fy) for all J € H. Denote by A the operator-valued function A(s) =
sB—A € L(E,F) and by Ay the function Aj(s) =sBy— Ay € L(E;, Fy). Let ¥’
be an open and bounded domain in C and let X3 be an open connected neighborhood
of the closure X' of ¥'. Assume that for all s € ¥ the operators A(s) and Aj(s)
are Fredholm of index zero and assume there is s € p(A)NL\ X% Finally assume
that for every s € 3 the operators Aj(s) reqularly PQ-converge to A(s). Then the
following properties hold.

*For the definition of p(A) and o(.A) see Definition C.6.
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(1) For every so € o(A) NY' there is a net (sy)jem and Jo € H so that for all
J=Jysy€oa(Ay) and sy — so (J € H).

(2) If (sy)jem is a net so that there is Jy € H with sy € o(Ay) for all J = Jy,
then every cluster point of (sy)jeny which lies in ¥ is an eigenvalue of A(-).

(3) Assume (sj)jem is a net in C and (vy)jem is a net in (Ej) so that there is
Jo € H with sy is an eigenvalue of Aj(-) and vy is a normalized eigenelement
of A;j(:) to the eigenvalue sy for all J = Jo*. Then the net (vy)jcp is P-
compact and every cluster-point vy € E is a normalized eigenfunction of A(-)
to the eigenvalue sg.

(4) For the nets from (3) the following estimates hold
1
(a) |55 — so| < Cef,

1
(b) infvoe./\/(.A(so)) HUJ _pJUOH < Cej,

where K is the largest order of all root-polynomials to the eigenvalue sg and
€7 is given at the end of the theorem.

(5) Let so € ¥ No(A) and g9 > 0 with K.,(so) C ¥ and K (so) No(A) =
{so}. Let W denote the root-subspace’ of A to the eigenvalue so and let
Wy denote the linear hull of all root-subspaces of Ay to eigenvalues sy €

o(Ay) N K.y (so). Then there is an index Jo € H so that for all J € H with
J > Jy hold

(c) dimWj; = dim W < oo,
(d) YW, Wy) := sup vew dist(pju, Wy) < Cey.
[[o]l=1
(e) 9OW5, W) = supﬁJeﬁ/\;J dist(v,y, pgW) < Cey,
vyl|=1
The constants in (a), (b), (d), and (e) are independent of J for J = Jy with a
suitable Jy € H. Finally €5 in (4) and (5) is given by

€j = max HAJ(SO)pJU—BJpJUIH.
v, €W
llvll=1
A(so)v=Bv’
Before we prove the theorem, we show a characterization of the root-subspaces
of A(-) which will be essential for the application of Theorem 2.25 in the proof of

Theorem 2.26.

Lemma 2.27. Let A,B € L(E,F) and assume A(s) = sB— A € L(E,F) is
Fredholm of index zero for all s € ¥ with X an open domain in C. Assume there
is s € X with A(s)~! € L(F,E) and denote by T the linear operator

T:=A(s)"'Be L(E,E).

*See Definition C.6.
tSee Definition C.6.
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Let sg # s and set pg = . Then the generalized eigenspace of T to the
etgenvalue pg given by

W (T, o) = | J{v € E: (ul - T)hv = 0}
k>0

coincides with the root-subspace of A(-) to the eigenvalue s
W(.A, 80).

Moreover we have the equivalence

0#v € E with (uol —T)*v # 0 and (ol — T)** v =0 for some k € N

if and only if

there is a sequence vy, ...,v, of nonzero elements in E with vy = v and
A(so)vo = 0,

2.3
A(SQ)’UPA :B’UZ', 7 :0,...,]{3—1. ( )
Furthermore for every v € W there is a unique v' € W with A(so)v = Bv'.

REMARK. Note that [Vai76, §4 (26)] states that the order of the eigenelements
of A(sg) is bounded.

Proof. We prove the first part of the lemma by induction. Clearly 0 € W and
0 € W so without loss of generality assume 0 # v € E.

It holds (uol —T)v = 0 if and only if A(s)(I — (s — s0)T)v = A(sg)v = 0. Thus
the case k = 0 is shown and in particular yields the equality

N (oI = T) = N'(A(s0))- (2.4)

Now show k —1 — k:
Necessity. Assume (uol —T)*v # 0 and (ol — T)**+'v = 0. From (2.4) follows
0 # (uol — T)*v € N(A(s0)). This implies

k
0= Also)(al =10 = Als0) 3 () (-1

=0
k
= ibAlsa)o — Ao 3 ()b

The equation above is equivalent to

A(so)v = A(so TZ ( ) T) 'y

B (- sD) Y (’“) g (=)

‘ 1
=1

k
OI T Z( ):U'O_l z )iflvl
=1
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Now define vg_1 = (uol — 7)) Z G ),ual Y(=T)"'v and note that (ugl — T)
commutes with the sum. Hence vy_; satisfies (uol — T)kvk,l = 0 and also (uol —
T)k=Yo,_1 # 0. Since if (ol — T)* tvj_; is zero, then

k
(pol — T’fZ( ) o TH(=T) v =0.
=1
But because of k2 > k + 1 this leads to
0= (ol — T)*(uoI — T)*v
k
= (uol = T)*pgv — T(uol — T’“Z( > ~T)" o = pg(pol —T)*v
=1
= (uol —T)*v=0
what contradicts the assumption. This also implies that v_1 cannot be equal to
zero. Thus by the induction hypothesis there are nonzero elements vy, ..., vi_9o €
E with (2.3) and so by setting vy := v the necessity follows.
Sufficiency. Let vy, ..., v with (2.3) be given. Then from the equality A(sg)vg =
Buy_1 we obtain (using A(s) "t A(so) = I — (5 — s0)7T)
0= (s — 50)*B(pol —T)*vp—1 = B(I — (s — 50)T) w1
— k
= (A(s0)A(s) )P A(s0)vr = A(S0) (A(s) " Also)) v
-1

= A(so)(I — (s = s0)T)" vk, (2.5)

where we use the induction hypothesis for vp_; and
B(I— (s —s0)A(s)™") = A(so)A(s) ' B.
By the equality N (A(sg)) = N (ol — T') we thus find
(ol = T)"* oy = 0.
Now assume (pol — T)*vj, = 0. One shows similar to (2.5) the equalities
0 = (A(s0)A())" " A(so)vr = (s — 50)" " Bl = T)* vg1.

By multiplication this equation from the left with A(s)~! one obtains

0= (ol — T) v = po(pol — T)F o1 #0

where we used the induction hypothesis and T' = A(s) "' B. This finishes the proof
of the equality W (T, o) = W(A, sp). We denote by W this space.

Uniqueness of v'. To show that for every v € W there is atmost one v' € W
with A(sp)v = Bv' assume there is v” # v/, v € W with A(sg)v = Bv”. Then
w = v —v" € W satisfies w # 0 and Bw = 0. But then w € N(T) and since
o # 0 we obtain w ¢ W which is a contradiction and proves the uniqueness. O
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REMARK. The proof also shows that the lengths of the Jordan chains for T
coincide with the orders of the root-polynomials. Therefore the maximal length
of all Jordan chains of T' to the eigenvalue sq is the same as the maximal order of
all root-polynomials of A(-) to the eigenvalue sy.

Now we can prove Theorem 2.26 by application of Theorem 2.25.

Proof of Theorem 2.26. Lemma 2.24 shows the existence of J; € H so that by
setting Hy := {J € H : J > J;} one obtains

Ajz(s)™ 27, A(s)™! (J € Hy) regularly and stably.
Therefore Lemma 2.23 yields
As(s) " Ay (s) 22 A(s)"1A(s) (J € Hy) regularly for all s € ¥.

Define T := A;(s)"'By € L(E;,Ey) for all J € Hy and also T := A(s)"'B €
L(E,E). With this choice we have

AJ(§)_1AJ(50) =(l;—(s—s0)Ty)VJ € H; and

A(s) T A(so) = (I — (s — s0)T). (2.6)

Define the map n: ¥/ — C, s — ﬁ and set A := n(¥’). From the assumptions
on s and X/ we obtain
0<Cy:=

< |yl < = Cy Yy € A (2.7)

dist(Y, s) dist(s, X')

Furthermore the assumptions on A and A yield that for all J € Hy and all y € A
the operators ul;— Ty € L(E;, Ej) and ul —T € L(E, E) are Fredholm of index

zero and o(7") N A consists of isolated points (cf. [Vai76, §4 (7)]). From (2.6) we
conclude

1
py € o(Ty) with py # 0 if and only if s — — € o(Ay) and
" (2.8)
p € o(T) with p # 0 if and only if s — p €o(A).

Now Theorem 2.25 is applicable.

(1) Let pg := 8_180 with sg € o(A) NY'. Then (2.8) implies ug € o(T) N A. By
Theorem 2.25 (i) there is a net (uy)jem, with py € o(Ty) for all J = Jo
where Jy is some element of Hi, and with p; — po (J € Hip). Because of
to € A and (2.7), Jo € Hy can be chosen such that |u| > % for all J € H;
with J > Jo. Thus, again by (2.8), it is sy := s — % €o(Ay) forall J € H
with J > Jy and s; satisfies the estimate

1 1 g — [0
|s; = so| =|— ——|=]—"——[<

2
3 |[kJ — Hol-
Ho g HopT 022’ |

This implies (1).
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(2)

™ (Kas5(po))

A={-LteC:seX}

s—s

/// ‘\
[ (so)
\ /
\ ,
* Kas(po).”
n(Keq(s0))

Figure 2.1: Visualization of the sets in the proof of Theorem 2.26.

Let (sy)jem and sp € ¥/ be given as in Theorem 2.26 (2). Then py :

~ 550
§—15(7 is a
net in C with puy € o(Ty) VJ = Jy. Now the assumption on (sj)jecy shows
that the net (us)sem has po € A as a cluster point. Then from Theorem

2.25 (ii) follows pp € o(T) N A and the equivalence (2.8) proves (2).

is an element of A. Furthermore s # s for all J > Jy and so puj :=

Assertion (3) follows from (iii) of Theorem 2.25 by application of (1), (2),
equivalence (2.8), and the equivalences of N'(A;(s)) and N (-1, —T)) for

all J € Hy and of N'(A(s)) and N(é%sf —T) (cf. Lemma 2.27).

For the proof of (5) let ¢g > 0 be given as in Theorem 2.26. Note that
n: X" — A is a homeomorphism. Set p := n(sp) and choose ¢ > 0 so that

Kos (o) C n(Key(s0)). For a visualization see Figure 2.1.
The results of (1) and (2) imply that there is J3 € Hy with

a(As) N Key(s0) C 0" (Kas(po)) VI = J3

since otherwise there would be a cluster point § of (s7)jem in the compact
set K., (s0) \ n71(Ks(s0)) € X'. But then by property (2), § would be an
element of o(.A) what contradicts the choice of g9 and sg. Together with the
result of Lemma 2.27 this yields that for J € H with J > J3 the space

Wy := W(Ty, po) :=linear hull of all generalized eigenfunctions of T;
to eigenvalues p1; with [y — pol < 20

is equal to

Wy :=W(Ay, sp) :=linear hull of the root-subspaces to
eigenvalues s of Ajy(+) with |s; — sg| < &o.

Now (v) of Theorem 2.25 shows with the definition

€y = max [p;Tv — Typyvl|g,, (2.9)
e
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2 Discrete approximations

that there is J4 = J3 so that for all J = J4 the estimates

dim Wy =dimW < oo

as well as

dWy, W) < Céy
and

YW, Wy) < Céy
hold.

Therefore it remains to show that there is J; € H; and a constant const > 0
such that

max ||p;Tv — Typsv||g, < const mau;v | As(s0)psv — Byp ' || VJ = Js.
v s e
[lv]]=1 llv]|=1

A(so)v=Bv’

(2.10)

Recall that by Lemma 2.27 for every v € W there is a unique v € W with
A(sp)v = Bv'. Such a pair (v,v’) of elements of W satisfies

BTv' = BA(s) ' A(so)v = B(I — (5 — s0)T)v = A(s0)Tv (2.11)

and also

As(s)™ (As(so)psTv — BypyTv') = (I — (s — s0)Ts)psTv — TypsTv'
= psTv —Typs((s — s0)Tv + A(s) "' A(so)v) = psTv — Typyv. (2.12)

Then by the stable convergence of Aj(s) LN A(s) (J € Hy) we find an
index J; € Hy so that ||.A;(s)7!|| < const V.J = J5. Hence (2.12) shows

|lpsTv — Typyv|| < const||Aj(so)psTv — BypsTV'|.

Finally the linearity of the operators py, By, Ay, and the inclusion

{(Tv, TV') : (v,0") € W2, ||v|| <1, A(sp)v = Bv'}
C {(v,v") e W2 ||ol] < |IT, A(so)v = Bv'},

which is a result of (2.11), imply

max lpsTv —Typyv|
[lvl|=1

<const max |[Ay(so)psTv— Byp,TV |
v’ €W
[[o]l=1
A(so)v=Bv'

< const[|T]|  max  [|A;(so)psv — Bypsv'.
v, v’ EW
llvll=1
A(sp)v=Bv’



2.4 Simple eigenvalues

So the required estimate (2.10) is shown.

Note that the last estimate does only depend on Js and sg. Therefore it
directly implies (4) by using the results

2 1
5= 50l < g lhs = pol £
2

and

1
inf vy —pugll < Cex
UOGN(.A(SO))H 7= pvoll = O

of Theorem 2.25 (iv) for the nets from (3).

2.4 Simple eigenvalues

In this section we present a result about the convergence of eigenvalue approxi-
mations for holomorphic operator-valued functions in the setting of discrete ap-
proximations.

The application of the Theorem 2.28 we have in mind is to allow for so called
projection boundary conditions in the approximation of eigenvalues of the bound-
ary value problems on the infinite line by finite interval approximations. The
advantages of projection-boundary conditions for the computation of connecting
orbits are discussed in [Bey90].

Note that the result of Theorem 2.26 does not apply to general holomorphic
operator functions since the proof makes substantial use of the polynomial struc-
ture of the operators. The result in this section is a reformulation of Lemma 1 of
[Bey80].

We use the same notations and assumptions as in the previous sections. Espe-
cially, we assume that H is an unbounded directed set and the spaces F, F, Ej,
F'; are separable.

Theorem 2.28. Let ¥ be an open subset of C. Let A : ¥ — L(E,F) be a
holomorphic and operator-valued function. Let sg € X be a simple eigenvalue of
A(+) with eigenfunction vog € E, vy # 0. Assume that (Aj)jem is a family of
holomorphic operator-valued functions Ay : ¥ — L(Ej, Fy) such that there is an
index J; € H with Aj(so) is Fredholm of index zero for all J € H, J > Jj.
Furthermore assume

(i) A;(s0) LN A(sg) regularly,
(i) Al(s0) == Al(s0),
(iii) for every e > 0 there is Jo = Ji, Jo € H, and 6 > 0 such that

|A(s) — A (s0)|| < e Vs e Ks(sg) C X, J = Jo.

29



2 Discrete approximations

Then there is an index Jo € H and a positive constant dy such that for all J = Jy
the function Aj(-) has exactly one simple eigenvalue sy € Ks,(So)-

Moreover, for each J € H with J = Jy there is a corresponding eigenfunction
vy € Ej with

|57 = sol + [[vg — pyvol| < const|[Ay(so)psvoll. (2.13)

We follow the proof of Lemma 1 in [Bey80], but rather than referring to [Vai76,
§3 (14)] for the existence part, we show this directly by applying the contraction
mapping Theorem (Lemma C.4) in order to circumvent the problem that [Vai76,
§3 (14)] is not formulated in the setting of directed sets. The idea for the existence
part lies in a kind of bordering the operators A ;(-) so that Lemma C.4 is appli-
cable. The second part, where simplicity of the eigenvalue is shown, is essentially
an adaption of the proof in [Bey80].

Proof. By a corollary of the Hahn-Banach Theorem (cf. [Alt99, Folgerung 4.17])
there is a linear and continuous functional g9 € E* with (go,vg) = 1. This leads
to a splitting F = span(vg) & W, where W := N (gp). By Lemma 2.22 we find a
net (f7)sen in (Ej)* with f; 2 go (J € H).

Thus there is J; € H with |(f;,pjvo)| > 1 for all J € H with J = J; and so we
can define

(fs,pJv0)

———f;, forall J = Ji,

9J = .
1, otherwise.

Since Lemma 2.11 and Lemma 2.18 imply that there is Jo € H with ||ps]|, || fs] <

const < oo for all J = Jy it follows that ||gs|| < const < oo for all J = Jo. Thus

the inequality

g p) — {g,2)] < 'm - 1\ (7 psad] + (7 ps) — g,

which holds for all x € E and all J = Jq, Jy shows

9J A go- (2.14)
Define the operators
B:Y¥xE—CxF,(s,v) — ({g,v) — 1, A(s)v) (2.15)
and
By:Y¥x E;— Cx Fy, (s,v) — ((g5,v) — 1, As(s)v). (2.16)

For the rest of this proof we denote by an upper index “0” the evaluation at sq,
Vo, PJvo, (So0,v0), or (So,psvo), where the exact meaning will be clear from the
context.

Furthermore define families of linear continuous operators P = (ps)jen and Q=

(G71)gen by

pj:Cx E— Cx Ey, (s,v) — (s,pjv)
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2.4 Simple eigenvalues

and
G;:Cx F — Cx Fy, (s,v) — (s,qs0).

(On products of Banach space (X, || - ||x) and (Y, - ||y) we use the usual product
norm given by ||(z,y)||lxxy := |lzllx + |yly.) It is clear that the families P and
Q satisfy the properties (2.1) and (2.2).

Step 1: It holds N(DB®) = {0}, where DB is the total derivative of B
evaluated at (sg,vg). (In the following D will always mean the total derivative
and ’ will stand for the derivative with respect to s.)

Let (¢,¢) € C x E with

0= DB((,¢) = ((g0, 8), CA'(s0)vo + A(s0)).

The simplicity assumption of the eigenvalue sg implies ¢ = 0 and so ¢ € N (A(sp)).
This means ¢ = cvg for some ¢ € C, but {go, ») = (go, cvg) = ¢ and so ¢ = 0. This
finishes step 1.

Step 2: The operators D39 are Fredholm of index zero for J = Ji.

The (Fréchet-)derivative of By at (sg, pjvg) can be written as an operator matrix
in the form

0 gJ
DBY = :Cx E;—CxFy.
T A (so)psve AS J J

Now the Bordering Lemma C.9 shows the second step.

Step 3: The operators DBS regularly-P Q-converge to DB,

The convergence DBY P2, DBO follows directly from assumptions (i) and (ii),
(2.14), and the definitions of P and Q. Thus it remains to show regularity.
Let (Cs,¢)sen be a bounded net in (C x E;), so that the net (DBY((s, ¢.7))sen
is O compact.
Let (¢s,¢5)jen’, H C H, be any cofinal subnet. From the boundedness follows
that there is a cofinal subset H” C H' with {; — ¢ (J € H"). Because of
the Q compactness of (DBY((y,¢.))sen there is a cofinal subset H” C H” and
(\,v) € C x F with

DBY(Cs 60) S (\v) (J € H).

This implies (A’ (s0)psvo + AYd, 2.0 (J € H"). Using the triangle inequality
and (A’ (so)psvo — (A’ (sp)vo, we obtain from this

Ay 2 v — CA (so)o (J € H").

This shows that the net (A%¢;) e is Q compact and so by assumption (i)
(¢7)jem is P compact. So there is H"" € H" and ¢ € E with

(Cré0) B (C,0) (J € B™).

Step 3 is proven.

31



2 Discrete approximations

Step 4: There is J4 € H and § > 0 so that B; has a unique zero (sj,vy) in
Ks(s0,pjvo) and this satisfies the estimate (2.13).
The results of steps 1-3 together with Lemma 2.21 imply
0 PO 0
DB — DB" regularly and stably.

Thus there are J3 >~ Jo and x,7 > 0 such that DBS is a homeomorphism for all
J = J3 and satisfies

I(DBY) M nicxrycxpy) < KV = Js (2.17)
as well as
IDBY | LcxEycxry) <7 VJ = Js. (2.18)
Now choose 0 < ¢ < 1 and € > 0 such that
(45 (s0) | + Ipavoll +€)e < 2T > .
By assumption (iii) there is §; > 0 with
| A (s) — Ay (s0)|| < e for all s € K, (sg) C & and J > J3, Jo.
Choosing ¢ := min(e, §;) one finds for all (s,v) € Ks(so, psvo)
I(DBy(s,v) = DB (G, 6)llcxr,
=|({gs,8) — (g7, ), C(AS(s)v — A (s0)psvo) + (As(s) — As(s0))9) ||
<[¢[[]AG (s)o = Al (so)pvol| + || As(s) — As(so)lll¢]
< ([l (s0) (v = pyvo) | + (A} (s) — Aly(s0))v)I¢]

1
T /O Ay (s0 +1(s = 50))(s — so)d| ]
<(IA45(s0)llv = pvoll + |4 () — Ay (so)[[|v]]) €]
1
+ /O 14, (50 + £(s — s0))[[dt]s — o6

<[4 (so)lle(Ic] + 191 + lpsvoll +e)el¢] + <2114
(M4 (s0)ll + Ipavoll + )= (1¢] + 191
<Xl + 119l12,) = TG )llexe,.

which implies

q e —
|DBy(s,v) — DBj(s0,pv0)|lcxE,—Cxr, < p V(s,v) € Ks(so,pjvo). (2.19)
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2.4 Simple eigenvalues

Finally, BS O-converges to BY as seen by

IBS — @sB°|| = ||({g, p.svo) — (g,v0), As(s0)p.svo — q1A(s0)v0) ||
= {91, psv0) — (g, v0)| + | As(s0)Psv0 — q1.A(S0)v0]|

and the convergences g A g and A% P2, 40,
Thus there is J4 € H with J4 = J3 so that for all J = J4 holds

1-a_,1-4
K

1B llexr, < 1B%llexr + 6

(2.20)

The inequalities (2.17), (2.18), (2.19), (2.20) show that the assumptions of Lemma
C.4 with the choice y = 0 are fulfilled. Therefore for all J > J4 there is a unique
zero (sy,vy) of By in Kg(sg,pjvo) and moreover the estimate

K K
1(s75v5) = (s0, pvo) || < 1—_q|139 —Ollexr; = 1fqHAJ(<<>’0)PJUOHFJ

holds. This finishes the proof of step 4.

Now it remains to prove the uniqueness of the eigenvalue in Ky, (so,pjvo) for a
suitable dg and its simplicity.

Step 5: There is J5 = J4 and 0 < d; < § so that sy is the only eigenvalue of
Ay in K, (s0,pyvo) for all J € H with J >~ J; and dim N (A (sy)) = 1.

Assume the assertion is false. Then there is a cofinal sequence (J,)nen in
H with (A\n,¢n) € ¥ x Ej, so that |\, — so| < min(n%i_l,é), lonlls, = 1, and
Aj (An)dn =0, but A, # s, or ¢, & span(vy,). Then it holds

1A, (50)nll = [ (A, (s0) = Az, (An)) Pall

1
S / ||A{]n(50 + t()\n — 50))H|>\n — 50|d7f
0
1
< [ (140, o)l + )t rn = 50
0

and thus lim,_. ||AJ,(s0)én|| = 0 which implies Ay, (so)dn 2, 0. Therefore
assumption (i) together with Lemma 2.17 shows that (¢, )nen is P-compact. Thus
there is a subsequence (¢ )nen, N C N, and ¢ € E with ||¢|| = 1 so that

b > ¢ (n € N).
The definition of PQ-convergence shows
A, (50)dn = A(s0)¢ (n € N') and also Ay, (s0)¢n = 0(n € N').

By Lemma 2.15 we have A(sg)¢ = 0 and the simplicity assumption of the eigen-
value sg implies ¢ = cvg for some 0 # ¢ € C.
This form of ¢ now implies

<ana¢n> - <gOchO> =c (n € NI)
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2 Discrete approximations

and therefore there is ng € N with |(g,,,, ¢n)| > |—;‘ for all n € N with n > ny.
Define

G = Tola mEeNL nzmn,
" Ons neN, n<ng.

For this sequence we obtain ¢, L vo (n € N') because of the inequality

- 1 1
H¢n —pJnUOH < H (m - E) ®n

+ H%wn —m)H

which holds for all n € N’ with n > ng. Since the right hand side converges to
zero and by the choice of the sequence A, follows that there is Ng > ng such that

én — P, voll + [An — so| < 0 ¥n € N with n > N. (2.21)

Note that the choice of (A, ¢,) € X x Ej, for all n € N with n > ng leads to
By, (s &) = ({9, n) = 1, As, 0n)n ) = 0. (2.22)

In step 4 it is shown that a point (/\n,én) with (2.21) and (2.22) must equal
(sJ,,v,) and therefore \,, = s, and ¢, € span(vy,) for all n € N’ with n > Nj
what contradicts the assumption. Step 5 is proven.

Step 6: There is Jg € H with Jg = J5 so that for all J € H with J = Jg the
eigenvalue sy is a simple eigenvalue.

Always assume J € H with J > Js. First we show DBj(ss,vy) e ppo
stably. Note that for all (¢, ¢) € C x E; holds

(DBY — DBy(s,v5)) (¢, 9)]|
= || ({97, 0) — (97, 0), (A (s0)psvo — Ay (sp)vs) + (As(so) — As(ss)) ) ||
< |4 (so)pvo — Ay (s)vs|[IC] + [[As(s0) — As(sh)| 19l
< {4 (s0)(pavo — vi)|| + [[(Al(s0) — A (s5))vsl} [C]

1
-+ /0 Al (s0 + t(sg — s0))(ss — so)dt]|[| 4]
< (14 o) Ipsvo — wall + 14 (s0) — Ay (s )l IC]
1
" /0 1A (50 + t(s5 — o))l dt | — solll8] (2.23)

Now the convergence result (2.13), proven in step 4, together with (2.23) imply
IDBY — DBy(ss, o)l ncxr,cxry) — 0 (J = Ju), (2.24)

where (J = Jy) stands for (J € {J € H:J > J4}).
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2.5 Discrete approximations and exponential dichotomies

The convergence (DBj(ss,vy)) P2, DB follows from

|DB(s5,v5)p.(¢,6) — G DBY(C, ¢
< |(DBy(ss,vs) — DBY)ps (¢, )| + 1DBY5s (¢, ¢) — GsDBY(C, ¢)|

and (2.24) together with the boundedness of the nets ps(¢,®) and (DBj(sj,v))

(what is a result of (2.23)), and DBY 2, DBO.
Finally the stability of the convergence is obtained via Lemma A.1 from (2.17)
and (2.24).

Therefore there is Jg € H with Jg = J5 and a constant Cy > 0 so that

(DB (s7,v5)) lrexrycxiy) < CoVJ = Jg.
This shows the stability inequality
1(¢; Dlexe; < CollDBy(s7,v)(C, d)llexr, VI = Je. (2.25)

Now assume there is J € H with J > Jg so that s; is not a simple eigenvalue of
Ajy(-). From step 5 we know that this implies A’;(s;)vy € R(As(s7)).
Let ¢ =1 and choose ¢¢ € E; with

Al (sr)vg = —As(s7)d0
and define ¢ := ¢g — (g, ¢o)vy. Then 0 # ((,¢) € C x Ey, but

(¢, D) lexr, < CollDBy(s1,v1)(C, ¢)|lcxr,
= Co(I{gs, )| + ICAG (s vs + As(s)l F,)
=0

since J > J;. This is a contradiction and shows that s; must be a simple eigenvalue
which is the claim of step 6.
Taking sy, vy and Jy := Jg finishes the proof. O

2.5 Discrete approximations and exponential dichotomies

We consider the following setup of spaces and operators:
We take as index set H :={J =[z_,z4] 12+ € Ryz_ <0< 24,2 < zy} with
the direction Jy > Jo i< J1 D Jo.

Consider the complex Banach-spaces

(Bl p) = (H' R,C, |-l ey,

(EJ7 H ’ HE]) = (Hl(‘]a (Cl)a H ’ HHl(J,(Cl))a
(B, 1r) = (La(R,CY, | - | Ly ety
(FJ7 H : HFI) = (LQ(J7 Cl) X Cl? H : HLg(J,Cl)XCl)7
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2 Discrete approximations

where || - ||, (sct)xct is the usual product-norm given by
[(hgs $)l Ly rctyxer = hallpy ey + 18l
Furthermore we define families of bounded linear operators P = (pj)jey and

Q = (qs)sen by
H'(R,C) — HYJ,CY,

b z — z|g

and

Ly(R,CY) — Lo(J,CH x C,
a7 :
h = (h|J’O)

Define the differential operator

. Hl(Ra (Cl) - LZ(R7Cl)7

L z — Lz=2z—M()z,

where M € C(R,ChH) with hyperbolic limit matrices My := lim, 400 M(2).
This operator has exponential dichotomies (ED)s* on Ry and R_ with data
(Ky,By,my) and (K_, 5, m_), respectively (see Theorem B.5).

Define the linear boundary operator
CHY(J,CH — c,

B Plalel) + Paslay),

where P_ and P, are fixed elements of C4. Finally denote by Ly, J € H’, the
differential operators
I H'(J,CY) — Ly(J,CY x C,

Ttz = (252 — M(9)z R2).

The situation is summarized in the following diagram.
L

1 l l
H'(R,CY TR Lo(R,CY
z—z| g |PJ q7 | r—(r|s,0)
H'(J,CY L Lo(J,C) x C!

zg—=(21,0—M(-)z5,Rzy)

Theorem 2.29. Let M, L, Ly, and the data K+, B+, w4+ be given as above.
Furthermore let Vi € CY be a basis of the unstable subspace of M, and let
VI ¢ ChP be a basis of the stable subspace of M_ and assume p +r = 1. Finally
assume that the boundary operator R satisfies

det (P_VIT P.VI) #0.

Then
L; 221 reqularly (J € H').

*For a short review of the theory of exponential dichotomies see Appendix B.
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2.5 Discrete approximations and exponential dichotomies

Proof. First we show the P Q-convergence of L to L.
For any z € E; with ||zs||g, <1 holds
ILyzillr, = 202 — M)zl Ly + Rz
< lzrall oty + 1M llooll25ll Ly (rety + 1P-za(2-) [ + [Przs(z4)].

By the Sobolev inequality (C.1) we have ||zs||cc < const||z;| 1 with a constant
independent of J for all J = [z_,z;] with |[x4 —z_| > 1. Therefore it follows

ILszsllF; < const|zy|lg1esom)

with a constant independent of J for all J with |J| > 1.
Hence by Lemma 2.18 it suffices to show for all z € E

|Lipsz —qiLz||F, — 0 (J € H). (2.26)
But for z € E we have
ILypsz —qsLz||p, = L2l — (L2)|sllpyacry + |P-2(2-) + Pre(zy)|
<|P_[|z(z-)| + [P4]|z(z4)| — 0 (J € H),

by Lemma C.3.

Second we show the regularity of the convergence.

Let (z)jen be a bounded family, z; € Ej, ||z5||g, < 1, such that (Ljzy)jen is
Q-compact.

Let H' C H be any cofinal subset of H. Since H is an unbounded directed set
there is a cofinal sequence (J,)nen in H'. We denote the endpoints of the interval
Jn by 2" and 27, ie. J, = [z",27].

From the Q-compactness of (Ljzy)jcy we obtain N C N and h € F with

_ LZJn _ LZJn . hn\ o /
Lz = <Ran> = <P%<x“> ¥ P+zjn<x1>> = () —hneN)

by definition this means
1L 20, = @2l Ey, = 1hn = Rl | La,,ct) + 180l = 0 (n €N). (2.27)

Because of the dichotomy property and the result of Theorem B.2 we can write
Zn 1= ZJ,, using the notation from there, as

2n(7) = {S(x’o)mo n(0) + 8@, 2 — o (a))zn (a}) + po (2, 2}) 220,
S(x,0)(I —7-(0))2,(0) + S(z, 2™ )m_ (2™ )z (™) + p—(z,2") x <0,
(2.28)

prtaat) = [ Gl o ()dy 2 >0

and

0
p—(z,2") = /n G_(z,y)hn(y)dy, = <0.
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2 Discrete approximations

Here G4 are the Green’s functions from Theorem B.2. Notice that the right hand
side of (2.28) is well-defined because of the uniqueness result in Theorem B.2.

By the Sobolev-inequality (C.1) and the boundedness of the sequence ||z, g(s,)
there exist N ¢ N’ and 7 € C! with

2,(0) — 1 (n € N”).

We define
S(x,0 0 0
S, 0)(I 7 (O)n+p_(z) =<0,
where -
- | i@y« >0
and
0
=/ G (z,y)r(y)dy, = <0.
By construction z is an element of Lo(R,C!).
Step 1: The subsequence (zy)nen» converges to z in the sense
Iz = 2l | £5(20) = 0 (n € N). (2.30)

From the definition of n we find

0
[ 180 = 7-0)((0) - n) P
2

0
< ngfw‘m\z (0) — n|*dx =
/OO " 203_

——|2,(0) = n|* = 0 (n € N") (2.31)

and similarly

n

/ T 1(2, 0y (0) (20 (0) — n)2dz — 0 (n € N"). (2.32)
0
The estimates (2.31) and (2.32) show

15 (2, 0)m4-(0)(20(0) = M)l o (f0,00)) + 15(, 0) (I = 7-(0)) (2 (0) = M)l £, ((—o00,0))
—0(neN’). (2.33)

Furthermore, we find

/‘/ G (2,y)hn(y)dy — / G_(z,y)h(y)dy|*dz
< 2/ﬂ </O G (2.9)l () — <y>|dy> dw”/i (/Oo |a<x,y>||h<y>|dy>2dx,
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2.5 Discrete approximations and exponential dichotomies

where we used (a + b)? < 2a? + 2b%. Using the Cauchy-Schwarz inequality, the
Theorem of Fubini and the convergence (2.27) we obtain for the first summand

0 0 9
/ . < / 1G—(,y)lln(y) —h(y)|dy> i

2
S/O (/0 Keﬁ‘xylhn(y)—h(y)ldy> dzx
< [ [ wzeay [ e g - Py

2K O e
<2 )~ n? [ ey

4K2
52 1B = Bl |l (5 — O (n € N).

Similarly it holds

/; </_i |Gz, )lh(y )|dy>2d90 < —/ y)|2dy — 0 (n € N”)

since h € Lo(R, C!). These computations show

/ ‘/ G_(z,y)h,(y)dy — / G_(z,y) y)dy‘Zdac — 0 (neN) (2.34)
and in the same fashion
/ | / Gi(x,y)hn(y)dy — = G+(ﬂ:,y)h(y)dy‘2dx — 0 (neN"). (2.35)
The estimates (2.34) and (2.35) prove
- (@, 2) = p— ()| Ly (fam o) + o+ (2, 2%L) = p (@) | Ly (0.2 ]) — O (n € N). (2.36)

Now we show

0 ) :1:7}r 9
/ |S(z, 2™ ) (" )z (z™)] dm—l—/ |S(x,xﬁ){[—7T+(x’i)}zn(xﬁ)| dx
™ 0

0(neN"). (2.37)

Because of the estimates

0 2
J A B L S M P

and

Jﬁ 2
|18t = m @)z s < ST = )P
0 +
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2 Discrete approximations

it suffices to prove
m_(2")zp(2") — 0 (n € N), and (I — my(2}))zn(2}) — 0 (n € N").  (2.38)

To get a hand on these terms we use |s,| = |P—z,(z_)+ Przy(24)] — 0 (n € N)
which follows from (2.27). We insert the representation (2.28) into the boundary
operator and obtain

Rzy = P_z,(2") + Pyzp(al)
=P m_(2")zp(a) 4+ Pp(I — my(2)) zn(2)
+ P_S(z",0) (I — 7-(0))2,(0) + P1.S(z7,0)m(0)2,(0) (2.39)

2
2 [ G s+ P [ Gt
0
The uniform boundedness of ||z,||«, 7 € N, implies

|P_S(2",0)(I — 7-(0)) 2,(0)| 4 | P+-S (2"}, 0)74(0) 2, (0) |
< (|Po| K_e P2l 4 Py Ky ﬁ+lr+l))yzn(0)\ — 0 (neN"). (2.40)

Next we show

0
P [ G )] — 0 (e N, (2.41)

=
P [ Galatdhao)ds] =0 (n € V) (2.42)
Before we prove these, note that because of (2.27) and the density of C§°(R, C!)

in Ly(R,C!) (see [A1t99, Satz 2.14]), for every € > 0 there is an index ng € N” and
a function h € C°(R, C!) with

[hp — h|JnH%2(Jn7(Cl) <eVn>ng,neN.

Now use this to prove (2.41) and (2.42). The triangle inequality yields

0 2
( /) eﬁ-'f"yrhn@)\dy)
_ 0 2 0 . 2
<2 (/n e P12l (y) — hn(y)\dy> + (/n e‘ﬁ'”ﬁﬁ_y'!h(y)!dy)

With the Cauchy-Schwarz inequality one can estimate the first summand by

2
O bz 1 - €
</ne Ol =ulih(y) — hn(y)\dy> Suﬁuh’h - hn”%Q(Jn) < ﬁvn > ng,n € N

For the second summand we note that there is a constant Cy > 0 with

h(y)| < Coe~ ™45l
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2.5 Discrete approximations and exponential dichotomies

thus

0 2 0 2
</ e—ﬂlwﬁ—y|ﬁ(y)|dy> < C? (/ e—ﬁxﬁ—yle—ﬁyldy>

z™ 2
2 x| |z

n | 0 |
< 002 / e*ﬁ—‘x_*me*ﬁ—Tdy + ﬂ" B*B—TB*B—HAdy
z” —

2

4C

2
< B—Qoe’ﬁ—m‘ — 0 (neN").

These estimates prove (2.41) and in a similar way one obtains (2.42).
Inserting the results of (2.27), (2.40), (2.41), and (2.42) into (2.39) shows

P_m_(a™)zn(a™) 4+ Py (I — 74 (2)) 2 (2}) — 0 (n € N). (2.43)

Now we denote by 74+ the projectors of the exponential dichotomies on R of the
constant coefficient operators L4z = z, — Myz. From Theorem B.5 we know

7y —my (@) —— 0
r— 00

and
|7 —7m_(z)] —— 0.

Tr——00

This convergence of the projectors and the equalities R(V!!) = R(7_) as well as
R(VI) = R(I — 71) yield that there is ng € N” so that for all n > ng, n € N,
there are o, € CP and 3,, € C" with

(™) 2, (") = 7_(z")V e, (I -7 (a?)za(a?) = (I — 7y (a)VIB,.
Now we can write the left hand side of (2.43) in the form
P (@) zn(@™) + Pyl — oy (22) 2 (o)

=P Vo, +P,(I-7 VLB, +P_(m_(a")—7_ )V o+ Py (74 —74 (1)) VL By,

—(P.V! PV (g:>+(P(7r(x”) — 7 )V Py(ry — e (2)V]) (g:) .

Because of the convergence
(Po(r_@m) =7 VI, Py —m (e)VI) — 0 (J € H)

the Banach-Lemma A.1 implies that there is Ny > ng so that for all n € N” with
n > Ny the matrix

A(z",z}) = (P_VIT PV]) + (P_ (- (@) =7 )V, Pu(ry - 7r+(m:i))Vf>

is invertible and the inverse is uniformly bounded for all n > Ny, n € N”. Therefore
ay, and (3, are uniquely determined for all n € N” with n > Ny and because of
(2.43) we also obtain (ay,, 8,) — 0 (n € N).
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2 Discrete approximations

Then the boundedness of 7_(x) and 74 (x) and the convergence of a,, (3, imply
(") 2, (2") = 7_ (™) V1o, ——0ne N
(I — 7 (27)2n(2}) = (I — 7y (2)) V] By — 0, n e N”.
Hence (2.38) follows. And this finishes the proof of (2.37) which states

15 (2, 2 ) (22) 20 (22 )| Ly om0y + [15(2, ) (1 = 74 (22)) 20 (2| Ly 0.27))
—0(neN'). (244)

Now adding (2.33), (2.36), and (2.44) proves the assertion of step 1.

Step 2: The limit z from step 1 is an element of H!(R,C!) and satisfies the
differential equation Lz = h in Lo(R,C).

By construction z is an element of Ly(R, C!) thus it remains to show that the dis-
tributional derivative can be represented by some element w € Ly(R,C!). There-
fore define

w:=M(-)z+ h. (2.45)
From the boundedness of M and z,h € Lo(R,C), w is an element of Ly(R,C').
We show that w is the distributional derivative of z, i.e.
(0, ) ety = —(2:8 ) Loy Vo € CO(R,C).

Let ¢ € CSO(R,(Cl) be arbitrary. Because of the cofinality of the sequence
(Jn)nen there is ng € N” with J,, D supp(¢) Vn > ng,n € N”. For all n > ny,
n € N”, holds

‘(wv ¢)L2(R) + (Z7 ¢,)L2(R)’ = ’(w‘Jn7 ¢)L2(Jn) + (Z’Jna ¢/)L2(Jn)‘
< W1y @) Lo (sn) = Zna @) Loy | + 125> ) Lo (1) = (205 @) Lo
<Nwls, = znall Lo lollLs + 1215, = 20l Lo 1€,
<ol {Ilwls, = 2nell o) + 1215, = 20llLa0)
<N ollm {IMllocllzln = 2allLacrn) + W0la = hallLor + 1210, = 2allLan) }

where (u,v)r, denotes the usual La-inner product. In the estimates we have used
the definition of w and that z, € H'(J,,C!) satisfies Zng = M(-)zn + hy in
Ly(Jn, CH). Now (2.30) and (2.27) imply

l(w, )L, + (2, ¢/)L2‘ m 0, neN".

Thus step 2 follows since the considerations from above show z, = w € Lo(R, C')
and therefore
Lz=2,—M()z=w—M()z=h in Ly(R,C).

Now the P-convergence of (z,)pen to z follows from

1215, = zalli g,y = N2l = 2001500, + 2alsn = 2nalla0)

(Jn) M (Jn)
iz
— 0, n e N".

This finishes the proof of Theorem 2.29. U
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3 The hyperbolic case

In this chapter we consider a linear strictly hyperbolic PDE of the form
vy = Pv, in [0,00) x R. (3.1)
The operator P is given by
Pv = Bvy + Cw. (3.2)

For example (3.1) may be obtained as in the introduction by linearization at a
travelling wave solution.

3.1 Assumptions

For the coefficients of P we make the following assumptions.

Assumption 1.

(H1) The matrix-valued functions B € C?*(R,C™™) and C € C*(R,C™™) satisfy

J lim B(z)=: By and 3 lim Bi(z) =0,

z—+00 r—+o00
3 lim C(z) =: Cy.
r—300
Furthermore we assume that their second respectively first derivative are
uniformly bounded

(H2) For every x € R the matrix B(z) is a real diagonal-matrix, where the first
r entries are positive and the last m — r entries are negative. The matrix
satisfies a uniform invertibility condition, i.e. 3bg > 0 with

bii(x) > by Vr e R;1 <i<r,

. (3-3)

—b”(CC) >bhVreRr+1<i<m,

as well as a uniform gap condition. There is v > 0 with
|bii(x) — bjj(x)| >y Vr € R, i # j. (3.4)

(H3) For the limit matrices Cy. the real parts of the diagonal elements are bounded
from above by

for some 6 > 0.

43



3 The hyperbolic case

(H4) For any w € R it holds that
S € O'(iWB+ + C+)

or
se€o(iwB-+C.)

implies Re s < —0. Here o(iwB4 + C) denotes the spectrum of the matrix
iWB+ + C+.

From assumption (H1) directly follows the boundedness of || B||~, ||Bz|lco and
IC|loc- We define
| Bllooc =: By < 00. (3.5)

Throughout the text we denote by M (4, ¢) the subset of the complex plane defined
by
M(b,¢) :={se€C:Res> —4,|s| > c}. (3.6)

_=5/

Figure 3.1: Illustration of the subset M (4, ¢) in the complex plane.

3.2 Resolvent estimates for large |s|

This section is in many parts a rigorous carry out of the proofs from the personal
notes of J. Lorenz [Lor99]. At some places we also improved the estimates which
was necessary for the application of the results in the mixed case in Chapter 4. A
crucial part in this section is the application of Lemma A.7. We state and prove
the lemma in Appendix A since the proof is quite long and would interrupt the
line of argumentation.

The goal in this section is to show that the all line operator

Pv=Buv, +Cv, P:HYR,C™) — LyR,C™), (3.7)

and its restriction to a finite interval J = [x_,x], J large enough, both have no
spectrum in the region M(J,c) for large c¢. More specific we will show uniform
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3.2 Resolvent estimates for large |s|

resolvent estimates in this region. Analogous results for parabolic systems which
we will review in Section 4.2 are given in [BL99, Chapter 2].

Denote by P|; the operator P on the finite interval J = [x_,x1]. For the
boundary value problem on the infinite line the boundary conditions are given in
the domain of the operator P, but for the finite interval boundary value problem
one has to provide explicit boundary conditions. We will always assume linear
two point boundary conditions. Therefore consider

P|jv = Bv, + Cv, Pl;: H'(J) — Ly(J)

; (3.8)
Rv=R v(z_)+ Ryv(zy), R: H(J) —C™

as an approximation of the all line operator on finite intervals. Here Ry € C™™
are constant matrices.

In the sequel we will often partition the boundary operator in the form R4y =
(Ri, Rlil), where R € C™" and R € C™™ ", corresponding to the splitting of
B into positive and negative real parts.

Theorem 3.1. Assume that (H1), (H2), and (H3) hold. Then there exist positive
constants Co, K such that for all s € M(9,Cy) and every F € Ly(R,C™) the all
line problem

(sI — P)uv=F in La(R,C™) (3.9)

has a unique solution v € H*(R,C™). Furthermore this solution can be estimated
by
lol® < K|LF1%. (3.10)

If in addition F € H'(R,C™), then the estimate can be improved to
[ + llva|* < K(IFI? + |17 %)- (3.11)

Moreover there exists 0’ > 0 such that for all s € C with |s| > Cy and Re(s) > ¢
the estimates (3.10) and (3.11) can be improved to

Re(s)?|v]]* < K| F|? (3.12)
and

Re(s)*{[[v]]* + llva I*} < K {IFI* + || =1} (3.13)

respectively.
In all inequalities the constant K is independent of s and F.

The analogous result for the restricted problem is given in the next theorem.
In the theorem we consider functions at the endpoints of the intervals and use
lvf2 := |v(x_)|? + |[v(z4)|* as a norm on the boundary. Note that the boundary
norm also makes sense for functions v € H!(.J) because of Lemma C.2.
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3 The hyperbolic case

Theorem 3.2. We assume (H1), (H2), (H3), as well as the determinant-condition
Do = det(R RY) # 0. (3.14)

Then there ezist positive constants Cop, b, and K such that for all s € M(6,Ch),
all J = [x_,x4] D [=b,b], all F € La(J,C™), and all n € C™, there is a unique
solution v € H'(J,C™) of

(sI — P)v=F, in Ly(J,C™), Rv=n. (3.15)
This solution can be estimated by
ol + [olf < K{Inl* + | FII*}. (3.16)

Furthermore there exists 6’ > 0 so that for all s € C with |s| > Cy and Res > ¢,
the estimate (3.16) can be improved to

Re(s)?[[v]” + Re(s) vt < K{||FI[* + Re(s)[n[*}. (3.17)
In all inequalities the constant K does not depend on x_, x4, s, ', and 7.

The inequalities (3.12), (3.13), and (3.17) are improvements of the resolvent
estimates claimed in the notes [Lor99]. These estimates are also necessary for the
operators P and P|; to generate Cy-semigroups on the respective spaces, but they
are not sufficient since an estimate of this type is necessary for all powers of the
resolvent and the constant K must be independent of the powers. For the theory
of semigroups see for example [RR93, Chapter 11] or [Paz83].

REMARK. Note that the improved estimates only hold if one is far enough to
the right of the imaginary axis, but the original estimates also hold in some parts
to the left of the imaginary axis.

In order to prove the Theorems we now follow the line of proof from [BL99,
Chapter 2] and [Lor99]:
In a first step we transform the resolvent equation such that it is written as a
perturbation of a diagonal system. For the diagonal system we show that it has
an (ED) on R and with the Roughness Theorem for (ED)s B.4 we conclude the
same for the perturbed system. This is done in 3.2.1.
In the second step we conclude in 3.2.2 from this result Theorem 3.1.
In 3.2.3 we follow the proof of [BL99][Theorem 2.1] to prove Theorem 3.2.

Until the end of this section we will always assume (H1), (H2), and (H3).

3.2.1 Exponential dichotomies for large |s|
Rewrite the resolvent-equation
(sI — P)u=F in Ly(R,C™)

in the form
v, = (sB~' —= B71C)v — B™'F. (3.18)
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3.2 Resolvent estimates for large |s|

From the assumptions (H1) and (H2) one obtains the bounds
1B loo < 00, [I1B™!Clloc < 00, I(B™)alloo < 00, [(B™'C)allc < oo

Furthermore by (H2) the matrix-valued function B~ fulfills a uniform gap-condition

of the form
1 1

bi(x)  bj()
Therefore we can apply Lemma A.7 with D = B~! and E = B~'C. This proves
the existence of an € > 0 such that there is a matrix-valued function

y
>
18113

>0Vr e R,7#j.

T: (x,7)— T(x,r) =1 +rTi(x,r) € C(R x {|r| < €}, GL,,,(C))

with for all (z,7) € R x {|r| < &} is T(z,r)"}(B(z)~! + rB(z)"'C(2))T(x,7)
a diagonal-matrix and ||T}|lec < Cro < oo. The Lemma also shows that T is
differentiable with respect to x, 11, is continuous and also uniformly bounded
HTLJ;”OO =: CT71 < o0.

Now choose

1 2
Ca Z max(g, C—) (319)
T,0

and define as in (A.5)
Ti(z,s) == T (x, %), for x € R, |s| > CY,
and
T(x,s):=1+ éTl(x, s) for x € R,|s| > C,. (3.20)

By the choice of C, the Banach-Lemma (Lemma A.1) is applicable and yields (see
(A.7))
1T oo < 2. (3.21)

The construction of T' shows that the matrix-valued function
A (z,s) — Az, s) =T (x, s)_l(sB(az)_l - B(x)_lC(x))T(x, s)

is diagonal-matrix-valued.
Moreover Lemma A.6 and Lemma A.7 imply the estimate

]Aii(x, 8) — (sbii(m)_l — b“(m)_lcu(m))\ S g (3.22)

for the eigenvalues. Here Cy is a positive constant independent of z and s.
Now we transform the system (3.18) by using the variables

Tz:=v. (3.23)

Then (3.18) becomes
Zze = (A =T 'T,)z + F, (3.24)
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3 The hyperbolic case

where F(z,s) = —T7Y(z,s)B~'(z)F(x). We denote by L(-,s) the differential
operator
L(-8)2 = 2 — (A(,8) = T (-, 8)Tx (-, 8))2 (3.25)

and write the transformed resolvent equation (3.24) in the form
L(z,s)z=F. (3.26)
We show the property of (ED)s for the diagonal part of (3.26).

Lemma 3.3. There exists C, > Cq such that for all s € M(6,Cy) the diagonal
operators L(x,s) given by

L(z,s)z =z, — Az, s)z (3.27)
have an (ED) on R where the data (K, [3,7) can be chosen independently of s. In

particular on can choose
s 0 0
-~ \0 Im—r

6:4—B0

as projector of the (ED) and

as exponent of the (ED).

For the proof of Lemma 3.3 we need the following auxiliary result for scalar

equations.
Lemma 3.4. Let A € C(R,C) and let £~ < &, € R with
ReA(z) < —a <0, Vx e R\ (£_,&4), (3.28)
or
ReA(z) >a >0, Vx e R\ (£-,&4). (3.29)
then the scalar equation
Lu =uy — Au (3.30)
has an (ED) on R with data (K, 3,7), where we can choose
y
K= max ex Re \(&§)d€) exp(a —&)), 3.31
o mcexp( [ ReA©)d9) explalsy — ) (331
p=a, (3.32)
=1, (3.33)

in the case of (3.28) and it is possible to choose

Y
KZ&%&@“WA_&M@%WMM@_ﬁm (3.34)
b=a, (3.35)
m=0 (3.36)

in the case of (3.29).
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3.2 Resolvent estimates for large |s|

Proof. The solution-operator of (3.30) is given by
S(a.y) = exp( | MEde).
y

First we assume the case of (3.28). Then for the data as in (3.31)—(3.33) we have
0=1[S(z,y)(1 —n(y))| < Ke Plo¥ vy <y
Therefore it remains to show that for all y < x the inequality
|S (2, y)m(y)| < Ke Pl (3.37)
holds.

1. In the case y < z < £_ we can estimate

S| = Jeso( [ "A(E)d€)] = exp / "ReA©)de)
< exp(/a3 —adf) < Kexp(—plz —y|)

and so inequality (3.37) holds.

2. In the case y < ¢ < x <&, we split the integral and obtain the estimate

S| = Jel [ "A(E)de)] = exp / “ReA©)de)

Y

E_ T
< (| —adgyexp( [ ReA(€)de) < K exp(~pla ~ y]).

This proves (3.37) for this case.

3. Similarly we split the integral in the case y < ¢ <&, <=z

Sl = e[ A©de)| = exp( [ Re©)de)

IN

& [ x
ex —adf) ex Re A(€)dE) ex —ad
p</y Gexp( [ ReA©d) p% )
< Kexp(=flz —yl).

4. The cases ¢ <y <z < ¢, and &- <y < &, < x are shown in the same
way.

The proof under the assumption (3.29) is similar. O

We could apply Lemma 3.4 directly to (3.27) and see that these operators have
(ED)s on R for all s € M(4,C,), where Cj, is the constant given in (3.19). Since
we aim for estimates independent of s in Theorem 3.1 and Theorem 3.2 one has
to be more accurate.
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3 The hyperbolic case

Proof of Lemma 3.3. By assumption (H3) for every i = 1,...,m, there exist
£-(1) < £4(7) € R with

Reci(r) < —50 Vo € R\ (€ (i), & (1))

Let £ := minj—1,__m,m &_(7) and &4 = max;—1,__m &4 (7). By equation (3.22) one

can choose Cy, > C, such that for every i = 1,...,m one has
|Asi(z s)—L(s (x))] Vis| > Chy, x € R
AR bm(x) 10 = 4By by
Hence
[ReAu(z,s) ~ Re (s — ca(a))| < 7o, ¥ls| > Gy 2 € R (339
eMNiy(z,s ebii(x)s cii(x < 1By s| > Cy, x . .

This shows that for all s € M(§,Cy) and all z € R\ (£_,£;4) one can estimate

1
Re Aji(x,s) > b () Re(s — ¢ii(x)) — %
5 5 5 (3.39)
> — = for1 <<
~ 2By 4By 4BQ’ ort=reT
In the case r + 1 < 4 < m one obtains
Re Aui(z,5) < Re - (s — c(2)) + o
€N (T, 8) S e S — Ci\ T =
b”(.%') 4BQ (3 40)
1 1) 1) '
<—Zct-——=

= By2 4By 4By

With Lemma 3.4 follows that the diagonal operators L(, s) have (ED)s on R with
data (K(s),3,7), where

R(s) = exp(a(e — €)) - max (max mc - oxp( [~ ReAu(€. ).

1<i<r ¢ <w<y<é;
Yy
Re Ay d
r1SiEm ¢ <ry<e, eXp(/m ehiil&, ) 5)>’
~ 1)
p=
4B,

-_(0 o0
_OIm—r.

We still have to show that K (s) can be bounded uniformly in s. Therefore consider
equation (3.38). By estimation in the other direction one obtains
for1<i<r

0

1
— . < — .. - = . .
Re Aji(z,5) < b (6+ 5_213%(& Recii(z)) + 1B, Sis (3.41)
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3.2 Resolvent estimates for large |s|

and for r+1<7<m

1
ReAji(x,s) < %(5 + 571%1;2%+ Rec;i(z)) + 1B, =: 5. (3.42)

Hence

1<i<m

&+
K(s) < exp < max( max si,O)d§> exp(Bléy —€|) = K.
¢

O

For the proofs of the improved resolvent-estimates (3.12), (3.13), and (3.17) we
need another version of Lemma 3.3. The resulting version will also be needed in
the mixed parabolic-hyperbolic case for the proof of a Fredholm alternative.

Lemma 3.5. There exists a & > 0 such that for all s € C with Res > & the
diagonal operators (3.27) have (ED)s on R with data (K, [((s), ), where

K =1, 3=cRe(s), 7= (8 IO ) (3.43)

and ¢ > 0 is some constant independent of s.
Proof. By assumption (H3) follows

sup max Rec¢;(z) = my < 0.
z€R i=l-m

Choose &' > C,, such that
1l G
2By~ byd! 672

where Cj is the constant from (3.22). .
Then for 1 < i < r one can estimate by (3.22) for all s € C with Res > ¢

ReAji(r,s) > Re (bi;m) (s — Cn‘(x))> - %
1 |m4 | Ca
= Re(s) (FO by Re+(s) - Re(s)2>

> Re(s) (2—113() .

In the same way one finds for r +1 < i < m for all s € C with Res > 5

ReAji(z,s) < —Re(s) <2LBO> .

Now the Lemma follows from Lemma 3.4 with £_ = &,. O

51



3 The hyperbolic case

In the next step we conclude that the operators L(-,s) defined in (3.25) have
exponential dichotomies on R by using the Roughness Theorem B.4. The aim is
the following Lemma.

Lemma 3.6. There exists Co > 0 such that for all s € M(6,Cy) the operators
L(-,s) have (ED)s on R with data (K, 3,7(x,s)), where K and 3 do not depend

on s. Moreover there is a constant independent of x and s so that

im(z, s) — (0 0 >|§ C“)S‘St. (3.44)

Proof. Take Cy > C) such that 3K 2CT L < 3.

By construction of 7" and equations (3 21), (3.20), (3.19) follows with Lemma A.1
for all |s| > Cy the estimate

7708 (o 5)| < 2To(a,)] < :Cr
S
2CT1 (3.45)

Co

Then we can apply the Roughness Theorem B.4 and obtain that the operators
L(-, s) also have (ED)s on R with data

68— 3vK
B=p-2wK.

And for the projectors holds the estimate

(@, ) = (8 Lf) |

KR / e~ B+DN=3\| =1 (y VT (y, 5)|dy
R

< KK, / e~ (B+B) =3 g,
|| R
< 4KRCT71 __const

B+B)s| sl
]

If we use Lemma 3.5 instead of Lemma 3.3 we find with much the same proof
stronger estimates that will be important for the proof of an (ED) in the mixed
hyperbolic-parabolic case in Chapter 4.

Lemma 3.7. There is a positive constant &', such that for all s € C with Res > ¢’

the operators L(-,s) have an (ED) on R with data (K, B(s),n(,s)), where the data
can be chosen such that

K =3, (3.46)

B(s) = const Re(s), (3.47)
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3.2 Resolvent estimates for large |s|

and w(z,s) can be estimated by

02 )-res

Proof. Take & > ¢ with & from Lemma 3.5 such that for all s € C with Res > ¢’
we have

const
< —. 3.48
~ |s[Re(s) (3.48)

3v(s) < B(s) = cRe(s),
where v(s) is given by

2Cr _
(s) = 2L 5 (10, 5)T )

(cf. (3.45)). Then we can apply Theorem B.4 because of the inequalities
B(s) > 3v(s) >3- [T~ Yz, 5)Ty(z, )|

the required inequality (B.8) is satisfied. Hence Theorem B.4 yields an (ED) on
R for the operators L(-, s) with data
8Cra1

Re(s)(cRe(s) — %06{5 ) '

K=2+

By enlarging ¢’ we can assume K = 3.
For the exponent of the dichotomy we obtain

- _ - ¢
Bs) = B(s) = 2T Tl K > 3 Re(s).
Finally the estimate (3.48) for the projectors are derived

0 0 % —(B(s)+B(s))|z— —
e = () 0 )1 < K [ OO )1y

< const / e—cRe(s)lz—yl gy,
R

|s|
const

sl Re(s)

Here the constant const is generic, but does never depend on s. ]

3.2.2 The all-line problem

Now we are ready to prove Theorem 3.1.

By Lemma 3.6 we know that for all s € M(6,Cp) the operators L(-,s) from
(3.25) have an (ED) on R with data (K, 3,7), where K and 8 do not depend on
s. Thus Theorem B.2 implies that for all ' € Lo(R) there is a unique solution
z € HY(R) of (3.26). This solution can be estimated by

#l2l* < 5KZ||F|?,
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3 The hyperbolic case

which leads to
121> < K1 || F|?

with some constant K; > 0 which is independent of s and F.
Transforming back to the original coordinates shows

[l = T2 < [ TIZ )2 < T2 KL F)12
= KT () B
< KuplFI (3.49)

The constant Ky, thus depends on 3, K, ||T||o0, and || T, but these values
do not depend on s and so (3.10) follows.

In order to prove equation (3.11), assume that F is an element of H!(R) and
differentiate (3.9) with respect to x. This leads to the following equation for v,

Svy — Bugy — (C + By)vy, = Cpv + F, in Ly(R,C™). (3.50)
By assumption (H1) the operator P’, given by
P'v = Bv, + (C + By)v,

has the same properties as P. Thus we can find a new C’é > C, such that for any
s from M (4, C))) we can estimate v, in the same fashion as v in terms of the right
hand side and find

loall* < KopllCov + Fol®

< K, ([[oll® + |1 F2 %), (3.51)

with a constant K (/lllp which does not depend on s.

Combination of the two equations (3.49) and (3.51) shows the claimed inequality
(3.11).

For the proof of the improved estimates (3.12) and (3.13) we assume, that s is
from M(—d",C}). Then Lemma 3.7 implies that K = 3 and 3(s) = cRe(s) can be
chosen as dichotomy constant and dichotomy exponent. So we obtain by Theorem
B.2

Re(s)?[|2]|* < const|| £,

where const does not depend on s or F.
Transforming back shows
Re(s)2||v||2 < const Re(s)2||zH2
< const||F||* < const|| F||?,
where const is a generic constant, but does not depend on s and F, again. This
proves (3.12).

The H'-estimate (3.13) is again obtained by differentiation of the original equa-
tion and applying the Lo-estimates. U
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3.2 Resolvent estimates for large |s|

3.2.3 The finite interval problem

From now on we assume that J is a compact interval with endpoints z_ and z,
ie. J=[z_,z4], and s € M(9,C,), such that the transformations (3.23)—(3.25)
from 3.2.1 are justified. We rewrite (3.15) as before as

L(z,8) = 2, — (A = T7 ')z = F, in Ly(J,C™),

3.52
Riz=n. (3.52)
where we have used the transformation Tz := v and F := —T~!B~!F again. The
boundary conditions in these new variables are given as
=R v(z_)+ Ryv(x
n=R o(e )+ Ryv(es) )
=R _(v_,8)z(x_) + Ry(zy,s)z(x4) =: Rz,
where
Ri(ry,s) = RiT(v4,s). (3.54)

Notice that although the original boundary operator does not depend on x4, x_,
or s, the transformed operator Ry does because of the  and s dependence of the
transformation.

We show that the determinant-condition (3.14) for the boundary operator R
implies a similar determinant-condition for the transformed operator R;.

Lemma 3.8. There is C. > C, such that for all s € M(5,C.) and all x+ € R
holds

det (Rl—l(x*’ S) R—Ii—(er’ S)) 7£ 0, (355)
where Ry = (Ri R_{EI) 1s partitioned in the same way as Ry.

Proof. One obtains

RI_I(:C,S):R(:c,s)< 0 )ZR(IJFETI(:C,S))( 0 >

Im-?" Im—r
_ i, b 0
=R+ S(R_Tl(x_,s)) 7 , (3.56)
and similarly
_ 1 I
R{’_(QLF, S) :R_Ii_ + E(R+T1(.’E+, S)) <O> . (357)

It follows
(RU(x_s5) Ri(r9) = (R RY)+ - ((RTyams)! (RiTi(ass))")

By choosing C. > 2Cr,0(|R—|+|R+])[|(RY, RL) ™o the Banach-Lemma (Lemma
A.1) implies (3.55). O
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3 The hyperbolic case

REMARK 3.9. Note that the definition of Ry in (3.54) directly implies that for
all J = [z_,z4] and all s € M(0,C.) holds the estimate

_ C
IRy| = |ReT(zs,s)| < |Ry] (1 + ﬁ) . (3.58)
Furthermore from the proof of Lemma 3.8 follows
((Rif, Ri)_l( <2 ((Ry, R{r)_l‘ : (3.59)

for all J and all s € M(0,C.).

To simplify the argument, we assume that Ry € C"™™ are constant matrices.
This is no restriction, since we will see that all estimates we derive only depend on
the norms |R+| and on ‘ (Rif Ri)_l , but not on the exact entries. By Remark
3.9 we know that these are bounded independently of z and s if |s| is large enough.
So the same proofs also work for the case of non-constant matrices R4 defined in
(3.54), as long as |s| is sufficiently large.

By the Fredholm-alternative for boundary value problems, it suffices to show
that there is a solution of (3.52) for arbitrary right hand sides. Then the unique
solvability follows from the Fredholm property.

Now we proceed as usual. First we determine a particular solution z,, €
HY(J,C™) of L(x,s)z = F in Ly(J,C™) and then we solve the semi-homogeneous
problem, i.e. for arbitrary ¢ € C™ we look for a solution zj4, € H'(J,C™) of

L(z,s)z=0 € La(J,C™), Riz=¢C.

In the following proofs we will denote the solution-operator for L(-, s) by S(z,y),
suppressing the s-dependence of the solution operator. Asin Lemma 3.6 we denote
the dichotomy data by (K, 5,7(-,s)). We will also write m(-) instead of 7 (-, s) in
order to simplify notation.

Lemma 3.10. For every s € M(6,Cy), with Cy from Lemma 3.6, and for every
F € Ly(J,C™) the differential equation

L(-8)2 =2, — (A =T 'T})z = F in Ly(J,C™) (3.60)
has a solution zs, € H(J,C™) that satisfies the estimates
zspll® + |z5p | < comstic sl F|? (3.61)

and )
nspl® < constr, kgl Fl?, (3.62)

where nsp 1= Ry2gp.
The constant const g g only depends on the dichotomy-data K and (3. Similarly the
constant constr, i g only depends on the dichotomy-data K, 3 and on the norm
of the matrices Ry.
If in addition Re(s) > &, with &' from Lemma 3.7, the estimate (3.61) can be
improved to

Re(s)?||zsp||> + Re(s)|zsp|? < const || F||2. (3.63)
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3.2 Resolvent estimates for large |s|

And the estimate (3.62) becomes
Re(s)|nsp|* < constr, k|| F|*. (3.64)

In both equations the constants do not depend on s and J.

Proof. By Lemma 3.6 the operators L(-, s) have an (ED) on R with data (K, 3, )
for all s € M(, C’o). The data K and (§ are independent of s. Therefore we can
apply Theorem B.2. Note that G(z,y), defined in (B.2), is the Green’s function
to L(-, s)u = 0 with boundary operator u +— 7(z_)u(z_) + m(x4)u(x).
Theorem B.2 shows that

ple) = [ Gla,n)Fy)dy
J
is a solution of (3.60) and can be estimated by
Bllzepll” + Blzeplt: <K F? (3.65)

which implies

B+1
62

Thus (3.61) holds with a constant independent of s, J, F.
If s € C with Res > ¢ we can apply Lemma 3.7 and from (3.65) follows with

B(s) = cRe(s)

1712,

||Z3p||2 + |ZSp|12“ §5K2

c®Re(s)?||zsp|I> + cRe(s)|zsp|p < const||F||%.

This proves (3.63) and the constant is independent of s, J, and F.
Inequality (3.62) is obtained from (3.61) via

Ryl )+ Rz
2(1R-* + [Re ") (Jzsp (2 )” + |2sp(24) )
constr, x gl F|*.

|773p|2

<

<

For Re(s) > ¢’ we can use (3.63) instead of (3.61) and find

2(|R-[? + [ R4 [*) Re(s) (|zsp(a—)[* + |2sp(24)[?)
constp, k|| F|?.

Re(s)|nsp|* <
<

So that in both estimates the constants are again independent of s, J, and F. O

In the next step we show the existence of a solution for the homogeneous equa-
tion with inhomogeneous boundary conditions.
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3 The hyperbolic case

Lemma 3.11. Assume that additional to (H1), (H2), and (H3) the determinant-
condition

det (R'T RL) #0 (3.66)

is satisfied. Then there are positive constants b and C{j > Co such that for all
s € M(0,C}) and all J D [—b,b] the semi-homogeneous problem

L(-,s)z =0, in La(J,C™),

(3.67)
Rlz = C,
has a unique solution zpom € H'(J,C™).
Moreover, the solution can be estimated by
thomH2 + |Zhom|%1 < COHS'EK757R1|C|2, (368)

where the constant constg g r, does not depend on s,J, or C.
If we in addition assume Re(s) > &', with ' as in Lemma 3.7, then equation (3.68)
becomes

Re(S)HZhom||2 + |Zh0m|%‘ < COHStK,Rl|<|2’ (369)

where the constant consty g, is independent of s, J, and .

The proof mainly follows the same lines as the proof of Lemma 2.5 in [BL99].
Proof. We make the ansatz
Zhom(x) = S(x,x_)a_ + S(z,zy)oy, (3.70)

where a_ € R(n(z_)) and ay € R(I — w(x4)). Then by construction zpey, is a
solution of the homogeneous problem L(-)z =0 in J.

It remains to be shown that we can determine o and a4 such that the boundary
condition in (3.67) is satisfied, too. From Lemma 3.6 we know

0 0
m(x) — <0 Im—r)
for all z € R and all s € M(6,Cy), where the constant const does not depend on

s. Let Q := <8 IO )
m-—-r

We choose C’ > Cp such that |7(z) — Q| < 1 holds for all z € R and all

s € M(4,C"). Then Lemma A.2 implies the equalities

const

(3.71)

5]

and
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3.2 Resolvent estimates for large |s|

Because of these results we can write a— and a4 from (3.70) as

o =n(z)Q <ﬂ0> -Q (;) + (r(a-) ~Q)Q <50>
()-era(2)

and

o = (I - 7T(9C+))(I - Q) <60+>
() -sten (). am

where f_ € C™" and B4+ € C". Insertion of the ansatz into the boundary term
Rizpom = ( leads to

C = Rlzhom = R—zhom(w—) + R-l-zhom(x-f—)
= R.a_ +Riay +R_S(x_,v1)ay + Ry S(zy, v )a_

= (RU RIL) (éi)
whee - (7 0) (5)

+R(Q — m(xy)) <8 é) <g+>

+R_S(z—, )T —7(xy)) (I +(Q — 7(z4))) (8 é) (gj

+R S,z )r(a ) (I + (n(z_) — Q) <‘; 8) <g+> L (374
From Lemma 3.6 follow for all z € R and all s € M(§,C") the estimates
St ) (1= m@) (I +(@Q = nlan)| <ok Ao—d (375
and

Sz (e ) (I + (o) Q) <aKe Pl (376)

where we used [|(Q — 7)||oo < &. By the determinant-condition (3.66) the matrix
(RT R) is nonsingular. Because of (3.71), (3.75), and (3.76) we can choose
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3 The hyperbolic case

Cy > C" and b > 0 so large that for all s € M(4,Cy) and z_ < —b, x4 > b holds

Rorle) - Q) (7 )+ Re@=rte) (o o)+

RS(e— )~ (o)1 + Qe (§ §)+

RyS(aone )1+ (o) - Q) (7 )
%(R” R @m)

Then we can apply Lemma A.1 to (3.74) and obtain a unique solution <g+> e C™.
By equations (3.70), (3.72), (3.73), and the Fredholm alternative we thus have that
Zhom from (3.70) is the unique solution of (3.67).

To show the estimate (3.68) we note that from the Banach-Lemma (Lemma

A1) together with inequality (3.77) we obtain the estimate

)t

By the construction (3.70), (3.72), (3.73) we have

Zhom (L) = S(;c,g:,)ﬂ'(:c,)(f—k (W(:U,) - Q)) <BO_>
+ S, x)(I — m(zy)) (I +(Q - 77(35+))) (%L>

such that the estimates (3.71), (3.75), (3.76) imply the following pointwise bound
for the solution

[2hom(@)] Seonstye (s gy (M7 e ) el (3.78)
From this we conclude
|2hom (22)|* <comstrr, [C[%,
and by integration over J

12oml|* <constr g, [¢]*.

This shows the estimate (3.68).

If in addition s satisfies Re(s) > ¢’ with ¢’ from Lemma 3.7, then we can choose
K = 3 and 8 = f(s) = cRe(s). Using these constants in (3.78) we obtain by
integration over J the improved Lo-estimate

Re(s)[|2hom||* <constr,p,|CI?
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3.2 Resolvent estimates for large |s|

and as before the boundary-estimate

| Zhom (24)|* <consty g, |C|*.
These two estimates imply inequality (3.69). O

REMARK. One sees from equations (3.71), (3.75), and (3.76) that by assuming
Re(s) > ¢, it suffices to have b = 1 and to increase §'.

Now we can finish the proof of Theorem 3.2.

Proof of Theorem 8.2. Let b and Cy be given as in Lemma 3.10 and in Lemma
3.11. Then for s € M(0,Cp) and J D [—b, b] both Lemmas apply.
Hence we find a particular solution zz, € H!(J,C™) of

L(-,8)z =F in Ly(J,C™),
and a solution ze, € H(J,C™) of
L(-,8)z =0 1in Lo(J,C™),
Riz =n — Ryzsp.
By linearity of the boundary value problem we obtain by addition
2= zgp + 2, € HY(J,C™)

the unique solution of (3.52).

To show the asserted inequalities we collect the estimates (3.61), (3.62), and (3.68)
and find for v = Tz € H'(J,C™), the unique solution of equation (3.15), the
estimates

|22 + |T22 < ITI2 {ll=)? + |21}

const {[|zspll? + |zspl? + ll2hom I + [hom[2}
constx g R, {HFHQ +[n* + ’RlzspIQ}
const g g r, {77 B~ FI* + |n|*}

consti g r {HFH2 + |77|2} )

lol® + Julf

IAN A A IA

where the constant has to be adapted during the estimates, but still does not
depend on s, J, n, and F.
If in addition we assume Re(s) > § and use the inequalities (3.63), (3.64), and
(3.69) we find

Re(s)?||25p 1> + Re(s)|2sp[f < constr[|F*.

This implies Re(s)| Ry 2zsp|> < constpg, x||F||*> which then leads to

Re(5)?]|zhoml|? + Re(s)|zhom | < Re(s)const i, R, (\Rlzsplz + \77]2)
< constg, R, (HFH2 + Re(s)ln\Q) .

Adding zpem and zg, and using the same calculations as before then shows in-
equality (3.17). O
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3 The hyperbolic case

3.3 Resolvent estimates in compact regions

In this section we consider the all line operator P defined in (3.7) and the operator
defined in (3.8) which is obtained after truncation to a finite interval. We always
assume that Assumption 1 holds and our aim is to show that if the all line
operator P has no spectrum in some compact set in {s € C: Res > —d}, then also
the finite interval approximation P|; with suitable additional boundary conditions
has this property. We will give a sufficient condition for the boundary operator
under which we will show a uniform resolvent estimate in the compact set.
As in the previous section we rewrite the resolvent-equation

sv—Pv=F

in the form

L(z,8)v =v, — M(z,s)v = —B™'F (3.79)
where M (z,s) := B~!(x)(sI — C(x)).

For the formulation of the condition which we will require for the extra boundary
operator, we prove hyperbolicity of the limit matrices.

Lemma 3.12. For every s € C with Res > —4d the limit matrices

My(s):= lim M(z,s) (3.80)
r—300
exist and, counted with multiplicities, they have r eigenvalues with real parts larger
than zero and m — r eigenvalues with real parts less than zero.

Proof. The existence of the limit matrices immediately follows from assumptions

(H1) and (H2). The mapping s — M4 (s) is affine linear and so the eigenvalues of

M4 (s), which are the roots of k +— det(kI — M (s)), are algebraic functions of s

and therefore depend continuously on s. Without loss of generality consider '+’.
For every k € iR with k € o(M4(s)) for some s € C we have

0 = det(kI — My (s)) = det(kI — By (sI — Cy))
< 0=det(kBy + Cy — sI),

which implies Res < —§ by assumption (H4). Therefore for all s € C with
Res > —§ the dimensions of the stable and unstable subspaces of M,y (s), i.e.
the subspaces corresponding to the eigenvalues with negative real parts and with
positive real parts, respectively, are constant, since the eigenvalues cannot cross
the imaginary axis.

In Section 3.2 we saw that for large |s| with Res > —d, the eigenspace to the
eigenvalues with negative real parts has dimension m — r and the eigenspace to
the eigenvalues with positive real parts has dimension r. O

Justified by Lemma 3.12, we denote by VZ(s) and V{I!(s) bases of the stable
and unstable subspaces of My (s), respectively. That means that for every s € C
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3.3 Resolvent estimates in compact regions

with Res > —d there are matrices V{(s) € C™" and VI (s) € C™™ " with the
properties

M (s)VE(s) = VE(s)AL(s) (3.81)
for some AL (s) € C"" with Reo(AL(s)) > 0 and
M (s)Vi! (s) = VA ()AL (s) (3.82)

for some AL/ (s) € C™~"™~" with Re o(Al!(s)) < 0. Notice that we do not assume
any smoothness of Vi’H or Ai’H although this is possible by Lemma A.4.
From (3.81) we obtain that for all zp € C" the function

zo () = Vi(s) et ()2
is a backward decaying solution of the constant coefficient equation
Li(s)z =2z, —M;(s)z=0.
Similar for all z; € C™" the function
z_(z) = V_(s)er- ()25
is a forward decaying solution of the constant coefficient equation

L_(s)z =2y, — M_(s)z=0.

forward decaying backward decaying
zZ— Z4

Y

xTr— T4

Figure 3.2: The growing and decaying modes of the differential operator. Heuristi-
cally these must be controlled by the boundary conditions if one wants
to obtain uniform solution estimates of the boundary value problem
on a finite line. This motivates the determinant-condition (3.86) in
Theorem 3.14.

We assume linear boundary conditions of the form

P HUCM) = cm

v — R_v(z_)+ Ryv(zy), (3.83)
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3 The hyperbolic case

with matrices Ry € C™™. Because of the Sobolev Embedding Theorem (Lemma
C.3) the operator R is well defined.

Now we can state the main results of this section which correspond to the the
main results of Section 3.2.

Theorem 3.13. Let Q@ C {s € C:Res > —0} N p(P) be a compact set. Then for
every s € Q and every F € Lo(R,C™) there is a unique solution v € H'(R,C™)
of the resolvent equation

(sI — P)v =F in Ly(R) (3.84)
and the solution can be estimated in terms of the right hand side
[0][ g1 < const|[ (3.85)
with a constant independent of F' and s.

The analogous result for the finite interval problem is stated next.

Theorem 3.14. Let Q C {s € C:Res > —d} Np(P) be a compact set. Let Vil’H
be given as in (3.82) and (3.81) and let R be of the form in (3.83). Assume the
determinant-condition

D(s):=det (R_VI(s) RyV](s)) #0VseQ. (3.86)

Then there is a compact interval Jy such that for all compact intervals J O Jy,
for every s € Q, and for every right hand side, the finite interval boundary value
problem

(sI — P)v=F in Ly(J),

Rv=R v(z_)+ Riv(zy) =1 (3.87)

has a unique solution v € H'(J). This solution can be estimated by
lolF + [off < const{[|F||* + [n[*},
where const does not depend on J, s, F', and n.

Note, that the determinant-condition (3.86) does not depend on the choice of
the actual bases VII(s), and VII(s).

REMARK. Recall that one only obtains Ls-estimates in Theorem 3.1 and The-
orem 3.2 for F € Ly, but in Theorems 3.13 and 3.14 one finds H'-estimates. This
was already observed in the paper [BL99).

To prove the “all line” Theorem 3.13 we will mainly follow the same steps as in
the case of large |s| and for the “finite interval” Theorem 3.14 we use the theory
of discrete approximations presented in Chapter 2.
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3.3.1 Exponential dichotomies
First we prove (ED)s for the operators
Lyi(s)v=1vy — My(s)v. (3.88)

This follows directly from Lemma 3.12 and the result is stated in the following
corollary.

Corollary 3.15. For every s € {Res > —d} the constant coefficient operators
L4 (s) have exponential dichotomies on R with data (K1(s),+(s), 7+ (s)), where

R(71(s)) = R(VL!(5)) and R(I — 7+ (s)) = R(VL(s))

Proof. The corollary follows immediately from the hyperbolicity of the matrices
M4 (s) and the uniqueness of the range and kernel of the projectors for (ED)s on
the whole real line. O

Lemma 3.16. For every s € {Res > —d} the wvariable coefficient differen-
tial operators (3.79) have (ED)s on both half-lines R_ and on Ry with data
(K_(s),B-(s),m—(z,5)) and (K(s),B+(s),m4(x,s)), respectively. The projectors
satisfy

|m_(x,8) —7_(s)| — 0, as v — —o0,
and

|7y (x,8) — T4(s)| — 0, as © — +oo.
Proof. The Lemma follows from Corollary 3.15 and Lemma B.5. U

Next we show that if s does not only satisfy Res > —d, but also is an element
of p(P), the variable coefficient differential operator L(-,s) has an (ED) on the
whole real line.

Lemma 3.17. Let s € {Res > =0} N p(P). Then L(-,s) has an (ED) on R with
data (K (s),B(s), (-, s)) where the projectors satisfy

lim m(x,s)=7x(s). (3.89)

r—+00

Proof. Lemma 3.16 implies that L(-,s) has an (ED) on Ry and on R_ with data

(K4 (s),8+(s),m+(+,8)) and (K_(s),B-(s),m—(+,8)), respectively. In the rest of

the proof we suppress the s-dependence of the data and the solution-operator.
Since the mappings

R.—-C™" zw—n_(z) and Ry — C™™ z+— 7 (x)
are continuous in x, we obtain from Lemma A.3 and Lemma 3.16

rank(/ —7_(0)) = rank(l — 7_) = r and rank 74 (0) = rank 7, =m — 7.
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Hence by Theorem B.6 it suffices to show R(74(0)) N R(I —7_(0)) = {0}.
Let vg € R(m4(0)) N R(I — w_(0)). Then

v(x) := S(z,0)vg

solves

ve(x) — M(z,s)v(z) =0V € R. (3.90)
Furthermore v satisfies the estimates

[v(@)| = [S(z,0)v0| = [S(z,0)m (0)vol
< Kye B+l |y, for all 2 > 0,

and

lo(z)] < K_e P-1#l|yg], for all z < 0.

This shows that v is in fact an element of La(R). The differential equation (3.90)
then implies v € H'(R) and v is a solution of (sI — P)v =0 in Lo(R,C™). Since
we assumed s € p(P) we obtain v = 0in Lo(R) and therefore vp = 0. Now
Theorem B.6 is applicable and the Lemma, follows. ]
3.3.2 Proof of the all-line theorem

Let so € {Res > —30} N p(P), let F € Ly(R). After multiplication with —B~!,
which is a homeomorphism of Ly(R,C™), the resolvent equation (3.84) reads

L(-,s0)v = —B7'F =: F in Ly(R,C™) (3.91)

with L(-, sg) from (3.79).
By Lemma 3.17 and Theorem B.2 there is a unique solution v € H'(R,C™) of
(3.91) and this satisfies the estimate

Bso)?[[v]]* < 5K (s0)*|1F*.

Hence there exists a constant const with |[v|| < const|/F|. Then the differential
equation (3.91)implies

[vz]l < 1M (-, s0)lloo |0l + | E']| < const|| £,
and therefore there is a constant co(sg) > 0 with
[0l zr1 < cos0) [ Fl- (3.92)
To deduce the uniformity of the constant for compact sets €2 from the pointwise

result (3.92), we recall that M(z,s) is given by M(z,s) = —B(z) (s — C(x)).
Assumption (H1) implies that we can find g9 = gg(sg) > 0 with

[M (-, 8) = M(-, 50|00 < for all s € K¢ (s0).

1
2¢o(s0)
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3.3 Resolvent estimates in compact regions

Hence we obtain

L(-,s)v = vy, —M(,s)v
= (ILQ(R) + (M (-, 50) — M(-,5)) L(-, 80)_1)L(', 50)V,
where the multiplication by M(-, sq) — M (-, s) is viewed as a mapping from H'(R)

into La(R).
Equation (3.92) and the choice of g imply for every h € Ly(R) the estimate

1M, 50) = M, 8) LG 50) bl < 3l

Now we can use Lemma A.1 to show the invertibility of L(-,s) : H'(R) — Lo(R)
for each s € K, (so) as well as the estimate
LGy 8) ™
-1
< HL(a 50)71HL2~>H1 H <I + (M(a 50) - M(a 5))L(? 80)71) HL2~>L2

< 00(80)2 = 5(80).

Now let 2 be given as in Theorem 3.13. Then the same considerations hold
for every point sg € € and the union of the resulting neighborhoods is an open
covering of 2. By compactness of 2 we can choose a finite sub-covering. Finally,
taking ¢; as the maximum of the constants ¢(sg) from this finite sub-covering, we
find a uniform resolvent estimate for all s € Q

ol < el Fll < crllB~ |1 F

and the assertion follows. O

3.3.3 The proof of the finite interval theorem

Before we can prove the Theorem we have to show some auxiliary results. Assume
that the assumptions of Theorem 3.14 hold.
We analyze the finite interval problem (3.87) in the transformed form

L(-,s)v=F in Ly(J,C™),
Rv=R_v(z_)+ Ryv(zy) =mn.

One can write this equation with the operator-matrix

Lj(s) := (L(;)> : HY(J,C™) — Ly(J,C™) x C™

in the form

Ly(s)o = (L(éj)”> _ (f; > in Lo(J,C™) x C™. (3.93)
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3 The hyperbolic case

Consider the setting of spaces and operators as in Theorem 2.29. Let the index
set be given by H = {J = [z_,z4] : 0 € J,zy — x_ > 1} with the direction
J1=Jy = J D Js.

By the assumptions on the coefficients of P and on R the assumptions of The-
orem 2.29 are satisfied and the Theorem implies that the finite interval operators
L;(s) from (3.93) regularly P Q-converge to the all line operator L(-, s) from (3.91).

By the Fredholm alternative for boundary value problems the operator L;(s) is
Fredholm of index zero for all compact intervals J € H and all s € C. Finally in
the proof of Theorem 3.13 it is shown that L(-,s) : H'(R,C™) — Ly(R,C™) is a
linear homeomorphism for all s € p(P).

Now Lemma 2.21 applies and shows for all sy € p(P) N {Res > —4§}

Lj(so) e, L(sp) stably.

Hence there is a compact interval Jy = Jy(sg) € H and a positive constant c5, > 0,
so that for all compact intervals J = [z_, 2] C R with Jy C [x_, z] the operator
Ly(so) € L(H(J,C™), Ly(J,C™)xC™) is a linear homeomorphism and its inverse
is bounded

1L (50) "Ml o xem it < €so VI C o,

where we abbreviate |- ||, (j.cm)xcm t0 ||-||L,xcm. With application of the Sobolev
inequality (C.1) this proves the following pointwise result.

Lemma 3.18. For every so € {Res > —d}Np(P) there is a compact interval Jy €
H and a positive constant cy so that for all compact intervals J = [x_,zy] D Jy
there is for all F € Ly(J,C™) and all n € C™ a unique solution v; € H(J,C™)
of the transformed resolvent equation (3.93) and this satisfies the estimate

lvsllzn + lsle < co(IF L, + [n])- (3.94)

Now it remains to prove that it is possible to choose a uniform minimal interval
Jo and a uniform constant ¢y in (3.94) for all s from the compact set €.

Let sg € 2 be arbitrary and let Jy and ¢y be the data obtained by Lemma 3.18.
Then there is an € = €(sp) > 0 with

1M (-, 80) = M(-,8)||oo = i1€1£ |M (z,50) — M(z,s)| < (2c0)" " Vs € K.(s0).

This yields for every v € H'(J,C™) the estimate

I(E(5) = Lotso)olgpuem = NEC5) = LCos0))ol ) + R — B
(M(-,S) - M('vso))UHLQ(J)

=
1 1

< Q—COHUHLQ(J) < Q—COHUHHl(J)-

Thus Lemma A.l1 implies that for all compact intervals J with J D Jy and all
s € K.(so) the operator

Ly(s) = (Ly(s0) + (Ls(s) — Ls(s0))) : H'(J) — La(J) x C™

68



3.3 Resolvent estimates in compact regions

is a linear homeomorphism. Moreover, it also shows the estimate

| Ls(s < 2¢g,

)~ | Loy em a1 ()

for all such s and J.

This construction therefore yields for every sqg € 2 an open neighborhood
K. (s)(80) so that for all s in this neighborhood the same minimal interval Jy =
Jo(so) and the same constant c¢(sg) = 2c¢o(sp) can be chosen. The family of all
these neighborhoods is an open covering of {2 and because of compactness one can
choose a finite sub-covering. Let J’' be the union of the finitely many compact
intervals Jy(sg) corresponding to this sub-covering and let ¢’ be the maximum of
the finitely many ¢(sp) from this sub-covering. Note that J’ is a compact interval
since 0 € J for all J € H.

Then for every s €  and every compact interval J D J’ there is a unique
solution vy € HY(J,C™) of (3.93) for each choice of F € Ly(J,C™) and n € C™.
This solution can be estimated by

lvsllzz ey + lsle < E(IF] + [n])- (3.95)
The assertions of Theorem 3.14 now follow by using F' = —B~!F since || B« is
bounded. O

REMARK. The uniformity of the minimal intervals and the independence of the
resolvent constant from s could also be obtained by using the continuity of the
dichotomy data in s and uniformity of the convergence of the projectors 7(x,s) —
7+(s) as ¢ — to00. To show these one has to prove continuity of the data for the
constant coefficient operators L. (s). The continuity of the data of the variable
coefficient operators then follows from the Theorems B.4-B.6 since they carry
over the continuity to the variable coefficient operators and also show uniformity
of the convergence of the projectors in compact parameter sets. For results in this
direction see [BL99] and [San93].

3.3.4 Convergence of finite interval approximations

Here we briefly state a convergence result for the solutions of the finite interval
problems to the solutions of the all line problem. It shows the consistency of the
restricted problems in the sense that for J — R the distances of the solution of
the all line problem to the finite interval boundary value problems converges to
Z€ero.

Theorem 3.19. Let the assumptions of Theorem 3.1j hold. Let  C {Res >
—0} N p(P) be a compact subset of C and let J D Jy be a compact interval, where
Jo is the interval obtained in Theorem 3.14. Let v € H*(R) be the solution of the
resolvent equation on the whole real line
(sI — P)v=TF in La(R) (3.96)
and let vy € H'(J) denote the solution of the finite interval approzimation
(s[ — P)UJ = F’J m LQ(J),

3.97
RUJ =0. ( )
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3 The hyperbolic case

Then the approximation error yjy := v|; — vy satisfies
lysll ey + lyslr — 0 as J — R (3.98)

uniformly in s € 2.

If there exists a constant x > 0 with F := e"'lF € Lo(R) the convergence is
exponential, i.e. there exists a f > 0 so that for every 0 < o < min(f3, k), there
exists a constant C > 0, independent of s € 2, with

1yl i) + lysle < C e ™= Bl L. (3.99)

Although the theorem is of some interest on its own we do not give a proof
here because we do not need the result for the further analysis of the spectral
properties. One can prove the theorem for example in the same way as Theorem
3.2 in [BL99).

3.4 Convergence of eigenvalues in the right half-plane

Throughout this section we always assume that Assumption 1 holds. We will
show that in the half-plane {Re s > —d} the eigenvalues and generalized eigenspaces
of the finite interval approximation of the differential operator (3.2) with suitable
boundary conditions converge to the eigenvalues and generalized eigenspaces of
the all-line operator.

3.4.1 The general set-up of the eigenvalue-problem in the hyperbolic
case

First of all we will explain that there is no essential spectrum* of the all line
operator in this set and therefore it makes sense to consider isolated eigenvalues
of finite algebraic multiplicity.

Lemma 3.20. There is no essential spectrum of the all line operator (3.2) in

{Res > —d}.

We only sketch a proof of the Lemma which follows an idea from [San02, Remark
3.2].

Sketch of proof. The first step in the proof is to show that the operators L(-,s) :
H'(R) — Ly(R) from (3.79) are invertible for s € {Res > —4}, except for isolated
points. This can be done in the following steps:

e Show that the constant coefficient operators L4 (s) from (3.88) have EDs
on Ry with data analytical in s. This can be obtained similarly to the
proof of Theorem A.7 with the Dunford-Taylor calculus from the analytic
dependence of M(-,s) on s.

*See Definition C.1.
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3.4 Convergence of eigenvalues in the right half-plane

e Applying the Roughness Theorem B.4 on R shows that the variable coeffi-
cient operators also have EDs on Ry with data analytical in s. (A proof of
a parameter dependent version of the Roughness Theorem can be found in
[San93, Lemma 1.1]. The same proof also holds for analytic dependence on
the parameter.)

e In Lemma 3.12 it is shown that dim R (71 (-,s)) + dimR (I — 7_(-,s)) =m
and so by Lemma B.7 L(-,s) are Fredholm of index zero and therefore also
sI — P is Fredholm of index zero.

o In [Kat66, II §4.2] it is shown that one can construct bases

span(p1(s), ..., em—r(s)) of R(m4(0,s))

and
span(@m—r41(5), - .-, @m(s)) of R (I —m_(0,s))

which are analytical in s.

e Then one can define a holomorphic function (see also [Hen81, p. 139])

{Res> -0} — C
o s —  det(v1(8),. .., om(s)).

The value A(s) is different from 0 if and only if L(-,s) has an (ED) on R
(see Theorem B.6) and in this case L(-, s) is bijective (see Theorem B.2).

e The results of Section 3.2 imply A # 0 and the analyticity then shows that
there are no limit points of {s € C: A(s) = 0} in {Res > —¢} . Therefore
o(P)N{Res > —d} is discrete.

e From [Kat66, I11 §6.4, IV §5.4] then follows that any so € o(P)N{Res > —d}
is an eigenvalue of finite algebraic multiplicity since sof — P is Fredholm of
index zero.

O

From now on we assume sg € o(P)N{Res > —d}. Note that Lemma 3.16 shows
that the transformed operator L(-, sg) has (ED)s on Ry and R_. Denote by (4
and (- the exponents of the (ED)s on Ry and R_, respectively.

By Lemma 3.20 sqg is an isolated eigenvalue of finite algebraic multiplicity and
so we can find g9 > 0 with K, (sg) C {Res > —d} and o(P) N K¢, (s0) = {so}-

Consider the directed set H :={J =[z_,z4y|CR:2_ <0<zy,z4 —z_ > 1}
with the direction J; > Js :& J1 D Jo. In the sequel J will always stand for an
element from H.

We analyze the spectrum of the all line operator P in a neighborhood of sy and
write this problem as the eigenvalue problem (in the sense of Definition C.6) for
the holomorphic operator-polynomial

A(s) = sl — P € L(H'(R,C™), Ly(R,C™)).
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3 The hyperbolic case

We denote by W the root-subspace of A(-) to the eigenvalue syg. By Remark C.8
W is the set of all elements v € H!(R,C™) so that there is a sequence of elements
Vo, . ..,Ux =: v in H'(R,C™) with

(s0I — P)vg =0 (3.100)
(SQI—P)UZ'+1 = U; in L2 \V/Z'ZO,...,]C—l. (3101)

Since v; € H'(R,C™) the equality (3.101) also holds in H!(R,C™) and the map-
ping
(sol = P)lw : W - W

is nilpotent. From Lemma C.7 one obtains that the length «; of the longest Jordan
chain of (soI — P)|w, i.e. k7 =min{n € N: N((sol — P)|}%,) = N((sol — P)[}ii 1)},
coincides with the highest order & of all root-polynomials of \A(+) to the eigenvalue
S50-

REMARK. Another way of describing W is to define the space as the range
R(Iy), where Il is the Riesz-Projector given by

1
Iy = — (sI — P)"'ds € L(Ly(R,C™), Ly(R,C™)).

271, |s—so\:60

Here P is viewed as a closed linear operator in Lo(R,C™) with domain D(P) =
H(R,C™). (See for example [Kat66, I1I §6.4 and III §6.5].)

The idea is to use Theorem 2.26 and Theorem 2.28 to obtain results about
approximation of eigenvalues and eigenfunctions of the all line operator by finite
interval approximations. First we describe the setting in which we will apply the
theorems.

Consider the net of holomorphic operator valued functions

(sl —P| 'Hl({L(Cm) —  Lo(J,C™) x C™
Aj(s) = < R J) : v — ((52[— P|j)v, Rv)

as an approximation on the compact interval J of the all line operator on the
compact. Here R is a boundary operator of the form (3.83) which satisfies the
determinant-condition (3.86) for all s in some open neighborhood ¥ C {Res >
—0} of K¢y(sp). By Lemma A.4 this is always possible by choosing suitable R_
and Ry for sg, i.e. det (R_V!(sg) R, V/(s0)) # 0 and then taking a sufficiently
small &g.

Denote by o the so—group of eigenvalues of A;(-) in K. (so), i.e. o7 is the set
of all s € K. (sg) for which there is 0 # v € H!(J,C™) with

(sI — Ply)v =0 and Rv=0.

Similar to the all line case we denote by W the closed linear hull of all root
subspaces of Aj;(+) to eigenvalues s; € o;. Remark C.8 shows that v is an element
of the root subspace Wj(sy) of A;(:) to an eigenvalue s € o if and only if there

is a sequence vy, ..., v := v in H'(J,C™) with
(sgI — P|j)vo = 0 and Ryy = 0, (3.102)
(SJI — P‘J)UZ’_H = V; in LQ(J, (Cm) and Rvi-i-l =0. (3.103)
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3.4 Convergence of eigenvalues in the right half-plane

Since v; € H(J,C™) the equality (3.103) holds in H'(J,C™).

REMARK. Ifone considers the closed linear operator Py: Lo(J,C™)— Lo(J,C™),
where D(Py) = {v € HY(J,C™) : Rv = 0} and P;v = P| v, then one sees that
W;(sy) coincides with the generalized eigenspace of Py to the eigenvalue s .

By Theorem 3.14 there is Jy € H with 0K.,(so) C p(Py) for all compact intervals
J with J D Jy. Then (see [Kat66, §6.4]) for all such J the space W can be written
as Wy = R(Il;), where I1; is the Riesz-projector given by

1

I, =— sI — Py) " lds.
271 3[(50(50)( )

Define the families of operators (cf. Chapter 2.5)
H'(R,C™) — H'Y(J,C™),

P = (PJ)JGH, where p; : v N ’U’J,

and
LQ(R?Cm) - L2(Ja (Cm) X Cm,

Q= (qs)sen, where g;: u — (uls, 0).

These families of operators satisfy the properties (2.1) and (2.2). We use the same
notations as in Section 2.5, namely

E:= H' R,C™) with the norm vz = ||v]| g1,
Ej;:=HY(J,C™) with the norm IvllE; = vl mr oy,
F = Ly(R,C™) with the norm lullr = llullz,y,

Fj:=La(J,C™) x C™  with the norm  [[(u,n)||r, = |lullz, ) + |7l

Lemma 3.21. For every 0 < ' < min(fB_, 34) there exists a constant C = C(3')
so that for all v € W with ||v||g =1 holds

lo(z)| < Ce Pl vz € R.

Proof. For every v € W there is a (finite) sequence of elements vy, vy,..., vy = v
in W so that

(sol — P)vg =0 in Ly(J,C™)
and (sol — P)viy1 = v; in Lo(J,C™), for i =0,...,k— 1.

We prove by induction that for each v € W and 3 < min(5_,3) there is a
constant ¢ = ¢(f,v) with |v(z)| < ce ?1*l vz € R.

In the case k = 0 we have (so — P)v =0 < L(-,50)v = 0 and so Theorem B.3
implies that there is ¢ = ¢(v) > 0 with

lo(z)| < ce™™nB-AH)lzl v € R,

Now assume k > 1. Then (so/ — P)up = w1 and by induction for each
0 < B < min(f_, B+) there is ¢ = ¢(f, vg_1) with

log—1(z)| < ce P2l vz € R.

73



3 The hyperbolic case

Therefore |[B~!(x)v,_1(x)| < \|B_1||Ooce_3|$| Va € R. It holds
L(-,s0)vp = B~ lvp_y

and so Theorem B.3 implies that for each 0 < # < 3 there is ¢; = ¢1(3, ¢, vg)
with
lok(@)| < cre Pl vz e R.

Since vj_1 is uniquely determined by vy we can also write ¢1 = ¢1(8', vg).

Because of Lemma 3.20 it holds dimW < oo. Choose a basis vy, ..., v, of
W, then every v € W can uniquely be written as v = Y, a;(v)v;. Since the
coefficients depend continuously on v one finds ), |a;(v)| < const for all v € W
with ||v||g = 1. This leads to

o(z)] < Izaz(v)vi(fﬂ)l < Z i (v)[[vi ()]

< (Z |ai(v)|c(vi,ﬁ')> e 12l < conste ™ '1?l vz € R,
i
where the constant depends on 3, but does not depend on v. ]

3.4.2 The convergence theorem in the hyperbolic case

Using the abstract theory of Chapter 2 we will now prove the following theorem
about the approximation of the eigenvalues and eigenspaces in the right half-plane.

Theorem 3.22. With the assumptions and notations from above, in particular
Assumption 1 and the assumptions on ¥ hold, there is a compact interval Jy C R
such that for all compact intervals J = [z_,zy] C R with J D Jy the following
properties hold.

The so-group of eigenvalues o; converges to sy in the sense that for each 0 <
B < min(B_, B4) there is a constant const = const(3") with

8 mi
max |s — so| = dist(0, s9) < conste™ x M@+, (3.104)
s€ay

Each net (vy) s, of normalized eigenelements to eigenvalues sy € oy, i.e.
Aj(sr)vg =0, [lvsllgremy =1,

1s P-compact and it holds the estimate

. 8 i
sup inf v —volsll 1 (sy < conste™ = min(z+,@-) (3.105)
vyl =t EE

sj€Xy, Ruy=0
(SJI—P‘J)UJ:O

Furthermore for the root-subspaces hold

dim W, = dim W < oc. (3.106)
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3.4 Convergence of eigenvalues in the right half-plane

The root-subspace Wy approzximates the root-subspace W in the sense

YWy, W)= sup dist(vs,psW) < const e ? min(=z-z+) (3.107)
vy EW;
lvslle,;=1

and

I(W,Wy) = sup dist(psv, W) < const e ? min(=z—2+) (3.108)
veW
l[vllz=1

The constants in (3.104), (3.105), (3.107), and (3.108) do not depend on J.
Before we can prove the Theorem we show some properties of the operator

functions A and Ay in the next two Lemmas. Recall that ¥ C {Res > —d} is an
open neighborhood of K¢, (s such that

det (R-VII(s) RyVi(s))#0Vse .

Lemma 3.23. With the notations from above holds

<SI RP‘J> —= sI — P regularly for all s € ¥..

Proof. Let s € ¥ be arbitrary and let (vs)sem be a bounded net in (E ;) such that

<<SI _RP‘J> ’UJ) is Q-compact. (3.109)
JeH

Then also the net

(G )0), o ()0),, o
is O-compact:

Let H' C H be any cofinal subset of H. Then there is h € F' and H"” C H with

<SI—RP|J>,UJ2>h(J€H//)’

but then

H( (sl - P|J)UJ> ((B_(l)h)b) .

— [ B (5T = Pl = M) |y + 1B

< const (H(SI — Plj)vy — h|JHL2(J7Cm) + |R’UJ|> —0(JeH").

Since B € L(F, F) is a linear homeomorphism this proves (3.110). By the equality
L(-,8) = =B~Y(sI — P), where L(-,s) is given in (3.79), Lemma 3.12, and Lemma
3.16 together with the determinant-condition for R show that the assumptions of
Theorem 2.29 are fulfilled and hence (vy) jep is P-compact. O
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3 The hyperbolic case

Lemma 3.24. For every s € ¥ and all J € H the operators

sI—PeL(E,F) and <SI _RP‘J> € L(Ey, Fy)

are Fredholm of index zero.

Proof. From assumption (H2) follows that B~! : F — F, v + B~ v, is a lin-
ear homeomorphism. Therefore the operator sI — P is Fredholm if and only if
—~B7 (s — P) = L(-,5) € L(E, F) is Fredholm. In this case they have the same
Fredholm indices. Lemma 3.12 and Lemma B.7 then yield the assertion.

For the analysis of the finite interval operator note that the bounded linear
operator

a4
dx

is Fredholm of index m and therefore the assumption (H2) implies the same for

: HY(J,C™) — Lo(J,C™)

Bi . Hl(‘L Cm) - LQ(‘]’ (Cm)
dr v — Bu,,.

Since sI|; — P|; € L(H'(J,C™), Ly(J,C™)) can be viewed as a compact pertur-
bation of —B% because of the Rellich embedding theorem [Rob01, Chapter 5],
this operator is Fredholm of index m, too. Now by bordering with the boundary
operator R € L(H'(J,C™),C™) Lemma C.9 shows that

(SI _RP’J> € L(Ej, Fy)

is a Fredholm operator of index zero. O

Proof of Theorem 3.22. By Lemma 3.24 the operator-valued functions A(-) and
Aj(-) are Fredholm of index zero for all s € ¥ and by Lemma 3.23 for every s € ¥
the operators A;(s) regularly PQ-converge to A(s). Finally, because of Lemma
3.20 there is s € X\ K¢, (s9) with s € p(P). Therefore the assumptions of Theorem
2.26 are verified and the theorem implies that there is a compact interval Jy € H
such that (3.106) and the estimates

1
max |s; — so| < Cef, (3.104%)
sjeoyg

1
sup inf vy —pyvolE, < Cej, (3.105")
v EN(As(sy)) VoEN(A(s0)) J J
ss€0lvslle, =1

IWy, W) < Cey, (3.107")
YW, Wy) < Cey, (3.108)
with
€] = max <SOI N P|J> pjv — <I> pv’ )
v’ €W R 0 F,
vllz=1 ‘
(soI—P)v=2
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3.4 Convergence of eigenvalues in the right half-plane

hold. By application of Lemma 3.21 one can bound €; by

€] — max SOI - P‘J v — I ’U/
J = vﬂ)/EW R pJ 0 pJ

lvllz=1
(soI—P)v=v’

Fy

= max  (|[(sol = Ply)vls — IV'[ sl g1 (gemy + | Ro]])
v,v'eW
lvllz=1
(soI—P)v=1'

= max (01 (s.cmy + [ P-v(z-) + Pro(z4)])
lvllz=1
(soI—P)v=2'

< ”g”éz%/‘}/{ (IP-| + [P+]) (Jo(@-)] + [v(a)])
v||g=1

< const ¢~ min(z—|z+])

with a constant which depends on 0 < 8’ < min(8_, 54) only. O

3.4.3 Convergence in the case of simple eigenvalues

In the case of a simple eigenvalue so € o(P) N {Res > —J} we prove a theorem
similar to Theorem 3.22 that also allows for s-dependent boundary conditions.
The aim is to have results similar to the ones from the previous theorem in the
case of projection boundary conditions (see [Bey90]) which should allow for shorter
intervals for the approximation of the eigenvalues.

We assume that the boundary operator R again is a linear two point boundary
operator but depends holomorphically on s in an open neighborhood ¥ of sg. That
means that the matrices Py depend holomorphic on s and

R:% — L(H'(J),C™), R(s)v = (P_(s)v(z_) + Py (s)v(zy)).

We consider the following determinant which is similar to the determinant from
Theorem 3.22 (see (3.86)

D(s) := (P_(s)V_(s)IT Py(s)Vi(s)T).
Here we assume that Vi (s)/!!
of M4 (s) as above.

are bases of the stable and unstable subspaces

Theorem 3.25. Let Assumption 1 hold and consider the same setting of spaces
and operators as in 3.4.2. Furthermore assume

D(s0) # 0. (3.111)

Let sy € o(P)N{Res > —d} be a simple eigenvalue, i.e. sy is a simple eigenvalue
of the holomorphic operator-valued function A(s) = sI — P, with eigenfunction

O#UQGN(SQI—P)*.

*See Definition C.6.
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3 The hyperbolic case

Then there is a compact interval Jy € H and a positive constant dg such that
for all compact intervals J D Jy there exists exactly one simple eigenvalue sy with
|so — sg| < o of the approzimation of A on the finite interval J given by

w00 (M)

Moreover, there is a corresponding eigenfunction vy € Ej such that the estimate
lsg — so|l + |lvg — pyvol| < const|R_(sg)vo(z—) + Ri(s0)vo(x)] (3.112)
holds.

Proof. By the holomorphy assumption on R it is clear that A and .A; are holo-
morphic in s. Because of the determinant-condition (3.111) Lemma 3.23 shows

(502(_80];|J> LN (sol — P) regularly

and by Lemma 3.24 the operators A(sg) and A;(sp) are Fredholm of index zero
forall J € H.

Furthermore, A’ (sg) = <R’(Is )> re, I _p,. To see this, note that since the
0
Sobolev-inequality (Lemma C.2) implies
”Ai](so)HL(Hl(J7(Cm)7L2(J,Cm)><Cm) < constVJ € H, [—1, 1] C J,

it suffices because of Lemma 2.18 to see

A (so)psv — qilvl| ey = lJvls — vl sll Ly + [R (s0)v]s] — 0.

This convergence in turn is a consequence of Lemma C.3.
Finally

14569 = 45660 = | (i) = ()| =18 = Rl -

implies because of the continuity of R’ that for every ¢ > 0 there is § > 0 with
|R__(s) — R_(s0)| + |R.(s) — Rl (s0)| <& for all |s — so| <.

Applying the Sobolev-inequality again shows that for every ¢ > 0 there is § > 0
such that

A (s) — Al (o)l < e ¥ € H, T > [=1,1], |s — 50| <.
Now the theorem follows directly by application of Lemma 2.28. U

REMARK. In [Bey90) it is shown that if one considers so called projection bound-
ary conditions for the approximation of the zero eigenvalue the right hand side of
(3.112) converges faster to zero with a factor two in the exponent compared to
(3.104) and (3.105) from Theorem 3.22.

Possibly the projection boundary conditions also lead to better estimates for
the approximation of the other eigenvalues (cf. [HW80, Chapter 4]), but we do
not know about a general Theorem which states this.
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4 The mixed case

In this chapter we consider a linear mixed hyperbolic-parabolic PDE of the form

<Z>t =P <Z> . in [0,00) x R, (4.1)

where the operator P : H?(R,C") x HY(R,C™) — Ly(R,C") x Lo(R,C™) is of
the form

u A 0 u Bll B12 u Cn 012 u
()-GO CL (5 m) 0@ &) () e
Such systems for example can arise by linearization of a nonlinear PDE (1.1) at a
travelling wave solution as we will see in Chapter 5.3.

We analyze the system similarly to the analysis of Chapter 3.

We will see that the special structure of the operator P from (4.2) at least in
the case of large |s|, allows to derive resolvent estimates by combining the results
for the hyperbolic part presented in Section 3.2 and the results for the parabolic
part shown in [BL99, Chapter 2]. Therefore we give a review of the results from
[BL99] in Section 4.2 which we improve in one point. We also give an all line
version of [BL99, Theorem 2.1] which is needed for the all line resolvent estimates
of the mixed system. The coupling of the results for the hyperbolic and parabolic
systems is done with a transformation argument. For the resolvent estimates in
bounded regions of the complex plane we apply the abstract theory from Chapter
2 in the same fashion as in Chapter 3.

4.1 Assumptions

For the coefficients of the operator P from (4.2) we make the following assump-
tions.

Assumption 2. The coefficients of the parabolic part, i.e. of the operator
Ppar : H*(R,C") — La(R,C"), Ppoyu = Atz + Briug + Cryu, (4.3)
satisfy the following conditions.
(P1) The coefficient matrices By and C11 belong to C(R,C™™) and
3 lim Biji(z) =: Biis,

r—+00

3 lim C'H(ac) = Clli-

r—=+00
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4 The mixed case

(P2) The matrix A € C™" is constant and there is a > 0 with A+ A* > al.

The coefficients of the hyperbolic part, i.e. of the operator
Phyp : HY (R, (Cm) — Lo (R, (Cm), Phypu = Boouy, + Cosu, (44)

satisfy (H1)—(H3) from Assumption 1.
Finally,

(M1) the coefficients Bya, C12, and Co; are continuous matrix-valued functions
and

3 lim 312(56) = B12ia

r—=Fo00

3 lim 012(1') = Clgi,

r—=+00

3 lim 021(1') =: CQH:,

r—+00

and Bis € CH(R,C™™) with || B12,z]|00 < 0.
(M2) There is § > 0 such that, for all w € R and all s € C,

det (- w? <f(‘)1 8) iy <BBI+ B12+> " <011+ C12+> — $lim) =0

Baay Co1y Oyt
or
A 0 Bii— Bio_ Cii— Cio_
2 . 11 12 11 12—\ _
det( w <0 0>—|—zw< 0 322>—|—<021 022> SIn+m) 0
imply

Res < -§ <.

In the subsequent sections we will analyze the all line resolvent equation

(sI — P) (Z‘) - (f ;gx> in Lo (R, C") x Ly(R,C™) (4.5)

and its restriction to a nonempty, compact interval J = [x_,z4|, x4 > z_,

(s — P|;) (Z) — (f ;g”f) in Lo(J,C") x La(J,C™) (4.62)

As in the hyperbolic part one has to give additional boundary conditions for the
restricted operator to obtain similar solvability properties. This is due to the fact
that the boundary conditions of the all line operator P are hidden in its domain.
Therefore we consider linear two point boundary conditions again.

R (Z) =p e Cm, (4.6b)

The exact assumptions for the boundary operator will be specified later.

As assumption (H4) the assumption (M2) is an assumption on the spectrum of
P. We will see that it implies a Fredholm property for the operator (sI — P) to
the right of the algebraic curves defined by (M2).
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4.2 Review of results from the parabolic case

4.2 Review of results from the parabolic case

We briefly review some results for the parabolic part of (4.2) for large |s| which
are presented in [BL99]. We always assume (P1) and (P2) in this section.
In [BL99, Chapter 2] the resolvent equation

(s8I, = Ppar)u = f 4+ g5 in Ly(R,C"), (4.7)

with f € Ly(R,C") and g € H*(R,C") is transformed into a first order equation
by using the variables

°T (aAJi +g>> ’

with p = |s|% Then (4.7) can be rewritten as

Lpar(s)z = 25 — Mpar(-,8)z = h in Ly(R, c?) (4.8)
with
0 AL —A"lg
Mpar(x,S) =p <sp_20 _%BHA1> and h(x,S) = <%BHA_19 . %f) . (49)

Note that by the structure of h the equality (4.8) in fact is an equality in H*(R, C")x
Ly(R,C™). The authors show some results about the asymptotic behavior of solu-
tions of (4.8) which we briefly review and then apply in order to obtain resolvent
estimates for the all line operator.

Lemma 4.1 ([BL99, Lemma 2.3]). There are positive constants c¢1, K1, Ko, B,
and e so that the operators Lp.-(s) have an (ED) on R if

, 7
s=re? r>c¢, 0] < Z—i—é‘.

The dichotomy data are given as (f(l,pﬁl,w(x, s)), where T is continuous in s.

REMARK. The proof presented in [BL99] only works for constant principal part

A, since it uses a rescaling method which is not correct if A is not constant.

-1
Let My(z) = <e2ZQ€I A O(m)) and let z € HY(R,C?") be a solution of Lyz =
zy — Mpz = 0. Then the function u(z) := z(px) which is considered in [BL99, p.
211] satisfies

uy(z) = pzo(pz) = pMo(px)z(px) = pMp(px)u(),

which in general is not the same as pMy(z)u(z).
Since we will make use of the results from [BL99, Chapter 2], we assume that
A is a constant matrix.
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4 The mixed case

T+ 2

Figure 4.1: The sector of the complex plane defined in Lemma 4.1.

As in Section 3.2.2 we obtain from Lemma 4.1 that if s is restricted to the
sector of the complex plane from Lemma 4.1, for each h € Ly(R,C?") there is a
unique solution z € HY(R,C?") of Ly (s)z = h. Moreover, the solution satisfies
the estimate

#2122 < const|h]°.
Applying the differential equation (4.8) one finds

l22 1 < const ||,

where the constant does not depend on h and s for all s from that region.
Therefore recalling the connection of (4.8) and (4.7) one obtains unique solv-
ability of (4.7) for each f € La(R,C") and g € H'(R,C"). Furthermore, from the

inequalities
5 (Aug + g) sBuATlg— o f

1 -1 1
;BHA g— ;f

1
PP lull* < const(|lg|* + EIIfIIQ),

2
< const

2

2

and

2
< const

2

H (,%<Au:f " gx>>

one derives the estimates

1
luz|? < const(|lg]* + ?HfHQ),
ltaa||* < const(p?[lgl* + llgall* + I1.£1%)-
This proves the following theorem (cf. [KKP94]).
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4.2 Review of results from the parabolic case

Theorem 4.2. Let f € Ly(R,C") and g € H*(R,C"). Then there are positive
constants c1, K, and € such that for all s € C with s =re*®, r > ¢1, || < T +¢
the resolvent equation (4.7) has a unique solution v € H?(R,C"). This solution
satisfies estimates of the form

s lull® + [s][luz | < K (1117 + 1slll9]1%) (4.10)
and

luwal® < K (A7 + Islllg? + llg=11?)
with a constant K independent of f, g, s.

In [BL99] the all line problem (4.7) is restricted to a finite interval with supple-
mentary boundary conditions, i.e.

(SIn - Ppar‘J)u = f + 9z in LZ(Ja (Cn)’

4.11
Ryoru = 7. ( )

The boundary operator Ry, : H(J,C") — C*" is assumed to be of the form

B P QL u(z_) n PL QLN (u(xy) _ A

par P 0 Ug(z_) PH 0 Ug(z4) A1
with rank(Q’ er) = r, and matrices P!, Pfr, QL er e crn, plt Pfrl e Ccn—rn,
vI e Cr, 4 € C?"~". Note that this form can always be obtained by multiplica-

tion from the left with an invertible matrix.
The authors prove the following theorem.

Theorem 4.3 ([BL99, Theorem 2.1]). Consider the BVP (4.11) for s = re'?,
|p| < T +¢€, r>c1, and assume

QL QL
det <—P£IA% P_{_IA% 750.

Then there are positive constants c¢1, K, € so that for every J = [x_, x| with
vy —x_ >1 the BVP (4.11) has a unique solution u € H*(J,C"). This solution
can be estimated by

1 1 1 1
PPl 4 [z |® + plulf + ;Iuml% < K(;Hf\l2 +llgl* + ;Ivll2 + oIy + ;Igl%>,
(4.12)

with p = |s|2. The constants ¢1, K, and € are independent of the right hand side
from (4.11), of s, and of J.

1
2

REMARK. In the estimate (4.12) we have the term %\g[% which is an improve-
ment of the original term plg|% derived in [BL99]. This is justified as follows. In
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4 The mixed case

[BL99, (2.12)] the values g(x_) and g(x4) enter the boundary value n only in the
first r components since

Therefore in [BL99, (2.33)] one obtains
' [? < Ko (W' + 1glf) and [y * = |42,
Thus the estimate (4.12) follows from

1
PP + plef2 < K (HhHQ =+ gl ) .

The improvement is essential for the analysis of coupled hyperbolic-parabolic sys-
tems (see (4.33) and (4.34)).

4.3 General properties of the mixed operator

In this section we show some general properties of the mixed operator
sI — P: H*(R,C") x H}(R,C™) — Ly(R,C") x Ly(R,C™)

from (4.5) and of its restriction to finite intervals. We always assume that As-
sumption 2 holds.

The main results will be Fredholm properties of sI — P and of the finite interval
approximation of this operator. The idea is to transform the operator to a first
order operator and then apply the result of Lemma B.7. This means that we

F
Note that this coincides with equation (4.5) if ¢ = 0. By using the transformation
(u,v) — (u, Auy,v) this equation can be rewritten as

0
L(s)z:= 2, — M(x,8)z = | —f + B1aBy' F | , (4.13)
—B3,'F

transform the resolvent equation (s — P) (Z) = <f> into a first order equation.

where

L(s) : H*(R,C") x H'(R,C") x HY(R,C™) — H*(R,C") x Ly(R,C") x Ly(R,C™)

and
0 At 0
M(-, s) = 31232_21021 + (SIn — 011) —BllAfl —C19 — 31232_21(8[7” — 022)
—B521021 0 Bil(sfm — 022)

(4.14)
We make this unusual choice of domain of L(s) since by this we can directly relate
the Fredholm properties of L(s) and of sI — P.
Before we analyze the properties of L(s) and of sI — P we show that assumption
(M2) implies the hyperbolicity of the limit matrices lim,_, 4o, M (z,s) =: My (s)
for all s € C with Res > —4. This follows directly from the next lemma.
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4.3 General properties of the mixed operator

Lemma 4.4. For s and s in C the relation

A0 B B C C

2 11+ Dia+ 11+ Cia+
o€ U<’€ (0 0> e ( 0 B22i> - <021¢ 022i> )
holds if and only if

det(My(s) — kI) =0.

Proof. Consider the ‘+’ case. The equation det(M (s) —xI) = 0 holds if and only
if there are u,w € C", v € C™ with (u,w,v) # 0 that satisfy

u
Mi(s)|w] =k
v

< € g

This is equivalent to

w = kAu,
k2 Au + kBioyv 4+ kBripu + Cripu + Crogpv = su,

kBooiv 4+ Corpu + Cogrv = sv,
which proves the Lemma. ]

This result will now be used to show that L(s) is Fredholm of index zero for all
Res > —9, which in the end will be utilized to show that the operator sI — P is
Fredholm of index zero for all s € C with Res > —4.

In view of Lemma B.7 and its Corollary B.8 together with Lemma B.5 it suffices
to show that the constant coefficient operators Li(s)z = z, — My (s)z have an
(ED) on R with dimR (74 (s)) + dimR(I — 7_(s)) = 2n + m, where 71 and 7_
are the corresponding projectors of the constant coefficient operators L4 (s).

From now on we assume |s| > 1. The main idea for the analysis of the constant
coefficient operators Ly (s) from (4.13) is to transform them such that the block-
diagonal entries are of the forms which are already analyzed in the hyperbolic and
in the parabolic case and simultaneously the outer block diagonal entries are small
compared to the block diagonal entries.

We use the transformation of variables

zZ = SlTBlgiz7
P

where p = \s\% and the matrices are defined by

I, 0 0 I, 0 0
Si={0 2L, 0| and Tp,, =|0 I, B
’ 0 0 I, 0 0 In

Note that SIl =5, and Tl;l =T_p holds. Thus we obtain the operators
P

Li(s)z =2, — Mi(s)z, (4.15)
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with
0 pA~! —A" By
My(s) = [ 5(sI =Cnx) —BuxA™' JBusA'Biax — ;04 | . (4.16)
— By Cor+ 0 By (s — Casa)

Until Lemma 4.6 we suppress the ‘£’ in the notation.
First consider the block diagonal operators L%(s) given by

0 pA~1 0
f/d(s)z = 2y — %(SI — 011) —BHA_l 0 Z.
0 0 By, (sI — Ca)

_In [BL99, Lemma 2.1-Lemma 2.3] it is shown that there are positive constants
K1, 31, c1,¢ such that for all s € C with s = re%?, where r > ¢; and |6] < T+e,
the operators

~ 0 pA~1
dl . .
L (S) B2 B I <%(SI _ Cll) _BllA_1> 21,

have an (ED) on R. Moreover, the dichotomy data are given by (K1, pf31,71(s))
and satisfy dim R(71(s)) = n.

In Lemma 3.7 from Section 3.2 it is shown that there are positive constants
K>, 32, and ¢y such that for all s € C with Res > ¢, the operators

LP2(s) : 29 = 294 — Bay' (81 — Cg2) 2,

have an (ED) on R with dichotomy data (K3, Re(s)B32,72(s)) and the projectors
satisfy dim R(72(s)) =m —r.

Since vVRes < |s|'/? for all s € C with Res > max(cy,¢1,1) =: &, the block
diagonal operators L%(s) have EDs on R. The data can be chosen as

(o VR (7 2) )

2

where Ko = max(K1, Ks) and By = min(31, 32).

Let
0 0 —A71By
A(s) = 0 0 %3111471312 - %012
—By'Cy 0 0

If Res > ¢, then there is a constant Ca such that |A(s)| < Ca.
- 2 ~
Therefore by choosing ¢y =: max (50, <7K5A> , (QKBQQCA> ) Theorem B.4 im-
0 0
plies for all s € C with Res > ¢ that the operators L(s) have EDs on R with
data (K, 3(s),7) where one can choose

K = 3K,,

and ((s) = \/Res%.
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4.3 General properties of the mixed operator

Moreover, the projectors satisfy

5 70 1 K2Ca
m(s) — N s)| < — <
-5 2) 0| 7R s

Therefore it holds dimR(7(s)) = dimR (7 2 ) = n+m — r. This yields that

0 7o

. (4.17)

DO | —

for all Res > ¢y the matrices ]\Zfi(s) are hyperbolic and in particular also the
matrices

Mi(s) = S% Tpy, M(8)T-py, S,

are hyperbolic for all s € C with Re s > ¢o. Moreover the dimension of the stable
subspaces of M (s) is n +m — r and the dimension of the unstable subspaces of
My(s)isn+r.

Recall that Lemma 4.4 shows that there is no s € {Res > —d} for which the
matrix M (s) has purely imaginary eigenvalues. Since the eigenvalues of a con-
tinuously parametrized matrix depend continuously on the parameter, it follows
that the matrices M (s) are hyperbolic for all Res > —§ and the dimension of the
stable subspace is n +m — r and the dimension of the unstable subspace is n + r.

This shows that the constant coefficient operators L (s) have (EDs) on R. Let

VE(s) € C ™t he a basis of the unstable subspace of My (s)
and let
VEH (5) e QP tmntm=T be a basis of the stable subspace of M (s).

Finally let AL (s) € C"*"+7 and Al (s) € CPHm—rn+m= with Reo(AL(s)) > 0

and Re o (A (s) < 0 such that (3.81) and (3.82) hold. Note that we again do not

assume any smoothness for Vi or Ay since we only aim for a point-wise result.
The considerations from above prove the following Lemma.

Lemma 4.5. For every s € C with Res > —d the constant coefficient operator
Li(s):zr 2z — My(s)z
has an (ED) on R. Moreover the corresponding projectors w1 (s) are given by
R(m+(s)) = VE (s) and R(I — 7+(s)) = VL(s).

By application of Theorem B.5 and Lemma B.7 one obtains from Lemma 4.5
an (ED) for the variable coefficient operators.

Lemma 4.6. For all s € C with Re s > —§ the variable coefficient operators L(-, s)
from (4.13) have exponential dichotomies on Ry and on R_. The corresponding
projectors w4 (-, s) satisfy

lim |7my(z,s) —7m4(s)|=0 and lim |7_(z,s)—n_(s)|=0. (4.18)

T——400 T——00
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Moreover, for the ranges of the projectors one has

dimR(74(0,8)) =n+m—r
dimR(I —7_(0,s)) =n+r.

Finally, the operators L(-,s) : H?> x H' x H' — H' x Ly x Ly from (4.13) are
Fredholm of index O for all s € C with Res > —d.

From this Lemma we now conclude that also the original operator sI — P has
a Fredholm property. This will be used in Section 4.4 to show unique solvability
of the resolvent equation (4.5).

Lemma 4.7. For all s € C with Res > —§ the operator sI — P is Fredholm of
indezx 0.

Proof. We show that for all s € C with Res > —¢ the operators sI — P and L(-, s)

are Fredholm of the same index. By Lemma 4.6 L(-, s) is Fredholm of index 0.
First we show dim N (sI — P) = dim N (L(:, s)).

Let (u,v)T € N(sI — P), then (u, Aug,v)" € N(L(-,s)) and it follows

dim N (sI — P) < dim N'(L(-, s)).

Now let (21, 29, 23)T € N(L(-, s)). By the definition of L(-, s) it holds 21 , = A7 129
and therefore 2o = Az ,. One easily finds (z1,23)7 € N (s — P). Let (2%, 28, 28)T,
i =1,...,1, be linearly independent elements in N'(L(-,s)). Let o = (av1,...,q) €

Cl with ‘
ZZ
Z @i <z1> =0
)

3

Then by linearity >, ai(zi,Azi7$,z§)T = 0, but since the differential equation
shows Azix = 24, it follows o = 0 from the linear independency. Hence we find

dim N (sI — P) > dim N (L(-, s)).

Second show codim R(sI — P) = codim R(L(:, s)).
Since (0, —f 4+ B1aByy F, — By F)T € R(L(-, 5)) implies (f, F)T € R(sI — P) we
obtain

codimR(sl — P) < codim R(L(-, s)).

Now let (f% g*,h?), i=1,...,l, be a cobasis of R(L(:,s)). Then the elements

<—Af£ — ¢ — Bi1 f' — Bpaht

—nghi > S LQ(R7C ) X LQ(R7C )

are linearly independent elements of [La(R,C™) x Lo(R,C™)]/ R(sI — P):
Let @ = (a1,...,0¢) € C! and assume there is <Z> € H*(R,C") x H(R,C™)

with , , A A
(sI - P) (Z) ~Sa (‘Afx _g__Biléf — Buh > (4.19)
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u
Consider | Au, — A a;f* | which is an element of H*(R,C") x H!(R,C") x
v
H'(R,C™). Then
u
L(s) | Augz — AY a;f?
v
Uy u
= Au:m:_AZalfé —M(-,S) Auw—AZO‘z]M
Uy v

Saift
= Aum — BlgBinglu + B12B521(SI — 022)’0 — (SI — Cn)u + Bnux + 012’0
Vg + 32_21021u — B2_21(SI — CQQ)U
0
+ | —Buy aift =AY aif,
0
> aif
= | Auge + Briug + Biavg + Criu+ Crov — slu
Zcxihz
0
+ | —BuY aift =AY aif, — B2 ) a;h’
0

where we used the differential equation (4.19). Since the elements form a cobasis
of R(L(-,s)) it follows a = 0. This shows codim R(sI —P) > codim R(L(-,s)). O

REMARK. Note that the proof does not make use of the property Re(s) > —d,
but uses the Fredholm property of L(-,s). Hence the Lemma can be applied
everywhere in the complex plane, where L(-,s) is Fredholm. This will be used in
section 5.3 for the interpretation of the numerical results.

For the approximation of the operator sI — P on finite intervals J = [x_, 4]
with 4 > x_, as in (4.6) we consider the operators

H2(J,C") x H'(J,C™) — Ly(J,C") x Ly(J,C™)
sl —Ply: (u) . (sI — P) (u) (4.20)

v v
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4 The mixed case

and assume that the supplementary linear boundary operator is of the form

H—Q(J’ (Cn) > HI(J, (Cm) N Q2n+m
‘ . . u(z_) u(wy)
R: <U> — R <v> =R_|ug(z—) | + R4 | ua(z4)
v(z_) v(wy)

(4.21)
with matrices R_, Ry € C?"+tm2n+tm_ Then we obtain the Fredholm alternative
for the mixed second order boundary value problem (4.6).

Lemma 4.8. For every s € C and every compact interval J = [z_, x| with
T4+ > x_ the operators

(SI —}%P|J> :HQ(J7Cn) X HI(J,(Cm) — LQ(J’ (Cn) % LQ(J,(Cm) x (CQner

are Fredholm operators of index zero.

Proof. Since the embedding H!'(J,C") — Lo(J,C") is compact, the assertion
follows by application of Lemma C.10 and using that the pure parabolic and
pure hyperbolic part with their corresponding boundary operators are Fredholm
operators of index 0. U

4.4 Resolvent estimates for large |s|

In this section we will combine the results from Chapter 3 and [BL99] as they
are presented in Section 4.2 to obtain similar results for the hyperbolic-parabolic
systems (4.5) and (4.6).

First we prove an all line result similar to the result from [KKP94, Section 4].
Note that in [KKP94] only resolvent estimates are shown. We improve the result
from there in the sense that we give stronger estimates and also an existence and
uniqueness result.

Theorem 4.9. Under Assumption 2 there are positive constants K and Cy such
that for all s € M(6,Cy) the all line resolvent equation (4.5) has for all f €

Ly(R,C"), g € HYR,C"), and F € Ly(R,C™) a unique solution <Z> € H*(R,C")x
H(R,C™).

Moreover, the solution can be estimated by

1
Islllull® + llua|* + [lv]* < K(@Hf”2 +IFI? + llgll?). (4.22)

If in addition F € HY(R,C™) and ||C21 z|loo < o0, there exists K' > 0 so that the

solution satisfies the estimate

1
[sllll® + luzl® + loll® + llvs|* < K'(mllfIIZ +lgl® + IFI + 1 F2 %) (4.23)

90



4.4 Resolvent estimates for large |s|

Proof. Assume that (:j) € H*(R,C") x H'(R,C™) is a solution of (4.5). Let

C1 > 0 be so large that for all s € M(4,Cy) the assumptions of Theorem 4.2 and
of Theorem 3.1 are satisfied. Then by Theorem 4.2 there is a positive constant
K1 so that u € H?(R,C") is the unique solution of

(SIn - Ppar)u = (f + (012 - B12,x)v) + (g + BIQU):B in LQ(R, Cn)

and satisfies the estimate

20l + 1] e
< K {1712 + 201 Cusli% + [ Bao.e %) 0l + 21s] (91> + | Broll 1o]?) }
< K{(I12 + Islllgl® + [slllo]). ~ (4.24)

Similarly by Theorem 3.1 there is a positive constant K so that v € H'(R,C™)
is the unique solution of

(8L, — Pryp)v = F 4+ Co1u in Ly(R,C™)

and satisfies
[o]1* < Ko (|1 FI1* + [lull?). (4.25)

If ||C21 2]loo < 00, the function v also satisfies the estimate
loll? + llvelI* < K2 (I1FI* + [1Fa 1 + llull® + [|uz]*).- (4.26)
Inserting (4.25) into (4.24) leads to
[P lull® + Islllual® < KT (LFIP + Islllgl® + [sHEI? + Is]llu]?).
By choosing Cy > max(2K7,C1,1) one obtains for all s € M(4,Cp)
[s%[lull® + Islllus |* < 2K (ILF1* + Islllgll* + s]1£]%) (4.27)

which implies

1
= EI?).
1)

1 1
lull* < 2Ki/(WHfH2 + HHQHQ +

This inserted into (4.25) shows

1
IF12 + — g + 1 E1I). (4.28)

5]

1

2 /
||U|| < KQ( |S|2

Combination of (4.27) and (4.28) proves (4.22). Similarly combining the estimates
(4.27) and (4.26) in the same fashion proves (4.23).

The solution estimates (4.22) and (4.23) imply that the operator sI — P is one
to one and the Fredholm alternative then shows that the operator is also onto. [
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4 The mixed case

In a similar way we analyze the finite interval problem (4.6). Assume that the
boundary operator R from (4.6b) is of the form

y PLQL R\ [u(z) PL QL RY\ [u(zy)
R<v>: Pro0 R | [uwe)|+(P7 0 B | [uey)] (429
RC RY RMP) \ v(z_) Re RL RWP) \ v(zy)

with PL,QL € Cc™", P{I ¢ C?»—"n R% ¢ C™™, R4 € C?»"m R$,RL € C™™,
RMWP ¢ C¢m™m and rank(Q_ Q) = r. This form can always be achieved by
multiplying (4.6b) with an invertible matrix from the left.

Theorem 4.10. Assume the differential operator P from (4.2) satisfies (P1),
(P2), (H1), (H2), (H3), (M1). Consider the boundary value problem (4.6) with
f € Ly(J,C"), g € HY(J,C"), F € Ly(J,C™), n = (nlnnnln)T e Ccntntm,
Assume the boundary operator R is of the form (4.29) with (Ri,Ri) =0 and
satisfies the determinant-condition Assume

I I
Q- @y 0 0
Do :=det | —PHIAz P A2 0 0 # 0, (4.30)
hyp,IT hyp,I
0 0 R_yp R+yp

where R?Eyp = <Riyp’l Riyp’n) corresponds to the partition of Bss in (H2) of
Assumption 1.

Then there are positive constants Cy, 0, b such that for all compact intervals J D
[—b,b], for all s € M(8,Cy), and all choices of f,q,F, n the following properties
hold.

(a) If (RS RS) = 0, then for every choice of RY and RY%. one obtains unique
solvability of the resolvent equation (4.6). Moreover there is a positive con-
stant K independent of J, s, n, f, g, and F so that for all s € M(6,Cy) the
solution (u,v) can be estimated by

1
Pl + T+ ol + S+ ol + ol (431)
P
1 1 1
< & (SIS + 9P + PP + gl + 21t ol + ol

with p = \/ﬂ

(b) If (R® REL) = 0 then for every choice of RS and RS one obtains unique
solvability of the resolvent equation (4.6). Moreover, there is a positive con-
stant K independent of J, s, n, f, g, and F such that the solution (u,v) can
be estimated by

1
Pllull + ol + pluf? + S + [o]2 + [of2
P
1 1 1
<K (;HfHQ g1 + 1P+ Lo+ L+ ol + |n”f|2) (4.32)

for all s € M(6,Cy).
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4.4 Resolvent estimates for large |s|

Proof. In Lemma 4.8 it is shown that for all J = [r_,z,] with x; > x_ the
sl — P|y
R

estimate of the form (4.31) or (4.32) suffices to prove unique solvability.

Assume (u,v) € H%(J,C") x H'(J,C™) is a solution of (4.6). The determinant-
condition (4.30) implies that there are positive constants Cp and 4 so that for all
s € C with Res > —¢ and |s| > C the assertions of Theorem 3.2 and Theorem
4.3 hold for the hyperbolic and for the parabolic part, respectively.

By assumption (u,v) solve

operator from (4.6) is a Fredholm operator of index 0. Hence an

(SI — Ppar\J)u = f + Ciav — Blgﬂﬂ) + (g + Blg?})x (4.33&)

(Pf Qﬂ)(u(ﬂz)) + (Pi Qi)( u(z4) ) _ - (R, RS <UE§3>

P 9 Ug (2 Pfr[ 0 ug(z4) ot — (Rb,,Ri) <UEm_)> )

<

T4)
(4.33b)
and
(SI — Phyp’J)'U =F+Cyu (4.34&)
R"™Py(z_) + R"™Py(xy) = "1 — (R RY) (ZEZ%) — (R R%) (Zzgij) .
(4.34D)

Thus by Theorem 4.3 there is a constant K, > 0 independent of J, s, and the
right hand side, so that the estimate

1
PP{lull® + fluz|® + plult + ;qul%
<K 12 2, L o 1 g9 112
< Kpy 1117+ llgll” + =lglt + =" 1" + pln""]
P P P
1 1
+ [Jol|* + ;Ivl% + ;I(Rci RY)[P|olf + pl(RY Rb+)|2|vl%} (4.35)
holds.
Similarly one obtains from Theorem 3.2 a constant Kj > 0, independent of .J,

s, and the right hand side such that the estimate

ol + fof? < Knd IFI2 + ™12 + lul® + (RS R)Pluf} + (R R Pul? }

(4.36)
is satisfied. Combining (4.35) and (4.36) similarly to the proof of Theorem 4.9
one obtains (a) and (b). O

REMARK. If the matrix-valued function Bio is equal to zero it is also possible
to analyze the case with R% = 0 and RY. = 0 and arbitrary choices of R and R%.
Then one obtains for the unique solution of the resolvent equation (4.6) under the
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4 The mixed case

same assumptions as in Theorem 4.10 the estimate
1 1
PIull? + u* + plulf + ;Iuml% + ;(Hv\l2 +[vff)
<Ki 2 2 EFQ oo 1 g9 2 | Yorrpe 4.37
< KA SZIAF+lgl™+ ZIEIE+ gl + 27"+ ol ™7+ 2 |- (4.37)

with a constant K independent of s, J, and the right hand side of (4.6).
For example in the FHN-System® the function Bys is zero.

4.5 Resolvent estimates in compact regions

In this section we always assume that Assumption 2 holds.

The main results will be uniform resolvent estimates for the all line problem (4.5)
in compact subsets of the resolvent set p(P) in the half-plane {Re s > —J}. For the
approximation (4.6) of the all line problem on finite intervals, we give sufficient
conditions for the supplementary boundary operator (4.6b) such that the finite
interval problem (4.6) satisfies resolvent estimates similar to the estimates for the
all line problem. We will first state the main Theorems 4.11 and 4.12 and then
provide the proofs.

Theorem 4.11. Let Q@ C {Res > —3} N p(P) be a compact set. Then for every
s €N, feLy(R,C"), g€ HY(R,C"), and F € Ly(R,C™) the resolvent equation
(4.5) has a unique solution (u,v) € H*(R,C") x H(R,C™).

Moreover there is a positive constant Ky independent of s, f, g, and F so that
the solution can be estimated by

el + lluzl® + 1ol + loal* < Ko(ILFI* + llgl® + 1E11%), (4.38)

and if one includes the derivative of g one can also estimate u in the H*-norm
luzall® < Ko (117 + Igl? + llgall® + 1 EI?). (4.39)
Before we formulate the analogous theorem for the restricted problem (4.6) we

give a condition for the boundary operator R from (4.6b). We assume that the
boundary term R in (4.6b) is linear and of the form

y u(z_) u(zy)
R<v>:(R£ R R (ug(e) | + (RL RY RET) | ug(ey) | . (4.40)
v(z_) v(z4)

By using the variable z = (u, Au, + g,v) the system (4.6a) transforms into the
first order equation

L(-,s)z=h in H'(J,C") x Ly(J,C") x Ly(J,C™), (4.41a)

*The FitzHugh-Nagumo system will be analyzed as an example in Section 5.3.
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4.5 Resolvent estimates in compact regions

where

with M from (4.14) and

h=|-BnA'g— f+ B1aBR'F | € H'(J,C") x Ly(J,C") x Ly (J,C™). (4.41D)
—By,'F

The boundary condition (4.40) transforms into
Riz =, (4.41c¢)
where
Riz=(RL RYA™Y RIM)z(z_)+ (RL RIA™Y RUT)z(zy)

and
m=n+RIA g(z_) + RY A g(xy).

In the sequel we will simply write H'(J) or Ls(J) the exact dimension of the
image will be clear from the context.
As in (3.81) and (3.82) let

X_(s) X4 (s)
VI(s)=[Y_(s) | and V](s)= [ Yi(s)
Z_(s) Z+(s)

be bases of the stable subspace of M_(s) and of the unstable subspace of M, (s),
respectively. The equations (3.81) and (3.82) show

AT (s) = X_(s)AT(s) and A7V, (s) = X, (s)AL (s).

Define the determinant

X_(s X+ (s)
D(s) :=det [(RL RHA™T RUD) | Y_(s) |, (RL RIA™Y RIY[ Y, (s)
I Z_(s) Z(s)
i X_(s X (s)
=det [(RL R RUI)| X_(s)AY(s) |, (RL RI RIT)| X (s)AL(s)
I Z_(s Z1(s)

Now we can formulate the Theorem.

Theorem 4.12. Let Q C {Res > —d} N p(P) be a compact set and assume
D(s) #0Vs € Q.

Then there is a compact interval Jo and a constant Ko > 0 so that for all s € Q and
all compact intervals J D Jo we have for every f € Lao(J), g € HY(J), F € Lao(J),
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4 The mixed case

n € C*™ g unique solution (Z) € H*(J,C") x H'(J,C™) of equation (4.6).

Moreover the solution can be estimated by

lullz2 oy + vl ) + ule + [uale + ol
< KO(||f||L2(J) + gl ey + 1 Fll Loy + gl + ). (4.43)

The proofs of the theorems are basically the same as in Section 3.3. We use
the same transformation of variables for the all line problem as for the restricted
problem, i.e. z = (u, Au, + g,v). Thus the all line problem (4.5) can be rewritten
as the first order equation

L(-,8)z =h in HY(R,C") x Ly(R,C") x Ly(R,C™), (4.44a)

where

with M from (4.14) and

—A7lyg
h=|-BuA=lg— f+ BaBy F | € H'(R,C") x Ly(R,C") x Ly(R,C™).
—B3'F
(4.44b)
We show that for every s € Q the first order operator L(-, s) has an (ED) on R.

Lemma 4.13. For all sg € {Res > —d} Np(P) the operator L(-, sy) has an (ED)
on R and the projectors m from the dichotomy data satisfy

lim 7(z,s0) =7m4(so) and lim w(x,s9) = 7_(so),
T—+00 T——00

where w1 (So) are the projectors of the constant coefficient operators in Lemma 4.5.

Proof. By Lemma 4.6 we know that for all s € {Res > —d} the variable coefficient
operator L(-,s) from (4.44a) has an (ED) on Ry and on R_ with projectors m
and m_ respectively. Similar to the proof of Lemma 3.17 it suffices to show that

20 € R(m+(0,80)) NR(I —7_(0, sp)) implies zy = 0.
Let S(z,y) denote the solution operator of L(-, so) and define
z(z) := S(x,0)z, Vz € R.

It follows that z € Lo(R,C?"*™) and 2z, = M(-,s0)z € La(R,C?"*™). So by the
boundedness of M one obtains z € H'(R, C?"*t™). The structure of M implies

21

2= | Az, | € H'(R,C"TT™)
z3
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4.5 Resolvent estimates in compact regions

21

and therefore (
23

> € H?(R,C") x HY(R,C™) and furthermore

(sI — P) <2> =0 in Ly(R,C"™),

From the assumption sg € p(P) then follows <zl> = 0 and so z = 0. Thus
3

29 = z(0) = 0 and by application of Theorem B.6 the assertion follows. O
We prove Theorem 4.11 in a similar way as Theorem 3.13.

Proof of Theorem 4.11. Let sy € Q and write the resolvent equation (4.5) in the
form (4.44). By Lemma 4.13 and Theorem B.2 there is a constant cs, so that for
all f, g, and F' there is a unique solution z of (4.44) and this satisfies the estimate

I12]1* < es 1211 (4.45)
By application of the differential equation
zeg = M(+,80)z+h in Loy
we obtain that its derivative satisfies

lea® < &, IRl (4.46)

where ¢ only depends on cs, and || M (-, s0)||cc-

With the same argumentation as in the proof of Theorem 3.13 one uses the
compactness of € to derive from the pointwise estimates (4.45) and (4.46) an
estimate independent of s € €). Thus there is a positive constant K so that for all
seQandall h € Ly x Ly x Ly there is a unique solution z € H' x H' x H' of

L(-,S)Z =h in L2 X L2 X L2
and this satisfies
1217+ [lz)1* < KA. (4.47)
If in addition h € H! x Ly x Lo one obtains from the structure of M and the
differential equation, that z in fact is an element of H? x H! x H' and the equality

L(-,s)z =h holds in H* x Ly x L.

Now recall the structure of h (4.44b) and M. These imply that z is of the form
21
2= Az +g|. Weset u:=z € H?(R,C") and v := 23 € H'(R,C™).
23
Then (4.47) implies the inequality

9 2 1 2
u Uy —A 9
Aug + g + ||| Augs + gz <K||-BuAl'g—f+ BBy F
v Vg —By'F
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which leads to
Jull* + flug| + lvlI* + lvel* < Ko(IIF17 + lgli® + I FI%)-

In order to estimate the second derivative of u one has to move the g,-term from
the left to the right hand side. Then one obtains

lall? + llua 1 + llugel* + ol + loal® < Ko (IF17 + lal® + llgalI* + [1F11%).

Furthermore by the form of M and h we obtain that (u,v) is a solution of (4.5).
This finishes the proof. U

As in the hyperbolic case we use the general convergence result Theorem 2.29
to prove Theorem 4.12.

Proof of Theorem 4.12. As above we use the variables z = (u, Au, + ¢,v) and
consider the transformed system (4.41) as one equation

Ly(s)z = (L%’;)Z> = (;) in Ly(J,Crintmy i g2ntm, (4.48)

Here we view L(-, s) as an operator defined on
L(-,8) : HY(J,C?>"T™) — Ly(J,C?" ™)

or
L(-,s) : HY(R,C*"t™) — Ly(R,C*"T™).

In notation we do not distinguish between the operator on the whole real line
and the finite interval operator, but it will always be clear which definition is
considered.

From the assumption D(s) # 0 and the assumptions on the coefficients of P,
we see that for every s € {2 we are in the setting of Theorem 2.29 with [ = 2n+m.
With the notation from there we therefore obtain

Lj(s) LR L(-,s) regularly (J € H) Vs € Q.

As in the proof of Theorem 3.14 we know L;(s) is a Fredholm operator of index
zero for all s € Q and all J € H by the Fredholm alternative for boundary value
problems. Furthermore we know from the proof of Theorem 4.11 that for all s €
the operator L(-, s) is a linear homeomorphism.

Now we can use the same arguments as in the hyperbolic case® and obtain
that there is a positive constant K and a compact interval Jy such that for all
compact intervals J O Jy we obtain that for every s € € one has for every choice
of f € Ly(J,C"), g € H'(J,C"), F € Ly(J,C™), and n € C***™ a unique solution
z € HY(J,C?"*™) of (4.41). This solution can be estimated by

HZH%{l(J,(C%er) + |Z|% < K(HhH%Q(J,@wm) + |771|2)- (4.49)

*See Section 3.3.3.
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We split
z= |2 | € HY(J,C") x H'(J,C") x H'(J,C™).
3
By using the structure of M we obtain from
L(-, S)Z =h in LQ(J, (Cn) X LQ(J, (Cn) X LQ(J, (Cm)
and (4.41b) the equality
g = Al —A7'g in Lo (J,C").
This shows that z; , is in fact an element of H!(.J,C") and so 21 € H*(.J,C") and
29 =Az1+g.
With the definition u := z; and v := 23 we obtain that (u,v) € H?(J) x H'(J)

is a solution of the finite interval problem (4.6).
Finally from (4.49) we obtain by rewriting z in terms of u and v the estimate

2 2 2
U Uy u
v Vg v T
_A_lg 2
1 -1 IT 4—1 IT 4—1 2
SKE| || ~BuA™g — f + BuBy F || +[RTATg(z-) + RY A g(ay)|
—Byy F

This shows
lullZr ) + 0l ) + lulf + e ff + [off
< Ko <Hf”%2(]) +9ll7, ) + IF I, ) + 97 + \77’2>
and
[l Frz gy + N0l F gy + [ulf + Juelf + [vff
< Kj <||f||%2(J) + gl gy + IFIT, ) + 9lf + |77|2) -

O

4.5.1 Convergence of the finite interval approximations

As in the hyperbolic part we present a ‘consistency result’ about the approximation
of the all line problem by the finite interval problems. Consistency in our setting
means that the error of the all line solution inserted into the truncated problem
converges to zero as the interval converges to R.
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Theorem 4.14. Let Q C {Res > —d} N p(P) be a compact set and let Jy be
the compact interval from Theorem 4.12. Let f € Ly(R,C"), g € HY(R,C"), and
F € Ly(R,C™) be arbitrary. Let (u,v) € H*(R,C") x HY(R,C™) be the unique

solution of
(sI — P) (:j) - (f ;g”f) in Lo(R)

which one obtains from Theorem 4.11. Finally let (uy,vy) € H?(J,C")x H'(J,C™)
be the unique solution of

. flo =+ gzls
<SI P‘J) (UJ> _ F|J in LQ(J) x LQ(J) « CQner
R vy 0

one obtains from Theorem 4.12. Then

luly = will g2y + vls = vallgr gy + luls — wsle + [uels — wgelr + [ols —vslp
0 ifJ >R (4.50)

and the convergence is uniform in s € 2.

Assume there is some r > 0 such that f = e"lf Ly(R,C"), § = etl®lg
Ly(R,C"), F = e**lF € Ly(R,C™). Then for every o < min(x,3), where (3
is a uniform dichotomy exponent for L(-,s) in Q, there is a constant const > 0
independent of s, f, g, F, J such that for oll J D Jy holds the quantitative version
of (4.50) given by

uly — vl + vl = vl + [uls = wslp + Juels = wie|p + |vls = vslp

< const I + ] + |17 + [g } e-ominzs-=2-),

For the proof one can use the same methods as mentioned in the hyperbolic
case (see 3.3.4).

4.6 Convergence of eigenvalues in the right half-plane

As in the hyperbolic case we now show that the eigenvalues and eigenspaces of
the finite interval operators approximate the eigenvalues and eigenspaces of the
operator on the whole real line. We will mainly follow the proof of the hyperbolic
case. Throughout the whole section we assume that Assumption 2 holds.

4.6.1 The general setup of the eigenvalue problem in the mixed case

First of all we show that in the half-plane {Re s > —d} the operator P has isolated
eigenvalues of finite algebraic multiplicity only.

Lemma 4.15. There is no essential spectrum of the all line operator P in the

half-plane {Res > —0}.
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Indication of a proof. Asin the proof of Lemma 3.20 one shows that all eigenvalues
of the transformed operator L(-,s) in {Res > —d} are isolated points. Then one
concludes by using the Fredholm property from Lemma 4.7 that all eigenvalues of
P in the right half-plane are eigenvalues of finite algebraic multiplicity (cf. [Kat66,
IIT §6.4 and IV §5.4]). O

We use the same notations as in the hyperbolic case.
Let so € o(P)N{Res > —¢} and let B4 and _ denote the exponents of the (ED)
of L(-,s9) on R} and on R_, respectively.
Choose ¢ > 0 so that K, (sg) C {Res > —d} and K, (so) No(P) = {so}.

Let A(s) be the operator-polynomial defined by

A(s) :=sI — P € L(H*(R,C") x HY(R,C™), Ly(R,C") x Ly(R,C™)).
As in the hyperbolic case let W denote the root-subspace® of A(-) to the eigenvalue

so. Let & be the highest order of all root-polynomials of A(-) to the eigenvalue sg.
Furthermore consider the same directed set (H,>) as in Section 3.4, i.e. H =
{J=[z_,z4] CR: 0€ J,|J| > 1} with |[z_,z4]| =24 —x_.
Finally, the finite interval approximation A4 ;(-) of A(-) is given by
H?(J,C")x HY(J,C™) — Lo(J,C") x Lo(J,C™) x C?ntm

(TSR0
4.51

Denote by o the so-group of eigenvalues of A;(-) in K., (sp) and by W, denote
the closed linear hull of all root-subspaces of A;(-) to the eigenvalues s; € 0.

The following lemma is a quantitative result about the decaying of the elements
from W. It is the analogon to Lemma 3.21, used in the hyperbolic case.

Lemma 4.16. For every 0 < ' < min(fB_, 34) there is a constant ¢ = ¢() so
that for all (Z) e W with | (Z) I p2sgn = 1 holds

lu(@)] + |ug(z)| + [v(z)| < ce P11 vz € R. (4.52)

Proof. Let (u) € W then there are <u0> e <uk> = <u> in W with
(Y Vo Vi [

(sol — P) (Zg) =0

and (sol — P) (1) = (") fori=0,....k—1.
Vi4+1 (%

*See Definition C.6.

(4.53)
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u

With the transformation (Z) — [ Auy | one can rewrite (4.53) as
v
Uo
L(-, 80) AUQm =0
vy
Uj41 0
and L(-,s0) | Aujy15 | = |wi | fori=0,...,k—1.
Vit1 v

The rest of the proof is the same induction argument as in the hyperbolic case
(see Lemma 3.21). O

4.6.2 The convergence theorem in the mixed case

For the original problem (4.5) and its approximation on finite intervals (4.6) we
use the spaces

E = H*(R,C") x H'(R,C™),
F = Ly(R,C") x Ly(R,C™),
Ej:= H*(J,C") x H'(J,C™),

Fj:= Ly(J,C") x Ly(J,C™) x C2t+m

with the families of restrictions

75::{;5J:J€H} ;BJ:E—>EJ, <u>r—><u“]>,

v vy

- ~ _ f f|J
Q:={qs:J e H} qs:F'— Fy, <g>'—> gls
0

They satisfy the properties (2.1). The next lemma is the main ingredient for the
proofs of the convergence Theorems 4.18 and 4.19.

Lemma 4.17. Let s € {Res > —J} and assume that the boundary-operator R
satisfies D(s) # 0 with D(s) defined in (4.42).

Then the finite interval approzimation Aj(s) regularly PO converges to the all
line operator A.

Proof. First we show the convergence

(51 _RP|J> P 51— P,
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4.6 Convergence of eigenvalues in the right half-plane

Let J € H and let (uy,vy) € E; be arbitrary. Then Lemma C.2 implies

1) Gl

" uy(z-) uy(74)
< ||(sI = PJy) <UJ> +|R- | uje(z—) | + Ry | uga(zy)
T/ Ly () vy(x_ vy(zy)
A 0\ (uy Bi1 B2 UJ> (Cn C12> <UJ>
<
<6 o) ()~ (5 ) () @) Gl
ug(x_) ug(xy)
+ |R- | use(@-) | + Ry | uje(zy)
vy(z-) vy(z4)

<«

)

H2(J)x H(J)

()

with a constant ¢y independent of J and (uy,vy). Because of Lemma 2.18 it hence
suffices to show the convergence

(") C) = ermn ) wem

for every <Z> € E. By definition of A, A, P, and Q it holds
SI—P|J u|J o (SI—P)(Z) — R ’LL|J
R vl J T\l
0 7y
(i)
vy

It remains to show the regularity of the convergence. Consider the auxiliary

, VJ e H,

and Lemma C.2 shows

—0(J e H).

spaces
E:= H' (R, C"™™) = HY(R,C") x H'(R,C") x H'(R,C™),
F = Ly(R,C"™) = [4(R,C") x Ly(R,C") x Ly(R,C™),
Ej:=H'Y(J,Cv™ ™y = gY(J,C") x HY(J,C") x H'(J,C™),
Fy = Lo(J,C"Hm) 5 C2H™ = Ly(J,C") x Lo(J,C™) x Ly(J,C™) x C*tm,

and families of bounded linear operators given by

u uly
P:={psj:J € H} py:E — Ey, w | — [w],

v vy

h il
Q:={q;:JE€H} qj :F — Fy, fl~ f||J

g QOJ
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4 The mixed case

Note that these spaces and operators are the same as in Theorem 2.29.
Using the usual transformation, we rewrite the second order equation

(sI — P) (Z‘) = (g) in F

as the first order equation

U 0
L(-,s) | Aug | = | —f+ Blng_ng in F.
v ~By'g

Similarly the finite interval problem

((s[ —RP\J)> (Zj) _ i;j in F;

nJ
becomes
0
i L(-,s) " —f7+ BuBytas | .
Lj(s) | Auy, | = R Aujy | = gl in Fy.
vy 1 vy 7722 gJ
J

In both cases L(-, s) is the operator defined in (4.13) with the appropriate do-
mains, i.e. L(-,s) : E — F and L;(s) : E; — Fj, which differs from the defi-
nition in (4.13). The boundary operator R is of the form (4.21) and R; is given
by Riz = (RL RUA™Y RUD)z(z_)+ (RL RYA™' RUT)z(zy). Finally we

have the inclusions

u 0
LE:E%E,(Z)#—) Aug |, LF:F—>F,<£>»—> _f+B1235219 ’
v —Ba'g
J J 1
3 Y 2 —f7+ Bi2B
LE; : EJ — E’7 <’0j> — AUJ#B , LRy FJ—>FJ7 gy | — fJ_B_I%gJQQ qJ
vJ Ny 22
nJ

The whole situation is presented in Figure 4.2. By the determinant-condition
D(s) # 0 and the assumptions on the coefficients of P, Theorem 2.29 implies

Lj(s) LR L(-,s) regularly.

Let <u‘]> be a bounded net in £ such that the net { <SI B P’J> (u‘]> }
YT/ jen R Y1/ ) jen

is O-compact. Then by construction of Lj(s) the net {LJ(S) (’LLJ, Auyg, ’UJ)
in Fy is Q-compact.

Voen
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4.6 Convergence of eigenvalues in the right half-plane

u

~ —(sI— P

i P
w HL(

G- G- 0 @H(i) a| ()~ ()

’LUJ l—>L] S) UJJ
ul
v] Au;x

E sI—P\] , FJ
v] R v]

Figure 4.2: The setting of spaces and mappings in Lemma 4.17.

This is proven as follows. Let H ' C H be any cofinal subset. Then there are
H" c H" and (f,g) € F so that

() () 26 e

nJ
By the definitions of L(-,s) and R; one obtains
uj 0 0
Lj(s) | Auy, | = Rk +_B;§B2219J 2 —f +312Bz_219 (J e H"
vy ) ~By'g

and hence the Q-compactness.
Let H' C H be any cofinal subset. By the regular convergence of Lj(s) to
L(-, s) there is a cofinal subset H” C H' and an element (u,w,v) € E such that

uj U
Aujg | B (w ]| (7 e H). (4.54)
vy (Y

In addition, by the O-compactness of <<SI B P|J> <u“]>> there also are a
R v JeH

cofinal subset H” ¢ H” and (f,g) € F so that
sl — P|; ug o (f m
(7)) = () wemn
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4 The mixed case

The construction of Lj(s) yields

ugj 0
Ly(s) | Ause | 2 [ =F+ BuBylg| (JeH"). (4.55)
_ Bl
vy 29

With (4.54) and (4.55) the PQ-convergence Lj(s) — L(-, s) implies the equality
U 0
L(s) [w] = | —=f + BiaByy'g | in Ly(R,C"TH™), (4.56)
v —By'g
Application of the differential equation (4.56) implies
w=Au, € H'(R,C"), u€ H*(R,C"), and (sI — P) (Z) = (g) in Ly(R,C"™).

Finally, the convergence (4.54) shows

lws = ulsllmeny + lwse — vwalsll g aeny + log = vlsllmrgem

Uy uly
< const ||| Aujy | — | Augls
vy ols /g,

—0(J e H™,

which by the definition of P means

() 2 () e,

Since H' was arbitrary the P-compactness of the net (u“]> follows. O
Y1/ jen
As in Chapter 3 we can now prove quantitative results about the convergence of
eigenvalues and eigenfunctions of the finite interval approximations by using the
abstract theory from Chapter 2. With the notations and assumptions from above
we have the following Theorem.

Theorem 4.18. With the assumptions and notations from above, in particular
Assumption 2 hold. Let X3 be an open neighborhood of the isolated eigenvalue sg
with D(s) # 0 for all s € ¥ and assume that ¢ is so small that K, (sg) C X.
Then there is a compact interval Jo C R such that for all compact intervals
J=[z_,x1] CR with J D Jy the following properties hold.
The so-group of eigenvalues oj converges to the eigenvalue sy in the sense that
for every 0 < ' < min(B_, 84) there is a constant const = const(3') > 0 with

/

B .
max |s — so| = dist(0, 59) < conste™ x MRE+—T-) (4.57)
s€oy

106



4.6 Convergence of eigenvalues in the right half-plane

where k is the maximal order of the eigenelements of A(-) to the eigenvalue so*.

FEach net <UJ> of normalized eigenelements to eigenvalues sy € oy, i.e.
J
J=Jo

Aj(sy) <Zj> =0, | (Zj) g, =1, is P-compact and the estimate

sup inf H (UJ) . <UO‘J> HE < constef% min(z4,z_)
(%) s, =1 (vg )EN(AG0)  \VT voly) "EY

s7€%7,A7(s5) (5] )=0
(4.58)
holds.

Furthermore, for the root-subspaces we have
dimW; = dim W < oo, (4.59)

and the family of root-subspaces Wy approximates the root-subspace W in the
following sense.

I(Wy;, W)= sup dist((u‘]> ,pyW) < conste™ ' min(=z—2+) (4.60)
(7 )ewy v
(w7 s, =t

and
_ . : u’J —f' min(—z_,z4)
d(W,W;)= sup dist( ,Wj) < conste A (4.61)
(ew A\
() z=1

The constants in (4.57), (4.58), (4.60), and (4.61) do not depend on J.

All the necessary properties of the operators A(-) and A;(-) one needs for the
application of Theorem 2.26 are already shown in the Lemmas 4.7, 4.8, 4.17 so that
Theorem 4.18 can be deduced from Theorem 2.26. The speed of the convergence
is obtained by using the exponential decay of the functions from the root-subspace
W proven in Lemma 4.16. Since the details of the proof are already given in the
proof of Theorem 3.22, we do not carry out the proof.

4.6.3 Convergence in the case of simple eigenvalues

As in the hyperbolic case we finish this section with a theorem for the case of
simple eigenvalues where we also allow for s-dependent boundary conditions.
Assume that the boundary operator R is of the usual form (4.40), but depends
holomorphic on s in an open neighborhood ¥ of the simple eigenvalue sy. That
means that the matrices R+ depend holomorphic on s and so the mapping

R:Y — L(E;,Crrtm),

*See Definition C.6.
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4 The mixed case

given by

— (R_(s) | usle_) | + Ri(s) | uales) |)
o(e-) o(ey)

is holomorphic. Recall the determinant D(s) from (4.42) which has the form

> u(a-) ulay)

X_(s) X, (s)
D(s) =det |R_(s) [ X_(s)ALL(s) | Ry(s) | Xi(s)AL(s)
Z-(s) Zo(s)

where X1 (s), Ai(s), and Z1(s) are as in Section 4.5.

Theorem 4.19. Let the assumptions from above hold.
Let s € o(P)N{Res > —d} be a simple eigenvalue* of the holomorphic operator-
valued function’ A(s) = sI — P. Let (ug,vo) be a nontrivial eigenelement of A(-)
for the eigenvalue so. Furthermore assume D(sg) # 0.

Then there is a compact interval Jy € H and &g > 0 so that for all compact
intervals J D Jy there exists exactly one simple eigenvalue s; with |so — s| < dp
sI — P|y

of the finite interval approzimation Aj(-) : s — < R(s)

). Moreover there is a

corresponding eigenfunction (ZJ> € E; so that we have the estimate
J

omnte|2)- G, <o () - om (55
(4.62)

with a constant C' independent of J.

One proves Theorem 4.19 in the same way as Theorem 3.25 in the hyperbolic
case. Therefore we do not give the proof here.

*See Definition C.6.
tSee Definition C.5.
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5 Analysis of the boundary conditions
and an application

In this Chapter we will briefly look at the Assumptions 1 and 2. We give condi-
tions that imply the validity of (H4) of Assumption 1 and (M2) of Assumption 2.
Furthermore, we show that the determinant-conditions Dy, # 0 and D(s) # 0 are
satisfied for some natural choices of boundary conditions. We finish the chapter
with an application of our theory to the FitzHugh-Nagumo equation.

5.1 Boundary conditions in the hyperbolic case

Consider the operator P from (3.2). We analyze the validity of the spectral as-
sumption (H4) of Assumption 1 in this section and show that the characteristic
and in some important cases also the periodic boundary conditions satisfy the
determinant-conditions (3.14) and (3.86).

The characteristic boundary conditions prescribe the values of the ingoing vari-
ables at the endpoints of the interval.

EXAMPLE 3. Consider the equation u; = Au, on R x [0, 00) subject to boundary
conditions u(z,0) = f(z). From the differential equation follows u(z,t) = f(At +
x), thus the solution “propagates” along the characteristics given by x(t) = —At+
xQ-

t

In/?ﬁg (A<0) Ingoing (

Outgoing (A > 0)|Outgoing (A < 0)

N

Figure 5.1: In and outgoing characteristics for different values of A in Example 3.

A

NN

REMARK. In [KL89, Chapter 7.6] it is shown that linear hyperbolic initial
boundary value problems subject to characteristic boundary conditions are well-
posed if the boundary is not characteristic.
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5 Applications

Because of assumption (H2) the equation (3.1) is already in characteristic vari-
ables and the boundary operator R has the simple form

Rawo= (g ;0 Yo+ (5 ) ol 6.

If one considers periodic boundary conditions, the boundary operator is of the
form
Rperv = ITv(z_) + (—1)v(z ). (5.2)

Next we give a further assumption which implies the spectral assumption (H4).
We will also show that under this assumption the characteristic boundary condi-
tions satisfy the determinant-conditions from Chapter 3.

Assumption 3. There is a positive definite diagonal matrix H = H* such that
HCy + C:T:H < 0.

Let Assumption 3 hold. By P we denote the symbol of P and Py denotes the
symbol of HBwv, + HCv. Then there is a constant 6 > 0 such that for every
u, v € C™ holds the estimate

—u"(HB - B*H" v+ v"(HC + C*H)v =v*(HC + C*H)v < —0v*v.  (5.3)
With the choice u = iwwv this implies
v'iwHBv +v*HCv + v* —iwB*Hv +v*C*Hv
—v* Py (iw)v + v* P (iw) v
=v*HP(iw)v + v* P(iw)* Hv. (5.4)
Now assume P(iw)v = sv then it follows from (5.4) and (5.3) the equality
v*HP(iw)v + v*Pliw)*Hv = 2Re(s)v* Hv < —0v*v

what implies (H4).

Before we analyze the boundary conditions we need another auxiliary result
which shows that the characteristic parts of the bases of the stable and unstable
subspaces, which appear in the determinant-condition (3.86) are nonsingular. The
Lemma follows the ideas of [BL99, Lemma 5.1], but we directly included a rescaling
since it will be necessary for the application to the FHN-system.

Lemma 5.1. Let the assumptions 1 and 3 hold and assume s is an element of C
such that
HC + C*H — 2Re(s)H < 0.

19
Let VII(s) = G;_I’Il(s)> € C=147T e g basis of the stable subspace of M_(s)
2

)

—~
V2l
SN—

as in (3.82).
I

Let V_{(s) = <¥4}’1(5)> e Clm=rtrm=r pe o basis of the unstable subspace of
+,2

(s)
My (s) as in (3.81).
Then the matrices Vfé(s) and Vi,l(s) are nonsingular.
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5.1 Boundary conditions in the hyperbolic case

Proof. Without loss of generality consider V! 7[2(5).
Let ¢ € C" with Vf{z(s)QS = 0. The function

2(z) == VH(s)er )7
is an exponentially decaying solution of
Bz, + (C —sI)z =0 in [0,00).

Therefore by multiplication from the left with z*H, integration by parts, and
taking real parts one obtains

[e.e]
0= / 2*HBzy + 2*(HC — sH)z+ 2, B*"Hz + 2*(C*H — 5H ) zdx
0
[e.e]
= / 2*(HB — B*H)zy + 2" (HC + C*H — 2Re(s)H )zdz + [*B*Hz|",
0
where § stands for the complex conjugate of s.

From the assumptions on B, H, and ¢ it follows z*(0)B*Hz(0) > ¢pz*(0)z(0)
with a positive constant cg which implies

/00 2*(HC + C*H — 2Re(s)H)zdx = z*(0)B*Hz(0) > ¢9z*(0)z(0) > 0.
0

Since HC 4+ C*H — 2Re(s)H < 0 we obtain z(0) = V!I(s)¢ = 0 and therefore
¢ =0.

For the proof of the non-singularity of V_{J(s) one has to consider the left half-
line. U

Now we analyze the determinant-conditions from 3.2 and 3.3 for the case of
periodic and characteristic boundary conditions.

Characteristic BC. In the case of characteristic boundary conditions the bound-
ary operator R from (3.8) is of the form (5.1) and the determinant-conditions
read

_ 0o I
Dy, = det <Imr 0>

and

o= (02 (5 D)) -on (o, )

where ViI’H are as in Lemma 5.1. Obviously Dy, # 0 is satisfied and by
Lemma 5.1 also D(s) # 0 for all Res > —¢ for some positive 0.
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Periodic BC. Periodic boundary conditions in (3.8) which are of the form (5.2)
are a natural choice if the coefficients of the operator P from (3.2) satisfy
B_ = B; and C_ = (. For example this is the case if P is obtained by
linearization of (1.3) at a pulse solution. The determinant-conditions then

take the form
_ 0 -1,
Do, = det <Imr 0 >

D(s) =det (VI(s) —Vi(s)),

and

where ViI’H are as in Lemma 5.1. As in the case of characteristic boundary
conditions one directly obtains Dy, # 0. If B_ = B4 and C_ = C} one
finds R(VII(s)) = R(VI(s)) as well as R(VI(s)) = R(VL(s)) and since
V_(s) and Vi (s) are bases of C"™ one also obtains D(s) # 0.

5.2 Boundary conditions in the mixed case

For the mixed case we proceed as in the hyperbolic case. We consider the operator
P from (4.1) which is of the form (4.2). Similar to the analysis of the boundary
conditions for the hyperbolic case in Section 5.1 we give a sufficient condition for
assumption (M2) that will also imply that some typical choices of boundary con-
ditions satisfy the determinant-conditions (4.30) and (4.42). As in the hyperbolic
case the assumption is easier to check than the original condition (H4).

H 0

Assumption 4. Assume there is a matrix H = ( 0 H
2

H = H" >0 and

) € crmn i

H{A+ A*H, > 0, Hy is a diagonal matrix
such that
HB =B*H and HC + C*H < —28H for some ¢ > 0.

From Assumption 4 follows (M2) of Assumption 2.
Let u,v € C"™™, Assumption 4 yields

u <H1A+A*H1 0

0 0)u—u*(HB—B*H)v—i—v*(HC—i—C*H)v

< —26v*Hv. (5.5)

Therefore assume P(iw)v = sv and let u = iwv. Now (5.5) implies

—26v*Hv > — w?v* (H(l)A 8) v+ iwv*HBv + v*HCv
+ <—w21)* (A OHl 8) v —iwv*B*Hv + ’U*C*HU>

—v*HP(iw)v + v*P(iw)* Hv = 2Re(s)v* Hv.
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Therefore (M2) follows.
Next we prove a result similar to Lemma 5.1 in this case. It will be used to
show that the theory is applicable to the FHN-System (see Section 5.3).

Lemma 5.2. Let the Assumptions 2 and 4 hold. Assume that s is an element of
C such that HC + C*H — 2Re(s)H < 0 holds.

X_(s)
Let [ X_(s)AL(s) | € Crintmnt(m=r) pe g basis of the stable subspace of M_(s)
Z_(s)
X4 (s)
and let | Xy (s)AH(s) | € CFtmntT pe q basis of the unstable subspace of
Z4(s)
I
M (s). Partition the last m rows of these matrices in the form Z1(s) = (5%}(3)
i

with the partitioning corresponding to the partitioning of Bag in (H4) of Assump-
tion 2. Then the matrices

X_(s) X (s)
0 and | Z1(s)
Z11(s) 0
have mazimum rank.
X_(s)
Proof. Without loss of generality consider 0 . Let ¢ € C"™™~" with
ZH (s)
X 0
ZL(s) | o= | ZL(s)¢

)
) 0
. X_(8)\ —ati(s), . . .
Then the function z(x) := 7 ( e =g is an exponentially decaying solu-
tion of

0 0
Multiplication from the left with z* H, integration, and taking real parts yields

> A0 A* 0
0:/0 zH(O 0>Zm+2‘;x<0 0>Hz

+2*HBz, + 2, B*Hz + 2*(HC + C*H — 2Re(s)H)zdx.

<A 0> Zpw + Bzy + Cz — sIz =10 in [0,00).

Integration by parts leads to

X (H'A+AHY 0
o ° 0 0)

+2*(HB — B*H)z, + 2" (HC + C*H — 2Re(s)H ) zdx

e (A O L(AHD 0\ 1T e 100
—[zH(O O>zx+z$< 0 0>z]0 —[zBHz]O
= 2"(0)B*Hz(0) > bpz*(0)H z(0),
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where by is given (H2). Therefore the left hand side must be zero and this is only
X_(s)

possible if z = 0. This implies | X_(s)AX(s) | ¢ =0 and therefore ¢ = 0. O
Z_(s)

Now we can analyze some natural choices for the boundary operator R from
(4.6b). The determinants from Chapter 4 are

QL QL 0 0

Do =det | —PTAz PHAz 0 0
0 0 RMPI Rt
and
X_(s) X4 (s)
D(s)=det | (RL, R, RI) | X_ ()AL (s) | , (RY, RY, RAT) | X ()AL (s)
Z_(s) Z1(s)

The first given name stands for the boundary conditions for the parabolic part
and the second for the boundary conditions for the hyperbolic part of the equation.

Dirichlet-characteristic boundary conditions. In this case the matrices read

I 0 0 00 0
n _ 00 0 and R, — I 0 0
0 0 0 0 0 0 I, 0
0 Lpr 0 0
We directly obtain
—A2 0 0
1
Do =det | 0 A2 0 £ 0.

0 I
oo (0 %)

And for bounded |s| with Re s > —d one obtains

X_(s) 0

0 X4 (s)

D(s) = det 0 Z{t(s)
Z1(s) 0

which also satisfies D(s) # 0 by Lemma 5.2.

Periodic boundary conditions. Again this is the natural choice if B_ = By and
C_ = C4. The boundary operator is of the form

R_=1 and Ry =—-1
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5.3 The FitzHugh-Nagumo System

and so the determinants are

—A2 —A3 0
Do=det| 1~ 0 £0
0 —I,
0 0 (Im_r O)
and
X_(s) —X.(s)
D(s) =det | X_(s)ATT(s) —Xy(s)AL(s) | #0.
Z_(s) —Z4(s)

5.3 The FitzHugh-Nagumo System

In this section we will show that our theoretical results apply to the FitzHugh-
Nagumo System (FHN) (see [Fit61] and [Mur93]). Furthermore we also present
some numerical results which in some sense seem to validate the theoretically
predicted behavior in practice.

5.3.1 Theoretical embedding of the FitzHugh-Nagumo System

The FitzHugh-Nagumo system (FHN) is a simplification of the Hodgkin-Huxley
system [HH52] which models the electrical signalling in nerve cells. The intention
of the (FHN) system is not to approximate the Hodgkin-Huxley system itself, but
to model its behavior [Fit61]. The (FHN) system reads

U =Uge + f1(u,v), (5.6a)
vy =fo(u,v), (5.6b)

where fi(u,v) = u—3u—v and fo(u,v) = ®(u+a—bv), and a, b, ¢ are positive

constants.

We consider the parameter values a = 0.7, b = 0.8, ® = 0.08 which were already
chosen in [Miu82] for the computation of a stable travelling wave solution.

For these values the System (5.6) has a stable and an unstable pulse. A proof of
the stability of the fast travelling pulse using centre manifold theory is presented
in [BJ89].

Let <us> be a stable pulse with speed ¢; and with profile Wy this means

(2 (o) = Wit = et

and let I_Lu> be an unstable pulse with speed ¢, and profile W,,.

(%
As in the introduction the pulses lead to steady states of the equation

()=o) C) Gl e
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where ¢ = ¢4 for the stable pulse and ¢ = ¢, for the unstable pulse.

Now let (g) be a pulse solution of (5.6) with speed c. Linearization of (5.7) at
the pulse leads to the linear PDE

()= () =0 90, () () oo

c 0 1—a2 -1
WhereA—l,B—<0 C),C-( o —<I>b>'

With an abuse of notation we will also write A for the matrix Here

10
0 0
u stands for some shifted version of the first component of the profile W, i.e.
(x) = Wi(x + o).

Furthermore, the pulses are homoclinic connecting orbit of the stationary point
oo ) = —1.199 . Therefore one easily sees that the assumptions (P1), (P2),
Voo —0.6243

(H1), (H2), (H3), and (M1) are satisfied.

For the validation of assumption (M2) we consider the positive definite hermitian

Sl

matrix H = <é ?) € C?2. It holds

)

x c 0 x
1A+ A*1 >0, HBy = 0 < = B> H,
3
and
HCw + CiH = L-m -1 - R T e O
o oot 1 —b -1 -b) 0 —2b

for some § > 0. Thus Assumption 4 is satisfied and implies (M2) of Assumption 2
and so our results from Chapter 4 are applicable. Furthermore the analysis of the
boundary conditions from Section 5.2 show that the Dirichlet-characteristic and
the periodic boundary conditions are suitable for analyzing the spectrum at least
in the right half-plane {Re(s) > —¢}, where ¢ is some positive constant.

5.3.2 Numerical experiments

For the numerical experiments we used an approximation of the profile of the sta-
ble pulse provided by V. Thiimmler who used the interval [—80,80] with stepsize
h = 0.2 for the numerical computation of the stable travelling wave and its speed.
We also used an approximation obtained by Claudia Nolker who chose the inter-
val [0,65] with stepsize h = 0.1. The latter person also computed the unstable
pulse’s profile for the given parameter values on the same lattice by a continuation
method. The shapes of the profiles of the stable and unstable pulses computed by
C. Nolker are shown in Figure 5.2.

In the theory of Chapters 3 and 4 we did not analyze the spectral behavior
in the left half-plane, where the essential spectra* of the operators lie. In the

*See Definition C.1.
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2 1
0.5
1 v !
0
0 -0.5
-1
-1
-1.5
-2 -2
0 20 40 60 0 20 40 60
(a) The stable pulse, ¢ &~ —0.8117. (b) The unstable pulse, ¢ &~ —0.5414.

Figure 5.2: Numerical approximations of the stable and the unstable pulse of the
FHN system, on the interval [0, 65], stepsize h = 0.1.

explanations of the following figures we do not intend to give rigorous proves, we
only give an idea of why the spectra obtained in the numerical experiments look
as they do.

Dispersion relations

By Lemma 4.7 and its remark we know that the mixed operator sI — P has
a Fredholm property if and only if the operator L(-, s) obtained by rewriting the
resolvent equation as a first order system, has one. Moreover the Fredholm indices
coincide.

By the results of K. Palmer (Lemma B.7 and [Pal88]) about the relation of the
Fredholm property of L(-, s) and the presence of exponential dichotomies, one sees
with the help of Lemma B.5 that the operator L(-,s) is Fredholm if and only if
the limit matrices M4 (s) are hyperbolic. In the special case of pulses one obtains
My (s) = M_(s) and so directly has that L(-,s) is Fredholm index 0 if and only
if the limit matrix is hyperbolic. This shows that oa, the part of the spectrum
where the operator is not Fredholm of index 0%, exactly coincides with the set of
all s € C for which there is a real solution w of the characteristic equation

det(My(s) —iwl) = 0.

Thus we define the set S C C as the set of all s € C for which the quadratic
eigenvalue problem

det<w2<(1) 8>+w<8 2>+<1_“§°_3 _q)_bl_5>>=0 (5.9)

has a purely imaginary solution w and this set is the same as the spectral set oa.
Note that in [Hen81, 5.4 Theorem A.2| a very similar result is shown for elliptic
second order operators with constant principle part.

*See the remark after Definition C.1.
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5 Applications

The relation (5.9) is sometimes known as dispersion relation (for example see
[Kev00, p. 216] or [Zau89, Chapter 3.5]). The solutions of the dispersion relation
correspond to solutions of the constant coefficient differential equation
Ut :Umm‘{‘CUm—i—(l—ﬂgo)u—’U

vy = cvg + Pu — Pby

(o) = ()

which are spatially not elements of La(R).

In Chapters 3 and 4 we only analyzed the influence of the restriction to finite
intervals on the spectra, but for the numerical computations it is also necessary
to consider the effect the discretization has on the spectra. We do not analyze
this here, but give a discrete analogon to the dispersion relation (see also [Thii98,
Chapter 4.3]).

After discretization of the operator P one obtains an operator P on the grid
functions Q, = {U : J;, = h-Z — R?*}. We write the grid functions as U = (U;) ez
with U; € R2.

Consider the constant coefficient limit operator Py which is given by

of the form

P (:j) — AU,, + BU, + CU

with A and B from (5.8) and C is of the form
11—ty -1
¢= ( 3 —<I>b> '

We next describe the discretization ]Si of Py with finite differences to the grid
Jy, = hZ for several different approximations of the first order derivatives. Then
we insert the discrete analogon of the continuous functions from the dispersion
relation. This means we make the ansatz of grid functions of the form

U; = (“) = ¢iwih (““> = Wity e (5.10)

v/ Vg
J

and insert these into the resulting formulas. As in the continuous case these

functions are bounded elements in €2, but they are not in the discrete analogons

of the spaces H' or Ly. They are not even decaying. (One usually uses the square

summable sequences as a discrete analogon of the space Ls.)

e If one uses central differences for the approximation of u, and v, one obtains

Ujr1 —2U; + Uy n BUJ+1 —-Uj1

+ CU,.
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5.3 The FitzHugh-Nagumo System

Inserting the functions from the ansatz into this formula leads to

_ eiwh 4 efiwh —9 eiwh _ —iwh
(P:tU)j = e AU;+ B oh Uy +CU;y
9 .
= {ﬁ(cos(wh) -1)A+ %B sin(wh) + C’} Uj.

Hence there is an eigenfunction (U;)jez of Py to the eigenvalue s of the form
(5.10) if and only if

det {A%(cos(wh) —-1)+ %B sin(wh) + C — SI} =0. (5.11)

Similar, if one uses forward differences for the approximation of u, and v,
one obtains

Ujp1 —2U; + Uy Ujr1—-Uy
B
h? + h

Now inserting the functions from the ansatz as before implies

(PLU); = A +CUy.

_ eiwh 4 efiwh —9 eiwh -1
(PiU)j = 52 AU;+ B

= {%(Cos(wh) - DA+

Uy+CUy

iwh_l

B+C}UJ

and so in this cases there is an eigenfunction (Uj);cz of Py to the eigenvalue
s of the form (5.11) if and only if

iwh_l

2
det {ﬁ(COS(Wh) - 1A+ ‘ B+C - SI} = 0. (5.12)

Finally, using central differences for the approximation of u, and forward
differences for the hyperbolic part leads to

B (1)) = (R 4 M (- — vy,
v) ) cw + duj — Dby,

Inserting as before shows the relation

( 5, (Z)) - (%(cos(wh) - Duj + $Esin(wh)u; + (1 — a,)u; — vj>

£(e“h — 1)v; + Pu; — by,

and so there is an eigenfunction of Py to the eigenvalue s of the assumed
type if and only if
iwh 00
(e 1) < 0 1)

_ 2 _
1= us 1>—SI:|:0.

®  —b
(5.13)

+

/~ o
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5 Applications

We call the equations (5.11)—(5.13) dispersion relations for the discrete
operator.

Numerical results

We computed the spectra of the spatially discretized operators P as follows. First
we discretized the operator P on a finite interval [z_, x| using either periodic
or Dirichlet-characteristic boundary conditions, which are a reasonable choice in
view of the results from Section 5.2. Then we computed the spectrum of the
resulting matrix using the matlab-eig- function. This function uses the lapack
DGEEV-routine see the matlab-help and [ABB*99]*.

As an example we describe the structure of the resulting matrix in the case of
Dirichlet-characteristic boundary conditions with downwind discretization.

We choose the interval [x_, x| with an equidistant grid of stepsize h = %
and N +1 grid points. Under the boundary conditions we have ug = vy = uy = 0.
We will write @; for the value @(x_ + jh) of the u-component of the approximation
of the wave profile.

Semi-discretization with downwind (¢ < 0) of the linear PDE (5.8) on the grid
leads to

A Sl el S WL B |
J h2 h
/ Vi Yy

vj:chl—{—(I)uj—‘I)bvj,jzl,...,N.

+(1—u)u;—vj, j=1,...,N—1

By using the Dirichlet-characteristic boundary conditions we obtain

Uy Uy
() ()
s Y, Z; 0 --- s
ol () [ w e - ()
dt : Xn_2 YN Zn-2 :
: Xn-o1 Yo :
UN—-1 UN—-1
() ()
(5.14)

where we already eliminated vy which one directly obtains from vy _1. If we do not
eliminate this, it leads to an additional eigenvalue of the operator at § — ®b < 0.
The X, Y, and Z-parts of the big matrix from (5.14) are defined as

R AW
Xj: 0 c ,j:2,...,N—1,

2 Cc =2
. = h2 h J —
Y; ( o o z),j 1,...,N,

2 0)
Zj: 0 0 ,j:L...,N—Q.

*The function therefore first reduces the matrix to upper Hessenberg form and then reduces to
Schur form. The eigenvalues then are obtained as the diagonal elements or as conjugate pairs
of eigenvalues of 2 x 2 submatrices.
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5.3 The FitzHugh-Nagumo System

In Figures 5.3 and 5.4 we compare the spectrum of the discrete operator (down-
wind and periodic boundary conditions) with the dispersion relation and the dis-
persion relation for the discretized operator. Here we used the approximation of
the wave profile of the stable wave on the interval [0,65] which was obtained by
C. Nolker (speed ¢ ~ —0.8117).

101
+ Numerical spectrum
8- Dispersion relation for discrete operatorl,,,,
- Dispersion relation
6,
s
2,
ok
_2,
_4,
_6,
_8,
-10 1 1 1 1 1 1 1 1 |
-450 -400 -350 -300 -250 -200 -150 -100 -50 0

Figure 5.3: The spectrum of the numerical operator for backward differences, com-
pared with the dispersion relation.

Isolated
O-eigenvalue,

= Numerical spectrum
of Dispersion relation
Dispersion relation for the discrete operator

« Numerical spectrum
Dispersion relation
Dispersion relation for the discrete operator|

g
o

Figure 5.4: Zoom into the origin for the spectra from Figure 5.3.

One obtains quite different pictures if one uses Dirichlet-characteristic boundary
conditions for the numerical spectrum as one sees in Figure 5.5. This phenomenon
is analyzed in [SS00]. There the authors show that under so called separated
boundary conditions the spectrum of the finite interval operator approaches the
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10

* Numerical spectrum

gkl - Dispersion relation

Dispersion relation for the discrete operator| A
|

-8F

—1 I I I I I I I
—250 -400 -350 -300 -250 -200 -150 -100 -50 0

Figure 5.5: Dispersion relations and the numerical spectrum, downwind, Dirichlet-
characteristic bc.

absolute spectrum®. They also analyzed the behavior of the spectrum under
periodic boundary conditions and show that under certain conditions the spectrum
of the finite interval operator approaches the spectral set oa.

Not only the boundary conditions, but also the choice of discretization have a
big influence on the spectrum. This can be seen if one compares Figures 5.3 and
5.6, where we chose the constant interval [0, 65], constant stepsize 0.1, and always
periodic boundary conditions, but varied the discretization of the derivative. Note
that it is nicely seen that in the case of the “wrong” choice of discretization, i.e.
upwind in the case ¢ < 0, one obtains an operator with spectrum to the right of
the imaginary axis although the original operator does not have spectrum in this
region. This leads to an unstable steady state of the semi-discretization.

Finally, for fixed step-sizes we computed the convergence of the eigenvalue with
the largest real part. We have used up- respectively downwind for the discretiza-
tion of the first derivative and Dirichlet-characteristic boundary conditions. In
the case of the stable pulse this eigenvalue corresponds to the zero eigenvalue
and in the case of the unstable pulse it corresponds to the unstable eigenvalue.
The results can be seen in Figure 5.7. One observes that the eigenvalues seem
to converge exponentially, but the (numerical) limit is different from the limit of
the continuous problem. This effect is due to discretization errors. For the stable
pulses we have chosen the intervals J symmetric around the grid-point where @
is maximal, so that we can compare the results for the two approximations for
different step-sizes. For the unstable pulse we are gone three times as fast to the
right than to the left, what was intended to reflect the profile of the pulse, see
Figure 5.2.]

*See definition 3.5 in [SS00].
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+ Numerical spectrum
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(a) Upwind although ¢ < 0.
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(b) Central differences.

Figure 5.6: The spectrum of the numerical operator for different possibilities of
discretizing the first derivative.
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(a) Convergence of the zero eigenvalue for the (b) One sees exponential convergence if one
approximation of the wave profile obtained by compares the eigenvalues closest to zero with
V. Thiimmler (¢ ~ 0.8126, h = 0.2). Here we the eigenvalue closest to zero of the numerical
plot the absolute value of the eigenvalue closest operator on the interval [—80, 80].

to zero.
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(c) Convergence of the zero eigenvalue for the (d) Convergence of the 0 eigenvalue. Here we
approximation of the wave profile obtained by plot the logarithm of the distance of the (nu-
C. Nolker (¢ = —0.8117, h = 0.1). merical) eigenvalue on the interval [0, 65] with
an interval J of the length |J]|.
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(e) Convergence of the unstable eigenvalue for the approx-
imation of the profile of the unstable pulse computed by C.
Nélker (¢ = —0.5414, h = 0.1)) to the unstable eigenvalue
for the interval [0, 65].

Figure 5.7: Convergence of the isolated eigenvalues.
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A Perturbation theory

An easy, but very useful result which one obtains with the help of a Neumann-
series argument is Lemma A.1. We do not give the proof.

Lemma A.1 (Banach-Lemma). Let (X, -||x) and (Y, | - ||y) be Banach spaces.
Assume that A: X —Y is a linear homeomorphism.
Then for every bounded linear operator B : X — 'Y with

1
1Bllx—y < 7=
TV A Ly

the operator A+ B : X — Y is a linear homeomorphism and

1

“<A+B)_1|’Y—>X S HA_1HY—>X 1— |

Ay Zx 1Bllx—y
We apply Lemma A.1 for the proof of two easy results about perturbations of
continuous projectors.

Lemma A.2. Let (X,| -||) be a Banach space, let P and Q be two continuous
projectors on X. If |P — Q| < 1 then R(P) = R(PQ).

Proof. The Banach-Lemma A.1 implies that I—(P—Q) is a linear homeomorphism
so that R(I — (P — @)) = X. This shows R(P(I — (P — Q))) = R(P), but
P(I — (P —Q)) = PQ which proves the Lemma. O

Corollary A.3. Let P: R — Ch be continuously parametrized projectors. Then
we have
dimR(P(z)) = dimR(P(y)) Vz,y € R.

Proof. This follows from Lemma A.2, since
RP=RPQ =dmRP <dmRQ.

Symmetry implies dimR @ < dimR P and this shows that x — dimR(P(z)) is
locally constant. Finally, since R is connected, the map must be constant. O

The next Lemma is mainly taken from [Bey90]. It states that for smoothly
parametrized hyperbolic matrices the bases of the stable and unstable subspaces
can be chosen as smooth in the parameter as the matrices are. In the paper [Bey90]
it is only presented for matrix-valued functions from the category C* (k < 00),
but the proof also holds in the analytic case since the implicit function Theorem
conserves analytic dependence. For an analytic version of the implicit function
Theorem see [Hen81, p. 15].
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Appendix

Lemma A.4 ([Bey90, Appendix C]). Let ¥ C C and assume M : ¥ — Cbl is
an analytic matriz-valued function and there is some sy € ¥ such that M (sq) is
a hyperbolic matriz. Then there is an open neighborhood U C % of sg and there
are analytic matriz functions B, : U — Chle, By : U — Chbs, A, : U — Clelu,
and Ag : U — Clls | where By(s) and By(s) are bases of the stable and unstable
subspaces of M(s) for s € &, respectively. The matrices satisfy

M (s)Bs(s) = Bs(s)As(s)
and

Ayu(s)

where Ag(s) is a matriz whose spectrum coincides with the stable spectrum of
M (s) and Ay(s) is a matriz whose spectrum coincides with the unstable spectrum

of M(s).

Next we show two results about matrices for which the diagonal elements are
large compared to the outer diagonal elements. Both lemmas heavily rely on a
gap-condition of the diagonal entries.

In the proofs of the lemmas we will use the following theorem. It is a combination
of Theorem 3 and Theorem 4 from [Wil65, p.71].

Until the end of this section we will use the maximum norm |v|s, = max; |v;|
for vectors in C!. The matrix norm |M|. is the corresponding operator norm and
we will use || M||s = sup, |M(x)|s for matrix-valued functions M. Note that we
usually use the Euclidean norm in C!, but since all norms are equivalent in a finite
dimensional vector space this only introduces constant factors.

Theorem A.5 (Gershgorin). Let A € CH. Every eigenvalue of A lies in at least
one of the disks

Di:={AeC:A—au <> layl}, i=1...,1
i#]
If k of these disks form a connected domain in C which is isolated from all other
disks, then there are exactly k eigenvalues of A within this domain.

The disks D; defined in Theorem A.5 are sometimes called Gershgorin disks.

Lemma A.6. Let D, E € CY with D = diag(dy, ..., d;), where |d; — d;j| > § > 0,
Vi,j=1,...,1, i # j. Then there is a positive constant Cy such that for all s € C
with |s| > Cy the eigenvalues A\, k =1,...,1 of sD+ E can be sorted so that they
can be estimated in the form

1
|>‘k_(8dk+6kk)| <c—, k=1,...,1, (Al)

|s|”
where ¢ does not depend on s.

The idea of the proof is a scaling trick that shrinks some Gershgorin disks and
increases others so that they still do not overlap.
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Perturbation theory

Proof. Take Cj := % and let 0 < e =¢(s) < % which will be specified later.
Define Ry, := diag(r1,...,7;) where ry, = ¢ and r; = 1 for j # k. The matrix
M = sD + FE has the same eigenvalues as the matrix

(my;)ij = M" := Re MR, .

The elements of the matrices M and M?* are related in the form

EMyj ,ifi=k,j#k,
mfj: e tmy, ,ifj=k,i#k,
m;j , otherwise.

This implies for the Gershgorin disks Df of M¥

Df={AeC: A —mb <> |mh}
J#i
C{AeC: A= (sdi +ei)| <e !B}

if i # k. In the case i = k one obtains

Dy ={AeC:A—mpl < |mil}
J#k
C {)\ eC: ’)\ — (Sdk + ekk)\ < 5’E‘oo}

Let A € DF with i # k. We can estimate the distance of A to the center of D,’j by
i

> |sdy + epy — sd; — eii| — e Eloo

> [s|do — 2| Eoo — 5_1|E|oo-

A= mg| = Imfy, —mb| — A —m

Now let |s| > Cpy and choose € = ‘SM‘E‘O" . Then it follows

A = miiy| > |sl60 — 2| Elos — [5]60 + 3| E]oo
1
= |E|oo > §’E‘oo > €|Eoo

which proves Df N Dl,j = (), Vi # k. Therefore Theorem A.5 shows that there is
exactly one eigenvalue A\ of M in the disk D,’j and the choice of £(s) implies the
estimate

|2 5 1pp2 L
A — (sd <— < —|BIZ—
Ak — (s k+€kk)|_|5|50_3|E|00—260| |<>0|S|
for this eigenvalue.
Since the choice of € and Cjy was independent of k£ the Lemma follows. O

Next we state a result that is essential for the proof of the Theorems 3.1 and
3.2. Tt is used to show that one can smoothly (in the parameter s) diagonalize the
matrix sB~! — B~1C from (3.18).
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Lemma A.7. Let D, E € CY(R,CY) where D is a diagonal matriz with a uniform
gap condition, i.e. there is a §g > 0 such that

|di(z) — dj(z)| > o Vz € R. (A.2)
Furthermore, we assume
[Dlloc =: Ca0 < 00, [|[Delloc =: Ca1 < o0, (A.3)
and
[Ellsc =t Ce,o < 00, [|Eylloc =t Ce1 < 0. (A.4)

Then there exist ¢ > 0 and T € C(R x {|s| < e}, CY) of the form
T(x,s) =1+ sTi(z,s) (A.5)

with the property that for all (z,s) € R x {|s| < e} =: G. the inverse T(x,s)™?
exists and satisfies for all (x,s) € G-

T(x,s) " Y(D(z) + sE(x))T(z,s) = Az, s) = diag(A1(z, 5), ..., \u(z,s)). (A.6)

Moreover, the matriz-valued function Ty is differentiable with respect to x for all
(z,s) € R x {|s| < e} and can be estimated in the form

1T |loo =: C10 < 00, ||T12]|c0 =: Cr1 < 00. (A7)
Proof. Choose ¢g := %0 and € := 3520 and define

G := G, M (xz,s) := D(x) + sE(x).

From Theorem A.5 follows that for every (z,s) € G there is exactly one eigenvalue
inside each of the disks

Dj(z,8) = {A € C: ]\ = dj(2) — seji(@)] < [s| Y lejil)]}
i#]
C{AeC:IA=dj(@)] < s Y lejilw)]}
i (A.8)

€0

3

d 4
c{AeC:A—d;(z) < 30 = 5e0} =: Gj(a),
since for ¢ # j it holds D;(z, s) N Dj(x,s) C Gi(z) N G,(z) = 0.

Denote by I'j(x) the positively oriented contour with winding number 1 on the
boundary of Gj(x). Since Dj(x,s) lies in the interior of I'j(x) and there is no
spectrum of M(z,s) on I'j(z) one can define the Riesz-projectors (cf. [Kat66, I
§5.3], [BSU96, Ch. 10 4.2], and for the general case of closed operators [Kat66, 111

§6.4])

C{reC:|A—dj(x)] <

Il (x,s) == — (2I — D(z) — sE(x)) 'dz, (z,8) €G, j=1,...,1
210 Jr; ()
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Perturbation theory

The matrix IL;(x, s) projects C! onto the eigenspace of M(z,s) corresponding to
the eigenvalue \;(z, s) of M(z,s) that lies inside G;(x).
To see the continuity of the projector-valued functions in (x,s) note that we
have
—1 -1
|(2I — D(z0) — soE(z0)) " — (21 — D(z) — sE(z)) |
<

|(2I — D(zo) — sOE(xO))fl\ - |D(x) — D(z0) + sE(x) — soE(zg)]

_ A9
(21 = D(z) — sE(x)) | (49)
— 0,
(1’,5)*’(1’0750)
where we used the equality
At-Bl'=aY(B-A)B! (A.10)

for invertible operators A and B on a Banach space, the Banach-Lemma A.1, and
the continuity of the matrix-valued functions E, D, and M.

Let (x0,50) € G be given. The continuity of D implies that there is an > 0
such that for all (z,s) € G with |z — z¢| < n it holds

Di(z,5) C {A € C: |\ —dj(zo)| < %0} C{AeC: A —dj(zo)| < o} C Gy(xo).

Thus the Cauchy-Integral-Formula implies that one can take the same contour for
I1;(x,s) and IL;(xo, sg). Together with (A.9) this implies

[T (, s) — IL;(zo, s0)|
1

o /rm (:Ip(x) - sE(@))"" = (I = D(ao) = soB(x0)) ']

— 0 as (z,s) — (zo, S0)

which proves the continuity.
Show that IT;(x, s)e; # 0, where e; denotes the j-th unit vector.
From IT;(z,0)e; = e; we obtain

1

[ILi(z,s)ej — ejloc = |2—7m /F-(m)(ZI —D(z) — sE(g;))—l — (21 — D(x))—ldzej|oo

< 2eol(T = (=T = D)) sB(@) ™ ~ Toel(:T — D)

In order to estimate the integral we analyze the integrand and find

(I = D()) 'sE(@)| < |s][(2] = D(2)) ™ oo E(2) oo
€0 1
: ——I|C
— 3Cepo P |z —d;(z) [Ce0
< & 1. 1
o 306,0 60 670 - 3-
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Then Lemma A.1 implies that (I —(2I—D(z)) " 'sE(x))~! exists and the integrand
can be estimated by

oo o0 1
1 —
|(I - (I = D(z)) 'sE(x) 2; (2] — D(x 2; g _5
Therefore
ITL;(z, s)ej — ;| . < —271—— (21 — D(z))~|
© = 2r 32 o0 (A.11)
(lyh 14 2 '
“2r 3 2 4 3
and so II;(z, s)e; # 0.
Define
T(z,s) = [i(z,s)er,...,i(z, s)e] € cH. (A.12)

We see T'(z, s) € GL;(C) since the columns II;(z, s)e; are nonzero eigenvectors to
pairwise different eigenvalues and hence they form a basis of C'. The continuity
of the columns implies 7' € C(G, GL;(C)).

Now set T1(z, s) = [T1,1(x,s),...,T1(z,s)], where the columns are defined by

Ty j(x,s):= L/ (21 — D(z) —sE(m))flE(m)(zI—D(x))fldz e, j=1,...,L
271 Ij(z)

(A.13)
Then the equality

T(z,s)e; —ej =1j(x,s)e; — ¢

= QL (21 — D(x) — sE(azc))f1 — (2f - D(x))fldzej
T JTj(x)
= 2i (21 — D(z) — sE(m))_lE(x)(zI - D(m))_ldzej
T JT;(x)

implies T'(z,s) = I + sTi(x, s). Here we used (A.10) again.

It remains to show the differentiability of 77 with respect to z and the bounds
asserted in (A.7).

For j =1,...,1, it holds

715 8) oo < 5 22| (2] = D) — 5B (@) 7| _|B@)| |1 - D@) ™|
One can estimate the factors uniformly for (z,s) € G
‘(z[ — D(x) — sE(m))fl‘oo < ‘(I— (zI—D(x))flsE(x))fl‘oo‘ (2I — D(z)) l‘oo
1
= §linl?.}.{,l z —di(z)
6
<
= 5
|E(x)|oo < Ce,Oa
er-pw)| < 5

130



Perturbation theory

and this shows the estimate uniform in (z,s) € G

T (%, 8)|00 < %277%05—6;) 670% = 8?;’0 < 00.
Because this inequality holds for every (x,s) € G and every j = 1,...,1, the first
bound in (A.7) follows.

In the last step we show the differentiability of 7} with respect to z and the
uniform boundedness of the derivative. Let xg € R be arbitrary. With the same
n > 0 as above we can choose the same contour for all (z,s) € G with |x —zo| < 7.

To justify differentiation under the integral sign with respect to x we must
estimate the derivative of the integrand uniformly in z € I'j(zg) for all (z,s) € G
with |z — xo| < 7.

For every z € I'j(x¢) and (z,s) € G with |z — x| < 1 hold

d

—B(x) = Ex(x) (A.14)

%(ZI — D(x) — sE(uU))f1 = (2I — D(z) — sE(z)) "~

1

- (Dy(z)+5Ey(2)) (21— D(z) —sE(z))'  (A.15)
d 1

(=l - D()) " = (I = D(x)) ' Dy(x) (2 — D(z)) "

The bounds of the matrices and their derivatives assumed in (A.3) and (A.4)
lead to the following bounds, independent of z € I'j(zg) and (z,s) € G with
’1’ - .%'0’ <

(A.16)

D (x) + sEy(2)| _ < Cas + %oc"”l < 0, (A.17)
(21 — D(x))‘l( < 63 = ; < o0, (A.18)
0 0
‘(z[ — D(x) — sE(x))fl‘oo < 6% = % < 00, (A.19)

where (A.18) and the Banach-Lemma A.1 is used for (A.19).
The equations (A.3), (A.4), and (A.17)—(A.19) imply the estimate

d - _
‘d_ ((z] — D(z) — sE(z)) 1E(m)(zl — D(z)) 1) ‘ <const <oo  (A.20)
Xz 00
with a constant const independent of z € I'j(z¢) and (z,s) € G with |z —x¢| < 7.
Thus by [Bau92, §16 Lemma 2] we can differentiate under the integral sign and
obtain

%Tu(:ﬂo,s) = /F i{(ZI—D(x)sE(x))‘1E(x)(z1—D(x))‘1}

o 211 j(mo) dI

dze;j.
T=x0

(A.21)
The estimate (A.20) also implies ]%Tm(wo,so)] < const < oo with a constant
independent of (xg, sp) € G. From this follows the existence of a C7; < co with

IT1 2|0 < Cra V(z,s) € G.
|
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REMARK. From the construction of T'(z,s) we see that the entries \i(x,s),
i=1,...,1, of A(z,s) from (A.6) satisfy

|Nii (2, 8) — d;i(z)| = min [N (z, s) — dj(x)], i=1,...,L
J
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B Exponential dichotomies

In this section we give the definition of an exponential dichotomy and some results
which are essentially used in the proofs of Chapters 3 and 4. The results are mainly
presented in [BL99, Appendix| other references are [Cop78] and the papers by
Palmer [Pal84], [Pal88].

We will use in this section the notation (xr_,z) for intervals in R. Where
(x_,zy) with x_ € RU{—o0} and z € RU {oco} is defined by

(0, r_>xy,
[x_,x4], z_-€eR zy eR z_ <uzy,
(x_,z4) =< (=00, z4], x_ = —00, 1y ER,
[z_,00), z_ €R,z; =00,
R, T_ = —00, Ty = O0.

Let M € C(J,C"). We denote by S(-,-) the solution-operator of
Lz =z, — M(x)z, x € J. (B.1)
First we give the definition of an exponential dichotomy.

Definition B.1. We say, that the operator L has an exponential dichotomy (ED)
on J if there are positive constants K, 8 and for every = € J there is a projection
m(x) : C' — C! such that

S(z,y)n(y) = m(z)S(x,y) Va,y € J,
S(z,y)7(y)| < Ke P Vo >y e J,
|S (2, y)(I = 7(y))| < Ke =) Vo <yelJ.

We call (K, 3, 7(-)) the data of the dichotomy and refer to K as dichotomy con-
stant, 0 as dichotomy exponent, and 7 as projectors of the dichotomy.

The data of the dichotomy are in general not unique, as one easily sees if J
is a finite interval. The benefit of (ED)s lie in semi-infinite or infinite interval
problems. If J = (x_,z) contains an interval of the form [z, 00), the range of
the projectors are unique and if it contains an interval of the form (—oo, x|, the
kernel of the projectors is unique. In particular, if the operator L has an (ED)
on the whole real line, the projectors are uniquely determined. For results in this
direction see [Cop78, Chapter 2].

EXAMPLE 4. The equation z, = (1 0 ) z on R has an (ED) on R and the

0 -1

data can be chosen as K =1, f =1, w(x) = <8 (1)>
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Next we state a result about the solvability solution estimates for boundary
value problems in the presence of an (ED).

Theorem B.2 ([BL99, Theorem A.1]). Assume the operator L has an (ED) on
J=(x_,r4), x_ < x4, with data (K, B,7).
Define the Green’s function G with respect to w for all xz,y € J by

S(x,y)m(y) y<uz

(B.2)
S(z,y)(r(y) — 1), z=<uy.

G(x’y) = {

Then for every h € La(J), v— € R(n(z-)), 7+ € R(I —w(x4)) there is a unique
solution z € H'(J,C") of the boundary value problem

Lz =h, in Ly(J),
(I —7(z4))2(z4) = 74,
m(x_)z(x_) =~_.

In the case x— = —oo the boundary condition for z(x_) is hidden in the space and
there is no explicit boundary condition. The same is true for the case x4 = +00.
The solution can be written in the form z = zg, + 25, where zg, and z, are given

by
@)= [ Gy (B.3)
and
zn (@) = S(@,x_)7- + S(@, 24 )7+ (B.4)

For the particular solution of the inhomogeneous equation given by (B.3) the fol-
lowing estimate holds

Bllzspll* + Blzsplt < 5K (A, (B.5)

The solution of the homogeneous equation with inhomogeneous boundary condi-
tions zp, from (B.4) satisfies the estimate

Bllznll? + lznlf < 2+ 3K*)(I7-* + [+ 1%). (B.6)

Recall that G(z,y) is the Green’s function for Lz = h in R with z(—o0) = 0,
z(+00) = 0.

The next theorem, presented in [BL99, Theorem A.2], shows that the solution
of an initial value problem is exponentially decaying in forward time if the initial
data comes from the right subspace and the inhomogeneity is also exponentially
decaying.

Theorem B.3. Let L have an (ED) on J = [0,00) with data (K, (3, 7). Then
every solution z € H'(J) of the homogeneous initial value problem

Lz =0 1in Ly(J),
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with initial data z(0) € R(w(0)) satisfies
2(@)] < Ke[=(0)]. (B.7)
Let z € H'(]0,00),C!) be the solution of the inhomogeneous initial value problem
Lz=h in Ls(J),

with initial data z(0) € Rxw(0) and inhomogeneity h € Lo([0,00)) which is expo-
nentially bounded, i.e.
|h(z)| < Cre=P1®

with some constants C1,31 > 0. Then for every 0 < ' < min(3, 1) there is a
constant C > 0, with C' depending on z(0) and 3" only such that

|2()] < C(Im(0)2(0)[e™ + &), v > 0.
The same is true for J = (—o0,0].

An important property of an (ED) is its roughness under perturbations, which
is stated in the next Theorem [BL99, Theorem A.3]. It is an improved version of
[Cop78, p. 34].

Theorem B.4. Let Lz =z, — M(-)z have an (ED) on J = (x_,x,), x_ < x4,
with data (K, 3,7). Assume A € C(J,C™™) and this fulfills

BK||Alloo < . (B.8)

Then the operator
Lz =z, — (M+A)z
has an (ED) on J, too. The data (K, [3,m) of this dichotomy can be chosen so that
4 Ao K
B =3 A K
B = 5-2|Alxk,

#() - n(2)| < KK /J e~ G+l |A (y) | dy

K = K2+ ),

are fulfilled.

If the matrices M(z) and A(x) as well as the dichotomy data (K, 3,7%) depend
continuously on some additional parameter and the inequality (B.8) holds for all
parameter values, then the dichotomy data of the perturbed operator can be chosen
continuously in the parameter.

Note that the constant K for the perturbed equation differs from the constant
given in [BL99]. This reflects that by carrying out the proof indicated in [BL99]
we only obtained the weaker estimate.

The strength of this theorem lies in the estimate of the projectors, which shows,
that for small ||A]s the projectors of the unperturbed and of the perturbed
operator are close to each other.

Using this Theorem one can proof the following Theorem (cf. [Pal84, Lemma
3.4] and [BL99, Theorem A .4]).
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Theorem B.5. Let Lz = z, — M(-)z have an exponential dichotomy on a semi-
infinite interval J = [xg,00) with data (K, 3,7) and let A € C(J,C™™) with

|A(z)] — 0, as z — oc.

Then for every fired 0 < 8 < 3 the operator Lz = zz—(M+A)z has an exponential
dichotomy on J with data (K, 3, 7). Moreover for every allowable data (K, [3,)
the projector w satisfies

|m(x) — 7(x)] — 0, as z — oc. (B.9)

If the data (K, 3,7), the matrices M(z), and A(z) depend continuously on some
parameter from a compact set, then the perturbed data (K,(3,m) can be chosen
continuously in this parameter so that the convergence (B.9) for these projectors
is uniform in the parameter.

The next theorem we extensively use for the proofs of exponential dichotomies
of the first order operators, obtained in Chapters 3 and 4, in compact intervals.

Theorem B.6 ([BL99, Theorem A.5]). Let Lz = z, — M(x)z have exponential
dichotomies on R_ with data (K_,[_,7_) and on Ry with data (K4, B+, 7).
Then L has an (ED) on the whole real line R if and only if

R(m4(0)) ® R(I — 7_(0)) = C..

In this case the data (K,(,7m) for the ED on R can be chosen such that =

min(f3-, B1) and
|m(x) — me(z)| < Ce 2917 for o e Ry.

We also need a result about the Fredholm properties of ordinary differential
operators on the whole real line. On bounded intervals a similar property is easy
to verify by integration, but on unbounded domains it is not so easy. A general
result is given by K. J. Palmer in [Pal84, Lemma 4.2]. It is presented for bounded
and continuously differentiable functions, but the proof directly applies in the case
of the Sobolev space H'.

Lemma B.7. Let M € C(R,C") be a bounded matriz-valued function so that the
differential operator

1 N !
L(): " (Hj@) — zfQ_(I%\’I((:))z

has an (ED) on Ry and on R_ with projectors wy(-). Then L is Fredholm and
f € R(L) if and only if

/ WO F ()t = 0
for all solutions w € H'(R,C") of the adjoint equation
L% Yu = uy + M(-)*u = 0.

Furthermore the index of L is dim R(74(0)) + dimR(I — 7_(0)) — n.
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9%

In the Lemma **’ stands for transposed conjugated.

REMARK. It is shown in [Pal88] that also the opposite direction holds, i.e. a
differential operator of the form considered in Lemma B.7 that is semi-Fredholm

has (ED)s on R and on R_.

When we show the Fredholm property for certain linear first order differential
operators obtained after transformation in Chapter 4 we need a slight modifica-
tion of the domain and image spaces in Lemma B.7. Therefore we will use the
characterization of the co-range to show a corollary of this Lemma.

0 A

B C

same properties as in Lemma B.7 and assume that A € CH=" is constant.
Then the ordinary differential operator

Corollary B.8. Let M = < > be an | x | matriz-valued function with the

Lo : HX(R,C") x HY(R,C"") — HYR,C") x Ly(R,C™"), 2z — 2, — M(-)z,
is a Fredholm operator of the same index as
Ly: HY(R,C) — Ly(R,CY), z— 2z, — M()z.

Proof. Let (u,v) € N(Ly) € H'(R,C"). Then u, = Av, where the equality holds
in Ly(R,C"). Since the right hand side is an element of H*(R, C") the equality also
holds in H'(R,C"). Hence (u,v) € H?(R,C") x HY(R,C""") and (u,v) € N(Lg).
This shows N (L,) = N (Lp) and especially

dim N (L,) = dim N (Lp).

By Lemma B.7 (g, f) € R(Ly) if and only if
|t (4)pte =0 e wzes,

where L : H'(R,C!) — Ly(R,C!) is the same operator as in Lemma B.7.
Let (g, f) € R(Ly) C HY(R,C") x Ly(R,C"). Then

| w (fc>>dw — 0¥ € N(19),

— 00

since R(Lq,) C R(Lp).
Let (g, f) € H(R,C") x Ly(R,C'"") and assume

/Z(% (?))dw =0 Ve € N(L™).

By Lemma B.7 there is (21, 20) € H'(R,C") x HY(R,C"=") with
) () = 21,0 — Az —(9)
z2), ) 29,0 — Bz — Czo f
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This implies that z; is an element of H?(R,C").
Therefore for (g, f) € H'(R,C") x Ly(R,C'~") we have

(9,f) € R(L / ()dx—ovweN(L“d)

Thus R(L,) is closed and codim(R(L,)) = dimN(L*) = codim(R(Ly)), as in
the end of the proof of [Pal84, Lemma 4.2]. O

Following an idea from [Thii98], one can use the roughness Theorem B.4 to
show uniformity of the data of an (ED) in compact parameter sets for parameter
dependent problems.

Lemma B.9. Let Q C C be a compact set. Let M € C(J x Q,CH) and assume
for every so € 1 there exist consts, > 0 and ds, > 0 such that

|M (-, 8) — M(+,80)|l00 < comstg,|s — so| Vs, sg € Q with |s — so| < -

Furthermore we assume that the operators L(-,s), as above, have an (ED) on
J with data (K(s),B(s),n(-,s)). Then the dichotomy constant K(s) and the di-
chotomy exponent [$(s) can be chosen independently of s for all s € Q.

Proof. Let sp € Q be arbitrary and let € = €(sg) > 0 so that

1 B(s0)
2 3K(80)

1M (- s0) = M(:,8) [0 < Vs € K.(sg) N Q.

Theorem B.4 then implies that for every s € QN K.(sp) also the operator
L(-,s)v=L(-,s0)v + (M(-,50) — M(-,5))v

has an (ED) on J with data (K, 3, 7), which can be estimated by

48(s0) _ 8 i)
= Rl (2 * 3600) - <50>>> BERE
and
52 8(s0) - 28 = 2(s0) = .

Since sg € ) was arbitrary the same argumentation is possible for every s €
and so a compactness argument shows the assertion. U
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C Results from functional analysis

Throughout the text we use the following definitions of spectra.

Definition C.1. Let X and Y be complex Banach spaces. Let P be a bounded
linear operator from X to Y.

The resolvent set p(P) of the operator P is defined as the set of all s € C for
which sI — P is a linear homeomorphism.

The spectrum o(P) is defined as C\ p(P). We split the spectrum into two
parts. The eigen spectrum o, (P) is the set of all s € o(P) which are isolated
points in o(P) and eigenvalues of finite algebraic multiplicity of P. The essential
spectrum is then defined as oegs := 0(P) \ 0eig(P).

REMARK. In the literature there are quite a few definitions of the essential
spectrum. Our definition is taken from [Hen81, p. 136]. Another widely used
definition is by defining the point spectrum o, as the set of all s € o for which
the operator sI — P is Fredholm of index 0. The essential spectrum is then defined
as the set op := o \ 0p. For example this definition is used in [SS00].

Lemma C.2. For every compact interval J = [x_, x|, vy —x_| > 1, every func-
tion f € HY(J,Cl) is an element of C°(J,C') and satisfies the Sobolev inequality

[[flloc < const| f]| 1 (C.1)

with const independent of J and f.
Proof. Let f € C'(J,C") N H'(J,C") and choose z,, € J with

£ )| = min | (@)

The Fundamental Theorem of Calculus implies

S@P <17 +2 [ 1.5/ )d < ——

Tm

oo MR + 72, + 1

where (u,v) := u*v is the Euclidean inner product in C!. Therefore

|f (@)] < const|[f]| 1

with const independent of the length of the interval as long as |z —z_| > 1 holds.
This shows that there is a constant independent of the length of the interval J for
|J| > 1 such that

I fllos < const|| £l grosery Vf € CH(J,CHNH'(J,C).

The density of C'(J,CY) N H'(J,C') in H'(J,C') (cf. [Rob01, Theorem 5.21]) is
then used to finish the proof. O
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For H!'-functions on the whole real axis one has a similar result (cf. [Rau9l,
§2.6 Theorem 7] and [RR93, Theorem 6.91)):

Lemma C.3. Every f € HY(R,C!) is an element of CO(R,C!) and satisfies the
Sobolev inequality

[flloo < const|[ 1 g cty- (C.2)

Furthermore for each element f € HY(R,C") holds limy_.+o | f(2)| = 0.

Proof. We only prove the second part. Assume there is f € H'(R,C!) such that
there is a sequence (xy)nen with lim,, .z, = oo, but |f(z,)| > ¢ > 0 for all
n € N and some ¢ € R. Since C5°(R, C!) is dense in H'(R,C') there is a sequence
(fu)nen in C°(R,CY) with ||, — flloo — 0 as n — oco. Choose Ny so large that
| fn—="Flloo < §Vn > No. Then for every n > Ny there is n' € N with z,/ & supp f,.
And so || fn— flloo = |fn(@n) — f(xn)] = | f(2n)| > ¢ which contradicts the choice
of Ny. Therefore the second assertion follows. O

From now on E, F' always denote separable Banach spaces and X is an open
subset of the complex plane.

We next state a quantative version of the contraction mapping Theorem pre-
sented in [Vai76, §3 Hilfssatz 18].

Lemma C.4. Let A: Q — F with Q2 an open subset of E be (Fréchet-)differentiable
in Ks,(z0) C Q and assume that (A'(z0))~! € L(F,E) exists and satisfies

L[| (zo)|| < 7 and [|(A'(z0)) "M < &,

2. SUD, T a0y A" (x) — A'(x0)|| < £,

3. || A(zo) — yll < 072,

for some constants T >0, k >0, and 0 < ¢ < 1.
Then A(x) =y has a unique solution T in Ks,(xo) and the following estimates
(i) and (ii) hold.

aw@w>%A@w—yMSux—musTégmwmw>%Amw—yw.m

1
Tegl
L AGo) ol < (A o)) (Alwn) = )l < wllAGo) —5l G

Definition C.5. [DS58] A function A : ¥ — E is called holomorphic on ¥ iff
A is continuous and the first partial derivative exists at each point in X.

We need some definitions about root-spaces and root-elements. The following
definition is taken from [Vai76].

Definition C.6. Let A : X — L(E, F) be a holomorphic operator-valued func-
tion. The resolvent set p(A) is the set of all s € ¥ so that A(s) is a linear
homeomorphism. A number sy € ¥ is called an eigenvalue of A(-) if and only if
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N (A(sp)) # {0}. Every nonzero element of N'(A(sp)) is called an eigenelement
of A(-) to the eigenvalue sg.

Let vy be an eigenelement of A(+) to the eigenvalue sg. Then we call a polynomial
v(s) = Z?ZO(S — s0)'v; with coefficients v1, ..., vy in E a root-polynomial iff

d

dsi

The coefficients are called root-elements and the closed linear hull of all possible

root-elements of A(-) to the eigenvalue sy we denote by W(A, sp) and this space
is called the root-subspace of A(-) to the eigenvalue s.

For a root-polynomial v we denote by v(v) € N the order of the polynomial,

where v(v) is defined as the unique integer that satisfies

&

dsi

@’ .

A gmg 20, =)

For an eigenelement vy of A to the eigenvalue sg we call

(A(s)v(8))s=s, =0 j=0,...,k.

(A(s)v(s))s=s, =0, 7=0,...,v(v) — 1,

v(vg) := sup{r(v) : v is a rootpolynomial of A(-) to so with v(sg) = vo}

the order of the eigenelement vj.
An eigenvalue sg of A(-) is called simple eigenvalue, iff dim N (A(sp)) = 1
and v(vg) =1 for all eigenelements vy of A(+) to the eigenvalue s.

REMARK. Note that in the definition v(vy) = oo is allowed. A trivial example

. . . . . 0 0
with this property is given by the constant matrix-polynomial (0 1), where

1\ . . .
vy = <0> is an eigenelement for every eigenvalue sy € C.

The above concept of eigenvalues and eigenfunctions generalizes the usual con-
cept in the following way: Instead of the linear operator A € L(E, E) one considers
the operator polynomial A(s) = sI — A. Then the eigenvalues of A(-) coincide
with those of A and the root-subspaces coincide with the generalized eigenspaces
(cf. Lemma 2.27). There is a whole theory about such polynomials in the finite
dimensional case, for example see [GLR82] and [WRL95, Part I].

The next characterization of root-vectors and root-polynomials directly follows
from the definition and we omit a proof.

Lemma C.7. Let vg # 0,v1,...,v; € E. Then the polynomial
k

v(s) = Z(S — 50)'vi

i=0
is a root-polynomial of A(-) for vy if and only if
J 1
Z 5-’4(2)(30)7}]‘—@' = 0, ] = O, ey k.

i=0
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REMARK C.8. In the simple case that A(s) = sB — A with A,B € L(E, F) the
Lemma implies that v # 0 is a root vector of A(-) to the eigenvalue s if and only
if there are elements vy, ...,vp_1,v; of E with vy # 0 and v = v so that

A(so)vg = 0 and
A(SQ)UZ‘_H = Bvi, 1= 07 AN ,k —1.

In the special case that A(s) = sI — B with B € L(FE, E) this implies that the
root-subspace of A(-) to the eigenvalue sy simply is the generalized eigenspace of
B to the eigenvalue sg.

We finish the review of results from functional analysis with the presentation of
some results about operator matrices with Fredholm operators. For the definitions
and general theory see the textbook by Kato [Kat66, Chapter IV].

One result we use is a bordering lemma for Fredholm operators see [Bey90,
Lemma 2.3].

Lemma C.9. Let X and Y be complex Banach spaces and consider the operator

A B , s
SZ(C D)eL(Xx(C,Yx(C),

with bounded linear operators A € L(X,Y), B € L(C",Y), C € L(X,C®%), D €
L(C",C®). If A is Fredholm of index p then S is Fredholm of index p +r — s.

The next Lemma is in some sense a simple generalization of the previous lemma.
It might by of some interest by itself.

Lemma C.10. Let X1, Xo, Y7, Yo be complex Banach spaces. Consider bounded
linear operators A € L(X1,Y1), B € L(X2, Y1), C € L(X1,Ys), D € L(X2,Ys),
and assume that A is a Fredholm operator of index r > 0, D is a Fredholmoperator
of index s € Z and C' is a compact operator.

Then the operator matriz

A B
(C D) 2X1XX2—>Y1XY2 (03)

is Fredholm of index r + s.

Proof. Since A is Fredholm of index r there is a basis z{,...,z%, of N(A) and

a cobasis y{,...,y% _, of R(A) in Y3, i.e. yf,...,y% _, are linearly independent
in Y1/ R(A) and R(A) @ span(y},...,v%_,) = Y1. Let a%,..., 2% € X7, be a
biorthogonal basis for z{,...,z5,, where X" denotes the dual space of X;. Define
the compact operator
m-—r
Ky = Z <x>zk’ >yla
=1

Hence the operator A 4+ K4 is also Fredholm of index r and by construction it
holds
R(A+ Ka) =Y and dimN(A+ Ka) =1
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From the stability of the Fredholm property under compact perturbations (cf.

[Kat66, IV Theorem 5.26]) follows that (é f)) is Fredholm of index r + s if and

A+K, B

only if M := ( 0 D

) is Fredholm of index r + s. Since A + K 4 is onto we
obtain

<Z> # R(M) < <S> ¢ R(M) & v g R(D).

This shows the equality codim R(M) = codim R (D).
Let x1,...,x} be a basis of N(A+ Ky4) and let z1,...,22 be a basis of N'(D). By
choosing z; € X7 so that

(A+ Kp)# =—Bx?, i=1,...,p

79

xl xk I T
we find that ( 1> ey ( r> , < 2) s < g) are linearly independent elements
0 0 ] T,

of N(M). A simple computation shows that they are also a basis of N (M).
Therefore

ind(M) = dimN (M) — codimR(M) = r + dim N (D) — codim R(D) = r + s.

O
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