Fredholm Properties and L^p-Spectra of Localized Rotating Waves in Parabolic Systems University of Bremen, November 29, 2016

Denny Otten Department of Mathematics Bielefeld University Germany

joint work with: Wolf-Jürgen Beyn (Bielefeld University)

- W.-J. Beyn, D. Otten. Fredholm Properties and L^p-Spectra of Localized Rotating waves in Parabolic Systems. Preprint to appear, 2016.
 - W.-J. Beyn, D. Otten. Spatial Decay of Rotating Waves in Reaction Diffusion Systems. *Dyn. Partial Differ. Equ.*, 13(3):191-240, 2016.
 - D. Otten. Spatial decay and spectral properties of rotating waves in parabolic systems. PhD thesis, Bielefeld University, *Shaker Verlag*, 2014.

Outline

- 1 Rotating patterns in \mathbb{R}^d
- 2 Spatial decay of rotating waves
- Bigenvalue problem for rotating waves and some basic definitions
- Fredholm properties of linearization in L^p
- Essential L^p-spectrum and dispersion relation
- 6 Point L^p-spectrum and shape of eigenfunctions
- Cubic-quintic complex Ginzburg-Landau equation

Outline

1 Rotating patterns in \mathbb{R}^d

- 2 Spatial decay of rotating waves
- 3 Eigenvalue problem for rotating waves and some basic definitions
- 4 Fredholm properties of linearization in L^p
- 5 Essential L^p-spectrum and dispersion relation
- 6 Point *L^p*-spectrum and shape of eigenfunctions
- Cubic-quintic complex Ginzburg-Landau equation

Consider a reaction diffusion system

(1)

$$egin{aligned} &u_t(x,t) = A riangle u(x,t) + f(u(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \geqslant 2 \ u(x,0) = u_0(x) \qquad , \ t = 0, \ x \in \mathbb{R}^d. \end{aligned}$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m, A \in \mathbb{R}^{m,m}, f : \mathbb{R}^m \to \mathbb{R}^m, u_0 : \mathbb{R}^d \to \mathbb{R}^m.$ Assume a rotating wave solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m \text{ of } (1)$

$$u_*(x,t) = v_*(e^{-tS}x)$$

 $v_{\star} : \mathbb{R}^{d} \to \mathbb{R}^{m}$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. **Transformation (into a co-rotating frame)**: $v(x,t) = u(e^{tS}x,t)$ solves

(2)
$$\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) \end{aligned}$$

$$\langle Sx, \nabla v(x) \rangle = Dv(x)Sx = \sum_{i=1}^{d} \sum_{j=1}^{d} S_{ij}x_j D_i v(x) \stackrel{-s=s^{\top}}{=} \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} S_{ij} (x_j D_i - x_i D_j) v(x)$$

(drift term) (rotational term)

•

(1)

Consider a reaction diffusion system

$$egin{aligned} &u_t(x,t)=A riangle u(x,t)+f(u(x,t)), \ t>0, \ x\in \mathbb{R}^d, \ d\geqslant 2, \ &u(x,0)=u_0(x) \ , \ t=0, \ x\in \mathbb{R}^d. \end{aligned}$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m, A \in \mathbb{R}^{m,m}, f : \mathbb{R}^m \to \mathbb{R}^m, u_0 : \mathbb{R}^d \to \mathbb{R}^m$. Assume a **rotating wave** solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m \text{ of } (1)$

$$u_{\star}(x,t) = v_{\star}(e^{-tS}x)$$

 $v_{\star} : \mathbb{R}^{d} \to \mathbb{R}^{m}$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. Transformation (into a co-rotating frame): $v(x, t) = u(e^{tS}x, t)$ solves

(2) $\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) \qquad , \ t = 0, \ x \in \mathbb{R}^d. \end{aligned}$

$$\langle Sx, \nabla v(x) \rangle = Dv(x)Sx = \sum_{i=1}^{d} \sum_{j=1}^{d} S_{ij}x_j D_i v(x) \stackrel{-s=s^{\top}}{=} \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} S_{ij} (x_j D_i - x_i D_j) v(x)$$
(drift term) (rotational term)

(1)

Consider a reaction diffusion system

$$egin{aligned} &u_t(x,t)=A riangle u(x,t)+f(u(x,t)),\ t>0,\ x\in \mathbb{R}^d,\ d\geqslant 2,\ &u(x,0)=u_0(x) \ ,\ t=0,\ x\in \mathbb{R}^d. \end{aligned}$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m, A \in \mathbb{R}^{m,m}, f : \mathbb{R}^m \to \mathbb{R}^m, u_0 : \mathbb{R}^d \to \mathbb{R}^m$. Assume a **rotating wave** solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m \text{ of } (1)$

$$u_{\star}(x,t) = v_{\star}(e^{-tS}x)$$

 $v_* : \mathbb{R}^d \to \mathbb{R}^m$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. Transformation (into a co-rotating frame): $v(x, t) = u(e^{tS}x, t)$ solves

(2)
$$\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) \qquad , \ t = 0, \ x \in \mathbb{R}^d. \end{aligned}$$

$$\langle Sx, \nabla v(x) \rangle = Dv(x)Sx = \sum_{i=1}^{d} \sum_{j=1}^{d} S_{ij}x_j D_i v(x) \stackrel{-s = s^{\top}}{=} \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} S_{ij} (x_j D_i - x_i D_j) v(x)$$
(drift term) (rotational term)

(1)

Consider a reaction diffusion system

$$egin{aligned} &u_t(x,t)=A riangle u(x,t)+f(u(x,t)),\ t>0,\ x\in \mathbb{R}^d,\ d\geqslant 2,\ &u(x,0)=u_0(x) \ ,\ t=0,\ x\in \mathbb{R}^d. \end{aligned}$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m, A \in \mathbb{R}^{m,m}, f : \mathbb{R}^m \to \mathbb{R}^m, u_0 : \mathbb{R}^d \to \mathbb{R}^m$. Assume a **rotating wave** solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m \text{ of } (1)$

$$u_{\star}(x,t) = v_{\star}(e^{-tS}x)$$

 $v_{\star} : \mathbb{R}^{d} \to \mathbb{R}^{m}$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. **Transformation (into a co-rotating frame)**: $v(x,t) = u(e^{tS}x,t)$ solves

(2)
$$\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) , \ t = 0, \ x \in \mathbb{R}^d. \end{aligned}$$

Note: v_{\star} is a stationary solution of (2), i.e. v_{\star} solves the rotating wave equation

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^{d}, d \geq 2.$$

 $A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle$: Ornstein-Uhlenbeck operator.

(1)

Consider a reaction diffusion system

$$egin{aligned} &u_t(x,t)=A riangle u(x,t)+f(u(x,t)),\ t>0,\ x\in \mathbb{R}^d,\ d\geqslant 2,\ &u(x,0)=u_0(x) \ ,\ t=0,\ x\in \mathbb{R}^d. \end{aligned}$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m, A \in \mathbb{R}^{m,m}, f : \mathbb{R}^m \to \mathbb{R}^m, u_0 : \mathbb{R}^d \to \mathbb{R}^m.$ Assume a **rotating wave** solution $u_{\star} : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^m \text{ of } (1)$

$$u_{\star}(x,t) = v_{\star}(e^{-tS}x)$$

 $v_{\star}: \mathbb{R}^d \to \mathbb{R}^m$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. **Transformation (into a co-rotating frame)**: $v(x, t) = u(e^{tS}x, t)$ solves

(2)
$$\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) \end{aligned} , \ t = 0, \ x \in \mathbb{R}^d. \end{aligned}$$

Questions and Ingredients: 11: exp. decay of v_{\star} , 12: spectral properties **Q1:** Nonlinear stability of rotating waves on \mathbb{R}^d ? (**Tools**: 11+12) **Q2:** Truncations of rotating waves to bounded domains? (Tools: I1+...)

- Q3: Spatial approximation (e.g. with finite element method)? (open problem)
- Q4: Temporal approximation (e.g. with Euler or BDF)? (open problem)

Denny Otten

Examples for rotating waves

Cubic-quintic complex Ginzburg-Landau equation: (spinning solitons)

$$u_{t} = \alpha \triangle u + u \left(\delta + \beta \left| u \right|^{2} + \gamma \left| u \right|^{4} \right)$$

 $u(x,t) \in \mathbb{C}, x \in \mathbb{R}^{d}, t \ge 0, \alpha, \beta, \gamma \in \mathbb{C}, \operatorname{Re}\alpha > 0, \delta \in \mathbb{R}, d \in \{2,3\}.$

 λ - ω system: (spiral waves, scroll waves)

$$u_t = \alpha \bigtriangleup u + \left(\lambda(|u|^2) + i\omega(|u|^2)\right) u$$

$$u(x,t) \in \mathbb{C}, x \in \mathbb{R}^{d}, t \ge 0, \lambda, \omega : [0,\infty[\to \mathbb{R}, \alpha \in \mathbb{C}, \operatorname{Re} \alpha > 0, d \in \{2,3\}.$$

Barkley model: (spiral waves, also scroll waves)

$$u_t = \begin{pmatrix} 1 & 0 \\ 0 & D \end{pmatrix} \bigtriangleup u + \begin{pmatrix} \frac{1}{\varepsilon} u_1(1-u_1)(u_1-\frac{u_2+b}{a}) \\ u_1-u_2 \end{pmatrix}$$

$$u(x,t) \in \mathbb{R}^2$$
, $x \in \mathbb{R}^d$, $t \ge 0$, $0 \le D \ll 1$,
 $\varepsilon, a, b > 0, d \in \{2,3\}.$

References

Nonlinear stability of rotating waves for d = 2:

W.-J. Beyn, J. Lorenz.

Nonlinear stability of rotating patterns, 2008. Ginzburg-Landau equation:

L.D. Landau, V.L. Ginzburg.

On the theory of superconductivity, 1950.

L.-C. Crasovan, B.A. Malomed, D. Mihalache.

Spinning solitons in cubic-quintic nonlinear media, 2001. Stable vortex solitons in the two-dimensional Ginzburg-Landau equation, 2000.

A. Mielke.

The Ginzburg-Landau equation in its role as a modulation equation, 2002.

λ - ω system:

Y. Kuramoto, S. Koga.

Turbulized rotating chemical waves, 1981.

J. D. Murray.

Mathematical biology, II: Spatial models and biomedical applications, 2003. Barkley model:

D. Barkley.

A model for fast computer simulation of waves in exitable media, 1991. Euclidean symmetry and the dynamics of rotating spiral waves, 1994.

Outline

$lacksymbol{1}$ Rotating patterns in \mathbb{R}^{a}

- 2 Spatial decay of rotating waves
 - 3 Eigenvalue problem for rotating waves and some basic definitions
 - Fredholm properties of linearization in L^p
 - 5 Essential L^p-spectrum and dispersion relation
- 6 Point *L^p*-spectrum and shape of eigenfunctions
- Cubic-quintic complex Ginzburg-Landau equation

Theorem 1: (Exponential decay of profile v_{\star})

Let $f \in C^2$ $(\mathbb{R}^m, \mathbb{R}^m), v_{\infty} \in \mathbb{R}^m, f(v_{\infty}) = 0, Df(v_{\infty}) \leq -\beta_{\infty} I_m < 0,$ assume (A1)-(A3) for some $1 , and let <math>\theta(x) = \exp\left(\mu\sqrt{|x|^2 + 1}\right)$ be a weight function for $\mu \in \mathbb{R}$. Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property: Every classical solution $v_{\star} \in C^2$ ($\mathbb{R}^d, \mathbb{R}^m$) of $A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^{d},$ (RWE) such that (TC) $\sup |v_{\star}(x) - v_{\infty}| \leq K_1$ for some $R_0 > 0$ $|x| \ge R_0$ satisfies

$$v_{\star} - v_{\infty} \in W^{1,p}_{ heta}(\mathbb{R}^d,\mathbb{R}^m)$$

for every exponential decay rate

$$0 \leqslant \mu \leqslant \varepsilon \frac{\sqrt{a_0 b_0}}{a_{\max} p}. \qquad \begin{pmatrix} a_{\max} = \rho(A) & : \text{ spectral radius of } A \\ -a_0 = s(-A) & : \text{ spectral bound of } -A \\ -b_0 = s(Df(v_{\infty})) & : \text{ spectral bound of } Df(v_{\infty}) \end{pmatrix}$$

Theorem 1: (Exponential decay of profile v_{\star})

Let $f \in C^2$ $(\mathbb{R}^m, \mathbb{R}^m), v_{\infty} \in \mathbb{R}^m, f(v_{\infty}) = 0, Df(v_{\infty}) \leq -\beta_{\infty} I_m < 0,$ assume (A1)-(A3) for some $1 , and let <math>\theta(x) = \exp\left(\mu\sqrt{|x|^2 + 1}\right)$ be a weight function for $\mu \in \mathbb{R}$. Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property: Every classical solution $v_{\star} \in C^3$ ($\mathbb{R}^d, \mathbb{R}^m$) of $A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^{d},$ (RWE) such that (TC) $\sup |v_{\star}(x) - v_{\infty}| \leq K_1$ for some $R_0 > 0$ $|x| \ge R_0$ satisfies

$$v_{\star}-v_{\infty}\in W^{2,p}_{ heta}(\mathbb{R}^{d},\mathbb{R}^{m})$$

for every exponential decay rate

$$0 \leqslant \mu \leqslant \varepsilon \frac{\sqrt{a_0 b_0}}{a_{\max} p}. \qquad \begin{pmatrix} a_{\max} = \rho(A) & : \text{ spectral radius of } A \\ -a_0 = s(-A) & : \text{ spectral bound of } -A \\ -b_0 = s(Df(v_{\infty})) & : \text{ spectral bound of } Df(v_{\infty}) \end{pmatrix}$$

Theorem 1: (Exponential decay of profile v_{\star} : higher regularity)

Let $f \in C^{\max\{2, k-1\}}(\mathbb{R}^m, \mathbb{R}^m)$, $v_{\infty} \in \mathbb{R}^m$, $f(v_{\infty}) = 0$, $Df(v_{\infty}) \leq -\beta_{\infty}I_m < 0$, assume (A1)-(A3) for some $1 , and let <math>\theta(x) = \exp\left(\mu\sqrt{|x|^2 + 1}\right)$ be a weight function for $\mu \in \mathbb{R}$, $k \in \mathbb{N}$, $p \geq \frac{d}{2}$ (if $k \geq 3$). Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property: Every classical solution $v_{\star} \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^m)$ of

$$\mathsf{RWE}) \qquad \qquad A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d},$$

such that

(TC)
$$\sup_{|x| \ge R_0} |v_\star(x) - v_\infty| \le K_1 \text{ for some } R_0 > 0$$

satisfies

$$v_{\star} - v_{\infty} \in W^{k,p}_{ heta}(\mathbb{R}^d,\mathbb{R}^m)$$

for every exponential decay rate

$$0 \leqslant \mu \leqslant \varepsilon \frac{\sqrt{a_0 b_0}}{a_{\max} p}. \qquad \begin{pmatrix} a_{\max} = \rho(A) & : \text{ spectral radius of } A \\ -a_0 = s(-A) & : \text{ spectral bound of } -A \\ -b_0 = s(Df(v_{\infty})) & : \text{ spectral bound of } Df(v_{\infty}) \end{pmatrix}$$

Theorem 1: (Exponential decay of profile v_{\star} : pointwise estimates)

Let $f \in C^{\max\{2, k-1\}}(\mathbb{R}^m, \mathbb{R}^m)$, $v_{\infty} \in \mathbb{R}^m$, $f(v_{\infty}) = 0$, $Df(v_{\infty}) \leq -\beta_{\infty}I_m < 0$, assume (A1)-(A3) for some $1 , and let <math> heta(x) = \exp\left(\mu \sqrt{|x|^2 + 1}
ight)$ be a weight function for $\mu \in \mathbb{R}$, $k \in \mathbb{N}$, $p \ge \frac{d}{2}$ (if $k \ge 3$). Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property: Every classical solution $v_{\star} \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^m)$ of $A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^{d},$ (RWE) such that $\sup |v_{\star}(x) - v_{\infty}| \leq K_1$ for some $R_0 > 0$ (TC) $|x| \ge R_0$ satisfies $|\mathbf{v}_{\star} - \mathbf{v}_{\infty} \in W^{k,p}_{ heta}(\mathbb{R}^{d},\mathbb{R}^{m}), \ |D^{lpha}(\mathbf{v}_{\star}(x) - \mathbf{v}_{\infty})| \leqslant C \exp\left(-\mu \sqrt{|x|^{2}+1}
ight) \ orall x \in \mathbb{R}^{d}$ for every exponential decay rate $0 \leqslant \mu \leqslant \varepsilon \frac{\sqrt{a_0 b_0}}{a_{\max} p} \qquad \left(\begin{array}{ccc} a_{\max} &=& \rho(A) &: \text{ spectral radius of } A \\ -a_0 &=& s(-A) &: \text{ spectral bound of } -A \\ -b_0 &=& s(Df(v_\infty)) &: \text{ spectral bound of } Df(v_\infty) \end{array}\right)$

and for every multiindex $lpha \in \mathbb{N}_0^d$ satisfying d < (k - |lpha|)p.

Denny Otten

Spatial decay of eigenfunctions

Theorem 2: (Exponential decay of eigenfunctions v)

Let $f \in C^{\max\{2,k\}}(\mathbb{R}^m,\mathbb{R}^m)$, $v_{\infty} \in \mathbb{R}^m$, $f(v_{\infty}) = 0$, $Df(v_{\infty}) \leqslant -\beta_{\infty}I_m < 0$, assume (A1)-(A3) for some $1 , and let <math> heta_j(x) = \exp\left(\mu_j \sqrt{|x|^2 + 1}\right)$ be a weight function for $\mu_i \in \mathbb{R}$, $j = 1, 2, k \in \mathbb{N}$, $p \ge \frac{d}{2}$ (if $k \ge 2$). Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ such that for every classical solution $v_{\star} \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^m)$ of (RWE) satisfying (TC) the following property holds: Every classical solution $v \in C^{k+1}(\mathbb{R}^d, \mathbb{C}^m)$ of (EVP) $A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + Df(v_{\star}(x))v(x) = \lambda v(x), x \in \mathbb{R}^{d},$ with $\lambda \in \mathbb{C}$, $\operatorname{Re}\lambda \geq -(1-\varepsilon)\beta_{\infty}$, such that $v \in L^p_{\theta_1}(\mathbb{R}^d, \mathbb{C}^m)$ for some exp. growth rate $-\sqrt{\varepsilon \frac{\gamma_A \beta_\infty}{2d|A|^2}} \leq \mu_1 < 0$ satisfies $v \in W^{k,p}_{\theta_2}(\mathbb{R}^d,\mathbb{C}^m)$ for **every** exp. decay rate $0 \leq \mu_2 \leq \varepsilon \frac{\sqrt{a_0}b_0}{2}$

and

$$|D^{\alpha}v(x)| \leq C \exp\left(-\mu_2\sqrt{|x|^2+1}\right) \quad \forall x \in \mathbb{R}^d$$

for every multiindex $\alpha \in \mathbb{N}_0^d$ satisfying $d < (k - |\alpha|)p$.

Exponentially weighted Sobolev spaces and assumptions Exponentially weighted Sobolev spaces: For $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, $1 \leq p \leq \infty$, $k \in \mathbb{N}_0$, and weight function $\theta(x) = \exp\left(\mu\sqrt{|x|^2 + 1}\right)$ with $\mu \in \mathbb{R}$ we define $L^p_{\theta}(\mathbb{R}^d, \mathbb{K}^m) := \left\{ v \in L^1_{loc}(\mathbb{R}^d, \mathbb{K}^m) \mid |\|\theta v\|_{L^p} < \infty \right\},$ $W^{k,p}_{\theta}(\mathbb{R}^d, \mathbb{K}^m) := \left\{ v \in L^p_{\theta}(\mathbb{R}^d, \mathbb{K}^m) \mid D^{\beta} u \in L^p_{\theta}(\mathbb{R}^d, \mathbb{K}^m) \forall |\beta| \leq k \right\}.$

Assumptions:

(A1) (L^p -dissipativity condition): For $A \in \mathbb{R}^{m,m}$, $1 , there is <math>\gamma_A > 0$ with $|z|^2 \operatorname{Re} \langle w, Aw \rangle + (p-2) \operatorname{Re} \langle w, z \rangle \operatorname{Re} \langle z, Aw \rangle \ge \gamma_A |z|^2 |w|^2 \quad \forall z, w \in \mathbb{R}^m$ (A2) (System condition): $A = Df(w, z) \in \mathbb{R}^{m,m}$ simultaneously diagonalizable over \mathbb{C}

(A2) (System condition): $A, Df(v_{\infty}) \in \mathbb{R}^{m,m}$ simultaneously diagonalizable over \mathbb{C} (A3) (Rotational condition): $0 \neq S \in \mathbb{R}^{d,d}, -S = S^{\top}$ Note: Assumption (A1) is equivalent with

(A1') (L^p-antieigenvalue condition): $A \in \mathbb{R}^{m,m}$ is invertible and

$$\mu_1(A) := \inf_{\substack{w \in \mathbb{R}^m \\ w \neq 0 \\ Aw \neq 0}} \frac{\operatorname{Re} \langle w, Aw \rangle}{|w||Aw|} > \frac{|p-2|}{p} \text{ for some } 1$$

 $(\mu_1(A):$ first antieigenvalue of A)

Exponentially weighted Sobolev spaces and assumptions Exponentially weighted Sobolev spaces: For $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, $1 \leq p \leq \infty$, $k \in \mathbb{N}_0$, and weight function $\theta(x) = \exp\left(\mu\sqrt{|x|^2 + 1}\right)$ with $\mu \in \mathbb{R}$ we define $L^p_{\theta}(\mathbb{R}^d, \mathbb{K}^m) := \left\{ v \in L^1_{loc}(\mathbb{R}^d, \mathbb{K}^m) \mid |\|\theta v\|_{L^p} < \infty \right\},$ $W^{k,p}_{\theta}(\mathbb{R}^d, \mathbb{K}^m) := \left\{ v \in L^p_{\theta}(\mathbb{R}^d, \mathbb{K}^m) \mid D^{\beta} u \in L^p_{\theta}(\mathbb{R}^d, \mathbb{K}^m) \forall |\beta| \leq k \right\}.$

Assumptions:

(A1) (L^p-dissipativity condition): For A ∈ ℝ^{m,m}, 1 A</sub> > 0 with |z|²Re ⟨w, Aw⟩ + (p - 2)Re ⟨w, z⟩ Re ⟨z, Aw⟩ ≥ γ_A|z|²|w|² ∀ z, w ∈ ℝ^m (A2) (System condition): A, Df(v_∞) ∈ ℝ^{m,m} simultaneously diagonalizable over C

(A3) (Rotational condition): $0 \neq S \in \mathbb{R}^{d,d}$, $-S = S^{\top}$ Additionally:

(A4) (L^q-dissipativity condition): For $A \in \mathbb{R}^{m,m}$, $q = \frac{p}{p-1}$, there is $\delta_A > 0$ with

$$z|^{2}\mathrm{Re}\left\langle w,A^{H}w\right\rangle +(q-2)\mathrm{Re}\left\langle w,z\right\rangle \mathrm{Re}\left\langle z,A^{H}w\right\rangle \geqslant\delta_{A}|z|^{2}|w|^{2}\;\forall\,z,w\in\mathbb{R}^{m}$$

Outline of proof: Theorem 1 (Exponential decay of v_{\star}) Exponential Decay: To show exponential decay for the solution v_{\star} of

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \ x \in \mathbb{R}^{d},$$

investigate the linear system $(w_{\star}(x) := v_{\star}(x) - v_{\infty})$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (Df(v_{\infty}) + Q_{s}(x) + Q_{c}(x)) w_{\star}(x) = 0, x \in \mathbb{R}^{d}.$

Operators: Study the following operators

$$\begin{array}{ll} \mathcal{L}_{c}v :=& A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v + Q_{c}v, & (\text{exp. decay}) \\ \mathcal{L}_{s}v :=& A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v, & (\text{exp. decay}) \\ \mathcal{L}_{\infty}v :=& A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, & (\text{far-field operator}) & (\text{exp. decay}) \\ \mathcal{L}_{0}v :=& A \triangle v + \langle S \cdot, \nabla v \rangle. & (\text{Ornstein-Uhlenbeck operator}) & (\text{max. domain}) \end{array}$$

D. Otten.

Exponentially weighted resolvent estimates for complex Ornstein-Uhlenbeck systems, 2015. The identification problem for complex-valued Ornstein-Uhlenbeck operators in $L^p(\mathbb{R}^d, \mathbb{C}^N)$, 2016. A new L^p -antieigenvalue condition for Ornstein-Uhlenbeck operators, 2016.

W.-J. Beyn, D. Otten.

Spatial Decay of Rotating Waves in Reaction Diffusion Systems, 2016

Outline of proof: Theorem 1 (Exponential decay of v_{\star}) Exponential Decay: To show exponential decay for the solution v_{\star} of

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d},$$

investigate the linear system $(w_{\star}(x) := v_{\star}(x) - v_{\infty})$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (Df(v_{\infty}) + Q_{s}(x) + Q_{c}(x)) w_{\star}(x) = 0, x \in \mathbb{R}^{d}.$

Operators: Study the following operators

$$\begin{array}{ll} \mathcal{L}_{c}v :=& A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v + Q_{c}v, & (exp. \ decay) \\ \mathcal{L}_{s}v :=& A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v, & (exp. \ decay) \\ \mathcal{L}_{\infty}v :=& A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, & (far-field \ operator) & (exp. \ decay) \\ \mathcal{L}_{0}v :=& A \triangle v + \langle S \cdot, \nabla v \rangle. & (Ornstein-Uhlenbeck \ operator) & (max. \ domain) \end{array}$$

D. Otten.

Exponentially weighted resolvent estimates for complex Ornstein-Uhlenbeck systems, 2015. The identification problem for complex-valued Ornstein-Uhlenbeck operators in $L^{p}(\mathbb{R}^{d}, \mathbb{C}^{N})$, 2016. A new L^{p} -antieigenvalue condition for Ornstein-Uhlenbeck operators, 2016.

W.-J. Beyn, D. Otten.

Spatial Decay of Rotating Waves in Reaction Diffusion Systems, 2016.

Outline of proof: Theorem 1 (Exponential decay of v_{\star}) Exponential Decay: To show exponential decay for the solution v_{\star} of

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d},$$

investigate the linear system $(w_{\star}(x) := v_{\star}(x) - v_{\infty})$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (Df(v_{\infty}) + Q_{s}(x) + Q_{c}(x)) w_{\star}(x) = 0, x \in \mathbb{R}^{d}.$

Operators: Study the following operators

$$\begin{array}{ll} \mathcal{L}_{c}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v + Q_{c}v, & (exp. \ decay) \\ \mathcal{L}_{s}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{s}v, & (exp. \ decay) \\ \mathcal{L}_{\infty}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, & (far-field \ operator) & (exp. \ decay) \\ \mathcal{L}_{0}v := A \triangle v + \langle S \cdot, \nabla v \rangle. & (Ornstein-Uhlenbeck \ operator) & (max. \ domain) \end{array}$$

Maximal domain of \mathcal{L}_0 given by

$$\mathcal{D}^p_{\mathrm{loc}}(\mathcal{L}_0) = \big\{ v \in W^{2,p}_{\mathrm{loc}}(\mathbb{R}^d,\mathbb{C}^m) \cap L^p(\mathbb{R}^d,\mathbb{C}^m) : \ \mathcal{L}_0 v \in L^p(\mathbb{R}^d,\mathbb{C}^m) \big\}, \ 1$$

satisfies $\mathcal{D}^{p}_{\text{loc}}(\mathcal{L}_{0}) \subseteq W^{1,p}(\mathbb{R}^{d},\mathbb{C}^{m}).$

The operator \mathcal{L}_0

$$\begin{array}{l} & \text{Ornstein-Uhlenbeck operator} \\ \left[\mathcal{L}_0 v\right](x) = A \triangle v(x) + \langle Sx, \nabla v(x) \rangle, \, x \in \mathbb{R}^d, \, d \geq 2. \\ & \downarrow \end{array}$$

$$H_0(x,\xi,t) = (4\pi tA)^{-\frac{d}{2}} \exp\left(-(4tA)^{-1} \left|e^{tS}x - \xi\right|^2\right), x,\xi \in \mathbb{R}^d, t > 0.$$

Semigroup in
$$L^p(\mathbb{R}^d, \mathbb{C}^m)$$
, $1 \le p \le \infty$
 $[T_0(t)v](x) = \int_{\mathbb{R}^d} H_0(x, \xi, t)v(\xi)d\xi$, $t > 0$.

strong \downarrow continuity

Infinitesimal generator $(A_p, \mathcal{D}(A_p)), 1 \leq p < \infty.$

 \searrow identification problem

 $\begin{array}{lll} \mbox{unique solv. of} & \mbox{A-priori} & \mbox{exponential} & \mbox{max. domain and} \\ \mbox{resolvent equ. for } A_p, & \rightarrow & \mbox{decay,} & \mbox{max. realization,} \\ 1 \leqslant p < \infty, \mbox{ Re} \lambda > 0 & \mbox{estimates} & 1 \leqslant p < \infty & \mbox{$1 < p < \infty$} \\ (\lambda I - A_p) v_{\star} = g \in L^p. & v_{\star} \in W^{1,p}_{\theta}. & \mbox{A_p} = \mathcal{L}_0 \mbox{ on } \mathcal{D}(A_p) = \mathcal{D}^p_{\rm loc}(\mathcal{L}_0). \end{array}$

Denny Otten

semigroup theory </

Spectral Properties of Localized Rotating Wave

Bremen 2016

Identification problem of \mathcal{L}_0 $\mathcal{D}^p_{\mathrm{loc}}(\mathcal{L}_0) := \left\{ \mathbf{v} \in W^{2,p}_{\mathrm{loc}}(\mathbb{R}^d,\mathbb{C}^m) \cap L^p(\mathbb{R}^d,\mathbb{C}^m) \mid \mathcal{L}_0 \mathbf{v} \in L^p(\mathbb{R}^d,\mathbb{C}^m)
ight\}, \ 1$ Infinitesimal generator **Ornstein-Uhlenbeck operator** $[\mathcal{L}_0 v](x) = A \triangle v(x) + \langle Sx, \nabla v(x) \rangle, x \in \mathbb{R}^d, d \ge 2.$ $(A_p, \mathcal{D}(A_p)), 1 \leq p < \infty.$ $\mathcal{L}_0: \mathcal{D}^p_{\mathrm{loc}}(\mathcal{L}_0) \to L^p(\mathbb{R}^d, \mathbb{C}^m)$ S is a core for $(A_p, \mathcal{D}(A_p))$ is a closed operator, 1 L^{p} -resolvent estimates Identification of \mathcal{L}_0 and maximal domain and maximal unique solv. of resolvent equ. \leftarrow realization for 1 :for \mathcal{L}_0 in $\mathcal{D}_{log}^p(\mathcal{L}_0)$, $A_p = \mathcal{L}_0$ on $\mathcal{D}(A_p) = \mathcal{D}_{loc}^p(\mathcal{L}_0)$ 1 L^{p} -dissipativity condition: $\exists \gamma_{A} > 0$ $|z|^{2} \operatorname{Re} \langle w, Aw \rangle + (p-2) \operatorname{Re} \langle w, z \rangle \operatorname{Re} \langle z, Aw \rangle \geq \gamma_{A} |z|^{2} |w|^{2} \quad \forall z, w \in \mathbb{K}^{m}$ L^{p} -first antieigenvalue condition $\mu_1(\mathcal{A}) := \inf_{w \in \mathbb{K}^m} \frac{\operatorname{Re} \langle w, Aw \rangle}{|w||Aw|} > \frac{|p-2|}{p}, \quad 1$

Denny Otten

References

Nonlinear stability of rotating waves for d = 2:

W.-J. Beyn, J. Lorenz.

Nonlinear stability of rotating patterns, 2008. **Exponential decay**:

M. Shub.

Global stability of dynamical systems, 1987.

P.J. Rabier, C.A. Stuart.

Exponential decay of the solutions of quasilinear second-order equations and Pohozaev identities, 2000. Ornstein-Uhlenbeck operator in $L^p(\mathbb{R}^d, \mathbb{R})$ and its identification problem:

G. Metafune, D. Pallara, V. Vespri.

 L^{p} -estimates for a class of elliptic operators with unbounded coefficients in \mathbb{R}^{N} , 2005.

G. Metafune.

 L^p -spectrum of Ornstein-Uhlenbeck operators, 2001. Ornstein-Uhlenbeck operator in $C_{\rm b}(\mathbb{R}^d,\mathbb{R})$ and its identification problem:

G. Da Prato, A. Lunardi.

On the Ornstein-Uhlenbeck operator in spaces of continuous functions, 1995. Weight function of exponential growth rate:

A. Mielke, S. Zelik.

Multi-pulse evolution and space-time chaos in dissipative systems, 2009. Semigroup theory:

K.-J. Engel, R. Nagel.

One-parameter semigroups for linear evolution equations, 2000.

References

L^p-dissipativity:

A. Cialdea, V. Maz'ya.

Criteria for the L^{p} -dissipativity of systems of second order differential equations, 2006. Criterion for the L^{p} -dissipativity of second order differential operators with complex coefficients, 2005.

A. Cialdea

Analysis, Partial Differential Equations and Applications, 2009. The L^p -dissipativity of partial differential operators, 2010.

Antieigenvalues:

K. Gustafson.

Antieigenvalue analysis: with applications to numerical analysis, wavelets, statistics, quantum mechanics, finance and optimization, 2012. The angle of an operator and positive operator products, 1968.

K. Gustafson, M. Seddighin.

On the eigenvalues which express antieigenvalues, 2005. A note on total antieigenvectors, 1993. Antieigenvalue bounds, 1989.

Rotating waves:

C. Wulff.

Theory of meandering and drifting spiral waves in reaction-diffusion systems, 1996.

B. Fiedler, A. Scheel.

Spatio-temporal dynamics of reaction-diffusion patterns, 2003.

B. Fiedler, B. Sandstede, A. Scheel, C. Wulff.

Bifurcation from relative equilibria of noncompact group actions: skew products, meanders, and shifts, 1996.

Outline

- $lacksymbol{1}$ Rotating patterns in \mathbb{R}^d
- 2 Spatial decay of rotating waves
- Bigenvalue problem for rotating waves and some basic definitions
 - 4) Fredholm properties of linearization in L^p
 - 5 Essential L^p-spectrum and dispersion relation
- 6 Point *L^p*-spectrum and shape of eigenfunctions
- Cubic-quintic complex Ginzburg-Landau equation

Eigenvalue problem for linearization at rotating waves Motivation: Stability is determined by spectral properties of linearization \mathcal{L} . Eigenvalue problem:

$$(\lambda I - \mathcal{L})v(x) = 0, x \in \mathbb{R}^d, d \ge 2, \lambda \in \mathbb{C}.$$

 $\mathcal{L}v(x) = A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + Df(v_*(x))v(x), x \in \mathbb{R}^d, d \ge 2.$

Definition 3: (Strongly spectrally stable)

A rotating wave $u_{\star}(x,t) = v_{\star}\left(e^{-tS}x\right)$ is called **strongly spectrally stable** iff

- Re $\sigma(\mathcal{L}) \leq 0$ (spectrally stable) and
- $\Im \ \forall \lambda \in \sigma(\mathcal{L}) \cap i\mathbb{R}: \ \lambda \in \sigma_{\mathrm{pt}}(\mathcal{L}), \ \lambda \text{ is caused by the } \mathrm{SE}(d) \text{-group action and}$

$$\sum_{\substack{\in \sigma(\mathcal{L}) \cap i\mathbb{R}}} \operatorname{alg}(\lambda) = \frac{d(d+1)}{2} = \operatorname{dimSE}(d), \quad \operatorname{alg}(\lambda) := \operatorname{algebraic} \text{ mult. of } \lambda.$$

Recall from spectral theory

Linearized operator is closed and densely defined

 $\mathcal{L}v(x) = A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + Df(v_{\star}(x))v(x), x \in \mathbb{R}^{d}, d \geq 2,$

 $\mathcal{D}_{\rm loc}^{p}(\mathcal{L}_{0}) = \{ v \in W_{\rm loc}^{2,p} \cap L^{p} \mid \mathcal{L}_{0}v \in L^{p} \}, \quad \|v\|_{\mathcal{L}_{0}} := \|v\|_{L^{p}} + \|\mathcal{L}_{0}v\|_{L^{p}}.$

Definition 4: (Spectrum of \mathcal{L})

Resolvent set

- $\rho(\mathcal{L}) := \{\lambda \in \mathbb{C} \mid (\lambda I \mathcal{L})^{-1} : L^p \to \mathcal{D}_{loc}^p(\mathcal{L}_0) \text{ exists and is bounded} \}.$ $\textbf{Spectrum } \sigma(\mathcal{L}) := \mathbb{C} \setminus \rho(\mathcal{L}). \ 0 \neq v \in \mathcal{D}_{loc}^p(\mathcal{L}_0) \text{ is an eigenfunction of } \mathcal{L} \text{ with eigenvalue } \lambda \in \sigma(\mathcal{L}) \text{ if } (\lambda I \mathcal{L})v = 0. \text{ An eigenvalue } \lambda \in \sigma(\mathcal{L})$
 - is isolated if $\exists \varepsilon > 0 \ \forall \lambda_0 \in \mathbb{C}$ with $0 < |\lambda \lambda_0| < \varepsilon : \lambda_0 \in \rho(\mathcal{L})$.
 - has finite (algebraic) multiplicity if $\dim(\mathcal{N}(\lambda I \mathcal{L})) < \infty$ and $\exists n_{\lambda} \in \mathbb{N}$ $\forall y \in \mathcal{D}_{loc}^{p}(\mathcal{L}_{0})$ s.t. $y(\lambda_{0}) = \sum_{j=0}^{r} (\lambda_{0} - \lambda)^{j} y_{j}$ with $y_{0} \neq 0$: $[(\lambda I - \mathcal{L})y]^{(\nu)}(\lambda) = 0$ for $\mu = 0$, n = 1 and $[(\lambda I - \mathcal{L})y]^{(n)}(\lambda) \neq 0$.

 $[(\lambda I - \mathcal{L})y]^{(\nu)}(\lambda) = 0 \text{ for } \nu = 0, \dots, n-1 \text{ and } [(\lambda I - \mathcal{L})y]^{(n)}(\lambda) \neq 0.$

Point spectrum

 $\sigma_{\rm pt}(\mathcal{L}) := \{\lambda \in \mathbb{C} \mid \lambda \text{ is an isolated eigenvalue of finite alg. multiplicity}\}.$ $\lambda \in \rho(\mathcal{L}) \cup \sigma_{\rm pt}(\mathcal{L})$ is called a **normal point** of \mathcal{L} .

Essential spectrum

 $\sigma_{\mathrm{ess}}(\mathcal{L}) := \{ \lambda \in \mathbb{C} \mid \lambda \text{ is not a normal point of } \mathcal{L} \}.$

Note: $\mathbb{C} = \rho(\mathcal{L}) \dot{\cup} \sigma(\mathcal{L}), \ \sigma(\mathcal{L}) = \sigma_{ess}(\mathcal{L}) \dot{\cup} \sigma_{point}(\mathcal{L}).$

Bremen 2016

Recall from spectral theory

Linearized operator is closed and densely defined

$$\mathcal{L}v(x) = A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + Df(v_{\star}(x))v(x), x \in \mathbb{R}^{d}, d \geq 2,$$

 $\mathcal{D}^p_{\mathrm{loc}}(\mathcal{L}_0) = \{ v \in W^{2,p}_{\mathrm{loc}} \cap L^p \mid \mathcal{L}_0 v \in L^p \}, \quad \|v\|_{\mathcal{L}_0} := \|v\|_{L^p} + \|\mathcal{L}_0 v\|_{L^p}.$

Definition 5: (Fredholm operator)

The linear operator $\lambda I - \mathcal{L} : \mathcal{D}^p_{loc}(\mathcal{L}_0) \to L^p$ is called **Fredholm** iff

- $\lambda I \mathcal{L}$ is closed,
- $\ \ \, {\rm Om}(\mathcal{N}(\lambda I-\mathcal{L}))<\infty \ \, {\rm and} \ \ \,$
- $one codim(\mathcal{R}(\lambda I \mathcal{L})) < \infty.$

The **index** κ of the Fredholm operator $\lambda I - \mathcal{L}$ is defined by

$$\kappa := \dim(\mathcal{N}(\lambda I - \mathcal{L})) - \operatorname{codim}(\mathcal{R}(\lambda I - \mathcal{L}))$$

with $\operatorname{codim}(\mathcal{R}(\lambda I - \mathcal{L})) := \dim(\mathcal{D}^p_{\operatorname{loc}}(\mathcal{L}_0)/\mathcal{R}(\lambda I - \mathcal{L})).$

Adjoint operator: Let $q = \frac{p}{p-1}$ for 1

$$\begin{aligned} \mathcal{L}^* v(x) &= A^H \triangle v(x) + \left\langle S^\top x, \nabla v(x) \right\rangle + Df(v_\star(x))^H v(x), \, x \in \mathbb{R}^d, \, d \geq 2, \\ \mathcal{D}^q_{\mathrm{loc}}(\mathcal{L}^*_0) &= \{ v \in W^{2,q}_{\mathrm{loc}} \cap L^q \mid \mathcal{L}^*_0 v \in L^q \}, \quad \|v\|_{\mathcal{L}^*_0} := \|v\|_{L^q} + \|\mathcal{L}^*_0 v\|_{L^q}. \end{aligned}$$

Outline

- $lacksymbol{1}$ Rotating patterns in \mathbb{R}^d
- 2 Spatial decay of rotating waves
- 3) Eigenvalue problem for rotating waves and some basic definitions
- Fredholm properties of linearization in L^p
 - 5 Essential L^p-spectrum and dispersion relation
- 6 Point L^P-spectrum and shape of eigenfunctions
- Cubic-quintic complex Ginzburg-Landau equation

Theorem 6: (Fredholm properties of \mathcal{L})

Assume (A1)-(A3) for some $1 , <math>v_{\infty} \in \mathbb{R}^m$, $f(v_{\infty}) = 0$, $f \in C^2(\mathbb{R}^m, \mathbb{R}^m)$ and $\lambda \in \mathbb{C}$, $\operatorname{Re}\lambda \ge -b_0 + \gamma$ for some $\gamma > 0$ and $-b_0 = s(Df(v_{\infty}))$. Then, for any $0 < \varepsilon < 1$ there is $K_1 = K_1(\varepsilon) > 0$ such that for any classical solution $v_{\star} \in C^2(\mathbb{R}^d, \mathbb{R}^m)$ of (RWE) satisfying (TC) the following properties hold:

• (Fredholm properties). $\lambda I - \mathcal{L} : (\mathcal{D}_{loc}^{p}(\mathcal{L}_{0}), \|\cdot\|_{\mathcal{L}_{0}}) \to (L^{p}(\mathbb{R}^{d}, \mathbb{C}^{N}), \|\cdot\|_{L^{p}})$ is Fredholm of index 0.

Theorem 6: (Fredholm properties of \mathcal{L})

Assume (A1)-(A3) for some $1 , <math>v_{\infty} \in \mathbb{R}^m$, $f(v_{\infty}) = 0$, $f \in C^2(\mathbb{R}^m, \mathbb{R}^m)$ and $\lambda \in \mathbb{C}$, $\operatorname{Re}\lambda \ge -b_0 + \gamma$ for some $\gamma > 0$ and $-b_0 = s(Df(v_{\infty}))$. Then, for any $0 < \varepsilon < 1$ there is $K_1 = K_1(\varepsilon) > 0$ such that for any classical solution $v_{\star} \in C^2(\mathbb{R}^d, \mathbb{R}^m)$ of (RWE) satisfying (TC) the following properties hold:

(Fredholm alternative). Let in addition to **(**, (A4) hold for $q = \frac{p}{p-1}$ and $\lambda \in \sigma_{\rm pt}(\mathcal{L})$ with geom. mult. $1 \leq n = \dim \mathcal{N}(\lambda I - \mathcal{L}) < \infty$. Then, there are exactly *n* linearly indep. eigenfunctions $v_j \in \mathcal{D}_{\rm loc}^p(\mathcal{L}_0)$ and adjoint eigenfunctions $\psi_j \in \mathcal{D}_{\rm loc}^q(\mathcal{L}_0^*)$ with

 $(\lambda I - \mathcal{L})v_j = 0$ and $(\lambda I - \mathcal{L})^* \psi_j = 0$ for $j = 1, \dots, n$.

Moreover,

(IP)
$$(\lambda I - \mathcal{L})v = g, \quad g \in L^p(\mathbb{R}^d, \mathbb{C}^N)$$

has at least one (not necessarily unique) solution $v \in \mathcal{D}_{loc}^{p}(\mathcal{L}_{0})$ iff

$$g \in (\mathcal{N}(\lambda I - \mathcal{L})^*)^{\perp}$$
, i.e. $\langle \psi_j, g \rangle_{q,p} = 0, j = 1, \dots, n$.

In this case, one can select a solution $v \in \mathcal{D}^p_{\mathrm{loc}}(\mathcal{L}_0)$ of (IP) with $\|v\|_{\mathcal{L}_0} \leqslant C \|g\|_{L^p}$ and $\|v\|_{W^{1,p}} \leqslant C \|g\|_{L^p}$.

Theorem 6: (Fredholm properties of \mathcal{L})

Assume (A1)-(A3) for some $1 , <math>v_{\infty} \in \mathbb{R}^m$, $f(v_{\infty}) = 0$, $f \in C^2(\mathbb{R}^m, \mathbb{R}^m)$ and $\lambda \in \mathbb{C}$, $\operatorname{Re}\lambda \ge -b_0 + \gamma$ for some $\gamma > 0$ and $-b_0 = s(Df(v_{\infty}))$. Then, for any $0 < \varepsilon < 1$ there is $K_1 = K_1(\varepsilon) > 0$ such that for any classical solution $v_{\star} \in C^2(\mathbb{R}^d, \mathbb{R}^m)$ of (RWE) satisfying (TC) the following properties hold:

• (Exponential decay). Let in addition to •: $\theta_j(x) = \exp\left(\mu_j \sqrt{|x|^2 + 1}\right), x \in \mathbb{R}^d, \mu_j \in \mathbb{R}, j = 1, ..., 4.$ Then, every classical solution $v \in C^2(\mathbb{R}^d, \mathbb{C}^m)$ and $\psi \in C^2(\mathbb{R}^d, \mathbb{C}^m)$ of $(\lambda I - \mathcal{L})v = 0$ and $(\lambda I - \mathcal{L})^*\psi = 0$

such that $v \in L^p_{\theta_1}(\mathbb{R}^d, \mathbb{C}^m)$ and $\psi \in L^q_{\theta_3}(\mathbb{R}^d, \mathbb{C}^m)$ for some exp. growth rate

$$-\sqrt{\varepsilon\frac{\gamma_A(\beta_\infty-b_0+\gamma)}{2d|A|^2}}\leqslant \mu_1\leqslant 0 \quad \text{and} \quad -\sqrt{\varepsilon\frac{\delta_A(\beta_\infty-b_0+\gamma)}{2d|A|^2}}\leqslant \mu_3\leqslant 0$$

satisfies $v \in W^{1,p}_{\theta_2}(\mathbb{R}^d, \mathbb{C}^m)$ and $\psi \in W^{1,q}_{\theta_4}(\mathbb{R}^d, \mathbb{C}^m)$ for every exp. decay rate $0 \leq \mu_2 \leq \varepsilon \frac{\sqrt{a_0\gamma}}{d}$ and $0 \leq \mu_4 \leq \varepsilon \frac{\sqrt{a_0\gamma}}{d}$.

Theorem 6: (Fredholm properties of \mathcal{L})

Assume (A1)-(A3) for some $1 , <math>v_{\infty} \in \mathbb{R}^m$, $f(v_{\infty}) = 0$, $f \in C^2(\mathbb{R}^m, \mathbb{R}^m)$ and $\lambda \in \mathbb{C}$, $\operatorname{Re}\lambda \ge -b_0 + \gamma$ for some $\gamma > 0$ and $-b_0 = s(Df(v_{\infty}))$. Then, for any $0 < \varepsilon < 1$ there is $K_1 = K_1(\varepsilon) > 0$ such that for any classical solution $v_{\star} \in C^2(\mathbb{R}^d, \mathbb{R}^m)$ of (RWE) satisfying (TC) the following properties hold:

(Pointwise estimates for v). Let in addition to ○:
 $p \ge \frac{d}{2}$, $f \in C^k(\mathbb{R}^m, \mathbb{R}^m)$, $v_* \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^m)$, $v \in C^{k+1}(\mathbb{R}^d, \mathbb{C}^m)$, $2 \le k \in \mathbb{N}$.
 Then, $v \in W^{k,p}_{\theta_2}(\mathbb{R}^d, \mathbb{C}^m)$ and

$$|D^{lpha}v(x)|\leqslant C\exp\left(-\mu_2\sqrt{|x|^2+1}
ight),\,x\in\mathbb{R}^d$$

for any $\mu_2 \in \mathbb{R}$, $0 \leqslant \mu_2 \leqslant \varepsilon \frac{\sqrt{a_0 \gamma}}{a_{\max} p}$ and $\alpha \in \mathbb{N}_0^d$, $d < (k - |\alpha|)p$.

(Pointwise estimates for ψ). Let in addition to $\min\{p,q\} \ge \frac{d}{2}, \ \psi \in C^{k+1}(\mathbb{R}^d, \mathbb{C}^m).$ Then, $\psi \in W^{k,q}_{\theta_4}(\mathbb{R}^d, \mathbb{C}^m)$ and

$$|D^{lpha}\psi(x)| \leq C \exp\left(-\mu_4 \sqrt{|x|^2+1}
ight), x \in \mathbb{R}^d$$

for any $\mu_4 \in \mathbb{R}$, $0 \leqslant \mu_4 \leqslant \varepsilon \frac{\sqrt{a_0\gamma}}{a_{\max}q}$ and $\alpha \in \mathbb{N}_0^d$, $d < (k - |\alpha|)q$.

Outline of proof: Theorem 6 (Fredholm properties of \mathcal{L}) $\mathcal{L}v = A \triangle v + \langle Sx, \nabla v \rangle + Df(v_*(x))v.$

1. Splitting off the stable part: $Q(x) = Df(v_*(x)) - Df(v_{\infty})$ implies

$$\mathcal{L}\mathbf{v} = A \triangle \mathbf{v} + \langle S\mathbf{x}, \nabla \mathbf{v} \rangle + (Df(\mathbf{v}_{\infty}) + Q(\mathbf{x})) \mathbf{v}$$

$$v_\star(x) o v_\infty$$
 as $|x| o \infty$ \Rightarrow $\sup_{|x| \ge R} |Q(x)| \to 0$ as $R \to \infty$

2. Decomposition of Q:

$$\mathcal{L} v = A \triangle v + \langle Sx, \nabla v \rangle + (Df(v_{\infty}) + Q_{\mathrm{s}}(x) + Q_{\mathrm{c}}(x)) v$$

 $Q(x) = Q_{\rm s}(x) + Q_{\rm c}(x), \ Q_{\rm s}, Q_{\rm c} \in L^{\infty}, \ Q_{\rm s} \text{ small w.r.t. } \|\cdot\|_{L^{\infty}}, \ Q_{\rm c} \text{ comp. supported}$

3. Decomposition of λ : $\lambda \in \mathbb{C}$, $\operatorname{Re}\lambda \ge -b_0 + \gamma$ for some $\gamma > 0$, then

$$\lambda = \lambda_1 + \lambda_2$$
 with $\lambda_2 := -b_0 + \gamma$, $\lambda_1 := \lambda - \lambda_2$.

4. Decomposition of $\lambda I - \mathcal{L}$:

$$\lambda I - \mathcal{L} = \left(I - Q_{\rm c}(\cdot)(\lambda_1 - \tilde{\mathcal{L}}_{\rm s})^{-1}\right) \left(\lambda_1 I - \tilde{\mathcal{L}}_{\rm s}\right)$$

$$ilde{\mathcal{L}}_{\mathrm{s}} = \mathcal{L}_{\mathrm{s}} - \lambda_2 I, \quad \mathcal{L}_{\mathrm{s}} v = A \triangle v + \langle Sx, \nabla v \rangle + (Df(v_{\infty}) + Q_{\mathrm{s}}(x)) v$$

Outline of proof: Theorem 6 (Fredholm properties of \mathcal{L})

Decomposition of $\lambda I - \mathcal{L}$:

$$\lambda I - \mathcal{L} = \left(I - Q_{\mathrm{c}}(\cdot)(\lambda_{1} - \tilde{\mathcal{L}}_{\mathrm{s}})^{-1}
ight) \left(\lambda_{1}I - \tilde{\mathcal{L}}_{\mathrm{s}}
ight)$$

 $ilde{\mathcal{L}}_{\mathrm{s}} = \mathcal{L}_{\mathrm{s}} - \lambda_2 I, \quad \mathcal{L}_{\mathrm{s}} v = A \triangle v + \langle Sx,
abla v
angle + (Df(v_{\infty}) + Q_{\mathrm{s}}(x)) v$

5. Fredholm properties:

- $\lambda_1 I \tilde{\mathcal{L}}_s$ is Fredholm of index 0:
 - \blacktriangleright unique solvability of resolvent equation for $\tilde{\mathcal{L}}_{\rm s}$
- $I Q_{c}(\cdot)(\lambda_{1}I \tilde{\mathcal{L}}_{s})^{-1}$ Fredholm of index 0:
 - $Q_{\mathrm{c}}(\cdot)(\lambda_{1}I \tilde{\mathcal{L}}_{\mathrm{s}})^{-1}$ is compact
 - compact perturbation of identity
 - \blacktriangleright unique solvability of resolvent equation for $\tilde{\mathcal{L}}_{\rm s}$
 - $\mathcal{D}^{p}_{\mathrm{loc}}(\mathcal{L}_{0}) \subseteq W^{1,p}(\mathbb{R}^{d},\mathbb{C}^{m})$
- $\lambda I \mathcal{L}$ Fredholm of index 0:
 - Theorem on products of Fredholm operators
Outline

- $lacksymbol{1}$ Rotating patterns in \mathbb{R}^d
- 2 Spatial decay of rotating waves
- 3 Eigenvalue problem for rotating waves and some basic definitions
- 4 Fredholm properties of linearization in L^p
- 5 Essential L^p-spectrum and dispersion relation
- 6 Point L^p-spectrum and shape of eigenfunctions
- 7 Cubic-quintic complex Ginzburg-Landau equation

Eigenvalue problem:

$$(\lambda I - \mathcal{L})v = 0, x \in \mathbb{R}^d$$

$$\mathcal{L}\mathbf{v} = A \triangle \mathbf{v} + \langle S\mathbf{x}, \nabla \mathbf{v} \rangle + Df(\mathbf{v}_{\star}(\mathbf{x}))\mathbf{v}$$

1. Splitting off the stable part: $Q(x) = Df(v_*(x)) - Df(v_{\infty})$ implies

$$(\lambda I - \mathcal{L}_Q)v = 0, x \in \mathbb{R}^d$$

 $\mathcal{L}_Q v = A \triangle v + \langle Sx, \nabla v \rangle + (Df(v_\infty) + Q(x))v = \mathcal{L}v$

$$v_\star(x) o v_\infty$$
 as $|x| o \infty$ \Rightarrow $\sup_{|x| \geqslant R} |Q(x)| o 0$ as $R o \infty$

Splitting off the stable part:

$$(\lambda I - \mathcal{L}_Q)v = 0, x \in \mathbb{R}^d$$

$$\mathcal{L}_Q v = A \triangle v + \langle Sx, \nabla v \rangle + (Df(v_\infty) + Q(x))v$$

$$Q(x)=Df(v_\star(x))-Df(v_\infty),\quad \sup_{|x|\geqslant R}|Q(x)|
ightarrow 0 ext{ as } R
ightarrow\infty$$

2. Orthogonal transformation: $S \in \mathbb{R}^{d,d}$, $S = -S^{\top}$, implies $S = P\Lambda_{\mathrm{b}}^{S}P^{\top}$ with

$$P \in \mathbb{R}^{d,d}$$
 orth., $\Lambda_{\mathrm{b}}^{S} = \mathrm{diag}(\Lambda_{1}^{S}, \ldots, \Lambda_{k}^{S}, \mathbf{0}), \quad \Lambda_{j}^{S} = \begin{pmatrix} 0 & \sigma_{j} \\ -\sigma_{j} & 0 \end{pmatrix}, \quad \pm i\sigma_{j} \in \sigma(S).$
Then, $\tilde{v}(y) = v(T_{1}(y))$ with $x = T_{1}(y) = Py$ yields

$$(\lambda I - \mathcal{L}_1)\tilde{v} = 0, y \in \mathbb{R}^d$$

$$\mathcal{L}_{1}\tilde{v} = A \triangle \tilde{v} + \left\langle \Lambda_{\mathrm{b}}^{\mathsf{S}} y, \nabla \tilde{v} \right\rangle + (Df(v_{\infty}) + Q(T_{1}(y)))\tilde{v}$$

$$\left\langle \Lambda_{\mathrm{b}}^{\boldsymbol{S}} \boldsymbol{y}, \nabla \tilde{\boldsymbol{v}} \right\rangle = \sum_{l=1}^{k} \sigma_{l} \left(y_{2l} \partial_{y_{2l-1}} - y_{2l-1} \partial_{y_{2l}} \right) \tilde{\boldsymbol{v}}$$

Orthogonal transformation:

$$(\lambda I - \mathcal{L}_1)\tilde{v} = 0, \ y \in \mathbb{R}^d$$

$$\mathcal{L}_{1}\tilde{v} = A \triangle \tilde{v} + \left\langle \Lambda_{\mathrm{b}}^{S} y, \nabla \tilde{v} \right\rangle + (Df(v_{\infty}) + Q(T_{1}(y)))\tilde{v}$$

$$\langle \Lambda_{\mathrm{b}}^{\mathcal{S}} y, \nabla \tilde{v} \rangle = \sum_{l=1}^{k} \sigma_{l} \left(y_{2l} \partial_{y_{2l-1}} - y_{2l-1} \partial_{y_{2l}} \right) \tilde{v}$$

3. Several planar polar coordinates: For $\phi \in (-\pi,\pi]^k$, $r \in (0,\infty)^k$ define

$$\begin{pmatrix} y_{2l-1} \\ y_{2l} \end{pmatrix} = T(r_l, \phi_l) := \begin{pmatrix} r_l \cos \phi_l \\ r_l \sin \phi_l \end{pmatrix}, \ l = 1, \dots, k,$$

 $T_{2}(\xi) = (T(r_{1}, \phi_{1}), \dots, T(r_{k}, \phi_{k}), \tilde{y}), \ \xi = (r_{1}, \phi_{1}, \dots, r_{k}, \phi_{k}, \tilde{y}), \ \tilde{y} = (y_{2k+1}, \dots, y_{d}).$ Then, $\hat{v}(\xi) = \tilde{v}(T_{2}(\xi))$ with $y = T_{2}(\xi)$ and $\mathbf{Q}(\xi) = Q(T_{1}(T_{2}(\xi))))$ yields

$$(\lambda I - \mathcal{L}_2)\hat{\mathbf{v}} = \mathbf{0}, \, \xi \in \Omega$$

$$\mathcal{L}_2 \hat{\mathbf{v}} = A \bigg[\sum_{l=1}^k \left(\partial_{r_l}^2 + \frac{1}{r_l} \partial_{r_l} + \frac{1}{r_l^2} \partial_{\phi_l}^2 \right) + \sum_{l=2k+1}^d \partial_{y_l}^2 \bigg] \hat{\mathbf{v}} - \sum_{l=1}^k \sigma_l \partial_{\phi_l} \hat{\mathbf{v}} + (Df(\mathbf{v}_\infty) + \mathbf{Q}(\xi)) \hat{\mathbf{v}}.$$

Several planar polar coordinates: $\Omega = ((0, \infty) \times (-\pi, \pi])^k \times \mathbb{R}^{d-2k}$ $(\lambda I - \mathcal{L}_2)\hat{v} = 0, \xi \in \Omega$

$$\mathcal{L}_{2}\hat{\boldsymbol{v}} = A \bigg[\sum_{l=1}^{k} \left(\partial_{r_{l}}^{2} + \frac{1}{r_{l}} \partial_{r_{l}} + \frac{1}{r_{l}^{2}} \partial_{\phi_{l}}^{2} \right) + \sum_{l=2k+1}^{d} \partial_{y_{l}}^{2} \bigg] \hat{\boldsymbol{v}} - \sum_{l=1}^{k} \sigma_{l} \partial_{\phi_{l}} \hat{\boldsymbol{v}} + (Df(\boldsymbol{v}_{\infty}) + \mathbf{Q}(\xi)) \hat{\boldsymbol{v}}.$$

$\mathbf{Q}(\xi) = Q(T_1(T_2(\xi))))$

4. Limit operator (far-field operator, simplified operator): Let formally $|x| \to \infty$ (i.e. $r_l \to \infty$) and use $|Q(x)| \to 0$ as $|x| \to \infty$

$$(\lambda I - \mathcal{L}_{\infty}^{\mathrm{sim}})\hat{v} = 0, \, \xi \in \Omega$$

$$\mathcal{L}_{\infty}^{\sin}\hat{\mathbf{v}} = A\left[\sum_{l=1}^{k}\partial_{r_{l}}^{2} + \sum_{l=2k+1}^{d}\partial_{y_{l}}^{2}\right]\hat{\mathbf{v}} - \sum_{l=1}^{k}\sigma_{l}\partial_{\phi_{l}}\hat{\mathbf{v}} + Df(\mathbf{v}_{\infty})\hat{\mathbf{v}}$$

 $\begin{array}{l} \text{Limit operator: } \Omega = ((0,\infty) \times (-\pi,\pi])^k \times \mathbb{R}^{d-2k} \\ (\lambda I - \mathcal{L}_{\infty}^{\mathrm{sim}}) \hat{\nu} = 0, \, \xi \in \Omega \end{array}$

$$\mathcal{L}_{\infty}^{\sin}\hat{v} = A\left[\sum_{l=1}^{k}\partial_{r_{l}}^{2} + \sum_{l=2k+1}^{d}\partial_{y_{l}}^{2}\right]\hat{v} - \sum_{l=1}^{k}\sigma_{l}\partial_{\phi_{l}}\hat{v} + Df(v_{\infty})\hat{v}$$

5. Angular Fourier transform:

For $n \in \mathbb{Z}^k$, $\omega \in \mathbb{R}^k$, $\rho, \tilde{y} \in \mathbb{R}^{d-2k}$, $\underline{v} \in \mathbb{C}^m$, $|\underline{v}| = 1$, $\phi \in (-\pi, \pi]^k$, $r \in (0, \infty)^k$. Inserting

$$\hat{\mathbf{v}}(\xi) = \exp\left(i\sum_{l=1}^{k}\omega_{l}r_{l}\right)\exp\left(i\sum_{l=1}^{k}n_{l}\phi_{l}\right)\exp\left(i\sum_{l=2k+1}^{d}\rho_{l}y_{l}\right)\underline{\mathbf{v}},\\=\exp(i\langle\omega,r\rangle+i\langle n,\phi\rangle+i\langle\rho,\tilde{\mathbf{y}}\rangle)\underline{\mathbf{v}}$$

yields the *m*-dimensional eigenvalue problem

$$\left(\lambda I_m + (|\omega|^2 + |\rho|^2)A + i\sum_{l=1}^k n_l\sigma_l I_m - Df(v_\infty)\right)\underline{v} = 0.$$

Essential Spectrum: Derivation of dispersion set
$$\sigma_{disp}(\mathcal{L})$$

Angular Fourier transform: $\omega \in \mathbb{R}^k$, $\rho \in \mathbb{R}^{d-2k}$, $n \in \mathbb{Z}^k$, $\underline{v} \in \mathbb{C}^m$, $|\underline{v}| = 1$
 $\left(\lambda I_m + (|\omega|^2 + |\rho|^2)A + i\sum_{l=1}^k n_l\sigma_l I_m - Df(v_\infty)\right)\underline{v} = 0.$
6. Dispersion relation: Every $\lambda \in \mathbb{C}$ satisfying
 $(DR) \quad \det\left(\lambda I_m + (|\omega|^2 + |\rho|^2)A + i\sum_{l=1}^k n_l\sigma_l I_m - Df(v_\infty)\right) = 0$
for some $\omega \in \mathbb{R}^k$, $\rho \in \mathbb{R}^{d-2k}$, $n \in \mathbb{Z}^k$ belongs to $\sigma_{ess}(\mathcal{L})$.
Dispersion set:
 $\sigma_{disp}(\mathcal{L}) = \{\lambda \in \mathbb{C} \mid \lambda \text{ satisfies (DR) for some } \omega \in \mathbb{R}^k, \rho \in \mathbb{R}^{d-2k}, n \in \mathbb{Z}^k\}.$

Illustration: Dispersion set $\sigma_{\text{disp}}(\mathcal{L})$ (DR) $\det\left(\lambda I_m + (|\omega|^2 + |\rho|^2)A + i\sum_{l=1}^k n_l\sigma_l I_m - Df(v_\infty)\right) = 0$

 $\sigma_{\rm disp}(\mathcal{L}) = \{\lambda \in \mathbb{C} \mid \lambda \text{ satisfies (DR) for some } \omega \in \mathbb{R}^k, \ \rho \in \mathbb{R}^{d-2k}, \ n \in \mathbb{Z}^k\}$

 $S \in \mathbb{R}^{d,d}$, $S = -S^{\top}$, $\pm i\sigma_1, \ldots, \pm i\sigma_k$ nonzero eigenvalues of S, $\sigma_1, \ldots, \sigma_k \in \mathbb{R}$.

Essential L^p -spectrum of \mathcal{L}

(DR)
$$\det\left(\lambda I_m + (|\omega|^2 + |\rho|^2)A + i\sum_{l=1}^k n_l \sigma_l I_m - Df(v_\infty)\right) = 0$$

 $\sigma_{\rm disp}(\mathcal{L}) = \{\lambda \in \mathbb{C} \mid \lambda \text{ satisfies (DR) for some } \omega \in \mathbb{R}^k, \ \rho \in \mathbb{R}^{d-2k}, \ n \in \mathbb{Z}^k\}$

 $S \in \mathbb{R}^{d,d}$, $S = -S^{\top}$, $\pm i\sigma_1, \ldots, \pm i\sigma_k$ nonzero eigenvalues of S, $\sigma_1, \ldots, \sigma_k \in \mathbb{R}$.

Theorem 7: (Essential L^p -spectrum of \mathcal{L})

Let that assumptions of Theorem 1 (pointwise estimates) be satisfied. Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property: For every classical solution $v_{\star} \in C^{k+1}(\mathbb{R}^d, \mathbb{R}^m)$ of (RWE) satisfying (TC) it holds

 $\sigma_{\mathrm{disp}}(\mathcal{L}) \subseteq \sigma_{\mathrm{ess}}(\mathcal{L}) \quad \mathrm{in} \quad L^p(\mathbb{R}^d, \mathbb{C}^N).$

- essential spectrum is determined by the far-field linearization
- Thm. 7 holds only for exponentially localized rotating waves, but **not** for nonlocalized rotating waves (e.g. spiral waves, scroll waves)
- essential spectrum for spiral waves much more involved (\rightarrow Floquet theory)

Outline

- $lacksymbol{1}$ Rotating patterns in \mathbb{R}^d
- 2 Spatial decay of rotating waves
- 3 Eigenvalue problem for rotating waves and some basic definitions
- 4 Fredholm properties of linearization in L^p
- 5 Essential *L^p*-spectrum and dispersion relation
- 6 Point L^p-spectrum and shape of eigenfunctions
 - Cubic-quintic complex Ginzburg-Landau equation

Point spectrum: Derivation of symmetry set $\sigma_{\text{sym}}(\mathcal{L})$

Rotating wave equation:

(RWE)

$$0 = A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)), \, x \in \mathbb{R}^{d}$$

SE(d)-group action:

$$[a(R,\tau)v](x) = v(R^{-1}(x-\tau)), \quad x \in \mathbb{R}^d, (R,\tau) \in \mathrm{SE}(d).$$

1. Generators of $\operatorname{SE}(d)\text{-}group$ action: Applying the generators

$$D_l = \partial_{x_l}$$
 and $D^{(i,j)} = x_j D_i - x_i D_j$

to (RWE) leads to $\frac{d(d+1)}{2} = d + \frac{d(d-1)}{2}$ equations

$$0 = D_{I} (A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)))$$

$$0 = D^{(i,j)} (A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)))$$

for
$$l = 1, ..., d$$
, $i = 1, ..., d - 1$, $j = i + 1, ..., d$.

Point spectrum: Derivation of symmetry set $\sigma_{sym}(\mathcal{L})$ Generators of SE(d)-group action: $D_l = \partial_{x_l}$ and $D^{(i,j)} = x_i D_i - x_i D_i$ $0 = D_{I} \left(A \triangle v_{+}(x) + \langle Sx, \nabla v_{+}(x) \rangle + f(v_{+}(x)) \right)$ $0 = D^{(i,j)} \left(A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) \right)$ for $l = 1, \ldots, d$, $i = 1, \ldots, d - 1$, $j = i + 1, \ldots, d$. 2. Commutator relations of generators: $D_I D_k = D_k D_l$ $D_i D^{(i,j)} = D^{(i,j)} D_i + \delta_{li} D_i - \delta_{li} D_i,$ $D^{(i,j)}D^{(r,s)} = D^{(r,s)}D^{(i,j)} + \delta_{is}D^{(r,j)} - \delta_{ir}D^{(s,j)} - \delta_{is}D^{(r,i)} + \delta_{ir}D^{(s,i)},$ $0 = \mathcal{L}(\underline{D}_{l}v_{\star}) - \sum S_{ln}D_{n}v_{\star},$ $0 = \mathcal{L}(D^{(i,j)}v_{\star}) - \sum^{d} S_{jn}D^{(i,n)}v_{\star} - \sum^{d} S_{in}D^{(n,j)}v_{\star}.$

Point spectrum: Derivation of symmetry set $\sigma_{ m sym}(\mathcal{L})$

Commutator relations of generators: l = 1, ..., d, i = 1, ..., d-1, j = i+1, ..., d

$$0=\mathcal{L}(D_l v_{\star})-\sum_{n=1}^d S_{ln}D_n v_{\star},$$

$$0 = \mathcal{L}(D^{(i,j)}v_{\star}) - \sum_{n=1}^{d} S_{jn}D^{(i,n)}v_{\star} - \sum_{n=1}^{d} S_{in}D^{(n,j)}v_{\star}.$$

3. Finite-dimensional eigenvalue problem: Linear combination of generators $v(x) = \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} C_{ij}^{\text{rot}} D^{(i,j)} v_{\star}(x) + \sum_{l=1}^{d} C_{l}^{\text{tra}} D_{l} v_{\star}(x) = \langle C^{\text{rot}} x + C^{\text{tra}}, \nabla v_{\star}(x) \rangle$ reduces $\mathcal{L}v = \lambda v$ to the following $\frac{d(d+1)}{2}$ -dimensional eigenvalue problem

$$\lambda C^{\text{tra}} = -SC^{\text{tra}},$$

 $\lambda C^{\text{rot}} = S^{\top}C^{\text{rot}} + C^{\text{rot}}S^{\top}$

• Unknowns: $\lambda \in \mathbb{C}$, $C^{\mathrm{rot}} \in \mathbb{C}^{d,d}$ skew-symmetric, $C^{\mathrm{tra}} \in \mathbb{C}^d$

 $\bullet~\text{EVP}$ appears in block diagonal form \Rightarrow solve EVPs separately

Point spectrum: Derivation of symmetry set $\sigma_{ m sym}(\mathcal{L})$

Finite-dimensional eigenvalue problem: $S \in \mathbb{R}^{d,d}$, $S = -S^{ op}$

$$\lambda C^{\text{tra}} = -SC^{\text{tra}},$$

$$\lambda C^{\rm rot} = S^{\top} C^{\rm rot} + C^{\rm rot} S.$$

Unknowns: $\lambda \in \mathbb{C}$, $C^{\text{rot}} \in \mathbb{C}^{d,d}$ skew-symmetric, $C^{\text{tra}} \in \mathbb{C}^{d}$.

4. Solution of (1)-(2): *S* is unitary diagonalizable, i.e. $\Lambda_{S} = U^{H}SU, \quad U \in \mathbb{C}^{d,d} \text{ unitary}, \quad \Lambda_{S} = \operatorname{diag}(\lambda_{1}^{S}, \dots, \lambda_{d}^{S}), \quad \sigma(S) = \{\lambda_{1}^{S}, \dots, \lambda_{d}^{S}\}$ A transformation of (1)-(2) implies $\lambda = -\lambda_{I}^{S}, \qquad C^{\operatorname{rot}} = 0, \qquad C^{\operatorname{tra}} = Ue_{I}, \quad (d \text{ solutions}),$

$$\lambda = -(\lambda_i^S + \lambda_j^S), \quad C^{\text{rot}} = U(I_{ij} - I_{ji})U^{\top}, \quad C^{\text{tra}} = 0, \quad \left(\frac{U(U-1)}{2} \text{ solutions}\right)$$

Symmetry set:

(1)(2)

$$\sigma_{ ext{sym}}(\mathcal{L}) = \sigma(\mathcal{S}) \cup \left\{\lambda_i^\mathcal{S} + \lambda_j^\mathcal{S} \mid 1 \leqslant i < j \leqslant d
ight\}$$

Illustration: Symmetry set $\sigma_{sym}(\mathcal{L})$ $\sigma_{sym}(\mathcal{L}) = \sigma(S) \cup \{\lambda_i^S + \lambda_j^S \mid 1 \leq i < j \leq d\}$ & algebraic multiplicities

Point L^p -spectrum of \mathcal{L}

Theorem 8: (Point L^p -spectrum of \mathcal{L})

Let that assumptions of Theorem 6 \bigcirc be satisfied. Then for every $0 < \varepsilon < 1$ there exists $K_1 = K_1(\varepsilon) > 0$ with the following property: For every classical solution $v_* \in C^2(\mathbb{R}^d, \mathbb{R}^m)$ of (RWE) satisfying (TC) it holds

 $\sigma_{\mathrm{sym}}(\mathcal{L}) \subseteq \sigma_{\mathrm{pt}}(\mathcal{L}) \quad \mathrm{in} \quad L^p(\mathbb{R}^d, \mathbb{C}^N).$

In particular, Theorem 6 Q- Q implies exponential decay of eigenfunctions and adjoint eigenfunctions.

- point spectrum is determined by the group action
- Thm. 8 even holds for nonlocalized rotating waves (spiral waves, scroll waves)
- $v(x) = \langle Sx, \nabla v_{\star}(x) \rangle$ eigenfunction of $\lambda = 0$ for every $d \ge 2$

References

Spectrum at 2-dimensional localized rotating waves:

W.-J. Beyn, J. Lorenz.

Nonlinear stability of rotating patterns, 2008.

Spectrum of drift term:

G. Metafune.

L^p-spectrum of Ornstein-Uhlenbeck operators, 2001.

Spectrum at spiral and scroll waves:

B. Sandstede, A. Scheel.

Absolute and convective instabilities of waves on unbounded and large bounded domains, 2000.

B. Fiedler, A. Scheel.

Spatio-temporal dynamics of reaction-diffusion patterns, 2003.

Outline

- $lacksymbol{1}$ Rotating patterns in \mathbb{R}^d
- 2 Spatial decay of rotating waves
- 3 Eigenvalue problem for rotating waves and some basic definitions
- 4 Fredholm properties of linearization in L^p
- 5 Essential L^p-spectrum and dispersion relation
- Point L^P-spectrum and shape of eigenfunctions
- Cubic-quintic complex Ginzburg-Landau equation

Example

Consider the quintic complex Ginzburg-Landau equation (QCGL):

$$u_t = \alpha \bigtriangleup u + u\left(\mu + \beta \left|u\right|^2 + \gamma \left|u\right|^4\right), \quad u = u(x, t) \in \mathbb{C}$$

with $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{C}, d \in \{2, 3\}]$. For the parameters

$$\alpha = \frac{1}{2} + \frac{1}{2}i, \quad \beta = \frac{5}{2} + i, \quad \gamma = -1 - \frac{1}{10}i, \quad \mu = -\frac{1}{2}$$

this equation exhibits so called **spinning soliton** solutions.

Spatial decay of a spinning soliton in QCGL for d = 3: Assume

$$\mathrm{Re}\alpha > 0, \quad \mathrm{Re}\delta < 0, \quad p_{\mathsf{min}} = \frac{2|\alpha|}{|\alpha| + \mathrm{Re}\alpha} < p < \frac{2|\alpha|}{|\alpha| - \mathrm{Re}\alpha} = p_{\mathsf{max}}$$

Decay rate of spinning soliton:

Denny Otten

Spectral Properties of Localized Rotating Waves

Spectrum of QCGL for a spinning soliton with d = 3: (numerical vs. analytical)

Point spectrum on $i\mathbb{R}$ and **essential spectrum** by dispersion relation:

$$\begin{aligned} \sigma_{\text{disp}}(\mathcal{L}) &= \{\lambda = -\omega^2 \alpha_1 + \delta_1 + i(\mp \omega^2 \alpha_2 \pm \delta_2 - n\sigma_1) : \omega \in \mathbb{R}, \ n \in \mathbb{Z}\},\\ \sigma_{\text{sym}}(\mathcal{L}) &= \{0, \pm i\sigma_1\}, \quad \sigma_1 = 0.6888 \end{aligned}$$
parameters $\alpha = \frac{1}{2} + \frac{1}{2}i, \ \beta = \frac{5}{2} + i, \ \gamma = -1 - \frac{1}{10}i, \ \mu = -\frac{1}{2}. \end{aligned}$

for

Eigenfunctions of QCGL for a spinning soliton with d = 3: $\operatorname{Re}v(x) = \pm 0.8$

Spatial decay of eigenfunctions of QCGL at a spinning soliton for d = 3: Note

$$\operatorname{Re}\lambda \geqslant -(1-\varepsilon)\beta_{\infty} = -(1-\varepsilon)(-\operatorname{Re}\delta) \quad \Leftrightarrow \quad \varepsilon \leqslant \frac{\operatorname{Re}\lambda - \operatorname{Re}\delta}{-\operatorname{Re}\delta} =: \varepsilon(\lambda).$$

Decay rate of eigenfunctions:

$$0 \leqslant \mu \leqslant \frac{\varepsilon(\lambda)\sqrt{-\operatorname{Re}\alpha\operatorname{Re}\delta}}{|\alpha|p} =: \mu^{\operatorname{eig}}(p,\lambda) < \frac{\varepsilon(\lambda)\sqrt{-\operatorname{Re}\alpha\operatorname{Re}\delta}}{|\alpha|\max\{p_{\min},\frac{d}{2}\}} =: \mu^{\operatorname{eig}}_{\max}(\lambda).$$

	0		
	$8.999 \cdot 10^{-15}$	0.5387	0.4714
	$-5.6162 \cdot 10^{-4}$	0.5478	0.4714
	$0.00110 \pm 0.68827i$	0.5507	0.4714
	$0.00248 \pm 0.6874i$	0.5398	0.4714
	$-0.06622 \pm 1.0112i$	0.4899	0.4090
	$-0.07747 \pm 1.5274i$	0.5355	0.3984
	$-0.22334 \pm 1.1593i$	0.4756	0.2608
-2	$-0.26467 \pm 0.1193i$	0.4785	0.2219
	$-0.30232 \pm 1.9457i$	0.4649	0.1864
-3	$-0.43957 \pm 2.3248i$	0.3595	0.0570
	$-0.44063 \pm 1.5128i$	0.3310	0.0560
	-0.47366 ± 1.3552 <i>i</i>	0.4781	0.0248
-4	$-0.48294 \pm 0.9163i$	0.4145	0.0161
	$-0.48506 \pm 0.0991 i$	0.2126	0.0141
0 5 10 15	$-0.49015 \pm 0.2535i$	0.3307	0.0093
	$-0.55519 \pm 1.1222i$	0.3581	—

Eigenfunctions vs. adjoint eigenfunctions of QCGL for a spinning soliton with d = 3:

Eigenfunctions (above) and adjoint eigenfunctions (buttom) for $\lambda \in \sigma_{sym}(\mathcal{L})$

Eigenfunction $(Sx, \nabla v_{\star}(x))$ of QCGL for a spinning soliton with d = 3:

Conclusion:

Theoretical results:

- spatial decay of rotating waves
- spectral properties of linearization at localized rotating waves
 - Fredholm properties in L^p
 - symmetry set, point L^p-spectrum, shape of eigenfunctions and spatial decay of eigenfunctions and adjoint eigenfunctions
 - dispersion set, essential L^p-spectrum

Numerical results:

 approximation of rotating waves, spectra, eigenfunctions and adjoint eigenfunctions of QCGL (computation: COMSOL, postprocessing: MATLAB)

Open problems and work in progress

- Fredholm properties and L^p-spectra of localized rotating waves (joint work with: W.-J. Beyn)
- Fourier-Bessel method on ℝ^d and on circular domains (joint work with: W.-J. Beyn, C. Döding)
- Nonlinear stability of relative equilibria in evolution equations (joint work with: W.-J. Beyn, C. Döding)
- Freezing traveling waves in incompressible Navier-Stokes equations (joint work with: W.-J. Beyn, C. Döding)
- Nonlinear stability of rotating waves for d ≥ 3 (joint work with: W.-J. Beyn)
- Approximation theorem for rotating waves

Outline

Outline of proof: Theorem 1

Outline of proof: Theorem 2

Outline of proof: Theorem 7

Consider the nonlinear problem

$$A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^{d}, d \geq 2.$$

1. Far-Field Linearization: $f \in C^1$, Taylor's theorem, $f(v_{\infty}) = 0$

$$a(x):=\int_0^1 Df(v_\infty+tw_\star(x))dt,\quad w_\star(x):=v_\star(x)-v_\infty$$

$$A riangle w_{\star}(x) + \langle Sx,
abla w_{\star}(x)
angle + egin{aligned} \mathsf{a}(x) w_{\star}(x) = 0, \, x \in \mathbb{R}^d. \end{aligned}$$

Consider the nonlinear problem

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d}, \, d \geq 2.$$

2. Decomposition of *a***:** Let $a(x) = Df(v_{\infty}) + Q(x)$ with

$$Q(x):=\int_0^1 Df(v_\infty+tw_\star(x))-Df(v_\infty)dt,\quad w_\star(x):=v_\star(x)-v_\infty$$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (\frac{Df(v_{\infty}) + Q(x)}{W_{\star}(x)} = 0, x \in \mathbb{R}^{d}.$

Consider the nonlinear problem

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d}, \, d \geq 2.$$

2. Decomposition of *a***:** Let $a(x) = Df(v_{\infty}) + Q(x)$ with

$$Q(x):=\int_0^1 Df(v_\infty+tw_\star(x))-Df(v_\infty)dt,\quad w_\star(x):=v_\star(x)-v_\infty$$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (Df(v_{\infty}) + Q_{s}(x) + Q_{c}(x)) w_{\star}(x) = 0, x \in \mathbb{R}^{d}.$

Consider the nonlinear problem

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d}, \, d \geq 2.$$

2. Decomposition of *a***:** Let $a(x) = Df(v_{\infty}) + Q(x)$ with

$$Q(x):=\int_0^1 Df(v_\infty+tw_\star(x))-Df(v_\infty)dt,\quad w_\star(x):=v_\star(x)-v_\infty$$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (Df(v_{\infty}) + Q_{s}(x) + Q_{c}(x)) w_{\star}(x) = 0, x \in \mathbb{R}^{d}.$

3. Decomposition of *Q*:

$$\begin{split} &Q(x) = Q_{\rm s}(x) + Q_{\rm c}(x), \\ &Q, Q_{\rm s}, Q_{\rm c} \in L^{\infty}(\mathbb{R}^d, \mathbb{R}^{m,m}), \\ &Q_{\rm s} \text{ small, i.e. } \|Q_{\rm s}\|_{L^{\infty}} < K_1, \\ &Q_{\rm c} \text{ compactly supported.} \end{split}$$

Consider the nonlinear problem

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d}, \, d \geq 2.$$

2. Decomposition of *a***:** Let $a(x) = Df(v_{\infty}) + Q(x)$ with

$$Q(x):=\int_0^1 Df(v_\infty+tw_\star(x))-Df(v_\infty)dt,\quad w_\star(x):=v_\star(x)-v_\infty$$

 $A \triangle w_{\star}(x) + \langle Sx, \nabla w_{\star}(x) \rangle + (Df(v_{\infty}) + Q_{s}(x) + Q_{c}(x)) w_{\star}(x) = 0, x \in \mathbb{R}^{d}.$

3. Decomposition of *Q*:

$$\begin{split} Q(x) &= Q_{\rm s}(x) + Q_{\rm c}(x), \\ Q, Q_{\rm s}, Q_{\rm c} \in L^{\infty}(\mathbb{R}^d, \mathbb{R}^{m,m}), \\ Q_{\rm s} \text{ small, i.e. } \|Q_{\rm s}\|_{L^{\infty}} < K_1, \\ Q_{\rm c} \text{ compactly supported.} \end{split}$$

Outline

3 Outline of proof: Theorem 1

Outline of proof: Theorem 7

Outline of proof: Theorem 2 (Decay of eigenfunctions) Consider

$$A riangle v(x) + \langle Sx,
abla v(x)
angle + Df(v_{\star}(x))v(x) = \lambda v(x), \ x \in \mathbb{R}^{d}.$$

1. Splitting off the stable part:

 $Df(v_{\star}(x)) = \frac{Df(v_{\infty})}{(v_{\star}(x))} + (Df(v_{\star}(x)) - \frac{Df(v_{\infty})}{(v_{\infty})}) =: Df(v_{\infty}) + Q(x), x \in \mathbb{R}^{d},$

leads to

$$\left[\mathcal{L}_0 v\right](x) + \left(Df(v_\infty) + Q(x)\right)v(x) = \lambda v(x), \, x \in \mathbb{R}^d.$$

2. Decomposition of (the variable coefficient) Q:

$$\begin{split} Q(x) &= Q_{\varepsilon}(x) + Q_{\mathrm{c}}(x), Q_{\varepsilon} \in C_{\mathrm{b}}(\mathbb{R}^{d}, \mathbb{R}^{N,N}) \text{ small w.r.t. } \left\|\cdot\right\|_{C_{\mathrm{b}}}, \\ & Q_{\mathrm{c}} \in C_{\mathrm{b}}(\mathbb{R}^{d}, \mathbb{R}^{N,N}) \text{ compactly supported on } \mathbb{R}^{d}, \end{split}$$

leads to

$$\left[\mathcal{L}_0 v\right](x) + \left(Df(v_\infty) + Q_\varepsilon(x) + Q_c(x)\right)v(x) = \lambda v(x), \, x \in \mathbb{R}^d.$$

 $(\rightarrow$ inhomogeneous Cauchy problem for $\mathcal{L}_c)$

Outline

3 Outline of proof: Theorem 1

Outline of proof: Theorem 2

10 Outline of proof: Theorem 7
Outline of proof: Theorem 7 (Essential L^p -spectrum of \mathcal{L}) Choose $R \ge 2$ large and cut-off function $\chi_R \in C_b^2$ (bounded indep. on R)

$$\chi_{R}: [0,\infty) \to [0,1], \ \chi_{R}(r) = \begin{cases} 0 & , r \in I_{1} \cup I_{5}, \\ \in [0,1] & , r \in I_{2} \cup I_{4}, \\ 1 & , r \in I_{3}, \end{cases}$$

 $I_1 = [0, R - 1], I_2 = [R - 1, R], I_3 = [R, 2R], I_4 = [2R, 2R + 1], I_5 = [2R + 1, \infty).$ Introducing

$$v_R(\xi) := \left[\prod_{l=1}^k \chi_R(r_l)\right] \chi_R(|\tilde{y}|) \hat{v}(\xi), \qquad w_R := \frac{v_R}{\|v_R\|_{L^p}}$$

we want show that $w_R \in \mathcal{D}^p_{\mathrm{loc}}(\mathcal{L}_0)$ and

$$\|(\lambda I - \mathcal{L})w_R\|_{L^p}^p = \frac{\|(\lambda I - \mathcal{L})v_R\|_{L^p}^p}{\|v_R\|_{L^p}^p} \leqslant \frac{CR^{d-1} + CR^d\eta_R}{CR^d} = \frac{C}{R} + \eta_R \to 0 \text{ as } R \to \infty.$$

Then, $\lambda \notin \rho(\mathcal{L})$ (by continuity of resolvent), i.e. $\lambda \in \sigma(\mathcal{L})$. But $\lambda \notin \sigma_{pt}(\mathcal{L})$ (since varying ω or ρ shows that λ is not isolated), hence $\lambda \in \sigma_{ess}(\mathcal{L})$.

Denny Otten

$$\chi_{R}(r) = \begin{cases} 0 & , r \in I_{1} \cup I_{5}, \\ \in [0,1] & , r \in I_{2} \cup I_{4}, \quad v_{R}(\xi) := \left[\prod_{l=1}^{k} \chi_{R}(r_{l})\right] \chi_{R}(|\tilde{y}|) \hat{v}(\xi), \quad w_{R} := \frac{v_{R}}{\|v_{R}\|_{L^{p}}} \end{cases}$$

 $I_1 = [0, R-1], I_2 = [R-1, R], I_3 = [R, 2R], I_4 = [2R, 2R+1], I_5 = [2R+1, \infty).$

$$\mathbf{Aim:} \quad \frac{\|(\lambda I - \mathcal{L})\mathbf{v}_R\|_{L^p}^p}{\|\mathbf{v}_R\|_{L^p}^p} \leqslant \frac{CR^{d-1} + CR^d\eta_R}{CR^d} \quad \text{and} \quad \mathbf{w}_R \in \mathcal{D}_{\mathrm{loc}}^p(\mathcal{L}_0)$$

Show:

$$\begin{aligned} & \|v_R\|_{L^p}^p \ge CR^d \\ & \exists \|(\lambda I - \mathcal{L})v_R\|_{L^p}^p \le CR^{d-1} + CR^d\eta_R \\ & \exists \|(\lambda I - \mathcal{L}_2)v_R(\xi)\| = 0, \text{ if } |\tilde{y}| \in I_1 \cup I_5 \text{ or } r_l \in I_1 \cup I_5 \text{ for some } 1 \le l \le k, \\ \|(\lambda I - \mathcal{L}_2)v_R(\xi)\| \le C \forall |\tilde{y}|, r_l \in I_2 \cup I_3 \cup I_4 \text{ for some } 1 \le l \le k, \\ \|(\lambda I - \mathcal{L}_2)v_R(\xi)\| \le \left(\sum_{l=1}^k \frac{C_l}{r_l} + \eta_R\right)^{\frac{1}{p}} \forall |\tilde{y}|, r_l \in I_3 \text{ for all } 1 \le l \le k, \end{aligned}$$
$$\begin{aligned} & \|(\lambda I - \mathcal{L}_{\infty}^{sim})v_R\|_{L^p}^p \le CR^{d-1} \\ & \exists (\lambda I - \mathcal{L}_{\infty}^{sim})v_R(\xi) = 0 \end{aligned}$$

$$\chi_{R}(r) = \begin{cases} 0 & , r \in I_{1} \cup I_{5}, \\ \in [0,1] & , r \in I_{2} \cup I_{4}, \\ 1 & , r \in I_{3}, \end{cases} := \left[\prod_{l=1}^{k} \chi_{R}(r_{l})\right] \chi_{R}(|\tilde{y}|) \hat{v}(\xi), \quad w_{R} := \frac{v_{R}}{\|v_{R}\|_{L^{p}}}$$

 $I_1 = [0, R-1], I_2 = [R-1, R], I_3 = [R, 2R], I_4 = [2R, 2R+1], I_5 = [2R+1, \infty).$

$$\mathbf{Aim:} \quad \frac{\|(\lambda I - \mathcal{L})\mathbf{v}_R\|_{L^p}^p}{\|\mathbf{v}_R\|_{L^p}^p} \leqslant \frac{CR^{d-1} + CR^d\eta_R}{CR^d} \quad \text{and} \quad \mathbf{w}_R \in \mathcal{D}_{\text{loc}}^p(\mathcal{L}_0)$$

Show:

$$\|v_R\|_{L^p}^p \geqslant CR^d$$

$$\| (\lambda I - \mathcal{L}) \mathbf{v}_{\mathsf{R}} \|_{L^{p}}^{p} \leqslant C \mathbf{R}^{d-1} + C \mathbf{R}^{d} \eta_{\mathsf{R}}$$

 $\begin{aligned} & |(\lambda I - \mathcal{L}_2) v_R(\xi)| = 0, \text{ if } |\tilde{y}| \in I_1 \cup I_5 \text{ or } r_l \in I_1 \cup I_5 \text{ for some } 1 \leqslant l \leqslant k, \\ & |(\lambda I - \mathcal{L}_2) v_R(\xi)| \leqslant C \forall |\tilde{y}|, r_l \in I_2 \cup I_3 \cup I_4 \text{ for some } 1 \leqslant l \leqslant k, \\ & |(\lambda I - \mathcal{L}_2) v_R(\xi)| \leqslant \left(\sum_{l=1}^k \frac{C_l}{r_l} + \eta_R\right)^{\frac{1}{p}} \forall |\tilde{y}|, r_l \in I_3 \text{ for all } 1 \leqslant l \leqslant k, \end{aligned}$

$$\| (\lambda I - \mathcal{L}_{\infty}^{\rm sim}) v_R \|_{L^p}^p \leqslant C R^{d-1}$$

$$(\lambda I - \mathcal{L}_{\infty}^{\rm sim}) v_R(\xi) = 0$$

$$\chi_{R}(r) = \begin{cases} 0 & , r \in I_{1} \cup I_{5}, \\ \in [0,1] & , r \in I_{2} \cup I_{4}, \\ 1 & , r \in I_{3}, \end{cases} := \left[\prod_{l=1}^{k} \chi_{R}(r_{l})\right] \chi_{R}(|\tilde{y}|) \hat{v}(\xi), \quad w_{R} := \frac{v_{R}}{\|v_{R}\|_{L^{p}}}$$

 $I_1 = [0, R-1], I_2 = [R-1, R], I_3 = [R, 2R], I_4 = [2R, 2R+1], I_5 = [2R+1, \infty).$

$$\mathbf{Aim:} \quad \frac{\|(\lambda I - \mathcal{L})\mathbf{v}_R\|_{L^p}^p}{\|\mathbf{v}_R\|_{L^p}^p} \leqslant \frac{CR^{d-1} + CR^d\eta_R}{CR^d} \quad \text{and} \quad \mathbf{w}_R \in \mathcal{D}_{\text{loc}}^p(\mathcal{L}_0)$$

Show:

$$\begin{aligned} & \| v_R \|_{L^p}^p \ge CR^d \\ & \| (\lambda I - \mathcal{L}) v_R \|_{L^p}^p \leqslant CR^{d-1} + CR^d \eta_R \\ & \| (\lambda I - \mathcal{L}_2) v_R(\xi) \| = 0, \text{ if } |\tilde{y}| \in I_1 \cup I_5 \text{ or } r_l \in I_1 \cup I_5 \text{ for some } 1 \leqslant l \leqslant k, \\ & | (\lambda I - \mathcal{L}_2) v_R(\xi) | \leqslant C \forall |\tilde{y}|, r_l \in I_2 \cup I_3 \cup I_4 \text{ for some } 1 \leqslant l \leqslant k, \\ & | (\lambda I - \mathcal{L}_2) v_R(\xi) | \leqslant \left(\sum_{l=1}^k \frac{C_l}{r_l} + \eta_R \right)^{\frac{1}{p}} \forall |\tilde{y}|, r_l \in I_3 \text{ for all } 1 \leqslant l \leqslant k, \end{aligned}$$

$$\begin{aligned} & \| (\lambda I - \mathcal{L}_\infty^{sim}) v_R \|_{L^p}^p \leqslant CR^{d-1} \\ & (\lambda I - \mathcal{L}_\infty^{sim}) v_R(\xi) = 0 \end{aligned}$$

$$\chi_{R}(r) = \begin{cases} 0 & , r \in I_{1} \cup I_{5}, \\ \in [0,1] & , r \in I_{2} \cup I_{4}, \\ 1 & , r \in I_{3}, \end{cases} := \left[\prod_{l=1}^{k} \chi_{R}(r_{l})\right] \chi_{R}(|\tilde{y}|) \hat{v}(\xi), \quad w_{R} := \frac{v_{R}}{\|v_{R}\|_{L^{p}}}$$

 $I_1 = [0, R-1], I_2 = [R-1, R], I_3 = [R, 2R], I_4 = [2R, 2R+1], I_5 = [2R+1, \infty).$

$$\mathbf{Aim:} \quad \frac{\|(\lambda I - \mathcal{L})\mathbf{v}_R\|_{L^p}^p}{\|\mathbf{v}_R\|_{L^p}^p} \leqslant \frac{CR^{d-1} + CR^d\eta_R}{CR^d} \quad \text{and} \quad \mathbf{w}_R \in \mathcal{D}_{\text{loc}}^p(\mathcal{L}_0)$$

Show:

$$\begin{aligned} & \|v_R\|_{L^p}^p \ge CR^d \\ & \|(\lambda I - \mathcal{L})v_R\|_{L^p}^p \le CR^{d-1} + CR^d\eta_R \\ & \|(\lambda I - \mathcal{L}_2)v_R(\xi)\| = 0, \text{ if } |\tilde{y}| \in I_1 \cup I_5 \text{ or } r_l \in I_1 \cup I_5 \text{ for some } 1 \le l \le k, \\ & |(\lambda I - \mathcal{L}_2)v_R(\xi)| \le C \forall |\tilde{y}|, r_l \in I_2 \cup I_3 \cup I_4 \text{ for some } 1 \le l \le k, \\ & |(\lambda I - \mathcal{L}_2)v_R(\xi)| \le \left(\sum_{l=1}^k \frac{C_l}{r_l} + \eta_R\right)^{\frac{1}{p}} \forall |\tilde{y}|, r_l \in I_3 \text{ for all } 1 \le l \le k, \end{aligned}$$
$$\begin{aligned} & \|(\lambda I - \mathcal{L}_{\infty}^{sim})v_R\|_{L^p}^p \le CR^{d-1} \\ & (\lambda I - \mathcal{L}_{\infty}^{sim})v_R(\xi) = 0 \end{aligned}$$