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Abstract. Two results about equidistribution of tile orientations in primitive substitution
tilings are stated, one for finitely many, one for infinitely many orientations. Furthermore,
consequences for the associated diffraction spectra and the dynamical systems are discussed.

1. Substitution tilings

Several important models of quasicrystals are provided by (decorations of) nonperiodic
substitution tilings. In this paper, only tilings of the plane are considered. In larger dimensions
some aspects become rather complicated, in particular, generalisations of Theorem 2.2. A
substitution (or tile-substitution, but we stick to the shorter term here) is just a rule how to
enlarge and dissect a collection of tiles P1, . . . , Pm into copies of P1, . . . , Pm, as indicated in
Figure 1 (left) or Figure 2. Iterating this rule yields tilings of larger and larger portions of
the plane. However, the precise description of a substitution tiling in R2 is usually given as
follows.

Let P1, . . . , Pm be compact subsets of R2, such that each Pi equals the closure of its interior.
These are the prototiles, the pieces our tiling is built of. We refer to sets which are congruent
to some prototile simply as tiles. (Sometimes two prototiles are allowed to be congruent,
compare Figure 1. Then we equip each one of them with an additional attribute (colour,
decoration) to distinct them. Whenever we speak of ’congruent’ tiles in the sequel, this
means ’congruent with respect to possible decorations’.) A tiling (with prototiles P1, . . . , Pm)
is a collection of tiles (each one congruent to some Pi) which covers R2 such that every x ∈ R2

is contained in the interior of at most one tile. Note, that each such tiling T can be described
by placements of the prototiles:

T = {Rα1Pi1 + t1, Rα2Pi2 + t2, . . .},
where Rαi denotes a rotation through αi, and ti ∈ R2 are translation vectors. For later
purposes, we define the orientation φ(T ) of a tile: If T = RαPi +t, α ∈ [0, 2π[, then φ(T ) = α.

Now, let λ > 1 and σ be a map which maps each prototile Pi to a non-overlapping collection
of tiles, each one congruent to some prototile Pi. Furthermore, we require the substitution
σ to be selfsimilar in the sequel. That is, λPi =

⋃
T∈σ(Pi)

T for 1 ≤ i ≤ m. By setting
σ(RPi + t) = Rσ(Pi)+λt, the substitution σ extends naturally to any tile congruent to some
prototile. In a similar way, by σ({T1, T2, . . .}) = σ(T1)∪σ(T2)∪ . . ., the substitution σ extends
to all (finite or infinite) collections of tiles. In particular, one can iterate σ on the prototiles
to obtain the k-th order supertiles σk(Pi).

Definition 1.1. Let σ be a tile-substitution with prototiles P1, . . . , Pm. A tiling T is called
substitution tiling (with substitution σ) if for each finite subset F ⊂ T there are i, k such that
a copy of F is contained in some supertile σk(Ti). The family of all substitution tilings with
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substitution σ is denoted by Xσ. The matrix Mσ with (Mσ)ij = #{T ∈ σ(Pj) : T = RPi + t}
is called substitution matrix. A substitution is primitive, if there is k ≥ 1 such that Mk

σ is
strictly positive.

Here, #A denotes the cardinality of the set A. This definition of a substitution tiling fits
well into several contexts, for instance, to the hull of a tiling, see Section 4.

2. Statistical circular symmetry

Most of the well-known substitution tilings have the property that all prototiles occur in
only finitely many orientations. For instance, the Penrose dart and kite tiling has just two
prototiles, a convex and a non-convex quadrangle. Each one occurs in one of 10 different
orientations throughout the tiling. There are also substitution tilings where the tiles occur in
infinitely many orientations. The most prominent examples are certainly the pinwheel tilings
[14]. But there are many other examples, compare [6], [7]. Two examples are shown in Figure
2.

It was known for the pinwheel tiling that there are not only infinitely many orientations of
the tiles, but that they are furthermore equidistributed [14], [12]. Intuitively, this means that
each orientation occurs with the same frequency throughout the tiling. In order to make this
precise, we need the following definition. Recall that a sequence (aj)j≥0 is equidistributed in
[0, 2π[, if for all 0 ≤ x < y < 2π holds:

lim
n→∞

1
n

n∑

j=1

1[x,y](aj) =
x− y

2π
.

Since the above sum is not absolutely convergent, it depends strongly on the ordering of the
sequence. Thus we need to order the tiles in the tiling in some not-too-weird way. This is
done in the following definition.

Definition 2.1. Let T = {T1, T2, . . .} be a primitive substitution tiling. Let the numbering
be such that the sequence (Tj)j≥1 satisfies the following property: for all n ≥ 1, there is some
` ≥ n such that the patch {T1 . . . , T`} is congruent to some supertile σk(Pi) for some prototile
Pi, k ≥ 1. The tiling Tσ has statistical circular symmetry, if, for all 0 ≤ x < y < 2π, one
has:

lim
r→∞

1
n

n∑

j=1

1[x,y](φ(Tj)) =
x− y

2π
.

The ordering in the definition is compatible with other natural notions, for instance, order-
ing the tiles with respect to their distance to the origin. The following result was obtained in
[6]. Only while preparing the present text, the author realized that a similar result already
appeared in [14]; see also the comments in Section 4.

Theorem 2.2. Let T be a primitive substitution tiling in R2, where copies of some prototile
occur in infinitely many orientations. Then T is of statistical circular symmetry.

In the next section this theorem is used to show that any such tiling has circular diffraction
spectrum. Now we show an analogue of the theorem above for tilings with tiles in finitely
many orientations. One can ask whether there are substitution tilings where tiles occur more
frequent in one direction than the other. This is possible, see Figure 1 for an example. But
this is achieved by substituting the horizontal rectangle differently from the vertical rectangle.
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Figure 1. A substitution tiling where horizontal rectangles are more fre-
quent in the tiling than vertical ones. By Theorem 2.3, this can be achieved
only when the two types of rectangles are substituted differently from each
other.

In fact we have two prototiles in this example, each one occurring in one direction only. This
is illustrated in the right part of Figure 1 by assigning different decorations to the tiles. The
following theorem states that each prototile Pi occurs in each of its orientations with the
same frequency in a primitive substitution tiling. In order to make this precise, let freq(Pi, α)
denote the frequency of tiles RαPi + t in a tiling T . That is,

(1) freq(Pi, α, T ) = lim
r→∞

#{T ∈ T ∩Br : ∃t T = RαPi + t}
#{T ∈ T ∩Br} ,

where Br denotes the closed ball of radius r around the origin. For primitive substitution
tilings, this frequency exists and is independent of the choice of the origin. This can be seen
as follows: Up to now, we identified types of tiles with respect to congruence congruence
classes. In a tiling with finitely many orientations, one can as well identify types of tiles
with respect to translation classes. Usually, this results in a larger number of prototiles (e.g.,
the Penrose dart and kite tilings have two prototiles up to congruence, but 20 prototiles
up to translation). The frequency of each prototile in a primitive substitution tiling can
be obtained from the substitution matrix Mσ. This result is folklore, see for instance [13],
[5]: The normed Perron-Frobenius eigenvector of Mσ contains the relative frequencies of the
prototiles. In particular, in all tilings in Xσ, these frequencies are the same. Therefore, for
any given primitive substitution, we can drop the T in the definition of the frequency in this
case and write just freq(Pi, α).

Theorem 2.3. Let σ be a primitive substitution with prototiles {P1, . . . , Pm}. If freq(Pi, α) 6=
0, freq(Pi, β) 6= 0 then freq(Pi, α) = freq(Pi, β).

Proof. If freq(Pi, α) 6= 0, then the prototiles occur in finitely many orientations only, by prim-
itivity of the substitution and Theorem 2.2. Therefore we obtain finitely many prototiles with
respect to translations: (P1, 0), (P1, α1,1), (P1, α1,2), . . . , (P1, α1,k); (P2, 0), (P2, α2,1), . . . . . . (Pm, αm,`).

Consider a tiling T ∈ Xσ. By the remarks preceding the theorem, freq(Pi, 0) is well
defined, and its value is the same in the tiling T and in the tiling Rαi,jT ∈ Xσ. And trivially,
freq(Pi, 0) in T equals freq(Pi, αi,j) in Rαi,jT . Therefore, freq(Pi, 0) = freq(Pi, αi,j), and the
claim follows. ¤
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Figure 2. Two substitutions yielding tiling with statistical circular symme-
try. The left one is due to Danzer and Goodman-Strauss [8], the right one is
from [6].

3. Diffraction

There is a wealth of literature devoted to the mathematical description of the diffraction
spectrum of nonperiodic structures, see for instance [4], [9], [10], [18], or the introductory text
[1] and references therein. Usually one starts with a discrete point set Λ ⊂ R2 rather than
a tiling. In the present context of tilings, this can be achieved by decorating each prototile
with one or more points (’atomic decorations’).

Let Λ be such a point set, obtained from a tiling. The diffraction spectrum of Λ is the
Fourier transform of the autocorrelation of Λ. The autocorrelation (also called Patterson
function) of Λ is

(2) γ = γΛ = lim
r→∞

1
vol(Br)

∑

x,y∈Λ∩Br

δx−y,

if this limit exists. Here and in the following we are working in the framework of tempered
distributions [17], [19]. Thus the limit above is to be understood as a vague limit. If the limit
does not exist, there is a subsequence converging to an autocorrelation which is known to be
translation bounded (since we started with a translation bounded measure δΛ) and positive
definite. Thus γ can be regarded as a translation bounded positive definite measure. Now,
the Fourier transform γ̂ of γ is the diffraction measure, and its support is the diffraction
spectrum of Λ. We are interested in the nature of γ̂. By Lebesgue’s decomposition theorem,
γ̂ has a unique decomposition

γ̂ = γ̂pp + γ̂sc + γ̂ac

with respect to the Lebesgue measure in R2. The pure point part γ̂pp is a countable sum
of Dirac measures. The absolutely continuous part γ̂ac is a measure with locally integrable
density function supported on a set of positive Lebesgue measure. The singular continuous
γ̂sc part assigns zero to all finite sets, but is supported on a set with Lebesgue measure zero.
The (idealized) diffraction spectrum of a quasicrystal is pure point, the singular parts vanish
completely.
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The following results show that substitution tilings with statistical circular symmetry have
a diffraction measure which is of (perfect) circular symmetry. Consequently, the pure point
part of the diffraction is trivial.

Theorem 3.1. Let T = {Rα1Pi1 + t1, Rα2Pi2 + t2, . . .} be a primitive substitution tiling of
statistical circular symmetry, with prototiles P1, . . . , Pm. Choose ’control points’ xi ∈ Pi,
and define Λ = {Rα1xi1 + t1, Rα2xi2 + t2, . . .}. Then the autocorrelation γΛ of Λ is circular
symmetric.

The subtlety of this theorem is that the autocorrelation is not of statistical circular sym-
metry only (this is easy to see) but of perfect circular symmetry. The rotated measure R.µ
is defined by R.µ(A) = µ(R−1A) for all measurable sets A. Then µ is of circular symmetry if
R.µ = µ for all R.

Proof. Since T is of statistical circular symmetry, T contains tiles Tj congruent to some
prototile Pi for (countably) infinitely many distinct angles αj = φ(Tj). By equidistribution,
the frequency of tiles in one certain orientation is 0. But, again by the equidistribution of
(αj)j≥0, the frequency of tiles in a certain range of orientations — say, [β, γ[⊆ [0, 2π[ — equals
the frequency of tiles in orientations [β + c, γ + c[ mod 2π for all c. The same is obviously
true for supertiles in T .

The autocorrelation is defined via difference vectors x−y. We deduce the circular symmetry
of the autocorrelation by assigning these vectors x − y to supertiles in T . Each such vector
arises from a constellation of two tiles (usually not adjacent). Consider only vectors x − y
of fixed a length r > 0. Let k ≥ 1. Then either x and y are contained in the same k-th
order supertile, or in two different k-th order supertiles. With growing k, the ratio of the
latter kind to the former kind tends to zero. Thus it suffices to regard the former kind only.
Each one arises from a k-th order supertile, these are equidistributed, hence equidistribution
of orientations of difference vectors x− y of radius r follows. In other words, the frequency of
difference vectors x − y of length r with orientation ϕ ∈ [β, γ[⊆ [0, 2π[ equals the frequency
of difference vectors of length r in orientations [β + c, γ + c[ mod 2π for all c. It follows that
γΛ = R.γΛ for all rotations R. ¤

Now we can apply the following standard result, which can be found for instance in [2].

Lemma 3.2. Let R be an orthogonal map, µ a measure, and let the measure R.µ be given by
R.µ(A) = µ(R−1A). Then R.µ̂ = R̂.µ .

Since R.γΛ = γΛ, with Λ as in 3.1, it follows R.γ̂Λ = R̂.γΛ = γ̂Λ for all rotations R.
Altogether we have obtained the following result.

Theorem 3.3. Let Λ be as in Theorem 3.1 arising from a tiling with statistical circular
symmetry. Then the diffraction of Λ is circular symmetric. ¤

An immediate consequence is that the pure point part of the diffraction spectrum of a
tiling with statistical circular symmetry is at most one peak at the origin. A simple argument
shows that this peak always exists, compare [9], [12]. These results are relevant for physics
because such tilings can serve as a simple model for powder diffraction [3].

4. Tiling dynamical systems

An important tool in investigating properties of nonperiodic tilings is the fact that such a
tiling gives rise to a dynamical system, compare [15],[20],[18],[4], [16]. From the properties of
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the dynamical system one can deduce properties of the tiling. For brevity, we describe the
metrical dynamical system corresponding to [14]. In the context of this paper, the topology
defined by this metric is the same as the more general local rubber topology in [4], as well as
the topology in [15] and the local topology in [18]. Let d be the following metric, measuring
whether two tilings are ’close’ to each other.

d(T , T ′) = min
{ 1√

2
, inf
ε>0
{ε : B1/ε ∩ (T + s) = B1/ε ∩ (RαT ′ + t), ‖s‖, ‖t‖ ≤ ε

2
, |α| ≤ ε}}

If d(T , T ′) is small, then T and T ′ agree on a large ball around the origin, after a small
rotation followed by a small translation. Now, the hull XT of the tiling T is the closure of
{T + t : t ∈ R2} with respect to d. It is a well-known fact that the hull of a primitive
substitution tiling with substitution σ is the family Xσ of all substitution tilings (compare
Def. 1.1). Therefore, we denote the hull of T by Xσ, if it is clear which substitution σ belongs
to T .

A substitution σ gives rise to a dynamical system (Xσ, G), where either G = R2 (all
translations in the plane), or G = E(2) (all direct Euclidean motions, i.e., all maps x 7→ Rx+t,
R a rotation, t a translation vector). The study of such dynamical systems yields deep insight
into the diffraction properties of the tilings in Xσ. A milestone in the mathematical diffraction
theory is the result that the diffraction spectrum is pure point if and only if the dynamical
spectrum is pure point [9], [20], [18], [11], [4]. Other important results are collected in the
following theorem. It summarises contributions of several people to the subject over the last
two decades. For brevity, it is formulated for the special case of plane tilings only.

Theorem 4.1. Let σ be a primitive substitution.

(1) Xσ has uniform cluster frequencies, that is, each patch occurs with a well defined
frequency throughout the tilings in Xσ. Here, frequency is defined analogously to (1).

(2) If the tiles in tilings in Xσ show finitely many orientations, then (Xσ,R2) is uniquely
ergodic.

(3) If the tiles in tilings in Xσ show infinitely many orientations, then (Xσ, G) is uniquely
ergodic, where G ∈ {R2, E(2)}.

(4) All tilings in Xσ have the same autocorrelation, thus the same diffraction spectrum.

The first part is a simple consequence of Def. 1.1, compare the discussion in Section 2, or [20]
for ’self-affine’ tilings. (Each Xσ as above contains a self-affine tiling, and by primitivity, all
tilings in Xσ have the same cluster frequencies.) However, for tilings with statistical circular
symmetry, these frequencies are zero. But see [6] for a similar uniformity result in this case.
A detailled proof of the second part can be found in [20] or [11]. For tilings with tiles in
infinitely many orientations, part three is stated in [14] for G = E(2). For G = R2, it can
hopefully be shown via Theorem 2.2, adapting methods from [11]. We aim to give a precise
and detailled proof in the future. The last part of the theorem is an immediate consequence
from part one and the definition of the autocorrelation.
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[6] D. Frettlöh, Substitution tilings with statistical circular symmetry, European J. Combin., accepted;
math/0704.2521.
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