Spatial Decay and Spectral Properties of Rotating Waves in Evolution Equations

Patterns of Dynamics Conference in Honor of Bernold Fiedler Free University of Berlin, July 25-29, 2016

> **Denny Otten** Department of Mathematics Bielefeld University Germany

July 28, 2016

W.-J. Beyn, D. Otten. Spatial Decay of Rotating Waves in Reaction Diffusion Systems. *Dyn. Partial Differ. Equ.*, 13(3):191-240, 2016.

D. Otten. Spatial decay and spectral properties of rotating waves in parabolic systems. PhD thesis, Bielefeld University, *Shaker Verlag*, 2014.

Dynamics of Patterns

MFO (Oberwohlfach) December 16-22, 2012 **Organisors**: Wolf-Jürgen Beyn Björn Sandstede Bernold Fiedler

Bernold, do you remember on our discussions about QCGL soliton interactions?

W.-J. Beyn, D. Otten, J. Rottmann-Matthes. Stability and Computation of Dynamic Patterns in PDEs. In *Current Challenges in Stability Issues for Numerical Differential Equations*, Lecture Notes in Mathematics, pages 89-172. Springer International Publishing, 2014.

Dynamics of Patterns

MFO (Oberwohlfach) December 16-22, 2012 **Organisors**: Wolf-Jürgen Beyn Björn Sandstede Bernold Fiedler

You ask me: Did you ever investigated soliton interactions for shifted phases?

W.-J. Beyn, D. Otten, J. Rottmann-Matthes. Stability and Computation of Dynamic Patterns in PDEs. In *Current Challenges in Stability Issues for Numerical Differential Equations*, Lecture Notes in Mathematics, pages 89-172. Springer International Publishing, 2014.

Good news: Yes, I did it!

Dynamics of Patterns

MFO (Oberwohlfach) December 16-22, 2012 **Organisors**: Wolf-Jürgen Beyn Björn Sandstede Bernold Fiedler

W.-J. Beyn, D. Otten, J. Rottmann-Matthes. Stability and Computation of Dynamic Patterns in PDEs. In *Current Challenges in Stability Issues for Numerical Differential Equations*, Lecture Notes in Mathematics, pages 89-172. Springer International Publishing, 2014.

Denny Otten

Dynamics of Patterns

MFO (Oberwohlfach) December 16-22, 2012 **Organisors**: Wolf-Jürgen Beyn Björn Sandstede Bernold Fiedler

Better news: I never published these results!

W.-J. Beyn, D. Otten, J. Rottmann-Matthes. Stability and Computation of Dynamic Patterns in PDEs. In *Current Challenges in Stability Issues for Numerical Differential Equations*, Lecture Notes in Mathematics, pages 89-172. Springer International Publishing,2014.

Denny Otten

Dynamics of Patterns

MFO (Oberwohlfach) December 16-22, 2012 **Organisors**: Wolf-Jürgen Beyn Björn Sandstede Bernold Fiedler

Best news: You now get a look into these results!

W.-J. Beyn, D. Otten, J. Rottmann-Matthes. Stability and Computation of Dynamic Patterns in PDEs. In *Current Challenges in Stability Issues for Numerical Differential Equations*, Lecture Notes in Mathematics, pages 89-172. Springer International Publishing,2014.

Dynamics of Patterns

MFO (Oberwohlfach) December 16-22, 2012 **Organisors**: Wolf-Jürgen Beyn Björn Sandstede Bernold Fiedler

... I even applied the decompose and freeze method to it!

Happy Birthday, Bernold!

Outline

- 2 Spatial decay of rotating waves
- Spectral properties of linearization at rotating waves
- Q Cubic-quintic complex Ginzburg-Landau equation

Outline

Rotating patterns in \mathbb{R}^d

- 2 Spatial decay of rotating waves
- 3 Spectral properties of linearization at rotating waves
- Oubic-quintic complex Ginzburg-Landau equation

Consider a reaction diffusion system

(1)

$$egin{aligned} &u_t(x,t) = A riangle u(x,t) + f(u(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \geqslant 2 \ u(x,0) = u_0(x) \qquad , \ t = 0, \ x \in \mathbb{R}^d. \end{aligned}$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N, A \in \mathbb{R}^{N,N}, f : \mathbb{R}^N \to \mathbb{R}^N, u_0 : \mathbb{R}^d \to \mathbb{R}^N.$ Assume a rotating wave solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N \text{ of } (1)$

$$u_*(x,t) = v_*(e^{-tS}x)$$

 $v_{\star} : \mathbb{R}^{d} \to \mathbb{R}^{N}$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. **Transformation (into a co-rotating frame)**: $v(x,t) = u(e^{tS}x,t)$ solves

(2)
$$\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) \end{aligned}$$

$$\langle Sx, \nabla v(x) \rangle = Dv(x)Sx = \sum_{i=1}^{d} \sum_{j=1}^{d} S_{ij}x_j D_i v(x) \stackrel{-s=s^{\top}}{=} \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} S_{ij} (x_j D_i - x_i D_j) v(x)$$
(drift term) (rotational term)

•

Consider a reaction diffusion system

$$egin{aligned} &u_t(x,t)=A riangle u(x,t)+f(u(x,t)),\ t>0,\ x\in \mathbb{R}^d,\ d\geqslant 2,\ &u(x,0)=u_0(x) \ ,\ t=0,\ x\in \mathbb{R}^d. \end{aligned}$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N, A \in \mathbb{R}^{N,N}, f : \mathbb{R}^N \to \mathbb{R}^N, u_0 : \mathbb{R}^d \to \mathbb{R}^N.$ Assume a **rotating wave** solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N \text{ of } (1)]$

$$u_{\star}(x,t) = v_{\star}(e^{-tS}x)$$

 $v_{\star} : \mathbb{R}^{d} \to \mathbb{R}^{N}$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. Transformation (into a co-rotating frame): $v(x, t) = u(e^{tS}x, t)$ solves

(2) $\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) \qquad , \ t = 0, \ x \in \mathbb{R}^d. \end{aligned}$

$$\langle Sx, \nabla v(x) \rangle = Dv(x)Sx = \sum_{i=1}^{d} \sum_{j=1}^{d} S_{ij}x_j D_i v(x) \stackrel{-s=s^{\top}}{=} \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} S_{ij} (x_j D_i - x_i D_j) v(x)$$
(drift term) (rotational term)

Consider a reaction diffusion system

(1)

$$u_t(x,t) = A riangle u(x,t) + f(u(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2$$

 $u(x,0) = u_0(x), \ t = 0, \ x \in \mathbb{R}^d.$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N, A \in \mathbb{R}^{N,N}, f : \mathbb{R}^N \to \mathbb{R}^N, u_0 : \mathbb{R}^d \to \mathbb{R}^N.$ Assume a **rotating wave** solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N \text{ of } (1)]$

$$u_{\star}(x,t) = v_{\star}(e^{-tS}x)$$

 $v_* : \mathbb{R}^d \to \mathbb{R}^N$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. Transformation (into a co-rotating frame): $v(x, t) = u(e^{tS}x, t)$ solves

(2)
$$\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) \qquad , \ t = 0, \ x \in \mathbb{R}^d. \end{aligned}$$

$$\langle Sx, \nabla v(x) \rangle = Dv(x)Sx = \sum_{i=1}^{d} \sum_{j=1}^{d} S_{ij}x_j D_i v(x) \stackrel{-s \equiv s^{\top}}{=} \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} S_{ij} (x_j D_i - x_i D_j) v(x)$$
(drift term) (rotational term)

Consider a reaction diffusion system

(1)

$$egin{aligned} &u_t(x,t)=A riangle u(x,t)+f(u(x,t)), \ t>0, \ x\in \mathbb{R}^d, \ d\geqslant 2, \ &u(x,0)=u_0(x) \ , \ t=0, \ x\in \mathbb{R}^d. \end{aligned}$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N, A \in \mathbb{R}^{N,N}, f : \mathbb{R}^N \to \mathbb{R}^N, u_0 : \mathbb{R}^d \to \mathbb{R}^N.$ Assume a **rotating wave** solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N \text{ of } (1)]$

$$u_{\star}(x,t) = v_{\star}(e^{-tS}x)$$

 $v_{\star} : \mathbb{R}^{d} \to \mathbb{R}^{N}$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. **Transformation (into a co-rotating frame)**: $v(x,t) = u(e^{tS}x,t)$ solves

(2)
$$\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) , \ t = 0, \ x \in \mathbb{R}^d. \end{aligned}$$

Note: v_{\star} is a stationary solution of (2), i.e. v_{\star} solves the rotating wave equation

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^{d}, d \geq 2.$$

 $A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle$: Ornstein-Uhlenbeck operator.

Consider a reaction diffusion system

(1)

$$egin{aligned} &u_t(x,t)=A riangle u(x,t)+f(u(x,t)), \ t>0, \ x\in \mathbb{R}^d, \ d\geqslant 2, \ &u(x,0)=u_0(x) \ , \ t=0, \ x\in \mathbb{R}^d. \end{aligned}$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N, A \in \mathbb{R}^{N,N}, f : \mathbb{R}^N \to \mathbb{R}^N, u_0 : \mathbb{R}^d \to \mathbb{R}^N.$ Assume a **rotating wave** solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N \text{ of } (1)]$

$$u_{\star}(x,t) = v_{\star}(e^{-tS}x)$$

 $v_{\star} : \mathbb{R}^{d} \to \mathbb{R}^{N}$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. **Transformation (into a co-rotating frame)**: $v(x,t) = u(e^{tS}x,t)$ solves

(2)
$$\begin{array}{l} v_t(x,t) = A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) = u_0(x), \ t = 0, \ x \in \mathbb{R}^d. \end{array}$$

Question: How to show exponential decay of v_* at $|x| = \infty$? **Consequence:** Exponentially small error by truncation to bounded domain.

Examples for rotating waves

Cubic-quintic complex Ginzburg-Landau equation: (spinning solitons)

$$u_{t} = \alpha \triangle u + u \left(\delta + \beta \left| u \right|^{2} + \gamma \left| u \right|^{4} \right)$$

 $u(x,t) \in \mathbb{C}, x \in \mathbb{R}^{d}, t \ge 0, \alpha, \beta, \gamma \in \mathbb{C}, \operatorname{Re} \alpha > 0, \delta \in \mathbb{R}, d \in \{2,3\}.$

 λ - ω system: (spiral waves, scroll waves)

$$u_t = \alpha riangle u + \left(\lambda(|u|^2) + i\omega(|u|^2)\right) u$$

$$\begin{array}{l} u(x,t) \in \mathbb{C}, \ x \in \mathbb{R}^{d}, \ t \geq 0, \ \lambda, \omega : \ [0,\infty[\rightarrow \mathbb{R}, \\ \alpha \in \mathbb{C}, \ \mathrm{Re} \ \alpha > 0, \ d \in \{2,3\}. \end{array}$$

Barkley model: (spiral waves, also scroll waves)

$$u_t = \begin{pmatrix} 1 & 0 \\ 0 & D \end{pmatrix} \triangle u + \begin{pmatrix} \frac{1}{\varepsilon} u_1(1-u_1)(u_1 - \frac{u_2+b}{a}) \\ u_1 - u_2 \end{pmatrix}$$

with
$$u(x,t) \in \mathbb{R}^2$$
, $x \in \mathbb{R}^d$, $t \ge 0$, $0 \le D \ll 1$,
 ε , $a, b > 0$.

References

Nonlinear stability of rotating waves for d = 2:

W.-J. Beyn, J. Lorenz.

Nonlinear stability of rotating patterns, 2008. Ginzburg-Landau equation:

L.D. Landau, V.L. Ginzburg.

On the theory of superconductivity, 1950.

L.-C. Crasovan, B.A. Malomed, D. Mihalache.

Spinning solitons in cubic-quintic nonlinear media, 2001. Stable vortex solitons in the two-dimensional Ginzburg-Landau equation, 2000.

A. Mielke.

The Ginzburg-Landau equation in its role as a modulation equation, 2002.

λ - ω system:

Y. Kuramoto, S. Koga.

Turbulized rotating chemical waves, 1981.

J. D. Murray.

Mathematical biology, II: Spatial models and biomedical applications, 2003. Barkley model:

D. Barkley.

A model for fast computer simulation of waves in exitable media, 1991. Euclidean symmetry and the dynamics of rotating spiral waves, 1994.

Outline

f 1 Rotating patterns in \mathbb{R}^d

2 Spatial decay of rotating waves

3 Spectral properties of linearization at rotating waves

Oubic-quintic complex Ginzburg-Landau equation

Theorem 1: (Exponential decay of v_{\star})

 $(\mathbb{R}^N, \mathbb{R}^N), v_{\infty} \in \mathbb{R}^N, f(v_{\infty}) = 0, Df(v_{\infty}) \leq -\beta_{\infty}I < 0,$ Let $f \in C^2$ assume (A1)-(A3) for some $1 , and let <math>\theta(x) = \exp\left(\mu \sqrt{|x|^2 + 1}\right)$ be a weight function for $\mu \in \mathbb{R}$. Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property: Every classical solution $v_{\star} \in C^2$ ($\mathbb{R}^d, \mathbb{R}^N$) of $A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^{d},$ (RWE) such that (TC) $\sup |v_{\star}(x) - v_{\infty}| \leq K_1$ for some $R_0 > 0$ $|x| \ge R_0$ satisfies

$$v_\star - v_\infty \in W^{\mathbf{1},p}_ heta(\mathbb{R}^d,\mathbb{R}^N)$$

for every exponential decay rate

$$0 \leqslant \mu \leqslant \varepsilon \frac{\sqrt{a_0 b_0}}{a_{\max} p}. \qquad \begin{pmatrix} a_{\max} = \rho(A) & : \text{ spectral radius of } A \\ -a_0 = s(-A) & : \text{ spectral bound of } -A \\ -b_0 = s(Df(v_{\infty})) & : \text{ spectral bound of } Df(v_{\infty}) \end{pmatrix}$$

Theorem 1: (Exponential decay of v_{\star})

 $(\mathbb{R}^N, \mathbb{R}^N), v_{\infty} \in \mathbb{R}^N, f(v_{\infty}) = 0, Df(v_{\infty}) \leq -\beta_{\infty}I < 0,$ Let $f \in C^2$ assume (A1)-(A3) for some $1 , and let <math>\theta(x) = \exp\left(\mu \sqrt{|x|^2 + 1}\right)$ be a weight function for $\mu \in \mathbb{R}$. Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property: Every classical solution $v_{\star} \in C^3$ ($\mathbb{R}^d, \mathbb{R}^N$) of $A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^{d},$ (RWE) such that (TC) $\sup |v_{\star}(x) - v_{\infty}| \leq K_1$ for some $R_0 > 0$ $|x| \ge R_0$ satisfies

$$v_{\star}-v_{\infty}\in W^{2,p}_{ heta}(\mathbb{R}^{d},\mathbb{R}^{N})$$

for every exponential decay rate

$$0 \leqslant \mu \leqslant \varepsilon \frac{\sqrt{a_0 b_0}}{a_{\max} p}. \qquad \begin{pmatrix} a_{\max} &= & \rho(A) &: \text{ spectral radius of } A \\ -a_0 &= & s(-A) &: \text{ spectral bound of } -A \\ -b_0 &= & s(Df(v_{\infty})) &: \text{ spectral bound of } Df(v_{\infty}) \end{pmatrix}$$

Theorem 1: (Exponential decay of v_* : higher regularity)

Let $f \in C^{\max\{2, k-1\}}(\mathbb{R}^N, \mathbb{R}^N)$, $v_{\infty} \in \mathbb{R}^N$, $f(v_{\infty}) = 0$, $Df(v_{\infty}) \leq -\beta_{\infty}I < 0$, assume (A1)-(A3) for some $1 , and let <math>\theta(x) = \exp\left(\mu\sqrt{|x|^2 + 1}\right)$ be a weight function for $\mu \in \mathbb{R}$, $k \in \mathbb{N}$, $p \geq \frac{d}{2}$ (if $k \geq 3$). Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property: Every classical solution $v_{\star} \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^N)$ of

$$\mathsf{RWE}) \qquad \qquad A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d},$$

such that

(TC)
$$\sup_{|x| \ge R_0} |v_\star(x) - v_\infty| \le K_1 \text{ for some } R_0 > 0$$

satisfies

$$v_{\star} - v_{\infty} \in W^{k,p}_{ heta}(\mathbb{R}^{d},\mathbb{R}^{N})$$

for every exponential decay rate

$$0 \leqslant \mu \leqslant \varepsilon \frac{\sqrt{a_0 b_0}}{a_{\max} p}. \qquad \begin{pmatrix} a_{\max} = \rho(A) & : \text{ spectral radius of } A \\ -a_0 = s(-A) & : \text{ spectral bound of } -A \\ -b_0 = s(Df(v_{\infty})) & : \text{ spectral bound of } Df(v_{\infty}) \end{pmatrix}$$

Theorem 1: (Exponential decay of v_* : pointwise estimates)

Let $f \in C^{\max\{2, k-1\}}(\mathbb{R}^N, \mathbb{R}^N)$, $v_{\infty} \in \mathbb{R}^N$, $f(v_{\infty}) = 0$, $Df(v_{\infty}) \leqslant -\beta_{\infty}I < 0$, assume (A1)-(A3) for some $1 , and let <math> heta(x) = \exp\left(\mu \sqrt{|x|^2 + 1}
ight)$ be a weight function for $\mu \in \mathbb{R}$, $k \in \mathbb{N}$, $p \ge \frac{d}{2}$ (if $k \ge 3$). Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property: Every classical solution $v_{\star} \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^N)$ of $A \triangle v_{+}(x) + \langle Sx, \nabla v_{+}(x) \rangle + f(v_{+}(x)) = 0, x \in \mathbb{R}^{d},$ (RWE) such that $\sup |v_{\star}(x) - v_{\infty}| \leq K_1$ for some $R_0 > 0$ (TC) $|x| \ge R_0$ satisfies $|\mathbf{v}_{\star} - \mathbf{v}_{\infty} \in W^{k, p}_{ heta}(\mathbb{R}^{d}, \mathbb{R}^{N}), \ |D^{lpha}(\mathbf{v}_{\star}(x) - \mathbf{v}_{\infty})| \leqslant C \exp\left(-\mu \sqrt{|x|^{2} + 1}
ight) \ orall x \in \mathbb{R}^{d}$ for every exponential decay rate

 $0 \leqslant \mu \leqslant \varepsilon \frac{\sqrt{a_0 b_0}}{a_{\max} p} \qquad \begin{pmatrix} a_{\max} &= & \rho(A) &: \text{ spectral radius of } A \\ -a_0 &= & s(-A) &: \text{ spectral bound of } -A \\ -b_0 &= & s(Df(v_{\infty})) &: \text{ spectral bound of } Df(v_{\infty}) \end{pmatrix}$ and for every multiindex $\alpha \in \mathbb{N}_0^d$ satisfying $d < (k - |\alpha|)p$.

Spatial decay of eigenfunctions at rotating waves

Theorem 2: (Exponential decay of eigenfunctions v)

Let $f \in C^{\max\{2,k\}}(\mathbb{R}^N, \mathbb{R}^N)$, $v_{\infty} \in \mathbb{R}^N$, $f(v_{\infty}) = 0$, $Df(v_{\infty}) \leq -\beta_{\infty}I < 0$, assume (A1)-(A3) for some $1 , and let <math>\theta_j(x) = \exp\left(\mu_j \sqrt{|x|^2 + 1}\right)$ be a weight function for $\mu_j \in \mathbb{R}$, $j = 1, 2, k \in \mathbb{N}$, $p \geq \frac{d}{2}$ (if $k \geq 2$). Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ such that for every classical solution $v_{\star} \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^N)$ of (RWE) satisfying (TC) the following property holds: Every classical solution $v \in C^{k+1}(\mathbb{R}^d, \mathbb{C}^N)$ of (EVP) $A \bigtriangleup v(x) + \langle Sx, \nabla v(x) \rangle + Df(v_{\star}(x))v(x) = \lambda v(x), x \in \mathbb{R}^d$,

with $\lambda\in\mathbb{C}$, $\operatorname{Re}\lambda\geqslant-(1-arepsilon)eta_\infty$, such that

$$v \in L^p_{ heta_1}(\mathbb{R}^d, \mathbb{C}^N)$$
 for **some** exp. decay rate $-\sqrt{arepsilon rac{\gamma_A eta_\infty}{2d|A|^2}} \leqslant \mu_1 < 0$

satisfies

$$v \in W^{k,p}_{\theta_2}(\mathbb{R}^d, \mathbb{C}^N)$$
 for **every** exp. decay rate $0 \leq \mu_2 \leq \varepsilon \frac{\sqrt{a_0} b_0}{a_{\max} p}$

and

$$|D^{\alpha}v(x)| \leq C \exp\left(-\mu_2 \sqrt{|x|^2+1}\right) \ \forall x \in \mathbb{R}^d$$

for every multiindex $\alpha \in \mathbb{N}_0^d$ satisfying $d < (k - |\alpha|)p$.

Exponentially weighted Sobolev spaces and assumptions Exponentially weighted Sobolev spaces: For $1 \leq p \leq \infty$, $k \in \mathbb{N}_0$, and weight function $\theta(x) = \exp\left(\mu\sqrt{|x|^2 + 1}\right)$ with $\mu \in \mathbb{R}$ we define $L^{\rho}_{\theta}(\mathbb{R}^d, \mathbb{R}^N) := \left\{ v \in L^{1}_{loc}(\mathbb{R}^d, \mathbb{R}^N) \mid \|\theta v\|_{L^{p}} < \infty \right\},$ $W^{k,p}_{\theta}(\mathbb{R}^d, \mathbb{R}^N) := \left\{ v \in L^{\rho}_{\theta}(\mathbb{R}^d, \mathbb{R}^N) \mid D^{\beta} u \in L^{\rho}_{\theta}(\mathbb{R}^d, \mathbb{R}^N) \ \forall |\beta| \leq k \right\}.$

Assumptions:

(A1) (*L^p*-dissipativity condition): For $A \in \mathbb{R}^{N,N}$, $1 , there is <math>\gamma_A > 0$ with $|z|^2 \operatorname{Re} \langle w, Aw \rangle + (p-2) \operatorname{Re} \langle w, z \rangle \operatorname{Re} \langle z, Aw \rangle \ge \gamma_A |z|^2 |w|^2 \ \forall z, w \in \mathbb{R}^N$

(A2) (System condition): A, $Df(v_{\infty}) \in \mathbb{R}^{N,N}$ simultaneously diagonalizable over \mathbb{C} (A3) (Rotational condition): $0 \neq S \in \mathbb{R}^{d,d}$, $-S = S^{\top}$

Note: Assumption (A1) is equivalent with

(A1') (*L*^{*p*}-antieigenvalue condition): $A \in \mathbb{R}^{N,N}$ is invertible and

$$\mu_1(A) := \inf_{\substack{w \in \mathbb{R}^N \\ w \neq 0 \\ Aw \neq 0}} \frac{\operatorname{Re} \langle w, Aw \rangle}{|w||Aw|} > \frac{|p-2|}{p} \text{ for some } 1$$

 $(\mu_1(A) :$ first antieigenvalue of A)

(to be read as A > 0 in case N = 1).

Denny Otten

Consider the nonlinear problem

$$A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^{d}, d \geq 2.$$

1. Far-Field Linearization: $f \in C^1$, Taylor's theorem, $f(v_{\infty}) = 0$

$$a(x):=\int_0^1 Df(v_\infty+tw_\star(x))dt,\quad w_\star(x):=v_\star(x)-v_\infty$$

$$A riangle w_{\star}(x) + \langle Sx,
abla w_{\star}(x)
angle + egin{aligned} \mathsf{a}(x) w_{\star}(x) = 0, \, x \in \mathbb{R}^d. \end{aligned}$$

Consider the nonlinear problem

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d}, \, d \geq 2.$$

2. Decomposition of *a***:** Let $a(x) = Df(v_{\infty}) + Q(x)$ with

$$Q(x):=\int_0^1 Df(v_\infty+tw_\star(x))-Df(v_\infty)dt,\quad w_\star(x):=v_\star(x)-v_\infty$$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (\frac{Df(v_{\infty}) + Q(x)}{W_{\star}(x)} = 0, x \in \mathbb{R}^{d}.$

Consider the nonlinear problem

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d}, \, d \geq 2.$$

2. Decomposition of *a***:** Let $a(x) = Df(v_{\infty}) + Q(x)$ with

$$Q(x):=\int_0^1 Df(v_\infty+tw_\star(x))-Df(v_\infty)dt,\quad w_\star(x):=v_\star(x)-v_\infty$$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (Df(v_{\infty}) + Q_{s}(x) + Q_{c}(x)) w_{\star}(x) = 0, x \in \mathbb{R}^{d}.$

Consider the nonlinear problem

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d}, \, d \geq 2.$$

2. Decomposition of *a***:** Let $a(x) = Df(v_{\infty}) + Q(x)$ with

$$Q(x):=\int_0^1 Df(v_\infty+tw_\star(x))-Df(v_\infty)dt,\quad w_\star(x):=v_\star(x)-v_\infty$$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (Df(v_{\infty}) + Q_{s}(x) + Q_{c}(x)) w_{\star}(x) = 0, x \in \mathbb{R}^{d}.$

3. Decomposition of *Q*:

$$\begin{split} &Q(x) = Q_{\rm s}(x) + Q_{\rm c}(x), \\ &Q, Q_{\rm s}, Q_{\rm c} \in L^{\infty}(\mathbb{R}^d, \mathbb{R}^{N,N}), \\ &Q_{\rm s} \text{ small, i.e. } \|Q_{\rm s}\|_{L^{\infty}} < K_1, \\ &Q_{\rm c} \text{ compactly supported.} \end{split}$$

Consider the nonlinear problem

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d}, \, d \geq 2.$$

2. Decomposition of *a***:** Let $a(x) = Df(v_{\infty}) + Q(x)$ with

$$Q(x):=\int_0^1 Df(v_\infty+tw_\star(x))-Df(v_\infty)dt,\quad w_\star(x):=v_\star(x)-v_\infty$$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (Df(v_{\infty}) + Q_{s}(x) + Q_{c}(x)) w_{\star}(x) = 0, x \in \mathbb{R}^{d}.$

3. Decomposition of *Q*:

$$\begin{split} &Q(x) = Q_{\rm s}(x) + Q_{\rm c}(x), \\ &Q, Q_{\rm s}, Q_{\rm c} \in L^{\infty}(\mathbb{R}^d, \mathbb{R}^{N,N}), \\ &Q_{\rm s} \text{ small, i.e. } \|Q_{\rm s}\|_{L^{\infty}} < K_1, \\ &Q_{\rm c} \text{ compactly supported.} \end{split}$$

Exponential Decay: To show exponential decay for the solution v_{\star} of

$$A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^{d},$$

investigate the linear system $(w_{\star}(x) := v_{\star}(x) - v_{\infty})$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (Df(v_{\infty}) + Q_{s}(x) + Q_{c}(x)) w_{\star}(x) = 0, x \in \mathbb{R}^{d}.$

Operators: Study the following operators

$$\begin{array}{ll} \mathcal{L}_{c}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v + Q_{c}v, & (\text{exp. decay}) \\ \mathcal{L}_{s}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v, & (\text{exp. decay}) \\ \mathcal{L}_{\infty}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, & (\text{far-field operator}) & (\text{exp. decay}) \\ \mathcal{L}_{0}v := A \triangle v + \langle S \cdot, \nabla v \rangle. & (\text{Ornstein-Uhlenbeck operator}) & (\text{max. domain}) \end{array}$$

). Otten.

Exponentially weighted resolvent estimates for complex Ornstein-Uhlenbeck systems, 2015. The identification problem for complex-valued Ornstein-Uhlenbeck operators in L^ρ(ℝ^d, ℂ^N), 2016. A new L^ρ-antieigenvalue condition for Ornstein-Uhlenbeck operators, 2016.

W.-J. Beyn, D. Otten

Spatial Decay of Rotating Waves in Reaction Diffusion Systems, 2016.

Exponential Decay: To show exponential decay for the solution v_{\star} of

$$A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^{d},$$

investigate the linear system $(w_{\star}(x) := v_{\star}(x) - v_{\infty})$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (Df(v_{\infty}) + Q_{s}(x) + Q_{c}(x)) w_{\star}(x) = 0, x \in \mathbb{R}^{d}.$

Operators: Study the following operators

$$\begin{array}{ll} \mathcal{L}_{c}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v + Q_{c}v, & (\text{exp. decay}) \\ \mathcal{L}_{s}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v, & (\text{exp. decay}) \\ \mathcal{L}_{\infty}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, & (\text{far-field operator}) & (\text{exp. decay}) \\ \mathcal{L}_{0}v := A \triangle v + \langle S \cdot, \nabla v \rangle. & (\text{Ornstein-Uhlenbeck operator}) & (\text{max. domain}) \end{array}$$

D. Otten.

Exponentially weighted resolvent estimates for complex Ornstein-Uhlenbeck systems, 2015. The identification problem for complex-valued Ornstein-Uhlenbeck operators in $L^p(\mathbb{R}^d, \mathbb{C}^N)$, 2016. A new L^p -antieigenvalue condition for Ornstein-Uhlenbeck operators, 2016.

W.-J. Beyn, D. Otten.

Spatial Decay of Rotating Waves in Reaction Diffusion Systems, 2016.

Exponential Decay: To show exponential decay for the solution v_{\star} of

$$A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^{d},$$

investigate the linear system $(w_{\star}(x) := v_{\star}(x) - v_{\infty})$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (Df(v_{\infty}) + Q_{s}(x) + Q_{c}(x)) w_{\star}(x) = 0, x \in \mathbb{R}^{d}.$

Operators: Study the following operators

$$\begin{array}{ll} \mathcal{L}_{c}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v + Q_{c}v, & (\text{exp. decay}) \\ \mathcal{L}_{s}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v, & (\text{exp. decay}) \\ \mathcal{L}_{\infty}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, & (\text{far-field operator}) & (\text{exp. decay}) \\ \mathcal{L}_{0}v := A \triangle v + \langle S \cdot, \nabla v \rangle. & (\text{Ornstein-Uhlenbeck operator}) & (\text{max. domain}) \end{array}$$

Maximal domain of \mathcal{L}_0 given by

$$\mathcal{D}^p_{\mathrm{loc}}(\mathcal{L}_0) = \big\{ v \in W^{2,p}_{\mathrm{loc}}(\mathbb{R}^d, \mathbb{C}^N) \cap L^p(\mathbb{R}^d, \mathbb{C}^N) : \, \mathcal{L}_0 v \in L^p(\mathbb{R}^d, \mathbb{C}^N) \big\}, \, 1$$

satisfies $\mathcal{D}^{p}_{\text{loc}}(\mathcal{L}_{0}) \subseteq W^{1,p}(\mathbb{R}^{d},\mathbb{C}^{N}).$

References

Nonlinear stability of rotating waves for d = 2:

W.-J. Beyn, J. Lorenz.

Nonlinear stability of rotating patterns, 2008. Exponential decay of traveling waves:

M. Shub.

Global stability of dynamical systems, 1987. Ornstein-Uhlenbeck operator in $L^p(\mathbb{R}^d,\mathbb{R})$ and its identification problem:

G. Metafune, D. Pallara, V. Vespri.

 L^{p} -estimates for a class of elliptic operators with unbounded coefficients in \mathbb{R}^{N} , 2005.

G. Metafune.

L^p-spectrum of Ornstein-Uhlenbeck operators, 2001.

G. Metafune, D. Pallara, M. Wacker.

Feller semigroups on \mathbb{R}^N , 2002. Ornstein-Uhlenbeck operator in $C_{\rm b}(\mathbb{R}^d,\mathbb{R})$ and its identification problem:

G. Da Prato, A. Lunardi.

On the Ornstein-Uhlenbeck operator in spaces of continuous functions, 1995. Weight function of exponential growth rate:

A. Mielke, S. Zelik.

 $\label{eq:multi-pulse} Multi-pulse evolution and space-time chaos in dissipative systems, 2009. \\ \textbf{Semigroup theory}:$

K.-J. Engel, R. Nagel.

One-parameter semigroups for linear evolution equations, 2000.

References

L^p-dissipativity:

A. Cialdea, V. Maz'ya.

Criteria for the L^{p} -dissipativity of systems of second order differential equations, 2006. Criterion for the L^{p} -dissipativity of second order differential operators with complex coefficients, 2005.

A. Cialdea

Analysis, Partial Differential Equations and Applications, 2009. The L^p -dissipativity of partial differential operators, 2010.

Antieigenvalues:

K. Gustafson.

Antieigenvalue analysis: with applications to numerical analysis, wavelets, statistics, quantum mechanics, finance and optimization, 2012. The angle of an operator and positive operator products, 1968.

K. Gustafson, M. Seddighin.

On the eigenvalues which express antieigenvalues, 2005. A note on total antieigenvectors, 1993. Antieigenvalue bounds, 1989.

Rotating waves:

C. Wulff.

Theory of meandering and drifting spiral waves in reaction-diffusion systems, 1996.

B. Fiedler, A. Scheel.

Spatio-temporal dynamics of reaction-diffusion patterns, 2003.

B. Fiedler, B. Sandstede, A. Scheel, C. Wulff.

Bifurcation from relative equilibria of noncompact group actions: skew products, meanders, and shifts, 1996.

Outline

f 1 Rotating patterns in \mathbb{R}^a

- 2 Spatial decay of rotating waves
- Spectral properties of linearization at rotating waves
 - Oubic-quintic complex Ginzburg-Landau equation

Eigenvalue problem for linearization at rotating waves Motivation: Stability is determined by spectral properties of linearization \mathcal{L} . Linearization at the profile v_{\star} of the rotating wave

$$\left[\mathcal{L}v\right](x) = A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + Df(v_{\star}(x))v(x), x \in \mathbb{R}^{d}, d \geq 2.$$

Eigenvalue problem

$$\left[(\lambda I - \mathcal{L})v\right](x) = 0, \, x \in \mathbb{R}^d, \, d \ge 2, \, \lambda \in \mathbb{C}.$$

A rotating wave $u_{\star}(x,t) = v_{\star} (e^{-tS}x)$ is called strongly spectrally stable

$$:\iff \begin{cases} \operatorname{Re} \sigma(\mathcal{L}) \leqslant 0 \text{ (spectrally stable)} \\ \text{and} \\ \forall \lambda \in \sigma(\mathcal{L}) \text{ with } \operatorname{Re} \lambda = 0: \ \lambda \text{ is caused by the } \operatorname{SE}(d) \text{-group action.} \end{cases}$$

Decomposition of the **spectrum** $\sigma(\mathcal{L}) := \mathbb{C} ackslash \rho(\mathcal{L})$ into

$$\sigma(\mathcal{L}) = \sigma_{\mathrm{ess}}(\mathcal{L}) \stackrel{\cdot}{\cup} \sigma_{\mathrm{pt}}(\mathcal{L}),$$

with

$$\begin{split} \sigma_{\rm pt}(\mathcal{L}) &:= \{\lambda \in \sigma(\mathcal{L}) \mid \lambda \text{ isolated with finite multiplicity} \}, \quad \text{(point spectrum)} \\ \sigma_{\rm ess}(\mathcal{L}) &:= \sigma(\mathcal{L}) \setminus \sigma_{\rm pt}(\mathcal{L}). \end{split} \tag{essential spectrum)}$$

Illustration: Point spectrum of \mathcal{L} on the imaginary axis $\lambda \in (\sigma(S) \cup \{\lambda_1 + \lambda_2 \mid \lambda_1, \lambda_2 \in \sigma(S), \lambda_1 \neq \lambda_2\}) \subseteq \sigma_{pt}(\mathcal{L}) \& algebraic multiplicity$

d = 2 d = 3 d = 4 d = 5dim SE(2) = 3 dim SE(3) = 6 dim SE(4) = 10 dim SE(5) = 15

Point spectrum of $\mathcal L$ on the imaginary axis

Theorem 3: (Point spectrum of \mathcal{L} on $i\mathbb{R}$ and shape of eigenfunctions) Let $S \in \mathbb{R}^{d,d}$, $S = -S^{\top}$, with eigenvalues $\lambda_1^S, \ldots, \lambda_d^S$ of S, and let $U \in \mathbb{C}^{d,d}$ be unitary satisfying $\Lambda_S = U^* S U$ with $\Lambda_S = \text{diag}(\lambda_1^S, \dots, \lambda_d^S)$. Moreover, let $v_* \in C^3(\mathbb{R}^d, \mathbb{R}^N)$ be a classical solution of (RWE). Then, $v : \mathbb{R}^d \to \mathbb{C}^N$ defined by $v(x) = \langle Qx + b, \nabla v_{\star}(x) \rangle = Dv_{\star}(x)(Qx + b), x \in \mathbb{R}^{d}, Q \in \mathbb{C}^{d,d}, b \in \mathbb{C}^{d}$ is a classical solution of $(\lambda I - \mathcal{L})v = 0$ if either $\lambda = -\lambda_{i}^{S}$, Q = 0, $b = Ue_{i}$ for some $l = 1, \ldots, d$, or $\lambda = -(\lambda_i^S + \lambda_i^S), \quad Q = U(I_{ii} - I_{ii})U^{\top}, \quad b = 0$ for some i = 1, ..., d - 1 and j = i + 1, ..., d.

- dim SE(d) = $\frac{d(d+1)}{2}$ eigenfunctions of \mathcal{L} and their explicit representation,
- $\sigma_{\mathrm{pt}}^{\mathrm{part}}(\mathcal{L}) := \sigma(\mathcal{S}) \cup \{\lambda_1 + \lambda_2 \mid \lambda_1, \lambda_2 \in \sigma(\mathcal{S}), \ \lambda_1 \neq \lambda_2\} \subseteq \sigma(\mathcal{L}),$
- $v(x) = \langle Sx, \nabla v_{\star}(x) \rangle$ eigenfunction of $\lambda = 0$ for every $d \ge 2$.
- point spectrum on imaginary axis is determined by the SE(d)-group action,
- Theorem also valid for spiral waves, scroll waves, scroll rings.

Denny Otten

Properties of linearization at localized rotating waves

Theorem 4: (Fredholm properties of \mathcal{L} and decay of eigenfunctions) Let $f \in C^{\max\{2,k\}}(\mathbb{R}^N, \mathbb{R}^N)$, $v_{\infty} \in \mathbb{R}^N$, $f(v_{\infty}) = 0$, $Df(v_{\infty}) \leq -\beta_{\infty}I < 0$, assume (A1)-(A3) for some $1 , and let <math>\theta_j(x) = \exp\left(\mu_j \sqrt{|x|^2 + 1}\right)$ be a weight function for $\mu_j \in \mathbb{R}$, $j = 1, 2, k \in \mathbb{N}$, $p \geq \frac{d}{2}$ (if $k \geq 2$). Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ such that for every classical solution $v_* \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^N)$ of (RWE) satisfying (TC) the following properties hold:

• (Fredholm properties). The operator $\lambda I - \mathcal{L} : (\mathcal{D}^{p}_{loc}(\mathcal{L}_{0}), \|\cdot\|_{\mathcal{L}_{0}}) \to (L^{p}(\mathbb{R}^{d}, \mathbb{C}^{N}), \|\cdot\|_{L^{p}})$

is Fredholm of index 0.

Properties of linearization at localized rotating waves

Theorem 4: (Fredholm properties of \mathcal{L} and decay of eigenfunctions) Let $f \in C^{\max\{2,k\}}(\mathbb{R}^N, \mathbb{R}^N)$, $v_{\infty} \in \mathbb{R}^N$, $f(v_{\infty}) = 0$, $Df(v_{\infty}) \leq -\beta_{\infty}I < 0$, assume (A1)-(A3) for some $1 , and let <math>\theta_j(x) = \exp\left(\mu_j \sqrt{|x|^2 + 1}\right)$ be a weight function for $\mu_j \in \mathbb{R}$, $j = 1, 2, k \in \mathbb{N}$, $p \geq \frac{d}{2}$ (if $k \geq 2$). Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ such that for every classical solution $v_{\star} \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^N)$ of (RWE) satisfying (TC) the following properties hold:

Solvability of resolvent equation). There exist exactly *n* (nontrivial lin. ind.) eigenfunctions v_j ∈ $\mathcal{D}_{loc}^{p}(\mathcal{L}_{0})$ and adjoint eigenfunctions $\psi_{j} \in \mathcal{D}_{loc}^{q}(\mathcal{L}_{0}^{*})$ with $(\lambda I - \mathcal{L})v_{i} = 0$ and $(\lambda I - \mathcal{L})^{*}\psi_{i} = 0$ for j = 1, ..., n.

Moreover,

$$(\lambda I - \mathcal{L})v = h, \quad h \in L^p(\mathbb{R}^d, \mathbb{C}^N)$$

has at least one (not necessarily unique) solution $v \in \mathcal{D}_{loc}^{p}(\mathcal{L}_{0})$ if and only if

$$h \in (\mathcal{N}(\lambda I - \mathcal{L})^*)^{\perp}$$
, i.e. $\langle \psi_j, h \rangle_{q,p} = 0, j = 1, \dots, n$.

Illustration: Essential spectrum of \mathcal{L}

$$\left\{-\lambda(\omega)+i\sum_{l=1}^{k}n_{l}\sigma_{l}\mid\lambda(\omega)\text{ eigenvalue of }\omega^{2}A-Df(v_{\infty})\right\}\subseteq\sigma_{\mathrm{ess}}(\mathcal{L})$$

 $\pm i\sigma_1, \ldots, \pm i\sigma_k$ nonzero eigenvalues of $S \in \mathbb{R}^{d,d}$, $-S = S^{\top}$, $n_l \in \mathbb{Z}$, $\omega \in \mathbb{R}$

 $d = 2 \text{ or } 3 \qquad d = 4 \text{ (not dense)} \qquad d = 4 \text{ (dense)}$ Parameters for illustration: $A = \frac{1}{2} + \frac{1}{2}i$, $Df(v_{\infty}) = -\frac{1}{2}$, $\sigma_1 = 1.027 \qquad \sigma_1 = 1 \qquad \sigma_1 = 1$ $\sigma_2 = 1.5 \qquad \sigma_2 = \frac{\exp(1)}{2}$ $\sigma_{ess}^{part}(\mathcal{L}) \subseteq \{\lambda \in \mathbb{C} \mid \operatorname{Re} \lambda \leqslant s(Df(v_{\infty}))\} \text{ dense} \iff \exists \sigma_n, \sigma_m: \sigma_n \sigma_m^{-1} \notin \mathbb{Q}.$

Essential spectrum of ${\cal L}$

Dispersion relation: $\lambda \in \sigma_{ess}(\mathcal{L})$ if $\lambda \in \mathbb{C}$ satisfies

(DR) det
$$\left(\lambda I_N + \omega^2 A + i \sum_{l=1}^k n_l \sigma_l I_N - Df(v_\infty)\right) = 0$$
 for some $\omega \in \mathbb{R}$, $n \in \mathbb{Z}^k$.

Theorem 5: (Essential spectrum of \mathcal{L})

Assume $f \in C^{\max\{2,r-1\}}(\mathbb{R}^N, \mathbb{R}^N)$, $v_{\infty} \in \mathbb{R}^N$, $f(v_{\infty}) = 0$, $Df(v_{\infty}) \leq -\beta_{\infty}I < 0$, (A1)-(A3) for some $1 , and <math>\frac{d}{p} \leq r$ (if $r \geq 2$) or $\frac{d}{p} \leq 2$ (if $r \geq 3$). Moreover, let $\pm i\sigma_1, \ldots, \pm i\sigma_k$ denote the nonzero eigenvalues of S. Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ such that for every classical solution $v_{\star} \in C^{r+1}(\mathbb{R}^d, \mathbb{R}^N)$ of (RWE) satisfying (TC) the following property holds:

$$\sigma_{\mathrm{ess}}^{\mathrm{part}}(\mathcal{L}) := \left\{ \lambda \in \mathbb{C} \mid \lambda \text{ satisfies (DR)} \right\} \subseteq \sigma_{\mathrm{ess}}(\mathcal{L}) \quad \text{in } L^p(\mathbb{R}^d, \mathbb{C}^N).$$

- essential spectrum is determined by the far-field linearization
- only for exponentially localized rotating waves, but **not** for nonlocalized waves (e.g. spiral waves, sroll waves)
- theory e.g. for spiral waves much more involved (\rightarrow Floquet theory)

Denny Otten

References

Spectrum at 2-dimensional localized rotating waves:

W.-J. Beyn, J. Lorenz.

Nonlinear stability of rotating patterns, 2008.

Spectrum of drift term:

G. Metafune.

L^p-spectrum of Ornstein-Uhlenbeck operators, 2001.

Spectrum at spiral and scroll waves:

B. Sandstede, A. Scheel.

Absolute and convective instabilities of waves on unbounded and large bounded domains, 2000.

B. Fiedler, A. Scheel.

Spatio-temporal dynamics of reaction-diffusion patterns, 2003.

Outline

f 1 Rotating patterns in \mathbb{R}^a

- 2 Spatial decay of rotating waves
- 3 Spectral properties of linearization at rotating waves
- Q Cubic-quintic complex Ginzburg-Landau equation

Example

Consider the quintic complex Ginzburg-Landau equation (QCGL):

$$u_{t} = \alpha \bigtriangleup u + u\left(\mu + \beta \left|u\right|^{2} + \gamma \left|u\right|^{4}\right), \quad u = u(x, t) \in \mathbb{C}$$

with $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{C}, d \in \{2, 3\}]$. For the parameters

$$\alpha = \frac{1}{2} + \frac{1}{2}i, \quad \beta = \frac{5}{2} + i, \quad \gamma = -1 - \frac{1}{10}i, \quad \mu = -\frac{1}{2}$$

this equation exhibits so called **spinning soliton** solutions.

Spatial decay of a spinning soliton in QCGL for d = 3: Assume

$$\operatorname{Re} \alpha > 0, \quad \operatorname{Re} \delta < 0, \quad p_{\min} = \frac{2|\alpha|}{|\alpha| + \operatorname{Re} \alpha} < p < \frac{2|\alpha|}{|\alpha| - \operatorname{Re} \alpha} = p_{\max}$$

Decay rate of spinning soliton:

Spectrum of QCGL for a spinning soliton with d = 3: (numerical vs. analytical)

Point spectrum on $i\mathbb{R}$ and **essential spectrum** by dispersion relation:

$$\begin{split} \sigma_{\rm ess}^{\rm part}(\mathcal{L}) &= \{\lambda = -\omega^2 \alpha_1 + \delta_1 + i(\mp \omega^2 \alpha_2 \pm \delta_2 - n\sigma_1) : \, \omega \in \mathbb{R}, \, n \in \mathbb{Z}\}, \\ \sigma_{\rm pt}^{\rm part}(\mathcal{L}) &= \{0, \pm i\sigma_1\}, \quad \sigma_1 = 0.6888 \\ \text{for parameters } \alpha &= \frac{1}{2} + \frac{1}{2}i, \, \beta = \frac{5}{2} + i, \, \gamma = -1 - \frac{1}{10}i, \, \mu = -\frac{1}{2}. \end{split}$$

Eigenfunctions of QCGL for a spinning soliton with d = 3: Re $v(x) = \pm 0.8$

Spatial decay of eigenfunctions of QCGL at a spinning soliton for d = 3: Note

$$\operatorname{Re} \lambda \geqslant -(1-\varepsilon)\beta_{\infty} = -(1-\varepsilon)(-\operatorname{Re} \delta) \quad \Leftrightarrow \quad \varepsilon \leqslant \frac{\operatorname{Re} \lambda - \operatorname{Re} \delta}{-\operatorname{Re} \delta} =: \varepsilon(\lambda).$$

Decay rate of eigenfunctions:

$$0 \leqslant \mu \leqslant \frac{\varepsilon(\lambda)\sqrt{-\operatorname{Re}\alpha\operatorname{Re}\delta}{|\alpha|p} =: \mu^{\operatorname{eig}}(p,\lambda) < \frac{\varepsilon(\lambda)\sqrt{-\operatorname{Re}\alpha\operatorname{Re}\delta}{|\alpha|\max\{p_{\min},\frac{d}{2}\}} =: \mu^{\operatorname{eig}}_{\max}(\lambda).$$

5

10

0

 $-0.55519 \pm 1.1222i$

0.3581

Eigenfunction $(S_x, \nabla v_*(x))$ of QCGL for a spinning soliton with d = 3:

Conclusion:

Theoretical results:

- spatial decay of rotating waves
- Spectral properties of linearization at localized rotating waves
 - point spectrum on the imaginary axis, shape of eigenfunctions and spatial decay of eigenfunctions
 - essential spectrum

Numerical results:

- approximation of rotating waves
- approximation of spectra and eigenfunctions of linearization

Present to Bernold:

Solution results on phase-shift interactions of multiple spinning solitons

Open problems and work in progress

- Fredholm properties and L^p-spectra of localized rotating waves (joint work with: W.-J. Beyn)
- Fourier-Bessel method on \mathbb{R}^d and on circular domains (joint work with: W.-J. Beyn, C. Döding)
- Freezing traveling waves in incompressible Navier-Stokes equations (joint work with: W.-J. Beyn, C. Döding)
- Rotating waves in systems of damped wave equations (joint work with: W.-J. Beyn, J. Rottmann-Matthes)
- Nonlinear stability of rotating waves for d ≥ 3 (joint work with: W.-J. Beyn)
- Approximation theorem for rotating waves

Nonlinear stability of rotating waves

Problem 1: (Nonlinear stability of rotating waves)

For any $\varepsilon > 0$ there exists a $\delta > 0$ such that for any initial value $u_0 \in W^{2,p}_{\operatorname{Eucl}}(\mathbb{R}^d, \mathbb{K}^N)$ with $\|u_0 - v_\star\|_1 \leq \delta$ the following property hold: The reaction diffusion system

$$egin{aligned} &u_t(x,t)=A riangle u(x,t)+f(u(x,t)), \ t>0, \ x\in \mathbb{R}^d, \ d\geqslant 2, \ u(x,0)=u_0(x) \ , \ t=0, \ x\in \mathbb{R}^d, \end{aligned}$$

has a unique solution $u \in C^1(]0, \infty[, L^p(\mathbb{R}^d, \mathbb{K}^N)) \cap C([0, \infty[, W^{2,p}_{\text{Eucl}}(\mathbb{R}^d, \mathbb{K}^N))$ and the solution u satisfies

$$\inf_{\gamma\in \mathrm{SE}(d)} \|u(t) - a(\gamma)v_{\star}\|_2 \leqslant \varepsilon \quad \forall \ t \geqslant 0.$$

Moreover, there exists a $\delta_0 > 0$ such that for any initial value $u_0 \in W^{2,p}_{\text{Eucl}}(\mathbb{R}^d, \mathbb{K}^N)$ with $||u_0 - v_*||_1 \leq \delta$ there exists some asymptotic phase $\gamma_{\infty} \in \text{SE}(d)$ such that the solution u satisfies

$$\|u(t) - a(\gamma_{\infty} \circ \gamma_{\star}(t))v_{\star}\|_{2} o 0 \quad \text{as} \quad t o \infty.$$

Motivation 1: Nonlinear stability of rotating waves

Exponential decay and spectral properties are motivated by

nonlinear stability of rotating waves.

Main Assumptions: (Beyn, Lorenz, 2008)

- (Localization condition). Pattern v_{\star} is localized up to order 2, i.e.
 - ► $v_{\star} v_{\infty} \in H^2(\mathbb{R}^2, \mathbb{R}^N)$,
 - ► $\sup_{|x| \ge R} |D^{\alpha} (v_{\star}(x) v_{\infty})| \rightarrow 0 \text{ as } R \rightarrow \infty, \forall 0 \le |\alpha| \le 2.$
- **Q** (Stability condition). $Df(v_{\infty}) \in \mathbb{R}^{N,N}$ is negative definite, i.e.
 - $Df(v_{\infty}) \leqslant -2\beta I < 0, \ \beta > 0.$
- Spectral condition).
 - ▶ eigenfunctions $D_1 v_{\star}, D_2 v_{\star}, D_{\phi} v_{\star} \in H^2_{\text{Eucl}}(\mathbb{R}^2, \mathbb{R}^N)$ are nontrivial
 - corresponding eigenvalues $\pm ic$, 0 are algebraically simple
 - ▶ $\mathcal{L}: \mathcal{H}^2_{\text{Eucl}} \to L^2$ has no eigenvalues $s \in \mathbb{C}$ with $\text{Re} s \ge -2\beta$, except for the eigenvalues $\pm ic$, 0.

Approximation theorem for rotating waves

Problem 2: (Approximation theorem for rotating waves)

There exist some $\rho>0$ and $R_0>0$ such that for every radius $R>R_0$ the boundary value problem

$$\begin{split} 0 &= A \triangle v_R(x) + \langle S_R x + \lambda_R, \nabla v_R(x) \rangle + f(v_R(x)) &, x \in B_R(0), \\ 0 &= v_R(x) &, x \in \partial B_R(0), \\ 0 &= \operatorname{Re} \langle v_R - \hat{v}, (x_j D_i - x_i D_j) \hat{v} \rangle_{L^2(B_R(0), \mathbb{K}^N)} &, i = 1, \dots, d-1, \\ & j = i + 1, \dots, d, \\ 0 &= \operatorname{Re} \langle v_R - \hat{v}, D_l \hat{v} \rangle_{L^2(B_R(0), \mathbb{K}^N)} &, l = 1, \dots, d, \end{split}$$

has a unique solution $(v_R, (S_R, \lambda_R))$ in a neighborhood of

$$\begin{split} B_{\rho}(\mathbf{v}_{\star}|_{B_{R}(0)},(S_{\star},\lambda_{\star})) &= \Big\{ (\mathbf{v},(S,\lambda)) \in W^{2,2}_{\mathrm{Eucl}}(\mathbb{R}^{d},\mathbb{K}^{N}) \times \mathrm{se}(d) \mid \\ & \left\| \mathbf{v}_{\star}|_{B_{R}(0)} - \mathbf{v} \right\|_{W^{2,2}_{\mathrm{Eucl}}(B_{R}(0),\mathbb{K}^{N})} + d((S_{\star},\lambda_{\star}),(S,\lambda)) \leqslant \rho \Big\}. \end{split}$$

Moreover, there exist some C > 0 and $\eta > 0$ such that

$$\|v_R-v_\star\|_{W^{2,2}_{\mathrm{Eucl}}(\mathbb{R}^d,\mathbb{K}^N)}+d((S_R,\lambda_R),(S_\star,\lambda_\star))\leqslant Ce^{-\eta R}.$$

Outline

5 Outline of proof: Theorem 2

- 6 Outline of proof: Theorem 3
- Outline of proof: Theorem 4
- B Outline of proof: Theorem 5
- 9 Overview: Semigroup approach

Outline of proof: Theorem 2 (Decay of eigenfunctions) Consider

$$A riangle v(x) + \langle Sx,
abla v(x)
angle + Df(v_{\star}(x))v(x) = \lambda v(x), \ x \in \mathbb{R}^d.$$

1. Splitting off the stable part:

 $Df(v_{\star}(x)) = \frac{Df(v_{\infty})}{(v_{\star}(x))} + (Df(v_{\star}(x)) - \frac{Df(v_{\infty})}{(v_{\infty})}) =: Df(v_{\infty}) + Q(x), x \in \mathbb{R}^{d},$

leads to

$$\left[\mathcal{L}_0 v\right](x) + \left(Df(v_\infty) + Q(x)\right)v(x) = \lambda v(x), \, x \in \mathbb{R}^d.$$

2. Decomposition of (the variable coefficient) Q:

$$\begin{split} Q(x) &= Q_{\varepsilon}(x) + Q_{\mathrm{c}}(x), Q_{\varepsilon} \in C_{\mathrm{b}}(\mathbb{R}^{d}, \mathbb{R}^{N,N}) \text{ small w.r.t. } \left\|\cdot\right\|_{C_{\mathrm{b}}}, \\ & Q_{\mathrm{c}} \in C_{\mathrm{b}}(\mathbb{R}^{d}, \mathbb{R}^{N,N}) \text{ compactly supported on } \mathbb{R}^{d}, \end{split}$$

leads to

$$\left[\mathcal{L}_0 v\right](x) + \left(Df(v_\infty) + Q_\varepsilon(x) + Q_c(x)\right)v(x) = \lambda v(x), \, x \in \mathbb{R}^d.$$

 $(\rightarrow$ inhomogeneous Cauchy problem for $\mathcal{L}_c)$

Outline

5 Outline of proof: Theorem 2

6 Outline of proof: Theorem 3

Outline of proof: Theorem 4

- B Outline of proof: Theorem 5
- Diverview: Semigroup approach

Outline of proof: Theorem 3 (Point spectrum of \mathcal{L} on $i\mathbb{R}$) Consider the rotating wave equation

$$(\mathsf{RWE}) \qquad \qquad 0 = A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)), \, x \in \mathbb{R}^{d}, \, d \geq 2.$$

and the SE(d)-group action

$$\left[\mathsf{a}(\mathsf{R}, au) \mathsf{v}
ight](\mathsf{x}) = \mathsf{v}(\mathsf{R}^{-1}(\mathsf{x} - au)), \quad \mathsf{x} \in \mathbb{R}^d, (\mathsf{R}, au) \in \operatorname{SE}(d).$$

1. Generators of group action: Applying the generators

$$D^{(i,j)} := x_j D_i - x_i D_j$$
 and $D_l = \frac{\partial}{\partial x_l}$

to (RWE) leads to $\frac{d(d+1)}{2}$ equations

$$0 = (x_j D_i - x_i D_j) (A \triangle v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)))$$

$$0 = D_I (A \triangle v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)))$$

for $i = 1, \dots, d - 1$, $j = i + 1, \dots, d$, $l = 1, \dots, d$.

Commutator relations of generators: Using commutator relations

 $D_I D_k = D_k D_I,$ $D_I D^{(i,j)} = D^{(i,j)} D_I + \delta_{lj} D_i - \delta_{li} D_j,$

Outline of proof: Theorem 3 (Point spectrum of \mathcal{L} on $i\mathbb{R}$) Consider the rotating wave equation

(RWE)
$$0 = A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)), x \in \mathbb{R}^{d}, d \ge 2.$$

and the SE(d)-group action

$$\left[\mathsf{a}(\mathsf{R}, au)\mathsf{v}
ight](\mathsf{x}) = \mathsf{v}(\mathsf{R}^{-1}(\mathsf{x}- au)), \quad \mathsf{x} \in \mathbb{R}^d, (\mathsf{R}, au) \in \operatorname{SE}(d).$$

1. Generators of group action: Applying the generators

$$D^{(i,j)} := x_j D_i - x_i D_j$$
 and $D_l = \frac{\partial}{\partial x_l}$

to (RWE) leads to $\frac{d(d+1)}{2}$ equations

$$0 = (x_j D_i - x_i D_j) (A \triangle v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)))$$

$$0 = D_l (A \triangle v_\star(x) + \langle Sx, \nabla v_\star(x) \rangle + f(v_\star(x)))$$

for $i = 1, \dots, d - 1$, $j = i + 1, \dots, d$, $l = 1, \dots, d$.

2. Commutator relations of generators: Using commutator relations

$$\begin{split} D_I D_k &= D_k D_I, \\ D_I D^{(i,j)} &= D^{(i,j)} D_I + \delta_{Ij} D_i - \delta_{Ii} D_j, \\ \hline \\ \hline \\ Denny Otten & Spatial decay and spectral properties of rotating waves & Berlin 2016 \\ \hline \\ \end{split}$$

Outline

5 Outline of proof: Theorem 2

6 Outline of proof: Theorem 3

Outline of proof: Theorem 4

Outline of proof: Theorem 5

Overview: Semigroup approach

Outline of proof: Theorem 4 (Fredholm properties of \mathcal{L}) $[\mathcal{L}v](x) = A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + Df(v_{\star}(x))v(x), x \in \mathbb{R}^{d}.$

1. Splitting off the stable part:

 $Df(v_{\star}(x)) = Df(v_{\infty}) + (Df(v_{\star}(x)) - Df(v_{\infty})) =: Df(v_{\infty}) + Q(x), x \in \mathbb{R}^{d},$ leads to

$$[\mathcal{L}v](x) = A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + (Df(v_{\infty}) + Q(x)) v(x), x \in \mathbb{R}^{d}.$$

2. Decomposition of (the variable coefficient) Q:

$$egin{aligned} Q(x) &= Q_arepsilon(x) + Q_\mathrm{c}(x), Q_arepsilon \in C_\mathrm{b}(\mathbb{R}^d,\mathbb{R}^{N,N}) ext{ small w.r.t. } \|\cdot\|_{C_\mathrm{b}}, \ Q_\mathrm{c} &\in C_\mathrm{b}(\mathbb{R}^d,\mathbb{R}^{N,N}) ext{ compactly supported on } \mathbb{R}^d, \end{aligned}$$

allows us to decompose the differential operator $\lambda I - \mathcal{L}$ into

$$\lambda I - \mathcal{L} = \lambda I - \mathcal{L}_{c} = (I - Q_{c}(\cdot)(\lambda I - \mathcal{L}_{s})^{-1})(\lambda I - \mathcal{L}_{s}).$$

- 3. Fredholm properties of each factor:
 - $\lambda I \mathcal{L}_s$ Fredholm of index 0: unique solvability of resolvent equation for \mathcal{L}_s .
 - *I* − *Q*_c(·)(*λI* − *L*_s)⁻¹ Fredholm of index 0: compact perturbation of identity, unique solvability of resolvent equation for *L*_s and *D*^p_{loc}(*L*₀) ⊆ *W*^{1,p}(ℝ^d, ℂ^N).
 - $\lambda I \mathcal{L}$ Fredholm of index 0: Theorem on products of Fredholm operators

Denny Otten

Outline

5 Outline of proof: Theorem 2

6 Outline of proof: Theorem 3

Outline of proof: Theorem 4

Outline of proof: Theorem 5

Overview: Semigroup approach

Outline of proof: Theorem 5 (Essential spectrum of \mathcal{L}) Linearization at the profile v_* :

$$[\mathcal{L}v](x) = A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + Df(v_{\infty})v(x) + Q(x)v(x)$$

$$Q(x) := Df(v_{\star}(x)) - Df(v_{\infty}), \quad \sup_{|x| \ge R} |Q(x)|_2 \to 0 \text{ as } R \to \infty$$

1. Orthogonal transformation: $S \in \mathbb{R}^{d,d}$, $S^T = -S$, $S = P\Lambda_{\text{block}}^S P^T$. $T_1(x) = Px$ yields

$$[\mathcal{L}_1 v](x) = A \triangle v(x) + \left\langle \Lambda_{\text{block}}^{\mathcal{S}} x, \nabla v(x) \right\rangle + Df(v_\infty) v(x) + Q(T_1(x)) v(x)$$

with

$$\langle \Lambda^{\mathcal{S}}_{\mathrm{block}} x, \nabla v(x) \rangle = \sum_{l=1}^{k} \sigma_l \left(x_{2l} D_{2l-1} - x_{2l-1} D_{2l} \right) v(x).$$

Outline of proof: Theorem 5 (Essential spectrum of \mathcal{L}) Orthogonal transformation:

$$\mathcal{L}_{1}v](x) = A \triangle v(x) + \left\langle \Lambda^{S}_{\text{block}}x, \nabla v(x) \right\rangle + Df(v_{\infty})v(x) + Q(T_{1}(x))v(x)$$

$$\left\langle \Lambda_{\text{block}}^{S} x, \nabla v(x) \right\rangle = \sum_{l=1}^{k} \sigma_l \left(x_{2l} D_{2l-1} - x_{2l-1} D_{2l} \right) v(x)$$

2. Several planar polar coordinates: Transformation

$$\binom{x_{2l-1}}{x_{2l}} = T(r_l,\phi_l) := \binom{r_l\cos\phi_l}{r_l\sin\phi_l}, \ l=1,\ldots,k, \ \phi_l\in]-\pi,\pi], \ r_l>0.$$

yields for $\xi = (r_1, \phi_1, \dots, r_k, \phi_k, x_{2k+1}, \dots, x_d)$ with total transformation $T_2(\xi)$, $Q(\xi) := Q(T_1(T_2(\xi)))$

$$\begin{aligned} \left[\mathcal{L}_{2} v\right](x) = & A\left[\sum_{l=1}^{k} \left(\partial_{r_{l}}^{2} + \frac{1}{r_{l}} \partial_{r_{l}} + \frac{1}{r_{l}^{2}} \partial_{\phi_{l}}^{2}\right) + \sum_{l=2k+1}^{d} \partial_{x_{l}}^{2}\right] v(\xi) \\ & - \sum_{l=1}^{k} \sigma_{l} \partial_{\phi_{l}} v(\xi) + Df(v_{\infty})v(\xi) + Q(\xi)v(\xi), \end{aligned}$$

Outline of proof: Theorem 5 (Essential spectrum of \mathcal{L}) Several planar polar coordinates:

$$[\mathcal{L}_2 \mathbf{v}](\xi) = A \left[\sum_{l=1}^k \left(\partial_{r_l}^2 + \frac{1}{r_l} \partial_{r_l} + \frac{1}{r_l^2} \partial_{\phi_l}^2 \right) + \sum_{l=2k+1}^d \partial_{x_l}^2 \right] \mathbf{v}(\xi) - \sum_{l=1}^k \sigma_l \partial_{\phi_l} \mathbf{v}(\xi) + Df(\mathbf{v}_\infty) \mathbf{v}(\xi) + Q(\xi) \mathbf{v}(\xi),$$

$$\xi = (r_1, \phi_1, \dots, r_k, \phi_k, x_{2k+1}, \dots, x_d), \quad Q(\xi) := Q(T_1(T_2(\xi)))$$

3. Simplified operator (far-field linearization): Neglecting $\mathcal{O}(\frac{1}{r})$ -terms yields

$$\left[\mathcal{L}_{2}^{\mathrm{sim}}v\right](x) = A\left[\sum_{l=1}^{k}\partial_{r_{l}}^{2} + \sum_{l=2k+1}^{d}\partial_{x_{l}}^{2}\right]v(\xi) - \sum_{l=1}^{k}\sigma_{l}\partial_{\phi_{l}}v(\xi) + Df(v_{\infty})v(\xi).$$

Outline of proof: Theorem 5 (Essential spectrum of \mathcal{L}) Simplified operator (far-field linearization):

$$\left[\mathcal{L}_{2}^{\mathrm{sim}}v\right](\xi) = A\left[\sum_{l=1}^{k}\partial_{r_{l}}^{2} + \sum_{l=2k+1}^{d}\partial_{x_{l}}^{2}\right]v(\xi) - \sum_{l=1}^{k}\sigma_{l}\partial_{\phi_{l}}v(\xi) + Df(v_{\infty})v(\xi)$$

4. Angular Fourier decomposition:

$$\begin{aligned} \mathsf{v}(\xi) &= \exp\left(i\omega\sum_{l=1}^{k}r_{l}\right)\exp\left(i\sum_{l=1}^{k}n_{l}\phi_{l}\right)\hat{\mathsf{v}}, n_{l}\in\mathbb{Z},\,\omega\in\mathbb{R},\,\hat{\mathsf{v}}\in\mathbb{C}^{N},\,|\hat{\mathsf{v}}|=1\\ \phi_{l}\in]-\pi,\pi],\,r_{l}>0,\,l=1,\ldots,k, \end{aligned}$$

yields

$$\left[\left(\lambda I - \mathcal{L}_{2}^{\mathrm{sim}}\right) v\right](\xi) = \left(\lambda I_{N} + \omega^{2}A + i\sum_{l=1}^{k} n_{l}\sigma_{l}I_{N} - Df(v_{\infty})\right) v(\xi).$$

Outline of proof: Theorem 5 (Essential spectrum of \mathcal{L}) Angular Fourier decomposition:

$$\left[\left(\lambda I - \mathcal{L}_{2}^{\mathrm{sim}}\right) v\right](\xi) = \left(\lambda I_{N} + \kappa^{2} A + i \sum_{l=1}^{k} n_{l} \sigma_{l} I_{N} - Df(v_{\infty})\right) v(\xi).$$

 $n_l \in \mathbb{Z}, \quad \kappa \in \mathbb{R}, \quad \pm i\sigma_l \text{ nonzero eigenvalues of } S \in \mathbb{R}^{d,d}$

5. Finite-dimensional eigenvalue problem: $[(\lambda I - \mathcal{L}_2^{sim}) v](\xi) = 0$ for every ξ if $\lambda \in \mathbb{C}$ satisfies

$$\left(\omega^2 A - Df(v_\infty)\right) \hat{v} = -\left(\lambda + i \sum_{l=1}^k n_l \sigma_l\right) \hat{v}, \text{ for some } \omega \in \mathbb{R}.$$

Outline

5 Outline of proof: Theorem 2

6 Outline of proof: Theorem 3

Outline of proof: Theorem 4

B Outline of proof: Theorem 5

The operator \mathcal{L}_0

$$\begin{array}{l} & \text{Ornstein-Uhlenbeck operator} \\ \left[\mathcal{L}_0 v\right](x) = A \triangle v(x) + \langle Sx, \nabla v(x) \rangle, \, x \in \mathbb{R}^d, \, d \geq 2. \\ & \downarrow \end{array}$$

$$H_0(x,\xi,t) = (4\pi tA)^{-\frac{d}{2}} \exp\left(-(4tA)^{-1} \left|e^{tS}x - \xi\right|^2\right), x,\xi \in \mathbb{R}^d, t > 0.$$

Semigroup in
$$L^p(\mathbb{R}^d, \mathbb{C}^N)$$
, $1 \leq p \leq \infty$
 $[T_0(t)v](x) = \int_{\mathbb{R}^d} H_0(x, \xi, t)v(\xi)d\xi, t > 0.$

strong \downarrow continuity

Infinitesimal generator $(A_p, \mathcal{D}(A_p)), 1 \leq p < \infty.$

 \searrow identification problem

 $\begin{array}{lll} \begin{array}{lll} \mbox{unique solv. of} & \mbox{A-priori} & \mbox{exponential} & \mbox{max. domain and} \\ \mbox{resolvent equ. for } A_{\rho}, & \rightarrow & \mbox{decay,} & \mbox{max. realization,} \\ 1 \leqslant \rho < \infty, \mbox{ Re } \lambda > 0 & \mbox{estimates} & 1 \leqslant \rho < \infty & \mbox{$1 < \rho < \infty$} \\ (\lambda I - A_{\rho}) v_{\star} = g \in L^{p}. & v_{\star} \in W^{1,p}_{\theta}. & A_{\rho} = \mathcal{L}_{0} \mbox{ on } \mathcal{D}(A_{\rho}) = \mathcal{D}^{p}_{\rm loc}(\mathcal{L}_{0}). \end{array}$

semigroup theory </

Identification problem of \mathcal{L}_0 $\mathcal{D}^p_{\mathrm{loc}}(\mathcal{L}_0) := \left\{ \mathsf{v} \in W^{2,p}_{\mathrm{loc}}(\mathbb{R}^d,\mathbb{C}^N) \cap L^p(\mathbb{R}^d,\mathbb{C}^N) \mid \mathcal{L}_0\mathsf{v} \in L^p(\mathbb{R}^d,\mathbb{C}^N)
ight\}, \ 1$ Infinitesimal generator **Ornstein-Uhlenbeck operator** $[\mathcal{L}_0 v](x) = A \triangle v(x) + \langle Sx, \nabla v(x) \rangle, x \in \mathbb{R}^d, d \ge 2.$ $(A_p, \mathcal{D}(A_p)), 1 \leq p < \infty.$ $\mathcal{L}_0: \mathcal{D}^p_{\mathrm{loc}}(\mathcal{L}_0) \to L^p(\mathbb{R}^d, \mathbb{C}^N)$ S is a core for $(A_p, \mathcal{D}(A_p))$ is a closed operator, 1L^p-resolvent estimates Identification of \mathcal{L}_0 and maximal domain and maximal unique solv. of resolvent equ. \leftarrow realization for 1 :for \mathcal{L}_0 in $\mathcal{D}_{log}^p(\mathcal{L}_0)$, $A_p = \mathcal{L}_0$ on $\mathcal{D}(A_p) = \mathcal{D}_{1_{o}}^p(\mathcal{L}_0)$ 1 L^{p} -dissipativity condition: $\exists \gamma_{A} > 0$ $|z|^{2} \operatorname{Re} \langle w, Aw \rangle + (p-2) \operatorname{Re} \langle w, z \rangle \operatorname{Re} \langle z, Aw \rangle \geq \gamma_{A} |z|^{2} |w|^{2} \quad \forall z, w \in \mathbb{K}^{N}$ L^{p} -first antieigenvalue condition $\mu_1(A) := \inf_{w \in \mathbb{K}^N} \frac{\operatorname{Re} \langle w, Aw \rangle}{|w||Aw|} > \frac{|p-2|}{p}, \quad 1$ $Aw \neq 0$