Exponential decay of two-dimensional rotating waves

 (Part 2)

 (Part 2)}

Denny Otten

CRC 701: Spectral Structures and Topological Methods in Mathematics Faculty of Mathematics

Bielefeld University
15. July 2011

Outline

Review

The operator $\mathcal{L}_{q_{1}}$

The operator \mathcal{L}_{q}

Problem

Consider the stationary problem

$$
\alpha \triangle u+c D_{\phi} u+f(u)=0, x \in \mathbb{R}^{2}
$$

where $u: \mathbb{R}^{2} \rightarrow \mathbb{R}^{N}$ is unknown, $\alpha \in \mathbb{R}$ with $\alpha>0, c \in \mathbb{R}$ with $c \neq 0$ and $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ are given and D_{ϕ} is defined as

$$
D_{\phi}:=-x_{2} \frac{\partial}{\partial x_{1}}+x_{1} \frac{\partial}{\partial x_{2}}
$$

Under the assumptions
There exists a constant vector $u_{\infty} \in \mathbb{R}^{N}$ such that
(A1) $\lim _{R \rightarrow \infty} \sup _{|x| \geqslant R}\left|u(x)-u_{\infty}\right|=0$,
(A2) $f \in C^{1}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$ and $B_{\infty}:=D f\left(u_{\infty}\right)$ is negative definite.
We want to show solvability and uniqueness of an exponential decaying solution, i.e.

$$
\begin{aligned}
& \left|u(x)-u_{\infty}\right| \leqslant C e^{-C|x|}, \\
& \left|D^{\beta} u(x)\right| \leqslant C e^{-C|x|}, 1 \leqslant|\beta| \leqslant 2 .
\end{aligned}
$$

Motivation

Consider the stationary problem

$$
\alpha \triangle u+c D_{\phi} u+f(u)=0, x \in \mathbb{R}^{2} .
$$

Let $u_{\infty} \in \mathbb{R}^{N}$ be a stationary point (satisfying (A1) and (A2))

$$
\alpha \Delta u_{\infty}+c D_{\phi} u_{\infty}+f\left(u_{\infty}\right)=0
$$

i.e. $f\left(u_{\infty}\right)=0$. Since $f \in C^{1}\left(\mathbb{R}^{N}, \mathbb{R}^{N}\right)$ by Taylor's theorem we obtain for every $u=u(x) \in \mathbb{R}^{N}$

$$
f(u)=\underbrace{f\left(u_{\infty}\right)}_{=0}+\underbrace{\int_{0}^{1} D f\left(u_{\infty}+t\left(u-u_{\infty}\right)\right) d t}_{=: a(x)}\left(u-u_{\infty}\right)
$$

Using assumption (A1) we have

$$
a(x) \rightarrow B_{\infty}, \text { as }|x| \rightarrow \infty
$$

where $B_{\infty}:=\operatorname{Df}\left(u_{\infty}\right) \in \mathbb{R}^{N \times N}$. Define $q(x):=a(x)-B_{\infty}$, then

$$
q(x) \rightarrow 0, \text { as }|x| \rightarrow \infty
$$

Now we decompose q in the following way

$$
q(x)=q_{1}(x)+q_{2}(x)
$$

where q_{1} is a small perturbation and q_{2} is compactly supported.

From the preliminary idea we obtain (taking w.l.o.g. $u_{\infty}=0$)

$$
\begin{aligned}
0 & =\alpha \triangle u+c D_{\phi} u+f(u) \\
& =\alpha \triangle u+c D_{\phi} u+a u \\
& =\alpha \triangle u+c D_{\phi} u+B_{\infty} u+q u \\
& =\alpha \triangle u+c D_{\phi} u+B_{\infty} u+q_{1} u+q_{2} u .
\end{aligned}
$$

Therefore, we must study the following operators

$$
\begin{aligned}
\mathcal{L}_{\infty} u & :=\alpha \triangle u+c D_{\phi} u+B_{\infty} u, & & \text { (const. coeff. operator) } \\
\mathcal{L}_{q_{1}} u & :=\alpha \triangle u+c D_{\phi} u+B_{\infty} u+q_{1} u, & & \left(\text { small pert. of } \mathcal{L}_{\infty}\right) \\
\mathcal{L}_{q} u & :=\alpha \triangle u+c D_{\phi} u+B_{\infty} u+q u . & & \left(\text { compact pert. of } \mathcal{L}_{q_{1}}\right)
\end{aligned}
$$

Today we will analyze the $\mathcal{L}_{q_{1}}$-operator.

Assumptions

(A3) $\alpha \in \mathbb{R}$ with $\alpha>0$ (diffusion coefficient)
(A4) $c \in \mathbb{R}$ with $c \neq 0$ (angular velocity)
(A5) $\delta \in \mathbb{R}$ with $\delta>0$ (propagation constant)
(A6) $\eta \in \mathbb{R}$ with $\eta \geqslant 0$ (decay rate)
(A8) $g \in L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ with $p \in \mathbb{R}$ and $1 \leqslant p<\infty$ (inhomogenity)

The operator \mathcal{L}_{∞}

Consider the operator

$$
\mathcal{L}_{\infty} u:=\alpha \triangle u+c D_{\phi} u-\delta u .
$$

Theorem

Let the assumptions (A3)-(A8) be satisfied with $0 \leqslant \eta<\frac{\delta^{\frac{1}{2}}}{\alpha^{\frac{1}{2}} p}$.
Then $\mathcal{L}_{\infty}: L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right) \supset \mathcal{D}\left(\mathcal{L}_{\infty}\right) \rightarrow L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ is a linear, densely defined, closed operator and generates a C^{0}-semigroup. Moreover, let $\bar{u}(x)$ denote the solution of $\mathcal{L}_{\infty} u=g$, then we have $\bar{u} \in W_{\eta}^{1, p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ with

$$
\begin{aligned}
\|\bar{u}\|_{L_{\eta}^{p}} & \leqslant C_{5}\|g\|_{L_{\eta}^{p}} \\
\left\|D_{i} \bar{u}\right\|_{L_{\eta}^{p}} & \leqslant C_{6}\|g\|_{L_{\eta}^{p}}, i=1,2
\end{aligned}
$$

where $C_{j}=C_{j}(\alpha, \delta, \eta, p)>0, j=5,6$.

The operator $\mathcal{L}_{q_{1}}$

Consider the operator

$$
\mathcal{L}_{q_{1}} u:=\alpha \triangle u+c D_{\phi} u-\delta u+q_{1} u
$$

with a small perturbation $q_{1}=q_{1}(x)$. To solve the stationary equation

$$
\mathcal{L}_{q_{1}} u:=\alpha \triangle u+c D_{\phi} u-\delta u+q_{1} u=g
$$

we make the following additional assumption:
(A9) $q_{1} \in L^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ (small perturbation, i.e. small w.r.t. $\left.\|\cdot\|_{L^{\infty}}\right)$
Remark: $\mathcal{L}_{q_{1}}$ is a small perturbation of \mathcal{L}_{∞}.

Integral equation

Consider the stationary equation

$$
\mathcal{L}_{q_{1}} u=\alpha \triangle u+c D_{\phi} u-\delta u+q_{1} u=g
$$

Putting the term $q_{1} u$ on the r.h.s. we obtain

$$
\mathcal{L}_{\infty} u=\alpha \triangle u+c D_{\phi} u-\delta u=g-q_{1} u
$$

Taking the solution representation for \bar{u} (obtained by \mathcal{L}_{∞}) we find the integral equation

$$
\begin{aligned}
u(x) & =-\int_{\mathbb{R}^{2}} \int_{0}^{\infty} \frac{1}{4 \pi \alpha t} e^{\left.-\delta t-\frac{1}{4 \alpha t} \right\rvert\, e^{t Q_{x}-\left.\xi\right|^{2}}}\left(g(\xi)-q_{1}(\xi) u(\xi)\right) d t d \xi \\
& =:[S u](x)
\end{aligned}
$$

Motivation:

- self-mapping
- contraction mapping
- solvability (by contraction mapping principle)
- exponential decay (by roughness theorem)

Self-mapping properties of S

Lemma (Self-mapping on $L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$)

Let the assumptions (A3)-(A9) be satisfied with $0 \leqslant \eta<\frac{\delta^{\frac{1}{2}}}{\alpha^{\frac{1}{2}}}$. If $u \in L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$, then we have $S u \in L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and it holds the estimate

$$
\|S u\|_{L_{\eta}^{\rho}} \leqslant C_{5}\left(\|g\|_{L_{\eta}^{p}}+\left\|q_{1}\right\|_{L_{\infty}}\|u\|_{L_{\eta}^{p}}\right)
$$

where $C_{5}=C_{5}(\alpha, \delta, \eta, p)>0$ is from Theorem 1.
Proof: Let $u \in L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$. Using Hölder's inequality (with $\left.\frac{1}{\rho}=\frac{1}{\rho}+\frac{1}{\infty}\right)$ we obtain

$$
\|S u\|_{L_{\eta}^{p}} \leqslant C_{5}\left\|g-q_{1} u\right\|_{L_{\eta}^{p}} \leqslant C_{5}\left(\|g\|_{L_{\eta}^{p}}+\left\|q_{1}\right\|_{L_{\infty}}\|u\|_{L_{n}^{p}}\right)
$$

i.e. $S u \in L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$.

Contraction properties of S

Lemma (Contraction mapping on $L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$)

Let the assumptions (A3)-(A9) be satisfied with $0 \leqslant \eta<\frac{\delta^{\frac{1}{2}}}{\alpha^{\frac{1}{2}} p}$ and $\left\|q_{1}\right\|_{L_{\infty}}<\frac{1}{C_{5}}$ with $C_{5}>0$ from Theorem 1. Then we have

$$
\|S u-S v\|_{L_{\eta}^{p}} \leqslant C_{5}\left\|q_{1}\right\|_{L_{\infty}}\|u-v\|_{L_{\eta}^{p}} \forall u, v \in L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)
$$

Proof: Let $u, v \in L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$. Using Hölder's inequality (with $\left.\frac{1}{p}=\frac{1}{p}+\frac{1}{\infty}\right)$ we obtain

$$
\|S u-S v\|_{L_{\eta}^{p}} \leqslant C_{5}\left\|q_{1}(u-v)\right\|_{L_{n}^{p}} \leqslant C_{5}\left\|q_{1}\right\|_{L^{\infty}}\|u-v\|_{L_{\eta}^{p}}
$$

Since $C_{5}\left\|q_{1}\right\|_{L^{\infty}}<1$ it follows that S is a contraction mapping on $L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$.

Solvability by Contraction mapping principle

Theorem (Solvability on $L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$)

Let the assumptions (A3)-(A9) be satisfied with $0 \leqslant \eta<\frac{\delta^{\frac{1}{2}}}{\alpha^{\frac{1}{2}} p}$ and $\left\|q_{1}\right\|_{L^{\infty}}<\frac{1}{C_{5}}$ with $C_{5}>0$ from Theorem 1. Then

$$
\exists_{1} \bar{u} \in L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right): S \bar{u}=\bar{u}
$$

Moreover, \bar{u} solves $\mathcal{L}_{q_{1}} u=g$ and for every initial data $u_{0} \in L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ the sequence $u_{k+1}=S u_{k}, k \in \mathbb{N}_{0}$, converges to \bar{u} and it holds the apriori bound

$$
\left\|u_{k}-\bar{u}\right\|_{L_{\eta}^{p}} \leqslant \frac{C_{5}^{k}\left\|q_{1}\right\|_{L^{\infty}}^{k}}{1-C_{5}\left\|q_{1}\right\|_{L^{\infty}}}\left\|u_{1}-u_{0}\right\|_{L_{\eta}^{p}} \forall k \in \mathbb{N}_{0}
$$

Proof: Since S is a self-mapping contraction, the aim follows by the contraction mapping principle.

Roughness theorem

The Roughness theorem shows, that the solution for the (perturbed) variable coefficient operator $\mathcal{L}_{q_{1}}$ decays exponentially, if the solution of the constant coefficient operator \mathcal{L}_{∞} decays exponentially.

Theorem (Roughness theorem)

Let the assumptions (A3)-(A9) be satisfied with $0 \leqslant \eta<\frac{\delta^{\frac{1}{2}}}{\alpha^{\frac{1}{2}} p}$ and $\left\|q_{1}\right\|_{L \infty}<\frac{1}{C_{5}}$. Moreover, let $\bar{u} \in L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ denote the solution of $\mathcal{L}_{q_{1}} u=g$, then we have $\bar{u} \in W_{\eta}^{1, p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ with

$$
\begin{aligned}
\|\bar{u}\|_{L_{\eta}^{p}} & \leqslant \frac{C_{5}}{1-C_{5}\left\|q_{1}\right\|_{L^{\infty}}}\|g\|_{L_{\eta}^{p}} \\
\left\|D_{i} \bar{u}\right\|_{L_{\eta}^{p}} & \leqslant \frac{C_{6}}{1-C_{5}\left\|q_{1}\right\|_{L^{\infty}}}\|g\|_{L_{\eta}^{p}}, i=1,2
\end{aligned}
$$

where C_{5} and C_{6} are from Theorem 1.

Proof

Proof: Consider $u_{0}(x)=0$ for all $x \in \mathbb{R}^{2}$, i.e. $u_{0} \in L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ and $\left\|u_{0}\right\|_{L_{\eta}^{p}}=0$. Form the apriori bound follows that

$$
\begin{aligned}
\|\bar{u}\|_{L_{\eta}^{p}} & \leqslant\left\|\bar{u}-u_{1}\right\|_{L_{\eta}^{p}}+\left\|u_{1}\right\|_{L_{\eta}^{p}} \\
& \leqslant \frac{C_{5}\left\|q_{1}\right\|_{L^{\infty}}}{1-C_{5}\left\|q_{1}\right\|_{L^{\infty}}}\left\|u_{1}-u_{0}\right\|_{L_{\eta}^{p}}+\left\|u_{1}\right\|_{L_{\eta}^{p}} \\
& =\left(\frac{C_{5}\left\|q_{1}\right\|_{L^{\infty}}}{1-C_{5}\left\|q_{1}\right\|_{L^{\infty}}}+1\right)\left\|u_{1}\right\|_{L_{\eta}^{p}} \\
& =\frac{1}{1-C_{5}\left\|q_{1}\right\|_{L^{\infty}}}\left\|S u_{0}\right\|_{L_{\eta}^{p}} \\
& \leqslant \frac{C_{5}}{1-C_{5}\left\|q_{1}\right\|_{L^{\infty}}}\left(\|g\|_{L_{\eta}^{p}}+\left\|q_{1}\right\|_{L^{\infty}}\left\|u_{0}\right\|_{L_{\eta}^{p}}\right) \\
& =\frac{C_{5}}{1-C_{5}\left\|q_{1}\right\|_{L^{\infty}}}\|g\|_{L_{\eta}^{p}} .
\end{aligned}
$$

Consequence

Consider the operator

$$
\mathcal{L}_{q_{1}} u:=\alpha \triangle u+c D_{\phi} u-\delta u+q_{1} u
$$

Corollary

Let the assumptions (A3)-(A9) be satisfied with $0 \leqslant \eta<\frac{\delta^{\frac{1}{2}}}{\alpha^{\frac{1}{2}} p}$ and $\left\|q_{1}\right\|_{L^{\infty}}<\frac{1}{C_{5}}$ with $C_{5}>0$ from Theorem 1. Then

$$
\mathcal{L}_{q_{1}}: L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right) \supset \mathcal{D}\left(\mathcal{L}_{q_{1}}\right) \rightarrow L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)
$$

is a linear, densely defined, closed operator and generates a C^{0}-semigroup. Moreover, we have

$$
\mathcal{D}\left(\mathcal{L}_{q_{1}}\right)=\mathcal{D}\left(\mathcal{L}_{\infty}\right) .
$$

The operator \mathcal{L}_{q}

Consider the operator

$$
\mathcal{L}_{q} u:=\alpha \Delta u+c D_{\phi} u-\delta u+\underbrace{\left(q_{1}+q_{2}\right)}_{=q} u
$$

with a compact perturbation $q_{2}=q_{2}(x)$.
Remark: \mathcal{L}_{q} is a compact perturbation of $\mathcal{L}_{q_{1}}$.
Motivation: Formally we decompose $\mathcal{L}_{q}-s, s \in \mathbb{C}$, as follows

$$
\begin{aligned}
& \left(\mathcal{L}_{q}-s\right) u=\alpha \Delta u+c D_{\phi} u-\delta u+q u-s u=0 \\
\Longleftrightarrow & \alpha \Delta u+c D_{\phi} u-\delta u+q_{1} u-s u=\left(q_{1}-q\right) u \\
\Longleftrightarrow & \left(\mathcal{L}_{q_{1}}-s\right) u=\left(q_{1}-q\right) u \\
\Longleftrightarrow & \left(I-\left(q_{1}-q\right)\left(\mathcal{L}_{q_{1}}-s\right)^{-1}\right)\left(\mathcal{L}_{q_{1}}-s\right) u=0
\end{aligned}
$$

i.e.

$$
\left(\mathcal{L}_{q}-s\right)=\left(I-\left(q_{1}-q\right)\left(\mathcal{L}_{q_{1}}-s\right)^{-1}\right)\left(\mathcal{L}_{q_{1}}-s\right)
$$

Assumptions

Let $s \in \mathbb{C}$ and consider

$$
\left(\mathcal{L}_{q}-s\right)=\left(I-\left(q_{1}-q\right)\left(\mathcal{L}_{q_{1}}-s\right)^{-1}\right)\left(\mathcal{L}_{q_{1}}-s\right)
$$

We make the following additional assumptions
(A10) $q \in L^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ (variable coefficient function)
(A11) $D_{1} u, D_{2} u, D_{\phi} u \in \mathcal{D}\left(\mathcal{L}_{q}\right)$ are nontrivial (where $\mathcal{L}_{q} u=0$)
One can show that \mathcal{L}_{q} possess the algebraic simple eigenvalues

$$
s_{1}=i c, s_{2}=-i c, s_{3}=0
$$

(i.e. $\left.\operatorname{dim} \mathcal{N}\left(\mathcal{L}_{q}-s_{j}\right)=1, j=1,2,3\right)$ with eigenfunctions

$$
\varphi_{1}=D_{1} u+i D_{2} u, \varphi_{2}=D_{1} u-i D_{2} u, \varphi_{3}=D_{\phi} u
$$

(A12) \mathcal{L}_{q} has no eigenvalues $s \in \mathbb{C}$ with $\operatorname{Re} s>-\operatorname{Re} \delta$, except for s_{1}, s_{2}, s_{3}.

Approach

Consider the decomposition

$$
\left(\mathcal{L}_{q}-s\right)=\left(I-\left(q_{1}-q\right)\left(\mathcal{L}_{q_{1}}-s\right)^{-1}\right)\left(\mathcal{L}_{q_{1}}-s\right)
$$

Fredholm theory:

- $\mathcal{L}_{q}-s$ is Fredholm of index 0 for $s \in \mathbb{C}$ with $\operatorname{Re} s>-\operatorname{Re} \delta$
- $\left(\mathcal{L}_{q_{1}}-s\right)$ is a linear homeomorphism
- $\left(q_{1}-q\right)\left(\mathcal{L}_{q_{1}}-s\right)^{-1}$ compact operator (Riesz-Frechet-Kolmogorov, compactness of multiplication operator)
- I- $\left(q_{1}-q\right)\left(\mathcal{L}_{q_{1}}-s\right)^{-1}$ Fredholm of index 0 (compact perturbation of the identity)
- $\left(\mathcal{L}_{q_{1}}-s\right)$ is Fredholm of index 0
- $\left(\mathcal{L}_{q}-s\right)$ is Fredholm of index 0
- Fredholm alternative
- \mathcal{L}_{q}^{\prime} (formal/abstract) adjoint operator
- solvability (by Fredholm alternative)
- uniqueness of exponentially decaying function

Main result

Consider the operator

$$
\mathcal{L}_{q} u:=\alpha \triangle u+c D_{\phi} u-\delta u+\underbrace{\left(q_{1}+q_{2}\right)}_{=q} u
$$

Theorem
Let the assumptions (A1)-(A12) be satisfied. Let $\bar{u} \in L^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ denote the solution of $\mathcal{L}_{q} u=0$, then we have $\bar{u} \in L_{\eta}^{p}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ for all $0 \leqslant \eta<\frac{\delta^{\frac{1}{2}}}{\alpha^{\frac{1}{2}} p}$.

