
Abstract

s

\section*{Spatial decay of rotating waves in parabolic systems Denny Otten}

Consider a reaction diffusion system

$$
\begin{align*}
& u_{t}(x, t)=A \triangle u(x, t)+f(u(x, t)), \\
& u(x, 0)=u_{0}(x) \quad, x \in \mathbb{R}^{d}, d \geqslant 2 \tag{1}\\
& u\left(x \in \mathbb{R}^{d} .\right.
\end{align*}
$$

with diffusion matrix $A \in \mathbb{R}^{N, N}$, nonlinearity $f \in C^{2}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$, initial data $u_{0}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ and solution $u: \mathbb{R}^{d} \times\left[0, \infty\left[\rightarrow \mathbb{R}^{N}\right.\right.$.
A rotating wave of (1) is a special solution $u_{\star}: \mathbb{R}^{d} \times\left[0, \infty\left[\rightarrow \mathbb{R}^{N}\right.\right.$ of the form

$$
u_{\star}(x, t)=v_{\star}\left(e^{-t S} x\right),
$$

where $v_{\star}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N}$ is the profile (pattern) and $0 \neq S \in \mathbb{R}^{d, d}$ is a skew-symmetric matrix. Examples of rotating waves are spiral waves, scroll waves, spinning solitons, etc.
If u solves (1) then the function $v(x, t)=u\left(e^{t S} x, t\right)$, transformed into a rotating frame, solves

$$
\begin{align*}
v_{t}(x, t) & =A \triangle v(x, t)+\langle S x, \nabla v(x, t)\rangle+f(v(x, t)), \\
v(x, 0) & =u_{0}(x) \quad, t=0, x \in \mathbb{R}^{d}, d \geqslant 2 \tag{2}\\
v & , t \in \mathbb{R}^{d}
\end{align*}
$$

The linear operator is of Ornstein-Uhlenbeck type with an unbounded drift term containing angular derivatives

$$
\langle S x, \nabla v(x)\rangle:=\sum_{i=1}^{d} \sum_{j=1}^{d} S_{i j} x_{j} \frac{\partial}{\partial x_{i}} v(x)=\sum_{i=1}^{d-1} \sum_{j=i+1}^{d} S_{i j}\left(x_{j} \frac{\partial}{\partial x_{i}}-x_{i} \frac{\partial}{\partial x_{j}}\right) v(x) .
$$

Observe that v_{\star} is a stationary solution of (2), meaning that v_{\star} solves

$$
\begin{equation*}
A \triangle v(x)+\langle S x, \nabla v(x)\rangle+f(v(x))=0, x \in \mathbb{R}^{d}, d \geqslant 2 \tag{3}
\end{equation*}
$$

Investigating steady state problems of this type is motivated by the stability theory of rotating patterns in several space dimensions, [1]. Equation (3) determines the shape and the angular speed of a rotating wave.
In this talk, we prove under certain conditions that every classical solution of (3) which falls below a certain threshold at infinity, must decay exponentially in space, meaning that the pattern is exponentially localized. This guarantees an exponentially small cut-off error if we restrict (3) to a bounded domain and justifies the numerical computation of rotating waves from boundary value problems on bounded domains.
We require $f\left(v_{\infty}\right)=0$ and $\operatorname{Re} \sigma\left(D f\left(v_{\infty}\right)\right)<0$ for some $v_{\infty} \in \mathbb{R}^{N}$. In addition to $\operatorname{Re} \sigma(A)>0$ we impose the cone-condition

$$
|\operatorname{Im} \lambda||p-2| \leqslant 2 \sqrt{p-1} \operatorname{Re} \lambda \quad \forall \lambda \in \sigma(A) \text { for some } 1<p<\infty
$$

and assume that $A, D f\left(v_{\infty}\right) \in \mathbb{R}^{N, N}$ are simultaneously diagonalizable over \mathbb{C}. Further, we choose constants $a_{0}, b_{0}, a_{\max }>0$ such that

$$
a_{0} \leqslant \operatorname{Re} \lambda,|\lambda| \leqslant a_{\max } \forall \lambda \in \sigma(A), \quad \operatorname{Re} \mu \leqslant-b_{0}<0 \forall \mu \in \sigma\left(D f\left(v_{\infty}\right)\right)
$$

Following [6], we call a positive function $\theta \in C\left(\mathbb{R}^{d}, \mathbb{R}\right)$ a weight function of exponential growth rate $\eta \geqslant 0$ provided that

$$
\exists C_{\theta}>0: \theta(x+y) \leqslant C_{\theta} \theta(x) e^{\eta|y|} \quad \forall x, y \in \mathbb{R}^{d} .
$$

Finally, the exponentially weighted Sobolev spaces for $1 \leqslant p \leqslant \infty, k \in \mathbb{N}_{0}$ are defined by

$$
\begin{aligned}
L_{\theta}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{N}\right) & :=\left\{v \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{N}\right) \mid\|\theta v\|_{L^{p}}<\infty\right\} \\
W_{\theta}^{k, p}\left(\mathbb{R}^{d}, \mathbb{R}^{N}\right) & :=\left\{v \in L_{\theta}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{N}\right)\left|D^{\beta} u \in L_{\theta}^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{N}\right) \forall\right| \beta \mid \leqslant k\right\}
\end{aligned}
$$

Under these assumptions the following statement holds:
Theorem 1. For every $1<p<\infty, 0<\vartheta<1$ and for every radially nondecreasing weight function $\theta \in C\left(\mathbb{R}^{d}, \mathbb{R}\right)$ of exponential growth rate $\eta \geqslant 0$ with

$$
0 \leqslant \eta^{2} \leqslant \vartheta \frac{2}{3} \frac{a_{0} b_{0}}{a_{\max }^{2} p^{2}}
$$

there exists $K_{1}=K_{1}\left(A, f, v_{\infty}, d, p, \theta, \vartheta\right)>0$ with the following property: Every classical solution v_{\star} of equation (3) such that $v_{\star}-v_{\infty} \in L^{p}\left(\mathbb{R}^{d}, \mathbb{R}^{N}\right)$ and

$$
\sup _{|x| \geqslant R_{0}}\left|v_{\star}(x)-v_{\infty}\right| \leqslant K_{1} \text { for some } R_{0}>0
$$

satisfies

$$
v_{\star}-v_{\infty} \in W_{\theta}^{1, p}\left(\mathbb{R}^{d}, \mathbb{R}^{N}\right)
$$

In this talk we present the main idea of the proof based upon a linearization at infinity, also known as far-field linearization. Our investigations of the associated Ornstein-Uhlenbeck operator generalizes the results of [3], [4]. We determine the maximal domain of the operator in $L^{p}\left(\mathbb{R}^{d}, \mathbb{C}^{N}\right)$, analyze its constant and variable coefficient perturbations and derive resolvent estimates.
We apply the theory to the cubic-quintic complex Ginzburg-Landau equation

$$
u_{t}=\alpha \Delta u+u\left(\mu+\beta|u|^{2}+\gamma|u|^{4}\right), \quad u=u(x, t) \in \mathbb{C}
$$

where $u: \mathbb{R}^{d} \times[0, \infty[\rightarrow \mathbb{C}, d \in\{2,3\}$. For the parameters

$$
\alpha=\frac{1}{2}+\frac{1}{2} i, \beta=\frac{5}{2}+i, \gamma=-1-\frac{1}{10} i, \mu=-\frac{1}{2}
$$

this equation exhibits so called spinning soliton solutions, [2], see Figure 1. The solitons are localized in the sense of Theorem 1 with the bound

$$
0 \leqslant \eta^{2} \leqslant \vartheta \frac{1}{3 p^{2}}<\frac{1}{3 p^{2}} \quad \text { for } \quad 2 \leqslant p \leqslant 6
$$

Details of the results may be found in the preprint [5] which forms the core of the authors' PhD thesis.

Figure 1. Spinning solitons of the Ginzburg-Landau equation

References

[1] W.-J. Beyn, J. Lorenz, Nonlinear stability of rotating patterns, Dyn. Partial Differ. Equ. 5(4) (2008), 349-400.
[2] L.-C. Crasovan, B.A. Malomed, D. Mihalache, Spinning solitons in cubic-quintic nonlinear media, Pramana-journal of Physics 57 (2001), 1041-1059.
[3] G. Metafune, D. Pallara, V. Vespri, L ${ }^{p}$-estimates for a class of elliptic operators with unbounded coefficients in \mathbf{R}^{N}, Houston J. Math. 31(2) (2005), 605-620 (electronic).
[4] G. Metafune, L^{p}-spectrum of Ornstein-Uhlenbeck operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30(1) (2001), 97-124.
[5] D. Otten, Spatial decay of rotating waves in parabolic systems, Preprint 12139, CRC 701: Spectral Structures and Topological Methods in Mathematics, Bielefeld University, (2012), 1-91, http://www.math.uni-bielefeld.de/sfb701/files/preprints/sfb12139.pdf.
[6] S. Zelik, A. Mielke, Multi-pulse evolution and space-time chaos in dissipative systems, Mem. Amer. Math. Soc. 198 (2009), vi+97.

