Spatial decay of rotating waves in parabolic systems Dynamics of Patterns, MFO, Oberwolfach, December 16-22, 2012

Denny Otten Department of Mathematics Bielefeld University Germany

December 17, 2012

Outline

1 Introduction: Rotating pattern in \mathbb{R}^d

- 2 Main result: Exponential decay of v_{\star}
- 3 Outline of proof: Exponential decay of v_{\star}
- Multisolitons: Interaction of spinning solitons

Consider a reaction diffusion system

(1)
$$u_t(x,t) = A \triangle u(x,t) + f(u(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ u(x,0) = u_0(x), \ t = 0, \ x \in \mathbb{R}^d.$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N, A \in \mathbb{R}^{N,N}, f \in C^2(\mathbb{R}^N, \mathbb{R}^N).$ Assume a **rotating wave** solution $u_\star : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N \text{ of } (1)]$

$$u_{\star}(x,t) = v_{\star}(e^{tS}x)$$

 $v_* : \mathbb{R}^d \to \mathbb{R}^N$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. **Transformation (into a rotating frame)**: $v(x,t) = u(e^{tS}x,t)$ solves

(2)
$$\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) \end{aligned}$$

$$\langle Sx, \nabla v(x) \rangle := \sum_{i=1}^{d} \sum_{j=1}^{d} S_{ij} x_j D_i v(x)$$
 (rotational term).

Consider a reaction diffusion system

(1)
$$u_t(x,t) = A \triangle u(x,t) + f(u(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ u(x,0) = u_0(x) , \ t = 0, \ x \in \mathbb{R}^d.$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N, A \in \mathbb{R}^{N,N}, f \in C^2(\mathbb{R}^N, \mathbb{R}^N).$ Assume a **rotating wave** solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N \text{ of } (1)]$

$$u_{\star}(x,t)=v_{\star}(e^{tS}x)$$

 $v_{\star} : \mathbb{R}^{d} \to \mathbb{R}^{N}$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. Transformation (into a rotating frame): $v(x, t) = u(e^{tS}x, t)$ solves

(2)
$$\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) \end{aligned}$$

$$\langle Sx, \nabla v(x) \rangle := \sum_{i=1}^{d} \sum_{j=1}^{d} S_{ij} x_j D_i v(x)$$
 (rotational term).

Consider a reaction diffusion system

(1)
$$u_t(x,t) = A \triangle u(x,t) + f(u(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ u(x,0) = u_0(x) , \ t = 0, \ x \in \mathbb{R}^d.$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N, A \in \mathbb{R}^{N,N}, f \in C^2(\mathbb{R}^N, \mathbb{R}^N).$ Assume a **rotating wave** solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N \text{ of } (1)]$

$$u_{\star}(x,t)=v_{\star}(e^{tS}x)$$

 $v_* : \mathbb{R}^d \to \mathbb{R}^N$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. Transformation (into a rotating frame): $v(x,t) = u(e^{tS}x,t)$ solves

(2)
$$\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) \qquad , \ t = 0, \ x \in \mathbb{R}^d. \end{aligned}$$

$$\langle Sx, \nabla v(x) \rangle := \sum_{i=1}^{d} \sum_{j=1}^{d} S_{ij} x_j D_i v(x)$$
 (rotational term).

Consider a reaction diffusion system

(1)
$$u_t(x,t) = A \triangle u(x,t) + f(u(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ u(x,0) = u_0(x) , \ t = 0, \ x \in \mathbb{R}^d.$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N, A \in \mathbb{R}^{N,N}, f \in C^2(\mathbb{R}^N, \mathbb{R}^N).$ Assume a **rotating wave** solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N \text{ of } (1)]$

$$u_{\star}(x,t)=v_{\star}(e^{tS}x)$$

 $v_* : \mathbb{R}^d \to \mathbb{R}^N$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. Transformation (into a rotating frame): $v(x,t) = u(e^{tS}x,t)$ solves

(2)
$$\begin{aligned} v_t(x,t) &= A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) &= u_0(x) \qquad , \ t = 0, \ x \in \mathbb{R}^d. \end{aligned}$$

$$\langle Sx, \nabla v(x) \rangle := \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} S_{ij} (x_j D_i - x_i D_j) v(x)$$
 (rotational term).

Consider a reaction diffusion system

(1)
$$u_t(x,t) = A \triangle u(x,t) + f(u(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ u(x,0) = u_0(x) , \ t = 0, \ x \in \mathbb{R}^d.$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N, A \in \mathbb{R}^{N,N}, f \in C^2(\mathbb{R}^N, \mathbb{R}^N).$ Assume a **rotating wave** solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N \text{ of } (1)]$

$$u_{\star}(x,t)=v_{\star}(e^{tS}x)$$

 $v_* : \mathbb{R}^d \to \mathbb{R}^N$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. Transformation (into a rotating frame): $v(x,t) = u(e^{tS}x,t)$ solves

(2)
$$\begin{array}{l} v_t(x,t) = A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) = u_0(x) , \ t = 0, \ x \in \mathbb{R}^d. \end{array}$$

 v_{\star} is a stationary solution of (2).

Question: How to show exponential decay of v_* at $|x| = \infty$? **Consequence:** Exponentially small error by restriction to bounded domain.

Denny Otten (Bielefeld University)

Consider a reaction diffusion system

(1)
$$u_t(x,t) = A \triangle u(x,t) + f(u(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ u(x,0) = u_0(x) , \ t = 0, \ x \in \mathbb{R}^d.$$

where $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N, A \in \mathbb{R}^{N,N}, f \in C^2(\mathbb{R}^N, \mathbb{R}^N).$ Assume a **rotating wave** solution $u_* : \mathbb{R}^d \times [0, \infty[\to \mathbb{R}^N \text{ of } (1)]$

$$u_{\star}(x,t)=v_{\star}(e^{tS}x)$$

 $v_* : \mathbb{R}^d \to \mathbb{R}^N$ profile (pattern), $0 \neq S \in \mathbb{R}^{d,d}$ skew-symmetric. Transformation (into a rotating frame): $v(x,t) = u(e^{tS}x,t)$ solves

(2)
$$\begin{array}{l} v_t(x,t) = A \triangle v(x,t) + \langle Sx, \nabla v(x,t) \rangle + f(v(x,t)), \ t > 0, \ x \in \mathbb{R}^d, \ d \ge 2, \\ v(x,0) = u_0(x) , \ t = 0, \ x \in \mathbb{R}^d. \end{array}$$

 v_{\star} is a stationary solution of (2). d = 2: Spectral stability implies nonlinear stability. [BL] W.-J. Beyn, J. Lorenz. 2008.

Example

Consider the quintic complex Ginzburg-Landau equation (QCGL):

$$u_t = \alpha \bigtriangleup u + u \left(\mu + \beta |u|^2 + \gamma |u|^4 \right), \quad u = u(x, t) \in \mathbb{C}$$

with $u: \mathbb{R}^d \times [0,\infty[
ightarrow \mathbb{C}, \ d \in \{2,3\}.$ For the parameters

$$\alpha = \frac{1}{2} + \frac{1}{2}i, \ \beta = \frac{5}{2} + i, \ \gamma = -1 - \frac{1}{10}i, \ \mu = -\frac{1}{2}$$

this equation exhibits so called spinning soliton solutions.

Applications: superconductivity, superfluidity, nonlinear optical systems.

Example

Consider the quintic complex Ginzburg-Landau equation (QCGL):

$$u_t = \alpha \bigtriangleup u + u \left(\mu + \beta |u|^2 + \gamma |u|^4 \right), \quad u = u(x, t) \in \mathbb{C}$$

with $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{C}, d \in \{2, 3\}]$. For the parameters

$$\alpha = \frac{1}{2} + \frac{1}{2}i, \ \beta = \frac{5}{2} + i, \ \gamma = -1 - \frac{1}{10}i, \ \mu = -\frac{1}{2}$$

this equation exhibits so called spinning soliton solutions.

Example

Consider the quintic complex Ginzburg-Landau equation (QCGL):

$$u_t = \alpha \bigtriangleup u + u \left(\mu + \beta |u|^2 + \gamma |u|^4 \right), \quad u = u(x, t) \in \mathbb{C}$$

with $u : \mathbb{R}^d \times [0, \infty[\to \mathbb{C}, d \in \{2, 3\}]$. For the parameters

$$\alpha = \frac{1}{2} + \frac{1}{2}i, \ \beta = \frac{5}{2} + i, \ \gamma = -1 - \frac{1}{10}i, \ \mu = -\frac{1}{2}$$

this equation exhibits so called spinning soliton solutions.

Main result: Exponential decay of v_{\star}

Theorem: (Exponential Decay of v_{\star})

Let $f(v_{\infty}) = 0$ and $\operatorname{Re} \sigma(Df(v_{\infty})) < 0$. Under further assumptions holds: For every $1 , <math>0 < \vartheta < 1$ and for every radially nondecreasing weight function $\theta \in C(\mathbb{R}^d, \mathbb{R})$ of exponential growth rate $\eta \ge 0$ with

$$0 \leqslant \eta^2 \leqslant \vartheta \frac{2}{3} \frac{a_0 b_0}{a_{\max}^2 p^2}$$

there exists $K_1 = K_1(A, f, v_{\infty}, d, p, \theta, \vartheta) > 0$ with the following property: Every classical solution v_* of

$$A riangle v(x) + \langle Sx, \nabla v(x) \rangle + f(v(x)) = 0, x \in \mathbb{R}^d$$

such that $v_\star - v_\infty \in L^p(\mathbb{R}^d, \mathbb{R}^N)$ and $\sup_{|x| \geqslant R_0} |v_\star(x) - v_\infty| \leqslant K_1 \text{ for some } R_0 > 0$

satisfies

$$v_{\star}-v_{\infty}\in W^{1,p}_{ heta}(\mathbb{R}^{d},\mathbb{R}^{N})$$
 (weighted Sobolev space).

Main result: The assumptions

Main result: The assumptions

A positive function θ ∈ C(ℝ^d, ℝ) is called a weight function of exponential growth rate η ≥ 0 provided that

$$\exists C_{ heta} > 0: \ heta(x+y) \leqslant C_{ heta} heta(x) e^{\eta |y|} \quad \forall x, y \in \mathbb{R}^d.$$

[ZM] S. Zelik, A. Mielke. 2009.

Examples: $\mu \in \mathbb{R}$, $x \in \mathbb{R}^d$

$$\begin{split} \theta_1(x) &= \exp\left(-\mu |x|\right), \quad \theta_3(x) = \exp\left(-\mu \sqrt{|x|^2 + 1}\right), \\ \theta_2(x) &= \cosh\left(\mu |x|\right), \quad \theta_4(x) = \cosh\left(\mu \sqrt{|x|^2 + 1}\right). \end{split}$$

• Exponentially weighted Sobolev spaces: $1 \leqslant p \leqslant \infty$, $k \in \mathbb{N}_0$

$$\begin{split} L^p_{\theta}(\mathbb{R}^d,\mathbb{R}^N) &:= \left\{ v \in L^1_{\mathrm{loc}}(\mathbb{R}^d,\mathbb{R}^N) \mid \left\| \theta v \right\|_{L^p} < \infty \right\}, \\ W^{k,p}_{\theta}(\mathbb{R}^d,\mathbb{R}^N) &:= \left\{ v \in L^p_{\theta}(\mathbb{R}^d,\mathbb{R}^N) \mid D^{\beta}u \in L^p_{\theta}(\mathbb{R}^d,\mathbb{R}^N) \; \forall \, |\beta| \leqslant k \right\}. \end{split}$$

Consider the nonlinear problem

$$A \triangle v_{\star}(x) + \langle Sx, \nabla v_{\star}(x) \rangle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^{d}, d \geq 2.$$

Far-Field Linearization: $f \in C^1$, Taylor's theorem, $f(v_{\infty}) = 0$

$$a(x) = \int_0^1 Df(v_\infty + t(v_*(x) - v_\infty))dt, \quad w(x) := v_*(x) - v_\infty$$

$$A riangle w(x) + \langle Sx,
abla w(x)
angle + rac{a(x)w(x)}{a(x)} = 0, \ x \in \mathbb{R}^d.$$

Consider the nonlinear problem

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, x \in \mathbb{R}^{d}, d \geq 2.$$

Decomposition of *a*:

$$Df(v_{\infty})+Q(x)=\int_0^1 Df(v_{\infty}+t(v_{\star}(x)-v_{\infty}))dt, \quad w(x):=v_{\star}(x)-v_{\infty}$$

$$A \triangle w(x) + \langle Sx, \nabla w(x) \rangle + (Df(v_{\infty}) + Q(x)) w(x) = 0, x \in \mathbb{R}^{d}.$$

Consider the nonlinear problem

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d}, \, d \geq 2.$$

Decomposition of a:

$$Df(v_{\infty})+Q(x)=\int_0^1 Df(v_{\infty}+t(v_{\star}(x)-v_{\infty}))dt, \quad w(x):=v_{\star}(x)-v_{\infty}$$

 $A \triangle w(x) + \langle Sx, \nabla w(x) \rangle + (Df(v_{\infty}) + Q_{\varepsilon}(x) + Q_{c}(x)) w(x) = 0, x \in \mathbb{R}^{d}.$

Decomposition of *Q*:

$$\begin{split} &Q(x) = Q_{\varepsilon}(x) + Q_{c}(x), \\ &Q, Q_{\varepsilon}, Q_{c} \in L^{\infty}(\mathbb{R}^{d}, \mathbb{R}^{N,N}), \\ &Q_{\varepsilon} \text{ small, i.e. } \|Q_{\varepsilon}\|_{L^{\infty}} < K_{1}, \\ &Q_{c} \text{ compactly supported.} \end{split}$$

Consider the nonlinear problem

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d}, \, d \geq 2.$$

Decomposition of a:

$$Df(v_{\infty})+Q(x)=\int_0^1 Df(v_{\infty}+t(v_{\star}(x)-v_{\infty}))dt, \quad w(x):=v_{\star}(x)-v_{\infty}$$

 $A \triangle w(x) + \langle Sx, \nabla w(x) \rangle + (Df(v_{\infty}) + Q_{\varepsilon}(x) + Q_{c}(x)) w(x) = 0, x \in \mathbb{R}^{d}.$

Decomposition of *Q*:

$$\begin{split} Q(x) &= Q_{\varepsilon}(x) + Q_{c}(x), \\ Q, Q_{\varepsilon}, Q_{c} \in L^{\infty}(\mathbb{R}^{d}, \mathbb{R}^{N,N}), \\ Q_{\varepsilon} \text{ small, i.e. } \|Q_{\varepsilon}\|_{L^{\infty}} < K_{1}, \\ Q_{c} \text{ compactly supported.} \end{split}$$

Consider the nonlinear problem

$$A riangle v_{\star}(x) + \langle Sx,
abla v_{\star}(x)
angle + f(v_{\star}(x)) = 0, \, x \in \mathbb{R}^{d}, \, d \geq 2.$$

Decomposition of a:

$$Df(v_{\infty})+Q(x)=\int_0^1 Df(v_{\infty}+t(v_{\star}(x)-v_{\infty}))dt, \quad w(x):=v_{\star}(x)-v_{\infty}$$

 $A \triangle w(x) + \langle Sx, \nabla w(x) \rangle + (Df(v_{\infty}) + Q_{\varepsilon}(x) + Q_{c}(x)) w(x) = 0, x \in \mathbb{R}^{d}.$

Decomposition of *Q*:

$$\begin{split} Q(x) &= Q_{\varepsilon}(x) + Q_{c}(x), \\ Q, Q_{\varepsilon}, Q_{c} \in L^{\infty}(\mathbb{R}^{d}, \mathbb{R}^{N,N}), \\ Q_{\varepsilon} \text{ small, i.e. } \|Q_{\varepsilon}\|_{L^{\infty}} < K_{1}, \\ Q_{c} \text{ compactly supported.} \end{split}$$

$$A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + f(v(x)) = 0, x \in \mathbb{R}^d, d \ge 2$$

investigate the far-field linearization (w.l.o.g. $v_{\infty} = 0$)

 $A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + (Df(v_{\infty}) + Q_{\varepsilon}(x) + Q_{c}(x)) v(x) = 0, x \in \mathbb{R}^{d}, d \ge 2.$

Operators: Study the following operators

$$\begin{split} \mathcal{L}_{Q} v &:= A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{\varepsilon}v + Q_{c}v, \\ \mathcal{L}_{Q_{\varepsilon}} v &:= A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{\varepsilon}v, \\ \mathcal{L}_{\infty} v &:= A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, \\ \mathcal{L}_{0} v &:= A \triangle v + \langle S \cdot, \nabla v \rangle \quad \text{(Ornstein-Uhlenbeck operator).} \quad (\text{max. domain}) \end{split}$$

Ornstein-Uhlenbeck Operator

Let $P, B \in \mathbb{R}^{d,d}$, $P = P^T$, P > 0 and $B \neq 0$.

 $\nabla^{T} P \nabla v(x) + \langle Bx, \nabla v(x) \rangle = \sum_{i=1}^{d} \sum_{j=1}^{d} D_{i} \left(P_{ij} D_{j} v(x) \right) + \sum_{i=1}^{d} \sum_{j=1}^{d} D_{i} v(x) B_{ij} x_{j}, x \in \mathbb{R}^{d}$

$$A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + f(v(x)) = 0, x \in \mathbb{R}^d, d \ge 2$$

investigate the far-field linearization (w.l.o.g. $v_{\infty} = 0$)

 $A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + (Df(v_{\infty}) + Q_{\varepsilon}(x) + Q_{c}(x)) v(x) = 0, x \in \mathbb{R}^{d}, d \geq 2.$

Operators: Study the following operators

$$\begin{split} \mathcal{L}_{Q} v &:= A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{\varepsilon}v + Q_{c}v, \\ \mathcal{L}_{Q_{\varepsilon}} v &:= A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{\varepsilon}v, \\ \mathcal{L}_{\infty} v &:= A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, \\ \mathcal{L}_{0} v &:= A \triangle v + \langle S \cdot, \nabla v \rangle \quad (\text{Ornstein-Uhlenbeck operator}). \quad (\text{max. domain}) \end{split}$$

Ornstein-Uhlenbeck Operator

Let $P, B \in \mathbb{R}^{d,d}$, $P = P^T$, P > 0 and $B \neq 0$.

 $\nabla^{T} P \nabla v(x) + \langle Bx, \nabla v(x) \rangle = \sum_{i=1}^{d} \sum_{j=1}^{d} D_i \left(P_{ij} D_j v(x) \right) + \sum_{i=1}^{d} \sum_{j=1}^{d} D_i v(x) B_{ij} x_j, x \in \mathbb{R}^d$

$$A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + f(v(x)) = 0, x \in \mathbb{R}^d, d \ge 2$$

investigate the far-field linearization (w.l.o.g. $v_{\infty} = 0$)

 $A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + (Df(v_{\infty}) + Q_{\varepsilon}(x) + Q_{c}(x)) v(x) = 0, x \in \mathbb{R}^{d}, d \geq 2.$

Operators: Study the following operators

$$\begin{split} \mathcal{L}_{Q} v &:= A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{\varepsilon}v + Q_{c}v, \\ \mathcal{L}_{Q_{\varepsilon}} v &:= A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{\varepsilon}v, \\ \mathcal{L}_{\infty} v &:= A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, \\ \mathcal{L}_{0} v &:= A \triangle v + \langle S \cdot, \nabla v \rangle \quad \text{(Ornstein-Uhlenbeck operator).} \quad \text{(max. domain)} \end{split}$$

Ornstein-Uhlenbeck Operator

Let $P, B \in \mathbb{R}^{d,d}$, $P = P^T$, P > 0 and $B \neq 0$.

 $\nabla^{T} P \nabla v(x) + \langle Bx, \nabla v(x) \rangle = \sum_{i=1}^{d} \sum_{j=1}^{d} D_i \left(P_{ij} D_j v(x) \right) + \sum_{i=1}^{d} \sum_{j=1}^{d} D_i v(x) B_{ij} x_j, x \in \mathbb{R}^d$

$$A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + f(v(x)) = 0, x \in \mathbb{R}^d, d \ge 2$$

investigate the far-field linearization (w.l.o.g. $v_{\infty} = 0$)

 $A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + (Df(v_{\infty}) + Q_{\varepsilon}(x) + Q_{c}(x)) v(x) = 0, x \in \mathbb{R}^{d}, d \geq 2.$

Operators: Study the following operators

$$\begin{array}{ll} \mathcal{L}_{Q}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{\varepsilon}v + Q_{c}v, \\ \mathcal{L}_{Q_{\varepsilon}}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{\varepsilon}v, \\ \mathcal{L}_{\infty}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, \\ \mathcal{L}_{0}v := A \triangle v + \langle S \cdot, \nabla v \rangle & (\text{Ornstein-Uhlenbeck operator}). \end{array}$$
(exp. decay)

Ornstein-Uhlenbeck Operator

Let $P, B \in \mathbb{R}^{d,d}$, $P = P^T$, P > 0 and $B \neq 0$.

 $\nabla^{T} P \nabla v(x) + \langle Bx, \nabla v(x) \rangle = \sum_{i=1}^{d} \sum_{j=1}^{d} D_i \left(P_{ij} D_j v(x) \right) + \sum_{i=1}^{d} \sum_{j=1}^{d} D_i v(x) B_{ij} x_j, x \in \mathbb{R}^d$

$$A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + f(v(x)) = 0, x \in \mathbb{R}^d, d \ge 2$$

investigate the far-field linearization (w.l.o.g. $v_{\infty} = 0$)

 $A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + (Df(v_{\infty}) + Q_{\varepsilon}(x) + Q_{c}(x)) v(x) = 0, x \in \mathbb{R}^{d}, d \ge 2.$

Operators: Study the following operators

$$\begin{array}{ll} \mathcal{L}_{Q}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{\varepsilon}v + Q_{c}v, & (\text{exp. decay}) \\ \mathcal{L}_{Q_{\varepsilon}}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{\varepsilon}v, & (\text{exp. decay}) \\ \mathcal{L}_{\infty}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, & (\text{exp. decay}) \\ \mathcal{L}_{0}v := A \triangle v + \langle S \cdot, \nabla v \rangle & (\text{Ornstein-Uhlenbeck operator}). & (\text{max. domain}) \end{array}$$

Ornstein-Uhlenbeck Operator

Let $P, B \in \mathbb{R}^{d,d}$, $P = P^T$, P > 0 and $B \neq 0$.

 $\nabla^{T} P \nabla v(x) + \langle Bx, \nabla v(x) \rangle = \sum_{i=1}^{d} \sum_{j=1}^{d} D_i \left(P_{ij} D_j v(x) \right) + \sum_{i=1}^{d} \sum_{j=1}^{d} D_i v(x) B_{ij} x_j, x \in \mathbb{R}^d$

$$A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + f(v(x)) = 0, x \in \mathbb{R}^d, d \ge 2$$

investigate the far-field linearization (w.l.o.g. $v_{\infty} = 0$)

 $A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + (Df(v_{\infty}) + Q_{\varepsilon}(x) + Q_{c}(x)) v(x) = 0, x \in \mathbb{R}^{d}, d \geq 2.$

Operators: Study the following operators

$$\begin{array}{ll} \mathcal{L}_{Q}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{\varepsilon}v + Q_{c}v, & (\text{exp. decay}) \\ \mathcal{L}_{Q_{\varepsilon}}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{\varepsilon}v, & (\text{exp. decay}) \\ \mathcal{L}_{\infty}v := A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, & (\text{exp. decay}) \\ \mathcal{L}_{0}v := A \triangle v + \langle S \cdot, \nabla v \rangle & (\text{Ornstein-Uhlenbeck operator}). & (\text{max. domain}) \end{array}$$

Ornstein-Uhlenbeck Operator

Let $P, B \in \mathbb{R}^{d,d}$, $P = P^T$, P > 0 and $B \neq 0$.

$$\nabla^{\mathsf{T}} P \nabla v(x) + \langle Bx, \nabla v(x) \rangle = \sum_{i=1}^{d} \sum_{j=1}^{d} D_i \left(P_{ij} D_j v(x) \right) + \sum_{i=1}^{d} \sum_{j=1}^{d} D_i v(x) B_{ij} x_j, x \in \mathbb{R}^d$$

$$A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + f(v(x)) = 0, x \in \mathbb{R}^d, d \ge 2$$

investigate the far-field linearization (w.l.o.g. $v_{\infty} = 0$)

 $A \triangle v(x) + \langle Sx, \nabla v(x) \rangle + (Df(v_{\infty}) + Q_{\varepsilon}(x) + Q_{c}(x)) v(x) = 0, x \in \mathbb{R}^{d}, d \ge 2.$

Operators: Study the following operators

$$\begin{split} \mathcal{L}_{Q} v &:= A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{\varepsilon}v + Q_{c}v, \qquad (\text{exp. decay}) \\ \mathcal{L}_{Q_{\varepsilon}} v &:= A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v + Q_{\varepsilon}v, \qquad (\text{exp. decay}) \\ \mathcal{L}_{\infty} v &:= A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, \qquad (\text{exp. decay}) \\ \mathcal{L}_{0} v &:= A \triangle v + \langle S \cdot, \nabla v \rangle + Df(v_{\infty})v, \qquad (\text{exp. decay}) \\ \end{split}$$

- [MPV] G. Metafune, D. Pallara, V. Vespri. 2005.
- [MPRS] G. Metafune. 2001.

Work in progress

- exponential decay in space of continuous functions
- rotating waves in bounded domains
- approximation theorem for rotating waves
- asymptotic boundary conditions
- numerical computations (interaction of multisolitons)

Work in progress

- exponential decay in space of continuous functions
- rotating waves in bounded domains
- approximation theorem for rotating waves
- asymptotic boundary conditions
- numerical computations (interaction of multisolitons)

Multisolitons: Interaction of spinning solitons Consider the quintic complex Ginzburg-Landau equation (QCGL):

$$u_t = \alpha \bigtriangleup u + u \left(\mu + \beta |u|^2 + \gamma |u|^4 \right), \quad u = u(x, t) \in \mathbb{C}$$

with $u: \mathbb{R}^d \times [0,\infty[
ightarrow \mathbb{C}, \ d \in \{2,3\}$ and parameters

$$\alpha = \frac{1}{2} + \frac{1}{2}i, \ \beta = \frac{5}{2} + i, \ \gamma = -1 - \frac{1}{10}i, \ \mu = -\frac{1}{2}.$$

• Weak interaction of 2 spinning solitons:

without freezing (left), with decompose and freeze (right)

Center of solitons at $\pm(4,0)$.

Multisolitons: Interaction of spinning solitons Consider the **quintic complex Ginzburg-Landau equation** (QCGL):

$$u_t = \alpha \bigtriangleup u + u \left(\mu + \beta |u|^2 + \gamma |u|^4 \right), \quad u = u(x, t) \in \mathbb{C}$$

with $u : \mathbb{R}^d \times [0, \infty] \to \mathbb{C}$, $d \in \{2, 3\}$ and parameters

$$\alpha = \frac{1}{2} + \frac{1}{2}i, \ \beta = \frac{5}{2} + i, \ \gamma = -1 - \frac{1}{10}i, \ \mu = -\frac{1}{2}.$$

• Strong interaction of 2 spinning solitons:

without freezing (left), with decompose and freeze (right)

Center of solitons at $\pm(3.75, 0)$.

00

Multisolitons: Interaction of spinning solitons Consider the quintic complex Ginzburg-Landau equation (QCGL):

$$u_t = \alpha \bigtriangleup u + u \left(\mu + \beta \left| u \right|^2 + \gamma \left| u \right|^4 \right), \quad u = u(x, t) \in \mathbb{C}$$

with $u: \mathbb{R}^d \times [0,\infty[
ightarrow \mathbb{C}, \ d \in \{2,3\}$ and parameters

$$\alpha = \frac{1}{2} + \frac{1}{2}i, \ \beta = \frac{5}{2} + i, \ \gamma = -1 - \frac{1}{10}i, \ \mu = -\frac{1}{2}.$$

• Strong interaction of 3 spinning solitons:

without freezing (left), with decompose and freeze (right)

Centers on a equilateral triangle with radius of circumcircle 3.75.