Energy Estimates for Ornstein-Uhlenbeck Operators in Exponentially Weighted L^p-Spaces

Bielefeld University, November 28, 2016

Denny Otten Department of Mathematics Bielefeld University Germany

joint work with: Wolf-Jürgen Beyn (Bielefeld University)

W.-J. Beyn, D. Otten. Spatial Decay of Rotating Waves in Reaction Diffusion Systems. *Dyn. Partial Differ. Equ.*, 13(3):191-240, 2016.

D. Otten. The identification problem for complex Ornstein-Uhlenbeck operators in $L^p(\mathbb{R}^d, \mathbb{C}^N)$. Semigroup Forum, DOI: http://dx.doi.org/10.1007/s00233-016-9804-y, 2016.

D. Otten. Spatial decay and spectral properties of rotating waves in parabolic systems. PhD thesis, Bielefeld University, *Shaker Verlag*, 2014.

Denny Otten

L^P-Energy Estimates for Ornstein-Uhlenbeck Operators

Outline

- 1 Rotating patterns in \mathbb{R}^d
- 2 Spatial decay of rotating waves
- Energy estimates in exponentially weighted L^p-spaces
- L^p-dissipativity condition vs. L^p-antieigenvalue bound
- 5 Explicit representations of the first antieigenvalue

Outline

1 Rotating patterns in \mathbb{R}^d

- 2 Spatial decay of rotating waves
- 3 Energy estimates in exponentially weighted L^p-spaces
- D L^p-dissipativity condition vs. L^p-antieigenvalue bound
- 5 Explicit representations of the first antieigenvalue

Consider a reaction diffusion system

(1)

$$egin{aligned} &u_t(x,t) = A riangle u(x,t) + f(u(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \geqslant 2 \ u(x,0) = u_0(x) \qquad , \ t = 0, \ x \in \mathbb{R}^d. \end{aligned}$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m, A \in \mathbb{R}^{m,m}, f : \mathbb{R}^m \to \mathbb{R}^m, u_0 : \mathbb{R}^d \to \mathbb{R}^m.$ Assume a rotating wave solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m \text{ of } (1)$

$$u_*(x,t) = v_*(e^{-tS}x)$$

 $v_{\star} : \mathbb{R}^{d} \to \mathbb{R}^{m}$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. **Transformation (into a co-rotating frame)**: $v(x,t) = u(e^{tS}x,t)$ solves

(2)
$$\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) \end{aligned}$$

$$\langle Sx, \nabla v(x) \rangle = Dv(x)Sx = \sum_{i=1}^{d} \sum_{j=1}^{d} S_{ij}x_j D_i v(x) \stackrel{-s=s^{\top}}{=} \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} S_{ij} (x_j D_i - x_i D_j) v(x)$$
(drift term) (rotational term)

•

(1)

Consider a reaction diffusion system

$$egin{aligned} &u_t(x,t)=A riangle u(x,t)+f(u(x,t)), \ t>0, \ x\in \mathbb{R}^d, \ d\geqslant 2, \ &u(x,0)=u_0(x) \ , \ t=0, \ x\in \mathbb{R}^d. \end{aligned}$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m, A \in \mathbb{R}^{m,m}, f : \mathbb{R}^m \to \mathbb{R}^m, u_0 : \mathbb{R}^d \to \mathbb{R}^m$. Assume a **rotating wave** solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m \text{ of } (1)$

$$u_{\star}(x,t) = v_{\star}(e^{-tS}x)$$

 $v_{\star} : \mathbb{R}^{d} \to \mathbb{R}^{m}$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. Transformation (into a co-rotating frame): $v(x, t) = u(e^{tS}x, t)$ solves

(2) $\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) \qquad , \ t = 0, \ x \in \mathbb{R}^d. \end{aligned}$

$$\langle Sx, \nabla v(x) \rangle = Dv(x)Sx = \sum_{i=1}^{d} \sum_{j=1}^{d} S_{ij}x_j D_i v(x) \stackrel{-s=s^{\top}}{=} \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} S_{ij} (x_j D_i - x_i D_j) v(x)$$

(drift term) (rotational term)

(1)

Consider a reaction diffusion system

$$egin{aligned} &u_t(x,t)=A riangle u(x,t)+f(u(x,t)),\ t>0,\ x\in\mathbb{R}^d,\ d\geqslant 2,\ &u(x,0)=u_0(x) \ ,\ t=0,\ x\in\mathbb{R}^d. \end{aligned}$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m, A \in \mathbb{R}^{m,m}, f : \mathbb{R}^m \to \mathbb{R}^m, u_0 : \mathbb{R}^d \to \mathbb{R}^m$. Assume a **rotating wave** solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m \text{ of } (1)$

$$u_{\star}(x,t) = v_{\star}(e^{-tS}x)$$

 $v_* : \mathbb{R}^d \to \mathbb{R}^m$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. Transformation (into a co-rotating frame): $v(x, t) = u(e^{tS}x, t)$ solves

(2)
$$\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) \qquad , \ t = 0, \ x \in \mathbb{R}^d. \end{aligned}$$

$$\langle Sx, \nabla v(x) \rangle = Dv(x)Sx = \sum_{i=1}^{d} \sum_{j=1}^{d} S_{ij}x_j D_i v(x) \stackrel{-s \equiv s^{\top}}{=} \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} S_{ij} (x_j D_i - x_i D_j) v(x)$$
(drift term) (rotational term)

(1)

Consider a reaction diffusion system

$$egin{aligned} &u_t(x,t)=A riangle u(x,t)+f(u(x,t)),\ t>0,\ x\in \mathbb{R}^d,\ d\geqslant 2,\ &u(x,0)=u_0(x) \ ,\ t=0,\ x\in \mathbb{R}^d. \end{aligned}$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m, A \in \mathbb{R}^{m,m}, f : \mathbb{R}^m \to \mathbb{R}^m, u_0 : \mathbb{R}^d \to \mathbb{R}^m$. Assume a **rotating wave** solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m \text{ of } (1)$

$$u_{\star}(x,t) = v_{\star}(e^{-tS}x)$$

 $v_{\star} : \mathbb{R}^{d} \to \mathbb{R}^{m}$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. **Transformation (into a co-rotating frame)**: $v(x,t) = u(e^{tS}x,t)$ solves

(2)
$$\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) , \ t = 0, \ x \in \mathbb{R}^d. \end{aligned}$$

Note: v_{\star} is a stationary solution of (2), i.e. v_{\star} solves the rotating wave equation

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^{d}, d \geq 2.$$

 $A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle$: Ornstein-Uhlenbeck operator.

(1)

Consider a reaction diffusion system

$$egin{aligned} &u_t(x,t)=A riangle u(x,t)+f(u(x,t)),\ t>0,\ x\in \mathbb{R}^d,\ d\geqslant 2,\ &u(x,0)=u_0(x) \ ,\ t=0,\ x\in \mathbb{R}^d. \end{aligned}$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m, A \in \mathbb{R}^{m,m}, f : \mathbb{R}^m \to \mathbb{R}^m, u_0 : \mathbb{R}^d \to \mathbb{R}^m$. Assume a **rotating wave** solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m \text{ of } (1)$

$$u_{\star}(x,t) = v_{\star}(e^{-tS}x)$$

 $v_{\star} : \mathbb{R}^{d} \to \mathbb{R}^{m}$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. Transformation (into a co-rotating frame): $v(x,t) = u(e^{tS}x,t)$ solves

(2)
$$\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) \end{aligned} , \ t = 0, \ x \in \mathbb{R}^d. \end{aligned}$$

Questions and Ingredients: 11: exp. decay of v_{\star} , 12: spectral properties **Q1:** Nonlinear stability of rotating waves on \mathbb{R}^d ? (**Tools:** 11+12) **Q2:** Truncations of rotating waves to bounded domains? (**Tools:** 11+12)

- **Q2:** Truncations of rotating waves to bounded domains? (Tools: 11+...)
- Q3: Spatial approximation (e.g. with finite element method)? (open problem)
- **Q4:** Temporal approximation (e.g. with Euler or BDF)? (open problem)

Denny Otten

Examples for rotating waves

Cubic-quintic complex Ginzburg-Landau equation: (spinning solitons)

$$u_{t} = \alpha \triangle u + u \left(\delta + \beta \left| u \right|^{2} + \gamma \left| u \right|^{4} \right)$$

 $u(x,t) \in \mathbb{C}, x \in \mathbb{R}^{d}, t \ge 0, \alpha, \beta, \gamma \in \mathbb{C}, \operatorname{Re}\alpha > 0, \delta \in \mathbb{R}, d \in \{2,3\}.$

 λ - ω system: (spiral waves, scroll waves)

$$u_t = \alpha \bigtriangleup u + \left(\lambda(|u|^2) + i\omega(|u|^2)\right) u$$

$$u(x,t) \in \mathbb{C}, x \in \mathbb{R}^{d}, t \ge 0, \lambda, \omega : [0,\infty[\to \mathbb{R}, \alpha \in \mathbb{C}, \operatorname{Re} \alpha > 0, d \in \{2,3\}.$$

Barkley model: (spiral waves, also scroll waves)

$$u_t = \begin{pmatrix} 1 & 0 \\ 0 & D \end{pmatrix} \triangle u + \begin{pmatrix} \frac{1}{\varepsilon} u_1(1-u_1)(u_1 - \frac{u_2+b}{a}) \\ u_1 - u_2 \end{pmatrix}$$

with
$$u(x,t) \in \mathbb{R}^2$$
, $x \in \mathbb{R}^d$, $t \ge 0$, $0 \le D \ll 1$,
c. a. $b > 0$.

References

Nonlinear stability of rotating waves for d = 2:

W.-J. Beyn, J. Lorenz.

Nonlinear stability of rotating patterns, 2008. Ginzburg-Landau equation:

L.D. Landau, V.L. Ginzburg.

On the theory of superconductivity, 1950.

L.-C. Crasovan, B.A. Malomed, D. Mihalache.

Spinning solitons in cubic-quintic nonlinear media, 2001. Stable vortex solitons in the two-dimensional Ginzburg-Landau equation, 2000.

A. Mielke.

The Ginzburg-Landau equation in its role as a modulation equation, 2002.

λ - ω system:

Y. Kuramoto, S. Koga.

Turbulized rotating chemical waves, 1981.

J. D. Murray.

Mathematical biology, II: Spatial models and biomedical applications, 2003. Barkley model:

D. Barkley.

A model for fast computer simulation of waves in exitable media, 1991. Euclidean symmetry and the dynamics of rotating spiral waves, 1994.

Outline

$lacksymbol{1}$ Rotating patterns in \mathbb{R}^d

2 Spatial decay of rotating waves

3 Energy estimates in exponentially weighted L^p-spaces

4 L^p-dissipativity condition vs. L^p-antieigenvalue bound

5 Explicit representations of the first antieigenvalue

Theorem 1: (Exponential decay of profile v_{\star})

Let $f \in C^2$ $(\mathbb{R}^m, \mathbb{R}^m)$, $v_{\infty} \in \mathbb{R}^m$, $f(v_{\infty}) = 0$, $Df(v_{\infty}) \leq -\beta_{\infty}I_m < 0$, assume (A1)-(A3) for some $1 , and let <math>\theta(x) = \exp\left(\mu\sqrt{|x|^2 + 1}\right)$ be a weight function for $\mu \in \mathbb{R}$. Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property: Every classical solution $v_{\star} \in C^2$ $(\mathbb{R}^d, \mathbb{R}^m)$ of (RWE) $A \bigtriangleup v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^d$, such that (TC) $\sup_{|x| \ge R_0} |v_{\star}(x) - v_{\infty}| \le K_1$ for some $R_0 > 0$ satisfies

$$v_\star - v_\infty \in W^{\mathbf{1},p}_{ heta}(\mathbb{R}^d,\mathbb{R}^m)$$

for every exponential decay rate

$$0 \leqslant \mu \leqslant \varepsilon \frac{\sqrt{a_0 b_0}}{a_{\max} \rho}. \qquad \begin{pmatrix} a_{\max} = \rho(A) & : \text{ spectral radius of } A \\ -a_0 = s(-A) & : \text{ spectral bound of } -A \\ -b_0 = s(Df(v_{\infty})) & : \text{ spectral bound of } Df(v_{\infty}) \end{pmatrix}$$

Theorem 1: (Exponential decay of profile v_{\star})

Let $f \in C^2$ $(\mathbb{R}^m, \mathbb{R}^m)$, $v_{\infty} \in \mathbb{R}^m$, $f(v_{\infty}) = 0$, $Df(v_{\infty}) \leq -\beta_{\infty}I_m < 0$, assume (A1)-(A3) for some $1 , and let <math>\theta(x) = \exp\left(\mu\sqrt{|x|^2 + 1}\right)$ be a weight function for $\mu \in \mathbb{R}$. Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property: Every classical solution $v_{\star} \in C^3$ $(\mathbb{R}^d, \mathbb{R}^m)$ of (RWE) $A \bigtriangleup v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^d$, such that (TC) $\sup_{|x| \ge R_0} |v_{\star}(x) - v_{\infty}| \le K_1$ for some $R_0 > 0$ satisfies

$$v_{\star}-v_{\infty}\in W^{2,p}_{ heta}(\mathbb{R}^{d},\mathbb{R}^{m})$$

for every exponential decay rate

$$0 \leqslant \mu \leqslant \varepsilon \frac{\sqrt{a_0 b_0}}{a_{\max} p}. \qquad \begin{pmatrix} a_{\max} &= & \rho(A) &: \text{ spectral radius of } A \\ -a_0 &= & s(-A) &: \text{ spectral bound of } -A \\ -b_0 &= & s(Df(v_{\infty})) &: \text{ spectral bound of } Df(v_{\infty}) \end{pmatrix}$$

Theorem 1: (Exponential decay of profile v_{\star} : higher regularity)

Let $f \in C^{\max\{2, k-1\}}(\mathbb{R}^m, \mathbb{R}^m)$, $v_{\infty} \in \mathbb{R}^m$, $f(v_{\infty}) = 0$, $Df(v_{\infty}) \leq -\beta_{\infty}I_m < 0$, assume (A1)-(A3) for some $1 , and let <math>\theta(x) = \exp\left(\mu\sqrt{|x|^2 + 1}\right)$ be a weight function for $\mu \in \mathbb{R}$, $k \in \mathbb{N}$, $p \geq \frac{d}{2}$ (if $k \geq 3$). Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property: Every classical solution $v_{\star} \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^m)$ of

$$\mathsf{RWE}) \qquad \qquad A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d},$$

such that

(TC)
$$\sup_{|x| \ge R_0} |v_\star(x) - v_\infty| \le K_1 \text{ for some } R_0 > 0$$

satisfies

$$v_{\star} - v_{\infty} \in W^{k,p}_{ heta}(\mathbb{R}^d,\mathbb{R}^m)$$

for every exponential decay rate

$$0 \leqslant \mu \leqslant \varepsilon \frac{\sqrt{a_0 b_0}}{a_{\max} p}. \qquad \begin{pmatrix} a_{\max} = \rho(A) & : \text{ spectral radius of } A \\ -a_0 = s(-A) & : \text{ spectral bound of } -A \\ -b_0 = s(Df(v_{\infty})) & : \text{ spectral bound of } Df(v_{\infty}) \end{pmatrix}$$

Theorem 1: (Exponential decay of profile v_{\star} : pointwise estimates)

Let $f \in C^{\max\{2, k-1\}}(\mathbb{R}^m, \mathbb{R}^m)$, $v_{\infty} \in \mathbb{R}^m$, $f(v_{\infty}) = 0$, $Df(v_{\infty}) \leq -\beta_{\infty}I_m < 0$, assume (A1)-(A3) for some $1 , and let <math> heta(x) = \exp\left(\mu \sqrt{|x|^2 + 1}
ight)$ be a weight function for $\mu \in \mathbb{R}$, $k \in \mathbb{N}$, $p \ge \frac{d}{2}$ (if $k \ge 3$). Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property: Every classical solution $v_{\star} \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^m)$ of $A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^{d},$ (RWE) such that $\sup |v_{\star}(x) - v_{\infty}| \leq K_1$ for some $R_0 > 0$ (TC) $|x| \ge R_0$ satisfies $|\mathbf{v}_{\star} - \mathbf{v}_{\infty} \in W^{k,p}_{ heta}(\mathbb{R}^{d},\mathbb{R}^{m}), \ |D^{lpha}(\mathbf{v}_{\star}(x) - \mathbf{v}_{\infty})| \leqslant C \exp\left(-\mu \sqrt{|x|^{2}+1}
ight) \ orall x \in \mathbb{R}^{d}$ for every exponential decay rate $0 \leqslant \mu \leqslant \varepsilon \frac{\sqrt{a_0 b_0}}{a_{\max} p} \qquad \left(\begin{array}{ccc} a_{\max} &=& \rho(A) &: \text{ spectral radius of } A \\ -a_0 &=& s(-A) &: \text{ spectral bound of } -A \\ -b_0 &=& s(Df(v_\infty)) &: \text{ spectral bound of } Df(v_\infty) \end{array}\right)$

and for every multiindex $lpha \in \mathbb{N}_0^d$ satisfying d < (k - |lpha|)p.

Spatial decay of eigenfunctions

Theorem 2: (Exponential decay of eigenfunctions v)

Let $f \in C^{\max\{2,k\}}(\mathbb{R}^m,\mathbb{R}^m)$, $v_{\infty} \in \mathbb{R}^m$, $f(v_{\infty}) = 0$, $Df(v_{\infty}) \leq -\beta_{\infty}I < 0$, assume (A1)-(A3) for some $1 , and let <math> heta_j(x) = \exp\left(\mu_j \sqrt{|x|^2 + 1}\right)$ be a weight function for $\mu_i \in \mathbb{R}$, $j = 1, 2, k \in \mathbb{N}$, $p \ge \frac{d}{2}$ (if $k \ge 2$). Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ such that for every classical solution $v_{\star} \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^m)$ of (RWE) satisfying (TC) the following property holds: Every classical solution $v \in C^{k+1}(\mathbb{R}^d, \mathbb{C}^m)$ of (EVP) $A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + Df(v_{\star}(x))v(x) = \lambda v(x), x \in \mathbb{R}^{d},$ with $\lambda \in \mathbb{C}$, $\operatorname{Re}\lambda \geq -(1-\varepsilon)\beta_{\infty}$, such that $v \in L^p_{\theta_1}(\mathbb{R}^d, \mathbb{C}^m)$ for some exp. growth rate $-\sqrt{\varepsilon \frac{\gamma_A \beta_\infty}{2d|A|^2}} \leq \mu_1 < 0$ satisfies $v \in W^{k,p}_{\theta_2}(\mathbb{R}^d,\mathbb{C}^m)$ for **every** exp. decay rate $0 \leq \mu_2 \leq \varepsilon \frac{\sqrt{a_0}b_0}{2}$

and

$$|D^{\alpha}v(x)| \leq C \exp\left(-\mu_2 \sqrt{|x|^2+1}\right) \ \forall x \in \mathbb{R}^d$$

for every multiindex $\alpha \in \mathbb{N}_0^d$ satisfying $d < (k - |\alpha|)p$.

Exponentially weighted Sobolev spaces and assumptions Exponentially weighted Sobolev spaces: For $1 \leq p \leq \infty$, $k \in \mathbb{N}_0$, and weight function $\theta(x) = \exp\left(\mu\sqrt{|x|^2 + 1}\right)$ with $\mu \in \mathbb{R}$ we define $L^p_{\theta}(\mathbb{R}^d, \mathbb{R}^m) := \left\{ v \in L^1_{loc}(\mathbb{R}^d, \mathbb{R}^m) \mid \|\theta v\|_{L^p} < \infty \right\},$ $W^{k,p}_{\theta}(\mathbb{R}^d, \mathbb{R}^m) := \left\{ v \in L^p_{\theta}(\mathbb{R}^d, \mathbb{R}^m) \mid D^{\beta}u \in L^p_{\theta}(\mathbb{R}^d, \mathbb{R}^m) \; \forall \; |\beta| \leq k \right\}.$

Assumptions:

(A1) (*L^p*-dissipativity condition): For $A \in \mathbb{R}^{m,m}$, $1 , there is <math>\gamma_A > 0$ with $|z|^2 \operatorname{Re} \langle w, Aw \rangle + (p-2) \operatorname{Re} \langle w, z \rangle \operatorname{Re} \langle z, Aw \rangle \ge \gamma_A |z|^2 |w|^2 \quad \forall z, w \in \mathbb{R}^m$

(A2) (System condition): $A, Df(v_{\infty}) \in \mathbb{R}^{m,m}$ simultaneously diagonalizable over \mathbb{C} (A3) (Rotational condition): $0 \neq S \in \mathbb{R}^{d,d}, -S = S^{\top}$

Note: Assumption (A1) is equivalent with

(A1') (L^p -antieigenvalue condition): $A \in \mathbb{R}^{m,m}$ is invertible and

$$\mu_1(A) := \inf_{\substack{w \in \mathbb{R}^m \\ w \neq 0 \\ Aw \neq 0}} \frac{\operatorname{Re} \langle w, Aw \rangle}{|w||Aw|} > \frac{|p-2|}{p} \text{ for some } 1$$

 $(\mu_1(A) : \text{ first antieigenvalue of } A)$

(to be read as A > 0 in case m = 1).

Outline of proof: Theorem 1 (Exponential decay of v_{\star}) Exponential Decay: To show exponential decay for the solution v_{\star} of

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \ x \in \mathbb{R}^{d},$$

investigate the linear system $(w_{\star}(x) := v_{\star}(x) - v_{\infty})$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (Df(v_{\infty}) + Q_{s}(x) + Q_{c}(x)) w_{\star}(x) = 0, x \in \mathbb{R}^{d}.$

Operators: Study the following operators

$$\begin{array}{ll} \mathcal{L}_{c}v :=& A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v + Q_{c}v, & (\text{exp. decay}) \\ \mathcal{L}_{s}v :=& A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v, & (\text{exp. decay}) \\ \mathcal{L}_{\infty}v :=& A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, & (\text{far-field operator}) & (\text{exp. decay}) \\ \mathcal{L}_{0}v :=& A \triangle v + \langle S \cdot, \nabla v \rangle. & (\text{Ornstein-Uhlenbeck operator}) & (\text{max. domain}) \end{array}$$

D. Otten.

Exponentially weighted resolvent estimates for complex Ornstein-Uhlenbeck systems, 2015. The identification problem for complex-valued Ornstein-Uhlenbeck operators in $L^p(\mathbb{R}^d, \mathbb{C}^N)$, 2016. A new L^p -antieigenvalue condition for Ornstein-Uhlenbeck operators, 2016.

W.-J. Beyn, D. Otten.

Spatial Decay of Rotating Waves in Reaction Diffusion Systems, 2016.

Outline of proof: Theorem 1 (Exponential decay of v_{\star}) Exponential Decay: To show exponential decay for the solution v_{\star} of

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \ x \in \mathbb{R}^{d},$$

investigate the linear system $(w_{\star}(x) := v_{\star}(x) - v_{\infty})$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (Df(v_{\infty}) + Q_{s}(x) + Q_{c}(x)) w_{\star}(x) = 0, x \in \mathbb{R}^{d}.$

Operators: Study the following operators

$$\begin{array}{ll} \mathcal{L}_{c}v :=& A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v + Q_{c}v, & (exp. \ decay) \\ \mathcal{L}_{s}v :=& A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v, & (exp. \ decay) \\ \mathcal{L}_{\infty}v :=& A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, & (far-field \ operator) & (exp. \ decay) \\ \mathcal{L}_{0}v :=& A \triangle v + \langle S \cdot, \nabla v \rangle. & (Ornstein-Uhlenbeck \ operator) & (max. \ domain) \end{array}$$

D. Otten.

Exponentially weighted resolvent estimates for complex Ornstein-Uhlenbeck systems, 2015. The identification problem for complex-valued Ornstein-Uhlenbeck operators in $L^p(\mathbb{R}^d, \mathbb{C}^N)$, 2016. A new L^p -antieigenvalue condition for Ornstein-Uhlenbeck operators, 2016.

W.-J. Beyn, D. Otten.

Spatial Decay of Rotating Waves in Reaction Diffusion Systems, 2016.

Outline of proof: Theorem 1 (Exponential decay of v_{\star}) Exponential Decay: To show exponential decay for the solution v_{\star} of

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d},$$

investigate the linear system $(w_{\star}(x) := v_{\star}(x) - v_{\infty})$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (Df(v_{\infty}) + Q_{s}(x) + Q_{c}(x)) w_{\star}(x) = 0, x \in \mathbb{R}^{d}.$

Operators: Study the following operators

$$\begin{array}{ll} \mathcal{L}_{c}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v + Q_{c}v, & (exp. \ decay) \\ \mathcal{L}_{s}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v, & (exp. \ decay) \\ \mathcal{L}_{\infty}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, & (far-field \ operator) & (exp. \ decay) \\ \mathcal{L}_{0}v := A \triangle v + \langle S \cdot, \nabla v \rangle. & (Ornstein-Uhlenbeck \ operator) & (max. \ domain) \end{array}$$

Maximal domain of \mathcal{L}_0 given by

$$\mathcal{D}^p_{\mathrm{loc}}(\mathcal{L}_0) = \big\{ v \in W^{2,p}_{\mathrm{loc}}(\mathbb{R}^d,\mathbb{C}^m) \cap L^p(\mathbb{R}^d,\mathbb{C}^m) : \ \mathcal{L}_0 v \in L^p(\mathbb{R}^d,\mathbb{C}^m) \big\}, \ 1$$

satisfies $\mathcal{D}^{p}_{\text{loc}}(\mathcal{L}_{0}) \subseteq W^{1,p}(\mathbb{R}^{d},\mathbb{C}^{m}).$

The operator \mathcal{L}_0

$$\begin{array}{l} & \text{Ornstein-Uhlenbeck operator} \\ \left[\mathcal{L}_0 v\right](x) = A \triangle v(x) + \langle Sx, \nabla v(x) \rangle, \, x \in \mathbb{R}^d, \, d \geq 2. \\ & \downarrow \end{array}$$

$$H_0(x,\xi,t) = (4\pi tA)^{-\frac{d}{2}} \exp\left(-(4tA)^{-1} \left|e^{tS}x - \xi\right|^2\right), x,\xi \in \mathbb{R}^d, t > 0.$$

Semigroup in
$$L^p(\mathbb{R}^d, \mathbb{C}^m)$$
, $1 \le p \le \infty$
 $[T_0(t)v](x) = \int_{\mathbb{R}^d} H_0(x, \xi, t)v(\xi)d\xi$, $t > 0$.

strong \downarrow continuity

Infinitesimal generator $(A_p, \mathcal{D}(A_p)), 1 \leq p < \infty.$

🔪 📐 identification problem

 $\begin{array}{lll} \mbox{unique solv. of} & \mbox{A-priori} & \mbox{exponential} & \mbox{max. domain and} \\ \mbox{resolvent equ. for } A_p, & \rightarrow & \mbox{decay,} & \mbox{max. realization,} \\ 1 \leqslant p < \infty, \mbox{ Re} \lambda > 0 & \mbox{estimates} & 1 \leqslant p < \infty & \mbox{$1 < p < \infty$} \\ (\lambda I - A_p) v_{\star} = g \in L^p. & v_{\star} \in W^{1,p}_{\theta}. & \mbox{A_p} = \mathcal{L}_0 \mbox{ on } \mathcal{D}(A_p) = \mathcal{D}^p_{\rm loc}(\mathcal{L}_0). \end{array}$

Denny Otten

semigroup theory </

L^p-Energy Estimates for Ornstein-Uhlenbeck Operators

Bielefeld 2016

Identification problem of \mathcal{L}_0 $\mathcal{D}^p_{\mathrm{loc}}(\mathcal{L}_0) := \left\{ \mathbf{v} \in W^{2,p}_{\mathrm{loc}}(\mathbb{R}^d,\mathbb{C}^m) \cap L^p(\mathbb{R}^d,\mathbb{C}^m) \mid \mathcal{L}_0 \mathbf{v} \in L^p(\mathbb{R}^d,\mathbb{C}^m)
ight\}, \ 1$ Infinitesimal generator **Ornstein-Uhlenbeck operator** $[\mathcal{L}_0 v](x) = A \triangle v(x) + \langle Sx, \nabla v(x) \rangle, x \in \mathbb{R}^d, d \ge 2.$ $(A_p, \mathcal{D}(A_p)), 1 \leq p < \infty.$ $\mathcal{L}_0: \mathcal{D}^p_{\mathrm{loc}}(\mathcal{L}_0) \to L^p(\mathbb{R}^d, \mathbb{C}^m)$ S is a core for $(A_p, \mathcal{D}(A_p))$ is a closed operator, 1 L^{p} -resolvent estimates Identification of \mathcal{L}_0 and maximal domain and maximal unique solv. of resolvent equ. \leftarrow realization for 1 :for \mathcal{L}_0 in $\mathcal{D}_{log}^p(\mathcal{L}_0)$, $A_p = \mathcal{L}_0$ on $\mathcal{D}(A_p) = \mathcal{D}_{loc}^p(\mathcal{L}_0)$ 1 L^{p} -dissipativity condition: $\exists \gamma_{A} > 0$ $|z|^{2} \operatorname{Re} \langle w, Aw \rangle + (p-2) \operatorname{Re} \langle w, z \rangle \operatorname{Re} \langle z, Aw \rangle \geq \gamma_{A} |z|^{2} |w|^{2} \quad \forall z, w \in \mathbb{K}^{m}$ L^{p} -first antieigenvalue condition $\mu_1(\mathcal{A}) := \inf_{w \in \mathbb{K}^m} \frac{\operatorname{Re} \langle w, Aw \rangle}{|w||Aw|} > \frac{|p-2|}{p}, \quad 1$ $Aw \neq 0$

References

Nonlinear stability of rotating waves for d = 2:

W.-J. Beyn, J. Lorenz.

Nonlinear stability of rotating patterns, 2008. **Exponential decay**:

M. Shub.

Global stability of dynamical systems, 1987.

P.J. Rabier, C.A. Stuart.

Exponential decay of the solutions of quasilinear second-order equations and Pohozaev identities, 2000. Ornstein-Uhlenbeck operator in $L^p(\mathbb{R}^d, \mathbb{R})$ and its identification problem:

G. Metafune, D. Pallara, V. Vespri.

 L^{p} -estimates for a class of elliptic operators with unbounded coefficients in \mathbb{R}^{N} , 2005.

G. Metafune.

 L^p -spectrum of Ornstein-Uhlenbeck operators, 2001. Ornstein-Uhlenbeck operator in $C_{\rm b}(\mathbb{R}^d,\mathbb{R})$ and its identification problem:

G. Da Prato, A. Lunardi.

On the Ornstein-Uhlenbeck operator in spaces of continuous functions, 1995. Weight function of exponential growth rate:

A. Mielke, S. Zelik.

Multi-pulse evolution and space-time chaos in dissipative systems, 2009. Semigroup theory:

K.-J. Engel, R. Nagel.

One-parameter semigroups for linear evolution equations, 2000.

References

L^p-dissipativity:

A. Cialdea, V. Maz'ya.

Criteria for the L^{p} -dissipativity of systems of second order differential equations, 2006. Criterion for the L^{p} -dissipativity of second order differential operators with complex coefficients, 2005.

A. Cialdea

Analysis, Partial Differential Equations and Applications, 2009. The L^p -dissipativity of partial differential operators, 2010.

Antieigenvalues:

K. Gustafson.

Antieigenvalue analysis: with applications to numerical analysis, wavelets, statistics, quantum mechanics, finance and optimization, 2012. The angle of an operator and positive operator products, 1968.

K. Gustafson, M. Seddighin.

On the eigenvalues which express antieigenvalues, 2005. A note on total antieigenvectors, 1993. Antieigenvalue bounds, 1989.

Rotating waves:

C. Wulff.

Theory of meandering and drifting spiral waves in reaction-diffusion systems, 1996.

B. Fiedler, A. Scheel.

Spatio-temporal dynamics of reaction-diffusion patterns, 2003.

B. Fiedler, B. Sandstede, A. Scheel, C. Wulff.

Bifurcation from relative equilibria of noncompact group actions: skew products, meanders, and shifts, 1996.

Outline

- $lacksymbol{1}$ Rotating patterns in \mathbb{R}^d
- 2 Spatial decay of rotating waves
- Energy estimates in exponentially weighted L^p-spaces
 - Development of the second second second and the second of the second sec
- **5** Explicit representations of the first antieigenvalue

Energy estimates in exponentially weighted L^{p} -spaces

Theorem 1: (Resolvent estimates in weighted L^{p} -spaces)

Let $A \in \mathbb{C}^{m,m}$ satisfy (A1) for some $1 , let <math>S \in \mathbb{R}^{d,d}$ satisfy (A3), and let $B \in L^{\infty}(\mathbb{R}^{d}, \mathbb{C}^{m,m})$ satisfy the strict accretivity condition

(3)
$$\operatorname{Re}\langle w, B(x)w\rangle \geqslant c_B|w|^2 \ \forall x \in \mathbb{R}^d \ \forall w \in \mathbb{C}^m, \text{ for some } c_B \in \mathbb{R}.$$

Moreover, let $\lambda \in \mathbb{C}$ with $\operatorname{Re}\lambda + c_B > 0$ and let $\theta_1, \theta_2 \in C(\mathbb{R}^d, \mathbb{R})$ be positive with

(4)
$$\theta_1(x) = \exp\left(-\mu_1\sqrt{|x|^2+1}\right) \text{ for } 0 \leqslant |\mu_1| \leqslant \sqrt{\frac{(\operatorname{Re}\lambda + c_B)\gamma_A}{d|A|^2}},$$

(5) $\theta_1(x) \leqslant C\theta_2(x) \ \forall x \in \mathbb{R}^d \text{ for some } C > 0,$

Finally, let $g \in L^{p}_{\theta_{2}}(\mathbb{R}^{d}, \mathbb{C}^{m})$ and $v \in W^{2,p}_{loc}(\mathbb{R}^{d}, \mathbb{C}^{m}) \cap L^{p}_{\theta_{1}}(\mathbb{R}^{d}, \mathbb{C}^{m})$ be a solution of (RE) $(\lambda I - \mathcal{L}_{B}) v = g$ in $L^{p}_{loc}(\mathbb{R}^{d}, \mathbb{C}^{m})$.

Then, v is the unique solution of (RE) in $W_{\text{loc}}^{2,p}(\mathbb{R}^d, \mathbb{C}^m) \cap L^p_{\theta_1}(\mathbb{R}^d, \mathbb{C}^m)$. It holds: **a** $\|v\|_{L^p_{\theta_1}} \leq \frac{2C^{\frac{1}{p}}}{\operatorname{Re}\lambda + c_B} \|g\|_{L^p_{\theta_2}}$, **a** $\|D_iv\|_{L^p_{\theta_1}} \leq \frac{2C^{\frac{1}{p}}\gamma_A^{-\frac{1}{2}}}{(\operatorname{Re}\lambda + c_B)^{\frac{1}{2}}} \|g\|_{L^p_{\theta_2}}$, if 1 ,with <math>C from (5), γ_A from (A1) and c_B from (3).

Cut-off functions: Let $v \in W_{loc}^{2,p} \cap L_{\theta_1}^p$ satisfy (RE) for some $g \in L_{\theta_2}^p$. Introduce cut-off functions: $n \in \mathbb{N}$, n > 0

$$\chi_n(x) = \chi_1\left(\frac{x}{n}\right), \quad \chi_1 \in C_c^{\infty}(\mathbb{R}^d, \mathbb{R}), \quad \chi_1(x) = \begin{cases} 1 & , \ |x| \leq 1, \\ \in [0, 1], \text{ smooth } & , \ 1 < |x| < 2, \\ 0 & , \ |x| \geq 2. \end{cases}$$

(RE)
$$g = (\lambda I - \mathcal{L}_B)v = \lambda v - A \triangle v - \langle Sx, \nabla v \rangle + B(x)v$$

Cut-off functions: Let $v \in W_{loc}^{2,p} \cap L_{\theta_1}^p$ satisfy (RE) for some $g \in L_{\theta_2}^p$. Introduce cut-off functions: $n \in \mathbb{N}$, n > 0

$$\chi_n(x) = \chi_1\left(\frac{x}{n}\right), \ \chi_1 \in C_c^{\infty}(\mathbb{R}^d, \mathbb{R}), \ \chi_1(x) = \begin{cases} 1 & , \ |x| \leq 1, \\ \in [0, 1], \text{ smooth } & , \ 1 < |x| < 2, \\ 0 & , \ |x| \ge 2. \end{cases}$$

(RE)
$$g = (\lambda I - \mathcal{L}_B)v = \lambda v - A \triangle v - \langle Sx, \nabla v \rangle + B(x)v$$

Step 1: Multiply (RE) by $\chi_n^2 \theta_1 \overline{v}^\top |v|^{p-2}$, integrate over \mathbb{R}^d , and take real parts

$$\chi_n^2 \theta_1 |\mathbf{v}|^{p-2} \overline{\mathbf{v}}^\top g = \lambda \qquad \chi_n^2 \theta_1 |\mathbf{v}|^p - \chi_n^2 \theta_1 \overline{\mathbf{v}}^\top |\mathbf{v}|^{p-2} A \triangle \mathbf{v}$$
$$- \chi_n^2 \theta_1 \overline{\mathbf{v}}^\top |\mathbf{v}|^{p-2} \sum_{j=1}^d (Sx)_j D_j \mathbf{v}$$
$$+ \chi_n^2 \theta_1 \overline{\mathbf{v}}^\top |\mathbf{v}|^{p-2} B \mathbf{v}.$$

Cut-off functions: Let $v \in W_{loc}^{2,p} \cap L_{\theta_1}^p$ satisfy (RE) for some $g \in L_{\theta_2}^p$. Introduce cut-off functions: $n \in \mathbb{N}$, n > 0

$$\chi_n(x) = \chi_1\left(\frac{x}{n}\right), \quad \chi_1 \in C_c^{\infty}(\mathbb{R}^d, \mathbb{R}), \quad \chi_1(x) = \begin{cases} 1 & , \ |x| \leq 1, \\ \in [0, 1], \text{ smooth } & , \ 1 < |x| < 2, \\ 0 & , \ |x| \geq 2. \end{cases}$$

(RE)
$$g = (\lambda I - \mathcal{L}_B)v = \lambda v - A \triangle v - \langle Sx, \nabla v \rangle + B(x)v$$

Step 1: Multiply (RE) by $\chi_n^2 \theta_1 \overline{v}^\top |v|^{p-2}$, integrate over \mathbb{R}^d , and take real parts

$$\begin{split} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \, |v|^{p-2} \, \overline{v}^\top g &= \lambda \, \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \, |v|^p - \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \overline{v}^\top \, |v|^{p-2} \, A \triangle v \\ &- \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \overline{v}^\top \, |v|^{p-2} \sum_{j=1}^d (Sx)_j D_j v \\ &+ \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \overline{v}^\top \, |v|^{p-2} \, Bv. \end{split}$$

Cut-off functions: Let $v \in W_{loc}^{2,p} \cap L_{\theta_1}^p$ satisfy (RE) for some $g \in L_{\theta_2}^p$. Introduce cut-off functions: $n \in \mathbb{N}$, n > 0

$$\chi_n(x) = \chi_1\left(\frac{x}{n}\right), \quad \chi_1 \in C_c^{\infty}(\mathbb{R}^d, \mathbb{R}), \quad \chi_1(x) = \begin{cases} 1 & , |x| \leq 1, \\ \in [0, 1], \text{ smooth } & , 1 < |x| < 2, \\ 0 & , |x| \geq 2. \end{cases}$$

(RE)
$$g = (\lambda I - \mathcal{L}_B)v = \lambda v - A \triangle v - \langle Sx, \nabla v \rangle + B(x)v$$

Step 1: Multiply (RE) by $\chi_n^2 \theta_1 \overline{v}^\top |v|^{p-2}$, integrate over \mathbb{R}^d , and take real parts

$$\begin{split} \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \, |v|^{p-2} \, \overline{v}^\top g = (\operatorname{Re}\lambda) \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \, |v|^p - \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \overline{v}^\top \, |v|^{p-2} \, A \triangle v \\ &- \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \overline{v}^\top \, |v|^{p-2} \sum_{j=1}^d (Sx)_j D_j v \\ &+ \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \overline{v}^\top \, |v|^{p-2} \, Bv. \end{split}$$

Step 1:
Re
$$\int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^{p-2} \overline{v}^\top g = (\operatorname{Re}\lambda) \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^p - \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \overline{v}^\top |v|^{p-2} A \Delta v$$

 $-\operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \overline{v}^\top |v|^{p-2} \sum_{j=1}^d (Sx)_j D_j v + \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \overline{v}^\top |v|^{p-2} Bv.$
Step 2: Rewrite the 3rd term on the RHS. (A3) and integration by parts imply
 $0 = \frac{1}{p} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 (\sum_{j=1}^d S_{jj}) |v|^p = \frac{1}{p} \sum_{j=1}^d \int_{\mathbb{R}^d} \chi_n^2 D_j ((Sx)_j) \theta_1 |v|^p$
 $= -\frac{2}{p} \sum_{j=1}^d \int_{\mathbb{R}^d} \chi_n (D_j \chi_n) (Sx)_j \theta_1 |v|^p - \sum_{j=1}^d \int_{\mathbb{R}^d} \chi_n^2 \theta_1 (Sx)_j \operatorname{Re} \left(\overline{D_j v}^\top v\right) |v|^{p-2}$
 $-\frac{1}{p} \sum_{j=1}^d \int_{\mathbb{R}^d} \chi_n^2 (Sx)_j (D_j \theta_1) |v|^p \quad (\text{use: } D_j (|v|^p) = p |v|^{p-2} \operatorname{Re}(\overline{D_j v}^\top v))$
 $= -\frac{2}{p} \int_{\mathbb{R}^d} \chi_n \theta_1 |v|^p \sum_{j=1}^d (D_j \chi_n) (Sx)_j - \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \overline{v}^\top |v|^{p-2} \sum_{j=1}^d (Sx)_j D_j v$
 $-\frac{1}{p} \int_{\mathbb{R}^d} \chi_n^2 |v|^p \sum_{j=1}^d (Sx)_j (D_j \theta_1).$

Step 2:
Re
$$\int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^{p-2} \overline{v}^\top g = (\operatorname{Re}\lambda) \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^p - \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \overline{v}^\top |v|^{p-2} A \Delta v$$

 $+ \frac{2}{p} \int_{\mathbb{R}^d} \chi_n \theta_1 |v|^p \sum_{j=1}^d (D_j \chi_n) (Sx)_j + \frac{1}{p} \int_{\mathbb{R}^d} \chi_n^2 |v|^p \sum_{j=1}^d (Sx)_j (D_j \theta_1)$
 $+ \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \overline{v}^\top |v|^{p-2} Bv.$

Step 2:
Re
$$\int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^{p-2} \overline{v}^\top g = (\operatorname{Re}\lambda) \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^p - \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \overline{v}^\top |v|^{p-2} A \Delta v$$

 $+ \frac{2}{p} \int_{\mathbb{R}^d} \chi_n \theta_1 |v|^p \sum_{j=1}^d (D_j \chi_n) (Sx)_j + \frac{1}{p} \int_{\mathbb{R}^d} \chi_n^2 |v|^p \sum_{j=1}^d (Sx)_j (D_j \theta_1)$
 $+ \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \overline{v}^\top |v|^{p-2} Bv.$
Step 3: To the 2nd term apply the following formula with $\Omega = B_{2n}(0), \eta = \chi_n^2 \theta_1$
 $- \operatorname{Re} \int_{\Omega} \eta \overline{v}^\top |v|^{p-2} A \Delta v$
 $\geq \operatorname{Re} \int_{\Omega} \eta |v|^{p-2} \sum_{j=1}^d \overline{D_j v}^\top A D_j v \mathbb{1}_{v \neq 0} + \operatorname{Re} \int_{\Omega} \overline{v}^\top |v|^{p-2} \sum_{j=1}^d D_j \eta A D_j v$
 $+ (p-2) \operatorname{Re} \int_{\Omega} \eta |v|^{p-4} \sum_{j=1}^d \operatorname{Re} \left(\overline{D_j v}^\top v\right) \overline{v}^\top A D_j v \mathbb{1}_{v \neq 0}.$
Note: $\chi_n(x) = 0$, if $|\frac{x}{n}| \geq 2$. $[|v|^q \mathbb{1}_{\{v \neq 0\}}](x) = \begin{cases} |v(x)|^q, & |v(x)| > 0, \\ 0, & v(x) = 0, \end{cases}$ if $q < 0.$

Step 3:
Re
$$\int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^{p-2} \nabla^\top g \ge (\operatorname{Re}\lambda) \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^p + \frac{2}{p} \int_{\mathbb{R}^d} \chi_n \theta_1 |v|^p \sum_{j=1}^d (D_j \chi_n) (Sx)_j$$

 $+ \frac{1}{p} \int_{\mathbb{R}^d} \chi_n^2 |v|^p \sum_{j=1}^d (Sx)_j (D_j \theta_1) + \operatorname{Re} \int_{\mathbb{R}^d} 2\chi_n \theta_1 \overline{v}^\top |v|^{p-2} \sum_{j=1}^d D_j \chi_n A D_j v$
 $+ \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \overline{v}^\top |v|^{p-2} \sum_{j=1}^d (D_j \theta_1) A D_j v + \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^{p-2} \sum_{j=1}^d \overline{D_j v}^\top A D_j v \mathbb{1}_{v \neq 0}$
 $+ (p-2) \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^{p-4} \sum_{j=1}^d \operatorname{Re} \left(\overline{D_j v}^\top v\right) \overline{v}^\top A D_j v \mathbb{1}_{v \neq 0} + \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \overline{v}^\top |v|^{p-2} B v.$

Step 3:
Re
$$\int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^{p-2} \overline{v}^\top g \ge (\operatorname{Re}\lambda) \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^p + \frac{2}{p} \int_{\mathbb{R}^d} \chi_n \theta_1 |v|^p \sum_{j=1}^d (D_j \chi_n) (Sx)_j$$

 $+ \frac{1}{p} \int_{\mathbb{R}^d} \chi_n^2 |v|^p \sum_{j=1}^d (Sx)_j (D_j \theta_1) + \operatorname{Re} \int_{\mathbb{R}^d} 2\chi_n \theta_1 \overline{v}^\top |v|^{p-2} \sum_{j=1}^d D_j \chi_n A D_j v$
 $+ \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \overline{v}^\top |v|^{p-2} \sum_{j=1}^d (D_j \theta_1) A D_j v + \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^{p-2} \sum_{j=1}^d \overline{D_j v}^\top A D_j v \mathbb{1}_{v \neq 0}$
 $+ (p-2) \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^{p-4} \sum_{j=1}^d \operatorname{Re} \left(\overline{D_j v}^\top v\right) \overline{v}^\top A D_j v \mathbb{1}_{v \neq 0} + \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \overline{v}^\top |v|^{p-2} B v.$

Step 4: Substract the 2nd, 3rd, 4th and 5th term of the RHS.

Step 4:

$$(\operatorname{Re}\lambda) \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p} + \operatorname{Re} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} \sum_{j=1}^{d} \overline{D_{j}} v^{\top} A D_{j} v \mathbb{1}_{v \neq 0}$$

$$+ (p-2) \operatorname{Re} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-4} \sum_{j=1}^{d} \operatorname{Re} \left(\overline{D_{j}} v^{\top} v\right) \overline{v}^{\top} A D_{j} v \mathbb{1}_{v \neq 0} + \operatorname{Re} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} \overline{v}^{\top} |v|^{p-2} B v$$

$$\leq \operatorname{Re} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} \overline{v}^{\top} g - \operatorname{Re} \int_{\mathbb{R}^{d}} 2 \chi_{n} \theta_{1} \overline{v}^{\top} |v|^{p-2} \sum_{j=1}^{d} D_{j} \chi_{n} A D_{j} v$$

$$- \frac{2}{p} \int_{\mathbb{R}^{d}} \chi_{n} \theta_{1} |v|^{p} \sum_{j=1}^{d} (D_{j} \chi_{n}) (Sx)_{j} - \frac{1}{p} \int_{\mathbb{R}^{d}} \chi_{n}^{2} |v|^{p} \sum_{j=1}^{d} (Sx)_{j} (D_{j} \theta_{1})$$

$$- \operatorname{Re} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \overline{v}^{\top} |v|^{p-2} \sum_{j=1}^{d} (D_{j} \theta_{1}) A D_{j} v.$$

Step 4:

$$(\operatorname{Re}\lambda) \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p} + \operatorname{Re} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} \sum_{j=1}^{d} \overline{D_{j}v}^{\top} A D_{j} v \mathbb{1}_{v \neq 0}$$

$$+ (p-2) \operatorname{Re} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-4} \sum_{j=1}^{d} \operatorname{Re} \left(\overline{D_{j}v}^{\top} v\right) \overline{v}^{\top} A D_{j} v \mathbb{1}_{v \neq 0} + \operatorname{Re} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} \overline{v}^{\top} |v|^{p-2} B v$$

$$\leq \operatorname{Re} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} \overline{v}^{\top} g - \operatorname{Re} \int_{\mathbb{R}^{d}} 2\chi_{n} \theta_{1} \overline{v}^{\top} |v|^{p-2} \sum_{j=1}^{d} D_{j} \chi_{n} A D_{j} v$$

$$- \frac{2}{p} \int_{\mathbb{R}^{d}} \chi_{n} \theta_{1} |v|^{p} \sum_{j=1}^{d} (D_{j} \chi_{n}) (Sx)_{j} - \frac{1}{p} \int_{\mathbb{R}^{d}} \chi_{n}^{2} |v|^{p} \sum_{j=1}^{d} (Sx)_{j} (D_{j} \theta_{1})$$

$$-\operatorname{Re} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \overline{v}^{\top} |v|^{p-2} \sum_{j=1}^{d} (D_{j} \theta_{1}) A D_{j} v.$$

Step 4: Write the LHS in terms of inner products.

$$\begin{aligned} & \operatorname{Step 4:}_{(\operatorname{Re}\lambda)} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^p + \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^{p-2} \operatorname{Re} \langle v, Bv \rangle \\ & + \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^{p-4} \mathbb{1}_{\{v \neq 0\}} \sum_{j=1}^d \left[|v|^2 \operatorname{Re} \langle D_j v, AD_j v \rangle + (p-2) \operatorname{Re} \langle D_j v, v \rangle \operatorname{Re} \langle v, AD_j v \rangle \right] \\ & \leq \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^{p-2} \overline{v}^\top g - \operatorname{Re} \int_{\mathbb{R}^d} 2\chi_n \theta_1 \overline{v}^\top |v|^{p-2} \sum_{j=1}^d D_j \chi_n AD_j v \\ & - \frac{2}{p} \int_{\mathbb{R}^d} \chi_n \theta_1 |v|^p \sum_{j=1}^d (D_j \chi_n) (Sx)_j - \frac{1}{p} \int_{\mathbb{R}^d} \chi_n^2 |v|^p \sum_{j=1}^d (Sx)_j (D_j \theta_1) \\ & - \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \overline{v}^\top |v|^{p-2} \sum_{j=1}^d (D_j \theta_1) AD_j v. \end{aligned}$$

$$\begin{aligned} & \operatorname{Step 4:}_{(\operatorname{Re}\lambda)} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^p + \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^{p-2} \operatorname{Re} \langle v, Bv \rangle \\ & + \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^{p-4} \mathbb{1}_{\{v \neq 0\}} \sum_{j=1}^d \left[|v|^2 \operatorname{Re} \langle D_j v, AD_j v \rangle + (p-2) \operatorname{Re} \langle D_j v, v \rangle \operatorname{Re} \langle v, AD_j v \rangle \right] \\ & \leq \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^{p-2} \overline{v}^\top g - \operatorname{Re} \int_{\mathbb{R}^d} 2\chi_n \theta_1 \overline{v}^\top |v|^{p-2} \sum_{j=1}^d D_j \chi_n AD_j v \\ & - \frac{2}{p} \int_{\mathbb{R}^d} \chi_n \theta_1 |v|^p \sum_{j=1}^d (D_j \chi_n) (Sx)_j - \frac{1}{p} \int_{\mathbb{R}^d} \chi_n^2 |v|^p \sum_{j=1}^d (Sx)_j (D_j \theta_1) \\ & - \operatorname{Re} \int_{\mathbb{R}^d} \chi_n^2 \overline{v}^\top |v|^{p-2} \sum_{j=1}^d (D_j \theta_1) AD_j v =: \sum_{j=1}^5 T_j. \end{aligned}$$

Step 5: Next estimate the terms T_1, \ldots, T_5 successively.

Estimate on T_1 : $T_1 = \operatorname{Re} \int_{\mathbb{T}^d} \chi_n^2 \theta_1 \left| v \right|^{p-2} \overline{v}^\top g$ Apply $\operatorname{Re} z \leq |z|$, (5) (i.e. $\theta_1(x) \leq C\theta_2(x) \ \forall x \in \mathbb{R}^d$), and Hölder's inequality $T_{1} = \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} \left| v \right|^{p-2} \operatorname{Re} \left(\overline{v}^{T} g \right) \leqslant \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} \left| v \right|^{p-1} \left| g \right|$ $\leq \left(\int_{\mathbb{R}^d} \left(\chi_n^{\frac{2(p-1)}{p}} \theta_1^{\frac{p-1}{p}} \left|v\right|^{p-1}\right)^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^d} \left(\chi_n^{\frac{2}{p}} \theta_1^{\frac{1}{p}} \left|g\right|\right)^p\right)^{\frac{1}{p}}$ $\leq C^{\frac{1}{p}} \left(\int_{\mathbb{T}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p} \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{T}^{d}} \chi_{n}^{2} \theta_{2} |g|^{p} \right)^{\frac{1}{p}}.$ Hölder's inequality: If $f \in L^p(\mathbb{R}^d)$, $g \in L^q(\mathbb{R}^d)$, $1 = \frac{1}{p} + \frac{1}{q}$, $p, q \in [1, \infty]$, then $fg \in L^1(\mathbb{R}^d)$ and $\left\|fg\right\|_{L^{1}}=\int_{\mathbb{T}^{d}}\left|fg\right|\leqslant\left(\int_{\mathbb{T}^{d}}\left|f\right|^{p}\right)^{\frac{1}{p}}\left(\int_{\mathbb{T}^{d}}\left|g\right|^{q}\right)^{\frac{1}{q}}=\left\|f\right\|_{L^{p}}\left\|g\right\|_{L^{q}}.$

Estimate on T_2 : $T_2 = -\operatorname{Re} \int_{\mathbb{R}^d} 2\chi_n \theta_1 \overline{v}^\top |v|^{p-2} \sum_{i=1}^d D_j \chi_n A D_j v$ Apply Hölder's inequality with p = q = 2 and Young's inequality with $\delta > 0$ $T_{2} \leq 2|A| \int_{\mathbb{R}^{d}} \chi_{n} \theta_{1} |v|^{p-1} \sum_{i=1}^{d} |D_{j}\chi_{n}| |D_{j}v| \leq \frac{2|A| \|\chi_{1}\|_{1,\infty}}{n} \sum_{i=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n} \theta_{1} |D_{j}v| |v|^{p-1}$ $\leq \frac{2|A|\|\chi_{1}\|_{1,\infty}}{n} \sum_{i=1}^{d} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} \left| D_{j} v \right|^{2} \left| v \right|^{p-2} \mathbb{1}_{\{v \neq 0\}} \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^{d}} \theta_{1} \left| v \right|^{p} \right)^{\frac{1}{2}}$ $\leq \frac{2|A|\|\chi_{1}\|_{1,\infty}\delta}{n} \sum_{i=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |D_{j}v|^{2} |v|^{p-2} \mathbb{1}_{\{v\neq 0\}} + \frac{2d|A|\|\chi_{1}\|_{1,\infty}}{4n\delta} \int_{\mathbb{R}^{d}} \theta_{1} |v|^{p}.$ Here we used that for every $x \in \mathbb{R}^d$ and $j = 1, \ldots, d$ $|D_j\chi_n(x)| = \left|D_j\left(\chi_1\left(\frac{x}{n}\right)\right)\right| \leq \frac{1}{n} \max_{j=1,\ldots,d} \max_{y \in \mathbb{R}^d} |D_j\chi_1(y)| = \frac{\|\chi_1\|_{1,\infty}}{n}.$

Estimate on T_3 : $T_3 = -\frac{2}{p} \int_{\mathbb{R}^d} \chi_n \theta_1 |v|^p \sum_{i=1}^d (D_j \chi_n) (Sx)_j$ Use $\chi_n(x) = 0$ for $|x| \ge 2n$ and $D_i\chi_n(x) = 0$ for $|x| \le n$ $T_{3} \leqslant \frac{2}{p} \sum_{i=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n} \theta_{1} |v|^{p} |(Sx)_{j}| |D_{j}\chi_{n}|$ $= \frac{2}{p} \sum_{i=1}^{d} \int_{n \le |x| \le 2n} \chi_{n} \theta_{1} |v|^{p} |(Sx)_{j}| |D_{j}\chi_{n}| \le \frac{4d |S| \|\chi_{1}\|_{1,\infty}}{p} \int_{n \le |x| \le 2n} \theta_{1} |v|^{p}.$ For the last estimate note that $\chi_n(x) \leq 1$ and $|(Sx)_j| |D_j\chi_n(x)| = \frac{1}{n} |(Sx)_j| \left| (D_j\chi_1) \left(\frac{x}{n}\right) \right| \leq \frac{1}{n} |S||x| \left| (D_j\chi_1) \left(\frac{x}{n}\right) \right|$ $\leq \frac{|S|}{n} \Big(\sup_{n < |\mathcal{E}| < 2n} |\xi| \Big) \max_{j=1,\ldots,d} \max_{y \in \mathbb{R}^d} |D_j \chi_1(y)| = 2 |S| \|\chi_1\|_{1,\infty}.$

Estimate on T_4 :

 $T_4 = -\frac{1}{\rho} \int_{\mathbb{R}^d} \chi_n^2 |v|^\rho \sum_{j=1}^d (Sx)_j (D_j \theta_1)$

The 4th term vanishes due to (4) and (A3)

$$T_{4} = -\frac{1}{\rho} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \frac{-\mu_{1}}{\sqrt{|x|^{2}+1}} \theta_{1} |v|^{\rho} \underbrace{\sum_{j=1}^{d} x_{j}(Sx)_{j}}_{=x^{\top} Sx=0} = 0.$$

Note that skew-symmetry of $S \in \mathbb{R}^{d,d}$ from (A3) implies

$$x^{\top}Sx = \frac{1}{2}x^{\top}Sx + \frac{1}{2}(x^{\top}Sx)^{\top} = \frac{1}{2}x^{\top}(S+S^{\top})x = 0, x \in \mathbb{R}^{d}.$$

Estimate on T_5 : $T_5 = -\text{Re} \int_{\mathbb{R}^d} \chi_n^2 \overline{v}^\top |v|^{p-2} \sum_{i=1}^d (D_i \theta_1) A D_i v$ Apply $\operatorname{Re} z \leq |z|$, Hölder's inequality with p = q = 2 and Young's inequality with some $\rho > 0$, (4) and $|\mu_1| \leq \mu_0$ for some $\mu_0 \ge 0$ that will be specified below $T_{5} \leq \int_{\mathbb{R}^{d}} \chi_{n}^{2} |v|^{p-1} \sum_{i=1}^{d} \left| \frac{-\mu_{1} x_{j}}{\sqrt{|x|^{2}+1}} \right| \theta_{1} |A| |D_{j} v| \leq |\mu_{1}| |A| \sum_{i=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-1} |D_{j} v| \right|$ $\leq |\mu_{1}||A| \sum_{i=1}^{d} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} |D_{j}v|^{2} \mathbb{1}_{\{v \neq 0\}} \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p} \right)^{\frac{1}{2}}$ $\leq \frac{\mu_{0}|A|}{4\rho} \sum_{i=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} |D_{j}v|^{2} \mathbb{1}_{\{v \neq 0\}} + \mu_{0}|A|\rho d \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p}.$

Step 5: Summarizing, we arrive at the following estimate

$$(\operatorname{Re}\lambda) \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p} + \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} \operatorname{Re} \langle v, Bv \rangle$$

$$+ \sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-4} \mathbb{1}_{\{v \neq 0\}} \left[|v|^{2} \operatorname{Re} \langle D_{j}v, AD_{j}v \rangle + (p-2) \operatorname{Re} \langle D_{j}v, v \rangle \operatorname{Re} \langle v, AD_{j}v \rangle \right]$$

$$\leq C^{\frac{1}{p}} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p} \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{2} |g|^{p} \right)^{\frac{1}{p}} + \frac{2d|A| ||\chi_{1}||_{1,\infty}}{4n\delta} \int_{\mathbb{R}^{d}} \theta_{1} |v|^{p}$$

$$+ \frac{4d|S| ||\chi_{1}||_{1,\infty}}{p} \int_{n \leq |x| \leq 2n} \theta_{1} |v|^{p} + \frac{2|A| ||\chi_{1}||_{1,\infty}}{n} \frac{\delta}{2} \sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} |D_{j}v|^{2} \mathbb{1}_{\{v \neq 0\}}$$

$$+ \frac{\mu_{0}|A|}{4\rho} \sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} |D_{j}v|^{2} \mathbb{1}_{\{v \neq 0\}} + \mu_{0}|A|\rho d \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p}.$$

Step 5:

$$(\operatorname{Re}\lambda) \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p} + \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} \operatorname{Re} \langle v, Bv \rangle$$

$$+ \sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-4} \mathbb{1}_{\{v \neq 0\}} \left[|v|^{2} \operatorname{Re} \langle D_{j}v, AD_{j}v \rangle + (p-2) \operatorname{Re} \langle D_{j}v, v \rangle \operatorname{Re} \langle v, AD_{j}v \rangle \right]$$

$$\leq C^{\frac{1}{p}} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p} \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{2} |g|^{p} \right)^{\frac{1}{p}} + \frac{2d|A| \|\chi_{1}\|_{1,\infty}}{4n\delta} \int_{\mathbb{R}^{d}} \theta_{1} |v|^{p}$$

$$+ \frac{4d |S| \|\chi_{1}\|_{1,\infty}}{p} \int_{n \leq |x| \leq 2n} \theta_{1} |v|^{p} + \frac{2|A| \|\chi_{1}\|_{1,\infty}}{n} \delta \sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} |D_{j}v|^{2} \mathbb{1}_{\{v \neq 0\}}$$

$$+ \frac{\mu_{0}|A|}{4\rho} \sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} |D_{j}v|^{2} \mathbb{1}_{\{v \neq 0\}} + \mu_{0} |A| \rho d \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p}.$$

$$\bullet L^{p} \text{-dissipativity for } A \in \mathbb{C}^{m,m} \text{: There is } \gamma_{A} > 0 \text{ such that}$$

$$(A1) \quad |z|^{2} \operatorname{Re} \langle w, Aw \rangle + (p-2) \operatorname{Re} \langle w, z \rangle \operatorname{Re} \langle z, Aw \rangle \geqslant \gamma_{A} |z|^{2} |w|^{2} \forall z, w \in \mathbb{C}^{m}$$

$$\bullet \text{ strict accretivity for } B \in L^{\infty} (\mathbb{R}^{d}, \mathbb{C}^{m,m}) \text{: There is } c_{B} \in \mathbb{R} \text{ such that}$$

$$(3) \qquad \operatorname{Re} \langle v, B(x)v \rangle \geqslant c_{B} |v|^{2} \forall x \in \mathbb{R}^{d} \forall v \in \mathbb{C}^{m}$$

Step 5:

$$(\operatorname{Re}\lambda + c_{B}) \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p} + \gamma_{A} \sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} |D_{j}v|^{2} \mathbb{1}_{\{v \neq 0\}}$$

$$\leq C^{\frac{1}{p}} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p} \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{2} |g|^{p} \right)^{\frac{1}{p}} + \frac{2d|A| \|\chi_{1}\|_{1,\infty}}{4n\delta} \int_{\mathbb{R}^{d}} \theta_{1} |v|^{p} + \frac{4d|S| \|\chi_{1}\|_{1,\infty}}{p} \int_{n \leq |x| \leq 2n} \theta_{1} |v|^{p} + \frac{2|A| \|\chi_{1}\|_{1,\infty}}{n} \sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} |D_{j}v|^{2} \mathbb{1}_{\{v \neq 0\}} + \frac{\mu_{0}|A|}{4\rho} \sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} |D_{j}v|^{2} \mathbb{1}_{\{v \neq 0\}} + \mu_{0}|A|\rho d \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p}.$$

$$\begin{aligned} \text{Step 5:} \\ &(\text{Re}\lambda + c_B) \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \, |v|^p \\ &+ \gamma_A \sum_{j=1}^d \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \, |v|^{p-2} \, |D_j v|^2 \, \mathbb{1}_{\{v \neq 0\}} \\ &\leqslant C^{\frac{1}{p}} \left(\int_{\mathbb{R}^d} \chi_n^2 \theta_1 \, |v|^p \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^d} \chi_n^2 \theta_2 \, |g|^p \right)^{\frac{1}{p}} + \frac{2d|A| \, \|\chi_1\|_{1,\infty}}{4n\delta} \int_{\mathbb{R}^d} \theta_1 \, |v|^p \\ &+ \frac{4d \, |S| \, \|\chi_1\|_{1,\infty}}{p} \int_{n\leqslant |x|\leqslant 2n} \theta_1 \, |v|^p + \frac{2|A| \, \|\chi_1\|_{1,\infty}}{n} \sum_{j=1}^d \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \, |v|^{p-2} \, |D_j v|^2 \, \mathbb{1}_{\{v\neq 0\}} \\ &+ \frac{\mu_0 |A|}{4\rho} \sum_{j=1}^d \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \, |v|^{p-2} \, |D_j v|^2 \, \mathbb{1}_{\{v\neq 0\}} + \mu_0 |A| \rho d \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \, |v|^p. \end{aligned}$$

Subtracting the 4th, 5th and 6th term of the RHS.

Step 5:

$$(\operatorname{Re}\lambda + c_{B} - \mu_{0}|A|\rho d) \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p} + \left(\gamma_{A} - \frac{\mu_{0}|A|}{4\rho} - \frac{2|A| \|\chi_{1}\|_{1,\infty} \delta}{n}\right) \sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} |D_{j}v|^{2} \mathbb{1}_{\{v \neq 0\}} \leq C^{\frac{1}{p}} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p}\right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{2} |g|^{p}\right)^{\frac{1}{p}} + \frac{2d|A| \|\chi_{1}\|_{1,\infty}}{4n\delta} \int_{\mathbb{R}^{d}} \theta_{1} |v|^{p} + \frac{4d|S| \|\chi_{1}\|_{1,\infty}}{p} \int_{n \leq |x| \leq 2n} \theta_{1} |v|^{p}$$

Step 5:

$$(\operatorname{Re}\lambda + c_{B} - \mu_{0}|A|\rho d) \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p} + \left(\gamma_{A} - \frac{\mu_{0}|A|}{4\rho} - \frac{2|A| \|\chi_{1}\|_{1,\infty} \delta}{n}\right) \sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} |D_{j}v|^{2} \mathbb{1}_{\{v\neq 0\}}$$

$$\leq C^{\frac{1}{p}} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p}\right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{2} |g|^{p}\right)^{\frac{1}{p}} + \frac{2d|A| \|\chi_{1}\|_{1,\infty}}{4n\delta} \int_{\mathbb{R}^{d}} \theta_{1} |v|^{p} + \frac{4d |S| \|\chi_{1}\|_{1,\infty}}{p} \int_{n \leq |x| \leq 2n} \theta_{1} |v|^{p}$$

$$(\operatorname{Choose} \rho = \sqrt{\frac{\operatorname{Re}\lambda + c_{B}}{4d\gamma_{A}}}, \ \mu_{0} = \sqrt{\frac{(\operatorname{Re}\lambda + c_{B})\gamma_{A}}{d|A|^{2}}} \text{ so that}$$

$$\operatorname{Re}\lambda + c_{B} - \mu_{0}|A|\rho d = \frac{\operatorname{Re}\lambda + c_{B}}{2} \quad \text{and} \quad \gamma_{A} - \frac{\mu_{0}|A|}{4\rho} = \frac{\gamma_{A}}{2}.$$

Step 5:

$$\begin{split} &\frac{\operatorname{Re}\lambda + c_{B}}{2} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p} \\ &+ \left(\frac{\gamma_{A}}{2} - \frac{2|A| \|\chi_{1}\|_{1,\infty} \delta}{n}\right) \sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p-2} |D_{j}v|^{2} \mathbb{1}_{\{v \neq 0\}} \\ &\leqslant C^{\frac{1}{p}} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p}\right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{2} |g|^{p}\right)^{\frac{1}{p}} + \frac{2d|A| \|\chi_{1}\|_{1,\infty}}{4n\delta} \int_{\mathbb{R}^{d}} \theta_{1} |v|^{p} \\ &+ \frac{4d \|S\| \|\chi_{1}\|_{1,\infty}}{p} \int_{n \leq |x| \leq 2n} \theta_{1} |v|^{p} \end{split}$$

Step 5:

$$\begin{split} & \frac{\operatorname{Re}\lambda + c_B}{2} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \, |v|^p \\ & + \left(\frac{\gamma_A}{2} - \frac{2|A| \, \|\chi_1\|_{1,\infty} \, \delta}{n}\right) \sum_{j=1}^d \int_{\mathbb{R}^d} \chi_n^2 \theta_1 \, |v|^{p-2} \, |D_j v|^2 \, \mathbbm{1}_{\{v \neq 0\}} \\ & \leq C^{\frac{1}{p}} \left(\int_{\mathbb{R}^d} \chi_n^2 \theta_1 \, |v|^p \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^d} \chi_n^2 \theta_2 \, |g|^p \right)^{\frac{1}{p}} + \frac{2d|A| \, \|\chi_1\|_{1,\infty}}{4n\delta} \int_{\mathbb{R}^d} \theta_1 \, |v|^p \\ & + \frac{4d \, |S| \, \|\chi_1\|_{1,\infty}}{p} \int_{n \leq |x| \leq 2n} \theta_1 \, |v|^p \end{split}$$

Step 6: Apply **Fatou's lemma** & **Lebesgue's dominated convergence theorem**. 6.a. Apply limit inferior as $n \to \infty$ on both sides 6.b. Apply Lebesgue's dominated convergence to the integrals on the RHS. 6.c. Apply Fatou to the integrals on the LHS. **Note:** Assumptions of **Fatou** are satisfied thanks to **Lebesgue**!!!

$$\begin{aligned} & \textbf{Step 6.c: Apply Fatou's lemma (F)} \\ & \frac{\operatorname{Re}\lambda + c_B}{2} \int_{\mathbb{R}^d} \theta_1 |v|^p + \frac{\gamma_A}{2} \sum_{j=1}^d \int_{\mathbb{R}^d} \theta_1 |v|^{p-2} |D_j v|^2 \mathbb{1}_{\{v \neq 0\}} \\ & = \frac{\operatorname{Re}\lambda + c_B}{2} \int_{\mathbb{R}^d} \liminf_{n \to \infty} \chi_n^2 \theta_1 |v|^p + \sum_{j=1}^d \int_{\mathbb{R}^d} \liminf_{n \to \infty} \left(\frac{\gamma_A}{2} - \frac{2|A| ||\chi_1||_{1,\infty}\delta}{n} \right) \chi_n^2 \theta_1 |v|^{p-2} |D_j v|^2 \mathbb{1}_{\{v \neq 0\}} \\ & \overset{\text{F}}{\leq} \liminf_{n \to \infty} \left[\frac{\operatorname{Re}\lambda + c_B}{2} \int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^p + \sum_{j=1}^d \int_{\mathbb{R}^d} \left(\frac{\gamma_A}{2} - \frac{2|A| ||\chi_1||_{1,\infty}\delta}{n} \right) \chi_n^2 \theta_1 |v|^{p-2} |D_j v|^2 \mathbb{1}_{\{v \neq 0\}} \right] \\ & \overset{5}{\leq} \liminf_{n \to \infty} \left[C^{\frac{1}{p}} \left(\int_{\mathbb{R}^d} \chi_n^2 \theta_1 |v|^p \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^d} \chi_n^2 \theta_2 |g|^p \right)^{\frac{1}{p}} + \frac{2d|A| ||\chi_1||_{1,\infty}}{4n\delta} \int_{\mathbb{R}^d} \theta_1 |v|^p \\ & + \frac{4d|S| ||\chi_1||_{1,\infty}}{p} \int_{n \leqslant |x| \leqslant 2n} \theta_1 |v|^p \right] \\ & \overset{\text{E}}{=} C^{\frac{1}{p}} ||v||_{L^p_{\theta_1}}^{p-1} ||g||_{L^p_{\theta_2}} \end{aligned}$$
Fatou's lemma: $f_n \in L^1(S, Y)$, $f_n \ge 0$, $\liminf_{n \to \infty} f_n dx \leqslant \liminf_{n \to \infty} \int_S f_n dx$

$$\begin{aligned} & \operatorname{Step 6.c: Apply Fatou's lemma (F)} \\ & \frac{\operatorname{Re}\lambda + c_{B}}{2} \int_{\mathbb{R}^{d}} \theta_{1} |v|^{p} + \frac{\gamma_{A}}{2} \sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \theta_{1} |v|^{p-2} |D_{j}v|^{2} \mathbb{1}_{\{v \neq 0\}} \\ & = \frac{\operatorname{Re}\lambda + c_{B}}{2} \int_{\mathbb{R}^{d}} \liminf_{n \to \infty} \chi_{n}^{2} \theta_{1} |v|^{p} + \sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \liminf_{n \to \infty} \left(\frac{\gamma_{A}}{2} - \frac{2|A| ||\chi_{1}||_{1,\infty}\delta}{n} \right) \chi_{n}^{2} \theta_{1} |v|^{p-2} |D_{j}v|^{2} \mathbb{1}_{\{v \neq 0\}} \\ & \stackrel{\mathsf{F}}{\leq} \liminf_{n \to \infty} \left[\frac{\operatorname{Re}\lambda + c_{B}}{2} \int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p} + \sum_{j=1}^{d} \int_{\mathbb{R}^{d}} \left(\frac{\gamma_{A}}{2} - \frac{2|A| ||\chi_{1}||_{1,\infty}\delta}{n} \right) \chi_{n}^{2} \theta_{1} |v|^{p-2} |D_{j}v|^{2} \mathbb{1}_{\{v \neq 0\}} \right] \\ & \stackrel{\mathsf{5.}}{\leq} \liminf_{n \to \infty} \left[C^{\frac{1}{p}} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{1} |v|^{p} \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^{d}} \chi_{n}^{2} \theta_{2} |g|^{p} \right)^{\frac{1}{p}} + \frac{2d|A| ||\chi_{1}||_{1,\infty}}{4n\delta} \int_{\mathbb{R}^{d}} \theta_{1} |v|^{p} \\ & + \frac{4d|S|||\chi_{1}||_{1,\infty}}{p} \int_{n \leq |x| \leq 2n} \theta_{1} |v|^{p} \right] \\ & \stackrel{\mathsf{L}}{=} C^{\frac{1}{p}} \|v\|_{L^{p}_{\theta_{1}}}^{p-1} \|g\|_{L^{p}_{\theta_{2}}} \end{aligned}$$
Choose $\delta > 0$ such that $\frac{\gamma_{A}}{2} - 2|A| \|\chi_{1}\|_{1,\infty} \delta > 0$, then
$$\frac{\gamma_{A}}{2} \ge 2|A| \|\chi_{1}\|_{1,\infty} \delta \ge \frac{2|A| \|\chi_{1}\|_{1,\infty}}{n} \forall n \in \mathbb{N} \quad \Rightarrow \quad \frac{\gamma_{A}}{2} - \frac{2|A| \|\chi_{1}\|_{1,\infty}}{n} \gtrless > 0 \end{aligned}$$

Step 6:

$$\frac{\operatorname{Re}\lambda + c_B}{2} \int_{\mathbb{R}^d} \theta_1 |v|^p + \frac{\gamma_A}{2} \sum_{j=1}^d \int_{\mathbb{R}^d} \theta_1 |v|^{p-2} |D_j v|^2 \mathbb{1}_{\{v \neq 0\}} \leqslant C^{\frac{1}{p}} \|v\|_{L^p_{\theta_1}}^{p-1} \|g\|_{L^p_{\theta_2}}$$
Step 7: From Step 6 we obtain

$$\frac{\operatorname{Re}\lambda + c_B}{2} \|v\|_{L^p_{\theta_1}}^p \leqslant \frac{\operatorname{Re}\lambda + c_B}{2} \int_{\mathbb{R}^d} \theta_1 |v|^p + \frac{\gamma_A}{2} \sum_{j=1}^d \int_{\mathbb{R}^d} \theta_1 |v|^{p-2} |D_j v|^2 \mathbb{1}_{\{v \neq 0\}}$$

$$\leqslant C^{\frac{1}{p}} \|v\|_{L^p_{\theta_1}}^{p-1} \|g\|_{L^p_{\theta_2}}$$
Dividing both sides by $\frac{\operatorname{Re}\lambda + c_B}{2}$ and $\|v\|_{L^p_{\theta_1}}^{p-1}$ yields the $L^p_{\theta_1}$ -resolvent estimate

$$\|v\|_{L^p_{\theta_1}} \leqslant \frac{2C^{\frac{1}{p}}}{\operatorname{Re}\lambda + c_B} \|g\|_{L^p_{\theta_2}}$$

Step 7: $L^{p}_{\theta_{1}}$ -resolvent estimate

$$\|v\|_{L^p_{\theta_1}} \leqslant \frac{2C^{\frac{1}{p}}}{\operatorname{Re}\lambda + c_B} \|g\|_{L^p_{\theta_2}}.$$

Unique solvability of $(\lambda I - \mathcal{L}_B)v = g$ in $L^p_{loc}(\mathbb{R}^d, \mathbb{C}^m)$: Let $g \in L^p_{\theta_2}$ and let $v_1, v_2 \in W^{2,p}_{loc} \cap L^p_{\theta_1}$ satisfy

$$(\lambda I - \mathcal{L}_B)v_1 = g, \quad (\lambda I - \mathcal{L}_B)v_2 = g, \quad \text{in } L^p_{\text{loc}}$$

Then $w = v_1 - v_2 \in W^{2,p}_{loc} \cap L^p_{\theta_1}$ satisfies

$$(\lambda I - \mathcal{L}_B)w = 0, \text{ in } L^p_{\text{loc}}.$$

The resolvent estimate implies $\|w\|_{L^p_{\theta_1}} = 0$, thus $v_1 = v_2$ in $L^p_{\theta_1}$, hence in $W^{2,p}_{loc} \cap L^p_{\theta_1}$.

Step 6:

$$\frac{\operatorname{Re}\lambda + c_B}{2} \|v\|_{L_{\theta_1}^p}^p + \frac{\gamma_A}{2} \sum_{j=1}^d \int_{\mathbb{R}^d} \theta_1 |v|^{p-2} |D_j v|^2 \mathbb{1}_{\{v \neq 0\}} \leqslant C^{\frac{1}{p}} \|v\|_{L_{\theta_1}^p}^{p-1} \|g\|_{L_{\theta_2}^p}$$

Step 7:

$$\left\|\mathbf{v}\right\|_{L^{p}_{\theta_{1}}} \leq \frac{2C^{\frac{1}{p}}}{\operatorname{Re}\lambda + c_{B}}\left\|g\right\|_{L^{p}_{\theta_{2}}}.$$

$$\begin{aligned} & \textbf{Step 8: Step 6 implies for any } j = 1, \dots, m \\ & \int_{\mathbb{R}^d} \theta_1 \, |v|^{p-2} \, |D_j v|^2 \, \mathbbm{1}_{\{v \neq 0\}} \leqslant \frac{2C^{\frac{1}{p}}}{\gamma_A} \, \|v\|_{L_{\theta_1}^p}^{p-1} \, \|g\|_{L_{\theta_2}^p} \, . \end{aligned} \\ & \textbf{Since } |D_j v| = |D_j v| \mathbbm{1}_{\{v \neq 0\}} \text{ a.e. we deduce from Hölder's inequality for } 1$$

Applications of Theorem 1

Some applications of Theorem 1:

- $B(x) = B_{\infty}, \ \theta_1(x) = \theta_2(x) = 1$: Identification problem of \mathcal{L}_{∞} in L^p (unweighted L^p -spaces)
- B(x) = B_∞ − Q_s(x): A-priori estimates for solutions v ∈ L^p_{θ1} of (λI − L_Q)v = g for g ∈ L^p_{θ2} (necessary for proving exponential decay).
- $B(x) = B_{\infty}, \ \theta_1(x) = \theta_2(x)$: Identification problem of \mathcal{L}_{∞} in $L^p_{\theta_1}$ (weighted L^p -spaces)

L^p-dissipativity condition:

 $\exists \gamma_{\mathcal{A}} > 0: \ |z|^{2} \mathrm{Re} \langle w, \mathcal{A}w \rangle + (p-2) \mathrm{Re} \langle w, z \rangle \operatorname{Re} \langle z, \mathcal{A}w \rangle \geqslant \gamma_{\mathcal{A}} |z|^{2} |w|^{2} \ \forall w, z \in \mathbb{K}^{m}$

Question: Can we express L^p -dissipativity by spectral properties of *A*? **Answer:** Yes, in terms of antieigenvalues of *A*.

Outline

- $lacksymbol{1}$ Rotating patterns in \mathbb{R}^d
- 2 Spatial decay of rotating waves
- 3 Energy estimates in exponentially weighted L^p-spaces
- Description of the second second second second and the second sec
- 5 Explicit representations of the first antieigenvalue

 L^{p} -dissipativity condition vs. L^{p} -antieigenvalue bound Theorem 2: (L^{p} -dissipativity condition vs. L^{p} -antieigenvalue bound) Let $A \in \mathbb{K}^{m,m}$ for $\mathbb{K} = \mathbb{R}$ if $m \ge 2$ and $\mathbb{K} = \mathbb{C}$ if $m \ge 1$, and let $b \in \mathbb{R}$, b > -1. **Q** Given some $\gamma_A > 0$, then the following statements are equivalent: (6) $|z|^{2} \operatorname{Re} \langle w, Aw \rangle + b \operatorname{Re} \langle w, z \rangle \operatorname{Re} \langle z, Aw \rangle \geq \gamma_{A} |z|^{2} |w|^{2} \forall w, z \in \mathbb{K}^{m},$ (7) $\left(1+\frac{b}{2}\right)\operatorname{Re}\langle w,Aw\rangle-\frac{|b|}{2}|Aw| \ge \gamma_A$ $\forall w \in \mathbb{K}^m, |w| = 1.$ Of Moreover, the following statements are equivalent: (8) $\exists \gamma_A > 0: \left(1 + \frac{b}{2}\right) \operatorname{Re} \langle w, Aw \rangle - \frac{|b|}{2} |Aw| \ge \gamma_A \quad \forall w \in \mathbb{K}^m, \ |w| = 1,$ (9) A invertible and $\mu_1(A) > \frac{|b|}{2+b}$, Here, $\mu_1(A)$ denotes the first antieigenvalue of A $\mu_1(A) := \inf_{w \in \mathbb{K}_{\alpha}^m} \frac{\operatorname{Re} \langle w, Aw \rangle}{|w||Aw|} \quad \text{with} \quad \langle w, z \rangle := \overline{w}^\top z.$ $Aw \neq 0$

Apply Theorem 2 for b = p - 2 with 1 .

Outline of proof: Theorem 2

Q Given some $\gamma_A > 0$, then the following statements are equivalent: (1) $|z|^2 \operatorname{Re} \langle w, Aw \rangle + b \operatorname{Re} \langle w, z \rangle \operatorname{Re} \langle z, Aw \rangle \geq \gamma_A |z|^2 |w|^2 \quad \forall w, z \in \mathbb{K}^m,$ (2) $\left(1+\frac{b}{2}\right)\operatorname{Re}\langle w,Aw\rangle-\frac{|b|}{2}|Aw| \ge \gamma_A$ $\forall w \in \mathbb{K}^m, |w| = 1.$ **Note:** Dividing (1) by $|z|^2|w|^2$ implies equivalence of (1) with (1') $\operatorname{Re}\langle w, Aw \rangle + b\operatorname{Re}\langle w, z \rangle \operatorname{Re}\langle z, Aw \rangle \geq \gamma_A \forall w, z \in \mathbb{K}^m, |w| = |z| = 1.$ **Case 1:** ($\mathbb{K} = \mathbb{R}$). Let $m \ge 2$. For $\gamma_A > 0$ given, show equivalence of (1') $\langle w, Aw \rangle + b \langle w, z \rangle \langle z, Aw \rangle \ge \gamma_A$ $\forall w, z \in \mathbb{R}^m, |w| = |z| = 1,$ (2) $\left(1+\frac{b}{2}\right)\langle w,Aw\rangle-\frac{|b|}{2}|Aw| \ge \gamma_A \qquad \forall w \in \mathbb{R}^m, |w|=1.$ Optimization problem: For any fixed $w \in \mathbb{R}^m$, $|w|^2 = 1$, solve $\min_{z\in\mathbb{R}^m}f_w(z) \quad \text{subject to} \quad |z|^2=1, \quad f_w(z)=\langle w,Aw\rangle+b\langle w,z\rangle\langle z,Aw\rangle-\gamma_A.$ Existence of minimum due to boundedness $|f_w(z)| \leq |w||Aw| + |b||w||z|^2 |Aw| + |\gamma_A| = (1+|b|)|Aw| + |\gamma_A| < \infty.$

Outline

- $lacksymbol{1}$ Rotating patterns in \mathbb{R}^d
- 2 Spatial decay of rotating waves
- 3 Energy estimates in exponentially weighted L^p-spaces
- Device the second second term of the second second and the second second
- 5 Explicit representations of the first antieigenvalue

Explicit representations of the first antieigenvalue Recall: Theorem 2 shows that

L^{*p*}-dissipativity condition: There is $\gamma_A > 0$ such that

 $|z|^{2}\mathrm{Re}\langle w,Aw\rangle + (p-2)\mathrm{Re}\langle w,z\rangle \operatorname{Re}\langle z,Aw\rangle \geqslant \gamma_{A}|z|^{2}|w|^{2} \ \forall \ w,z \in \mathbb{K}^{m},$

and

L^p-antieigenvalue condition:

A invertible and
$$\mu_1(A) := \inf_{\substack{w \in \mathbb{K}^m \\ w \neq 0 \\ Aw \neq 0}} \frac{\operatorname{Re} \langle w, Aw \rangle}{|w||Aw|} > \frac{|p-2|}{p}$$

are equivalent.

Questions:

- Are there explicit formulas of $\mu_1(A)$ (e.g. in terms of the eigenvalues of A)?
- **②** What are the minimizers $w \in \mathbb{K}^m$? And how does one obtain them?

Answer:

- In general no explicit formula, neither for $\mu_1(A)$ nor for $w \in \mathbb{K}^m$
- In some special cases they are obtained by the method of Lagrange multipliers

CASE 1: $(\mathbb{K} = \mathbb{R}, m = 1)$.

L^p -dissipativity condition: There is $\gamma_A > 0$ such that $|z|^2 \operatorname{Re} \langle w, Aw \rangle + (p-2) \operatorname{Re} \langle w, z \rangle \operatorname{Re} \langle z, Aw \rangle \geqslant \gamma_A |z|^2 |w|^2 \ \forall w, z \in \mathbb{K}^m,$

is equivalent with $(z^2w^2A + (p-2)w^2z^2A \geqslant \gamma_A z^2w^2, z, w \in \mathbb{R}, 1$

Positivity condition:

A > 0

CASE 2: $(\mathbb{K} = \mathbb{C}, m = 1)$.

L^p-antieigenvalue bound:

$$\mu_1(A) = \inf_{\substack{w \in \mathbb{C} \\ w \neq 0 \\ Aw \neq 0}} \frac{\operatorname{Re}\langle w, Aw \rangle}{|w||Aw|} > \frac{|p-2|}{p}$$

is equivalent with $(\frac{\operatorname{Re}\langle w,Aw\rangle}{|w||Aw|}=\frac{\operatorname{Re}A}{|A|})$

Cone conditions:

$$\frac{|p-2|}{2\sqrt{p-1}} \left| \operatorname{Im} A \right| < \operatorname{Re} A \quad \text{or} \quad \left| \arg A \right| < \cos^{-1} \left(\frac{|p-2|}{p} \right) = \arctan \left(\frac{2\sqrt{p-1}}{|p|} \right).$$

CASE 3: ($\mathbb{K} = \mathbb{C}$, $m \ge 2$, A Hermitian positive definite).

L^p-antieigenvalue bound:

$$\mu_1(A) = \frac{\sqrt{\lambda_1^A \lambda_m^A}}{\frac{1}{2} \left(\lambda_1^A + \lambda_m^A\right)} = \frac{2\sqrt{\kappa_A}}{\kappa_A + 1} = \frac{\text{GeometricMean}(\lambda_1^A, \lambda_m^A)}{\text{ArithmeticMean}(\lambda_1^A, \lambda_m^A)} > \frac{|p-2|}{p},$$

 $\text{Minimizer: } w = \sqrt{\lambda_m^A} w_1 + \sqrt{\lambda_1^A} w_m, \ w_1 \perp w_m, \ Aw_1 = \lambda_1^A w_1, \ Aw_m = \lambda_m^A w_m.$

L^p-spectral condition number bound:

$$C_L(p) = rac{p^2 + 4p - 4 - 4p\sqrt{p-1}}{(p-2)^2} < \kappa_A < rac{p^2 + 4p - 4 + 4p\sqrt{p-1}}{(p-2)^2} = C_R(p)$$

p

CASE 4: ($\mathbb{K} = \mathbb{C}$, $m \ge 2$, A normal accretive).

L^p-antieigenvalue bound:

(4)
$$\mu_1(A) = \min(E \cup F) > \frac{|p-2|}{p},$$

$$\begin{split} E &= \left\{ \frac{a_j^A}{|\lambda_j^A|} : j \in \{1, \dots, m\} \right\}, \qquad F = \left\{ \frac{2\sqrt{(a_j - a_i)(a_i|\lambda_j^A|^2 - a_j|\lambda_i^A|^2)}}{|\lambda_j^A|^2 - |\lambda_i^A|^2} : \\ 0 &< \frac{a_j|\lambda_j^A|^2 - 2a_i|\lambda_j^A| + a_j|\lambda_i^A|^2}{(|\lambda_i^A|^2 - |\lambda_j^A|^2)(a_i - a_j)} < 1, |\lambda_i^A| \neq |\lambda_j^A|, \ i, j \in \{1, \dots, m\} \right\}, \qquad a_j^A := \operatorname{Re}\lambda_j^A \end{split}$$

• min $E > \frac{|p-2|}{p}$ is equivalent with cone condition $\sigma(A) \subseteq \Sigma_p$ with conic section $\Sigma_p := \left\{ \lambda \in \mathbb{C} : \frac{|p-2|}{2\sqrt{p-1}} |\operatorname{Im} \lambda| < \operatorname{Re} \lambda \right\}$ $= \left\{ \lambda \in \mathbb{C} : |\operatorname{arg} \lambda| < \cos^{-1} \left(\frac{|p-2|}{p}\right) \right\}.$

Minimizer:

•
$$\mu_1(A) = \frac{\partial_i^A}{|\lambda_j^A|}, w \in \mathbb{C}^m, |w_j| = 1, |w_k| = 0, k \in \{1, \dots, m\}, k \neq j.$$

 Σ_{p}

CASE 4: ($\mathbb{K} = \mathbb{C}$, $m \ge 2$, A normal accretive).

L^p-antieigenvalue bound:

(4)
$$\mu_1(A) = \min(E \cup F) > \frac{|p-2|}{p},$$

$$\begin{split} E &= \left\{ \frac{a_j^A}{|\lambda_j^A|} : j \in \{1, \dots, m\} \right\}, \qquad F = \left\{ \frac{2\sqrt{(a_j - a_i)(a_i|\lambda_j^A|^2 - a_j|\lambda_i^A|^2)}}{|\lambda_j^A|^2 - |\lambda_i^A|^2} : \\ 0 &< \frac{a_j|\lambda_j^A|^2 - 2a_i|\lambda_j^A| + a_j|\lambda_i^A|^2}{(|\lambda_i^A|^2 - |\lambda_j^A|^2)(a_i - a_j)} < 1, |\lambda_i^A| \neq |\lambda_j^A|, \, i, j \in \{1, \dots, m\} \right\}, \qquad a_j^A := \operatorname{Re}\lambda_j^A \end{split}$$

• min
$$F > \frac{|p-2|}{p}$$
 is equivalent with a semi-ellipse condition:

$$\frac{2\sqrt{(a_j-a_i)(a_i|\lambda_j^A|^2-a_j|\lambda_i^A|^2)}}{|\lambda_i^A|^2 - |\lambda_i^A|^2} > \frac{|p-2|}{p}$$

Note:

$$\frac{2\sqrt{(a_j-a_i)(a_i|\lambda_j^A|^2-a_j|\lambda_i^A|^2)}}{|\lambda_j^A|^2-|\lambda_i^A|^2} = \frac{2\sqrt{\frac{|\lambda_j^A|}{|\lambda_i^A|}[(\frac{a_i}{|\lambda_i^A|})(\frac{|\lambda_j^A|}{|\lambda_i^A|})-\frac{a_j}{|\lambda_j^A|}][(\frac{a_j}{|\lambda_j^A|})(\frac{|\lambda_j^A|}{|\lambda_i^A|})-\frac{a_j}{|\lambda_i^A|}]}{(\frac{|\lambda_j^A|}{|\lambda_i^A|})^2-1}$$

$$= \frac{2\sqrt{(r_i\rho_{ij} - r_j)(r_j\rho_{ij} - r_i)\rho_{ij}}}{\rho_{ij}^2 - 1}, \quad \rho_{ij} := \frac{|\lambda_i^2|}{|\lambda_i^A|}, \quad r_k := \operatorname{Re}\frac{\lambda_k^A}{|\lambda_k^A|} = \frac{a_k}{|\lambda_k^A|}, \quad k \in \{i, j\}$$