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Substitution tiling in dimension d = 1:

> substitution matrix <§ ;)

» inflation factor A = 2 + /3,

» minimal polynomial x> — 4x + 1.



In dimension d = 2:
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» substitution matrix | 1
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» inflation factor A = 1.3247... (the plastic number),

» minimal polynomial x3 — x — 1.



In dimension d = 3:
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> substitution matrix
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> inflation factor A = 1(v/5 + 1) (the golden mean),
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» minimal polynomial x* — x — 1.



Since A9 is an eigenvalue of an integer matrix, the inflation factor
A is always an algebraic integer.

Always?



Since A9 is an eigenvalue of an integer matrix, the inflation factor
A is always an algebraic integer.

Always?
What if there are infinitely many prototiles?

In most examples with infinitely many prototiles studied so far
(Ferenczi, Sadun, Frank-Sadun, Smilansky-Solomon...):

> tiles of length 1, infinitely many labels, or
> no proper inflation factor



Mafiibo-Rust-Walton (preprint 2022): conditions for unique
ergodicity of the dynamical systems arising from substitutions in
dimension d =1 for infinitely many prototiles with distinct lengths.

Their example: Prototiles 0,1,2,3,... and co.
0—0001

i—0i—-1i+1

00— 0 co 0



Mafiibo-Rust-Walton (preprint 2022): conditions for unique
ergodicity of the dynamical systems arising from substitutions in
dimension d =1 for infinitely many prototiles with distinct lengths.

Their example: Prototiles 0,1,2,3,... and co.
0—0001
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The tiles have indeed well-defined (distinct) lengths ¢;:
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and a proper inflation factor: A =3 + %




Their substitution "matrix”:
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Their substitution " matrix’ :

32 1 1 1
10 1 0 O
01 0 1 O
00 1 0 1

When we saw this example we tried to find more.

But: unlike in the finite case one cannot just turn any "matrix”
into a proper substitution
(negative lengths, lengths — oo, all tile frequencies 0, ...)



There is also no simple analogue of Perron-Frobenius.

And in order to establish unique ergodicity they (Neil-Dan-Jamie)
need to work a lot:

» The alphabet {0,1,2,...,} U{oco} needs to be compact,
> the symbolic substitution needs to be continuous,
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There is also no simple analogue of Perron-Frobenius.

And in order to establish unique ergodicity they (Neil-Dan-Jamie)
need to work a lot:

» The alphabet {0,1,2,...,} U{oco} needs to be compact,
> the symbolic substitution needs to be continuous,

> and primitive,

» but what means primitive here?

However, they solve all this.



In an earlier paper on infinite alphabets they (Neil-Dan-Jamie)
asked whether there are substitutions with transcendentall
inflation factor.
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In an earlier paper on infinite alphabets they (Neil-Dan-Jamie)
asked whether there are substitutions with transcendentall
inflation factor.

Theorem (F-Garber-Mafibo 2022+)

For any A\ > 2 there is a primitive substitution with infinitely many
prototiles having \ as inflation factor.

Corollary

There are a 1ot of substitution tilings with transcendental inflation
factor.

that is, not algebraic



Proof: (idea, simplified) Generalize the example above:

Let a = (a;); = ao, a1, az, ... with a; € {1,2,..., N} for some
NeZt.

ap l4+a a a3
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LA |0 1 0 1 0



Proof: (idea, simplified) Generalize the example above:

Let a = (a;); = ao, a1, az, ... with a; € {1,2,..., N} for some
NeZt.

a l4+a a a3 as

For instance, ag = 3 and a; = 1 for i > 1 is the example above

0— 0%1
0a=14 i~ 0%i—1i+1



In order to show that this defines nice substitution tilings (" good
tile lengths and frequencies etc) we apply Mafiibo-Rust-Walton:

We need to turn the set {0,1,2,...} (corr. to the prototiles) into
a compact alphabet A. (Amazingly sophisticated)



In order to show that this defines nice substitution tilings (" good
tile lengths and frequencies etc) we apply Mafiibo-Rust-Walton:

We need to turn the set {0,1,2,...} (corr. to the prototiles) into
a compact alphabet A. (Amazingly sophisticated)
...and show that

» The substitution g, is a continuous map g, : A — AT,

P 0, is primitive,

P 0, is recognizable,

> the substitution operator (roughly, the "matrix") is
quasicompact



It remains to realize all inflation factors A > 2.

Ansatz:
Let (a;); be fixed, and let p € (0, %] be the unique number with

1 <
- = Zai,u
K i=0

Claim:
A=+ % is an eigenvalue with eigenvector v = (1,1, pi2,...) 7.

Av = )\v.



It remains to realize all inflation factors A > 2.

Ansatz:
Let (a;); be fixed, and let p € (0, %] be the unique number with

1 &
- = Zai,u'
i=0

"

Claim:
A=+ % is an eigenvalue with eigenvector v = (1,1, pi2,...) 7.

Av = )\v.

Row by row:
P15trow:,u—i—Z?ioa,-,u":,u—f—%:/\-l. v

> ith row: W2y =t )t =7 v



It follows that A is the inflation factor (by some infinite equivalent of
Perron-Frobenius: eigenvector in the positive cone), and v (normalized) is
the vector of tile frequencies.

It remains to show that we get all values A > 2 in this way.
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It follows that A is the inflation factor (by some infinite equivalent of
Perron-Frobenius: eigenvector in the positive cone), and v (normalized) is
the vector of tile frequencies.

It remains to show that we get all values A > 2 in this way.
> First, we don't. We need to allow a; = 0.
> But to keep it simple, let us assume a; # 0.

> Then we get all values A\ > %

Now we fix 12 € (0, 3]. We have to find (a;); such that

1 =
*:Zai#'
i=0

I



Now fix s € (0, 3]. We have to find (a;); such that
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9. 1 _ 2 1 — 10
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Now fix s € (0, 3]. We have to find (a;); such that

1 ,
7:Zai,ul
i=0
> All 3; =1: %zliu,hence,u:%,)\:g.
> All a; = 2: i:ﬁ hence,u:%,)\:l?o_

So, if 3 < p < 3, start with all a; = 1.
Then increase ag, a1, ay, ... in a greedy way.



Now fix s € (0, 3]. We have to find (a;); such that

1 .
o= 2 i
i=0
1.1 _ 1 _1 y_5
> All a; = 1: i = l_u,hence,u—j,)\—i.
L —0. 1 _ _2 =1 =10
> All a; = 2: M—liu,hence,u—y)\— 3 -
So, if 3 < p < 3, start with all a; = 1.
Then increase ag, a1, ay, ... in a greedy way.

> It is clear that we get infinitely many w in this way.

» Showing that we get all u € [%, %] requires more effort.



Now fix s € (0, 3]. We have to find (a;); such that

1 .
o= 2 i
i=0
1.1 _ 1 _1 y_5
> All a; = 1: i = l_u,hence,u—j,)\—i.
L —0. 1 _ _2 =1 =10
> All a; = 2: M—liu,hence,u—y)\— 3 -
So, if 3 < p < 3, start with all a; = 1.
Then increase ag, a1, ay, ... in a greedy way.

> It is clear that we get infinitely many w in this way.

» Showing that we get all u € [%, %] requires more effort.

That's it!
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This result is a proof of existence. Is there a concrete example?

Yes! Let

a =211212211221211212212112211212211221211221121221 - - -

be the Thue-Morse sequence (with 1s and 2s).

Plugging it into p, yields a transcendental inflation factor
A=p+ % which we can compute (approximately).

Why?



Consider the classical Thue-Morse sequence t, := (—1)*("), where
s(n) is the number of ones in the binary expansion of n.

1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,1,~1,1,...

Theorem (Mahler 1929)
» Consider the generating function T(z) :=}_ -, taz".
> Let o # 0 be an algebraic number with |a| < 1.

Then the number T(«) is transcendental.



Consider the classical Thue-Morse sequence t, := (—1)*("), where
s(n) is the number of ones in the binary expansion of n.

1,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,1,~1,1,...

Theorem (Mahler 1929)

» Consider the generating function T(z) :=}_ -, taz".
> Let o # 0 be an algebraic number with |a| < 1.

Then the number T(«) is transcendental.

The generating function of the 1-2-Thue-Morse sequence is

- 3.1 1
AR =D and" =5 75 +57(2)
n=0
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Assume that the u defined by plugging in the 1-2-Thue-Morse
sequence a into g, is algebraic.
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Assume that the u defined by plugging in the 1-2-Thue-Morse
sequence a into g, is algebraic.

1 3 1 1
=Alp)==-—+ =T(p).
(W)=75 1= L2 (1)
Now...
> from Mahler's result follows: T(u) is transcendental,

> but T(u) = ﬁ — =, hence T(u) is algebraic.
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Assume that the u defined by plugging in the 1-2-Thue-Morse
sequence a into g, is algebraic.

1 3 1 1
2 1—p

=An) = +5T(w).
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fA=p+ % is algebraic, then p is algebraic as well.
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Assume that the u defined by plugging in the 1-2-Thue-Morse
sequence a into g, is algebraic.

1 3 1 1
2 1—p

—=Alp) = +5T(w).
Now...

> from Mahler's result follows: T(u) is transcendental,

> but T(u) = ﬁ — =, hence T(u) is algebraic.
fA=p+ % is algebraic, then p is algebraic as well.

Since 4® — A +1=0, hence p = (A £ VX2 —4). That's it!
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> Manibo-Rust-Walton: two preprints on arXiv.org
(" compact alphabets")

Thank you!



