## Universität Bielefeld

Fakultät für Mathematik

# Rotating waves in parabolic systems

**Spatial decay and spectral properties**<sup>1</sup>

**Denny Otten** 

## Rotating patterns in $\mathbb{R}^d$

Reaction-diffusion system:

```
u_t(x,t) = A \triangle u(x,t) + f(u(x,t)), \ x \in \mathbb{R}^d, \ t \ge 0, \ d \ge 2, (1)
u: \mathbb{R}^d \times [0, \infty] \to \mathbb{R}^m, A \in \mathbb{R}^{m,m}, f: \mathbb{R}^m \to \mathbb{R}^m.
Rotating wave: Special solution u_{\star} : \mathbb{R}^d \times [0, \infty] \to \mathbb{R}^m of (1) with
                    u_{\star}(x,t) = v_{\star}(e^{-tS_{\star}}(x-x_{\star})), \ x \in \mathbb{R}^d, \ t \ge 0,
v_{\star}: \mathbb{R}^d \to \mathbb{R}^m pattern (profile), S_{\star} \in \mathbb{R}^{d,d}, S_{\star}^T = -S_{\star} angular velocity
matrix, x_{\star} \in \mathbb{R}^d center of rotation.
Rotating patterns in various examples:
```

#### Outline of proof (Theorem 1) 3

**1. Far-field linearization:** In (3) expand  $f(v_{\star}(x))$  into  $\underbrace{f(v_{\infty})}_{=0} + \left(\underbrace{Df(v_{\infty})}_{\text{stable part}} + \underbrace{\int_{0}^{1} Df(v_{\infty} + tw_{\star}(x)) - Df(v_{\infty}) dt}_{=Q(x), Q \in C_{\mathbf{b}}(\mathbb{R}^{d}, \mathbb{R}^{m,m})}\right) w_{\star}(x).$ The difference  $w_{\star}(x) = v_{\star}(x) - v_{\infty}$  satisfies  $\left[\mathcal{L}_0 w_\star\right](x) + \left(Df(v_\infty) + Q(x)\right) w_\star(x) = 0, \quad x \in \mathbb{R}^d.$ 2. Decomposition of variable coefficient Q: Decompose  $Q(x) = Q_{\varepsilon}(x) + Q_{c}(x), \quad x \in \mathbb{R}^{d} \qquad |Q(x)| -$ 

Numerical computations of rotating 5 waves, their spectra and eigenfunctions

Quintic-cubic Ginzburg-Landau equation:

 $u_t = \alpha \Delta u + \delta u + \beta |u|^2 u + \gamma |u|^4 u, \quad x \in \mathbb{R}^3, \ u(x,t) \in \mathbb{C},$ 

with  $\alpha$ ,  $\beta$ ,  $\gamma \in \mathbb{C}$ ,  $\operatorname{Re} \alpha > 0$ ,  $\delta < 0$ . **3D Spinning solitons:** For parameters<sup>7</sup>

 $\alpha = \frac{1}{2} + \frac{1}{2}i, \quad \beta = \frac{5}{2} + i, \quad \gamma = -1 - \frac{1}{10}i, \quad \delta = -\frac{1}{2}$ 

solitons are exponentially localized by Theorem 1 with bound



$$A \triangle v(x) = A \sum_{i=1}^{d} \frac{\partial^2}{\partial x_i^2} v(x), \quad \langle S_{\star} x, \nabla v(x) \rangle = \sum_{i=1}^{d} (S_{\star} x)_i \frac{\partial}{\partial x_i} v(x).$$

Drift term is rotational by skew-symmetry of  $S_{\star}$ 

$$\langle S_{\star}x, \nabla v(x) \rangle = \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} (S_{\star})_{ij} \left( x_j \frac{\partial}{\partial x_i} - x_i \frac{\partial}{\partial x_j} \right) v(x).$$

**Ornstein-Uhlenbeck semigroup:** 



 $\left[\mathcal{L}_0 w_\star\right](x) + \left(Df(v_\infty) + Q_\varepsilon(x) + Q_c(x)\right) w_\star(x) = 0, \ x \in \mathbb{R}^d.$ 

Perturbed Ornstein-Uhlenbeck operators:

 $\left[\mathcal{L}_{Q}v\right](x) = \left[\mathcal{L}_{0}v\right](x) + Df(v_{\infty})v(x) + Q_{\varepsilon}(x)v(x) + Q_{c}(x)v(x)\right]$  $\left[\mathcal{L}_{Q_{\varepsilon}}v\right](x) = \left[\mathcal{L}_{0}v\right](x) + Df(v_{\infty})v(x) + Q_{\varepsilon}(x)v(x)$  $\left[\mathcal{L}_{\infty}v\right](x) = \left[\mathcal{L}_{0}v\right](x) + Df(v_{\infty})v(x)$ 

Exponential estimates in space • Characterization of domain for  $\mathcal{L}_0$ • Explicit heat kernel estimates for  $\mathcal{L}_{\infty}$ 

- Small perturbation argument for  $\mathcal{L}_{Q_{\epsilon}}$
- $Q_c v$  treated as exponentially decaying right hand side of  $\mathcal{L}_{Q_c}$
- Spectral properties of rotating waves 4

Linearized operator:

 $\left[\mathcal{L}v\right](x) = \left[\mathcal{L}_0v\right](x) + Df(v_{\star}(x))v(x), \ x \in \mathbb{R}^d, \ d \ge 2.$ 

$$0 \le \eta^2 \le \vartheta \frac{1}{3p^2} < \frac{1}{3p^2}$$
 for  $p \in ]4 - 2\sqrt{2}, 4 + 2\sqrt{2}[.$ 

**Profile**  $v_{\star}$ , numerical and analytical spectrum:

1 1



## **Eigenfunctions:** (isosurfaces)



#### Interaction of rotating waves 6

Weak interaction: solitons repel each other

$$[T(t)v](x) = \int_{\mathbb{R}^d} H(x,\xi,t)v(\xi)d\xi, \ x \in \mathbb{R}^d, \ t > 0.$$

with Kolmogorov kernel<sup>3</sup>

 $H(x,\xi,t) = (4\pi tA)^{-\frac{d}{2}} \exp\left(-(4tA)^{-1} \left| e^{tS_{\star}} x - \xi \right|^2\right), x,\xi \in \mathbb{R}^d, t > 0.$ 

#### **Spatial decay of rotating waves** 2

**Theorem 1** (Exponential decay of  $v_{\star}$ ). For every  $0 < \vartheta < 1$  and every positive, radial, nondecreasing weight function  $\theta \in C(\mathbb{R}^d, \mathbb{R})$ of exponential growth rate  $\eta \ge 0$  with

 $0 \le \eta^2 \le \vartheta \; \frac{2 \; s(-A) \; s(Df(v_{\infty}))}{3 \; (\rho(A))^2 \; p^2}, \qquad \begin{array}{c} s(A) \; spectral \; bound, \\ \rho(A) \; spectral \; radius, \end{array}$ 

there exists  $K_1 > 0$  such that: Every classical solution  $v_{\star}$  of (3) with  $v_{\star} - v_{\infty} \in L^{p}(\mathbb{R}^{d}, \mathbb{R}^{m})$  and

> $\sup |v_{\star}(x) - v_{\infty}| \leq K_1 \text{ for some } R_0 > 0$  $|x| \ge R_0$

## satisfies

 $v_{\star} - v_{\infty} \in W^{1,p}_{\theta}(\mathbb{R}^d, \mathbb{R}^m).$ 

Weight function of exponential growth rate<sup>4</sup>  $\eta \ge 0$ :  $\theta \in C(\mathbb{R}^d, \mathbb{R})$  with

Eigenvalue problem:

 $\left[\mathcal{L}v\right](x) = \lambda v(x), \ x \in \mathbb{R}^d.$ 

Spectrum of  $\mathcal{L}$ :  $\sigma(\mathcal{L}) = \sigma_{ess}(\mathcal{L}) \dot{\cup} \sigma_{pt}(\mathcal{L})$  with

 $\sigma_{\rm pt}(\mathcal{L}) = \{\lambda \in \sigma(\mathcal{L}) \mid \lambda \text{ isolated with finite multiplicity} \},\$  $\sigma_{\rm ess}(\mathcal{L}) = \sigma(\mathcal{L}) \setminus \sigma_{\rm pt}(\mathcal{L}),$ 

## $\sigma_{\rm pt}(\mathcal{L})$ point spectrum, $\sigma_{\rm ess}(\mathcal{L})$ essential spectrum.

**Theorem 2** (Exponential decay of eigenfunctions v). Classical solutions  $v \in L^p(\mathbb{R}^d, \mathbb{C}^m)$  of (4) for  $\operatorname{Re} \lambda \ge -s(Df(v_\infty)) + \varepsilon$  satisfy

 $v \in W^{1,p}_{\boldsymbol{\theta}}(\mathbb{R}^d, \mathbb{C}^m).$ 

**Theorem 3** (Point spectrum in  $L^p$  on  $i\mathbb{R}$ ).  $\sigma_{\mathrm{pt}}^{\mathrm{part}}(\mathcal{L}) \subseteq \sigma_{\mathrm{pt}}(\mathcal{L})$ ,

 $\sigma_{\rm pt}^{\rm part}(\mathcal{L}) = \sigma(S_{\star}) \cup \{\lambda_1 + \lambda_2 \mid \lambda_1, \lambda_2 \in \sigma(S_{\star}), \ \lambda_1 \neq \lambda_2\}.$ 

| , Im $\lambda$                             | , Im $\lambda$                              | $_{\star}~{ m Im}\lambda$                    | $_{\star}~{ m Im}\lambda$                   |
|--------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|
|                                            |                                             | $1 	imes i(\sigma_1 + \sigma_2)$             | $1 	imes i(\sigma_1 + \sigma_2)$            |
|                                            |                                             | $1 \oplus i\sigma_1$                         | $2 \otimes i\sigma_1$                       |
|                                            |                                             | $1 	imes i(\sigma_1 - \sigma_2)$             | $1 	imes i(\sigma_1 - \sigma_2)$            |
| $1 igodot i \sigma_2$                      | $2  oldsymbol{lpha}   i \sigma_2$           | $1 \oplus i\sigma_2$                         | $2 \otimes i\sigma_2$                       |
| $-1 \times 0 \rightarrow \text{Re}\lambda$ | $-2 \otimes 0 \rightarrow \text{Re}\lambda$ | $-2 \times 0 \rightarrow \text{Re}\lambda$ - | $-3 \otimes 0 \rightarrow \text{Re}\lambda$ |
| $1 igoplus -i \sigma_2$                    | $2 oldsymbol{\otimes} -i\sigma_2$           | $1 igodot -i \sigma_2$                       | $2 \otimes -i\sigma_2$                      |
|                                            |                                             | $1 	imes -i(\sigma_1 - \sigma_2)$            | $1 	imes -i(\sigma_1 - \sigma_2)$           |
|                                            |                                             | $1 igoplus -i \sigma_1$                      | $2 \otimes -i\sigma_1$                      |
|                                            |                                             | $rac{1}{4} 	imes -i(\sigma_1+\sigma_2)$     | $1 	imes -i(\sigma_1 + \sigma_2)$           |
| d=2                                        | d = 3                                       | d = 4                                        | d = 5                                       |
| C                                          |                                             |                                              | ad d a T                                    |

Eigenfunctions:  $v(x) = \langle Sx + \tau, \nabla v_{\star}(x) \rangle$  with  $S \in \mathbb{C}^{d,d}, S^T = -S$ ,  $\tau \in \mathbb{C}^d$ . A total of  $\frac{d(d+1)}{2}$  eigenvalues and eigenfunctions. Theorem 4 (Essential spectrum<sup>2,5</sup> in  $L^p$ ).  $\sigma_{ess}^{part}(\mathcal{L}) \subseteq \sigma_{ess}(\mathcal{L})$ ,

-20 -20 20 20

Strong interaction (without pahseshift): solitons collide



Strong interaction (with phaseshift):



### Aims

(4)

• Nonlinear stability of rotating waves<sup>5</sup> for  $d \ge 3$ • Approximation theorem for rotating waves (on bounded domains) • Discard assumption  $v_{\star} - v_{\infty} \in L^p(\mathbb{R}^d, \mathbb{R}^m)$  in Theorem 1 • Exponential decay in space of bounded continuous functions

 $\exists C_{\theta} > 0 : \ \theta(x+y) \leqslant C_{\theta}\theta(x)e^{\eta|y|} \ \forall x, y \in \mathbb{R}^d.$ 

Exponentially weighted Sobolev spaces:  $1 \le p \le \infty, k \in \mathbb{N}_0$ ,  $L^p_{\theta}(\mathbb{R}^d, \mathbb{R}^m) = \left\{ v \in L^1_{\text{loc}}(\mathbb{R}^d, \mathbb{R}^m) \mid \|\theta v\|_{L^p} < \infty \right\},$  $W^{k,p}_{\theta}(\mathbb{R}^d,\mathbb{R}^m) = \left\{ v \in L^p_{\theta}(\mathbb{R}^d,\mathbb{R}^m) \mid D^{\beta}v \in L^p_{\theta}(\mathbb{R}^d,\mathbb{R}^m) \; \forall \; |\beta| \le k \right\}.$ 

General assumptions: •  $A \in \mathbb{R}^{m,m}$  with A > 0 for m = 1 and for m > 1 $\mu_1(A) = \inf_{\substack{w \neq 0 \\ Aw \neq 0}} \frac{\operatorname{Re} \langle w, Aw \rangle}{|w||Aw|} > \frac{|p-2|}{p} \text{ for some } 1$  $(\mu_1(A) \text{ first antieigenvalue of } A)$ •  $f \in C^2(\mathbb{R}^m, \mathbb{R}^m)$ •  $v_{\infty} \in \mathbb{R}^m$ ,  $f(v_{\infty}) = 0$ ,  $\operatorname{Re} \sigma(Df(v_{\infty})) < 0$ 

• A and  $Df(v_{\infty})$  simultaneously diagonalizable (over  $\mathbb{C}$ ) •  $0 \neq S_{\star} \in \mathbb{R}^{d,d}, S_{\star}^T = -S_{\star}$ 



• Stability of freezing method<sup>8</sup> and decompose and freeze method<sup>8</sup>

#### References

<sup>1</sup> D. Otten (*Shaker* 2014, PhD thesis supervised by W.-J. Beyn).

<sup>2</sup> Characterization and identification of maximal domain generalizes G. Metafune, D. Pallara, V. Vespri (Houston J. Math. 2005), D. Otten (Preprint 14-067, CRC 701, 2014). For essential spectrum of drift term see G. Metafune (Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2001).

<sup>3</sup> Heat kernel representation generalizes R. Beals (*Comm. Partial Differ. Equ.* 1999), J. Aarão (SIAM Rev. 2007), D. Otten (Springer, J. Evol. Equ. 2015).

<sup>4</sup> Weight functions from A. Mielke, S. Zelik (*Mem. Amer. Math. Soc.* 2009).

<sup>5</sup> For essential spectrum for d = p = 2 and nonlinear stability of rotating waves for d = 2 see W.-J. Beyn, J. Lorenz (Dyn. Partial Differ. Equ. 2008).

<sup>6</sup> For spectra and dispersion relation for general spiral waves see B. Sandstede, A. Scheel (*Phys. Rev.* E 2000, Phys. Rev. Lett. 2001), B. Fiedler, A. Scheel (Trends in Nonl. Anal. Springer 2003). <sup>7</sup> Parameters from L.-C. Crasovan, B.A. Malomed, D. Mihalache (*Pramana-journal of Physics* 2001).

<sup>8</sup> Freezing method cf. W.-J. Beyn, V. Thümmler (SIAM J. Appl. Dyn. Syst. 2004). Decompose and freeze method cf. W.-J. Beyn, D. Otten, J. Rottmann-Matthes (Springer, Lecture Notes in Mathematics 2082, 2014).