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ABSTRACT

Random tiling models in two and three dimensions, equipped with a matching rule inter-
action, are studied by Monte Carlo (MC) simulations. An accelerated MC algorithm due
to G. Barkema is used, which allows to make a MC move at every time step. By entropic
sampling techniques, the entropy as a function of energy is determined for different system
sizes, and the specific heat is computed from the entropy. By direct MC simulations, the
phasonic diffusion constant and certain order parameters are measured. All our results con-
sistently support the existence of a phason unlocking transition at β≈1.3 in the 3D case.
In particular, the specific heat diverges at the same temperature at which the phasonic
diffusion constant suddenly changes its slope. In 2D there is no sign of a phase transition.

1. Introduction

In this paper, the thermodynamic properties of 2D octagonal and 3D icosahedral ran-
dom tilings1 are studied by Monte Carlo (MC) simulations. For both tiling models an
interaction energy is used which has a perfectly ordered, quasiperiodic ground state. This
interaction is based on the alternation condition2 (AC), which requires that tiles of the
same shape but pointing to different sides must alternate along any lane of tiles2. An
interaction energy of 0.5 units is attributed to every violation of the AC, i.e., to any two
consecutive tiles of the same shape pointing to the same side of the lane. In the case of the
octagonal tiling, the usual periodic approximants with square unit cells are used, which
are compatible with the AC3, so that the ground state energy for these approximants is
zero. Moreover, it can be shown3 that any tiling not violating the AC and having the
same periodicity is one of those approximants. In the icosahedral case, on the other hand,
there are no periodic approximants without violations of the AC. In this paper, the usual
approximants with cubic unit cells are used. An approximant of order p/q has an energy of
12p, which is the ground state energy. More precisely, in any of the twelve lane directions
not parallel to an edge of the unit cell there exists exactly one such lane, containing 2p
AC violations. Lanes parallel to the unit cell edges do not show any AC violations. The
24p AC violations are forced by the boundary conditions and cannot be decreased. This is
also confirmed by our simulation results. Note that the density of AC violations decreases
with increasing order of the approximant, and finally vanishes for the perfectly icosahedral
tiling. It is conjectured2 that a tiling without any AC violations is perfectly quasiperiodic
and icosahedrally symmetric.

It is expected4 that in 2D the quasiperiodic ground state is unstable at positive tem-
peratures, the equilibrium phase being a random tiling phase. In 3D, however, the ordered
ground state should be stable for a whole range of temperatures, and a phason unlocking
transition from an ordered, quasiperiodic phase to a random tiling phase is expected to
occur at some finite temperature. This has also been confirmed by MC simulations5,6. It
is this phase transition which is the primary objective of this paper. We are particularly
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interested in the behaviour of the phasonic diffusion constant7 across this phase transition.
Phason assisted diffusion is a diffusion channel specific to quasicrystals7. It is expected
to be very sensitive to the degree of order in the structure. So far, in 3D the phasonic
diffusion constant has been determined only at infinite temperature8, whereas in 2D also
finite temperature results are available9,10 – but in 2D there is no phase transition. In the
following, we shall first discuss our simulation techniques, and then present our results.

2. Simulation Techniques

Our MC dynamics is basically the one used by Tang11. An elementary MC step consists
of local rearrangements of tiles, called flips. The tiles to be rearranged are, in the 2D case,
a square and two rhombi forming a hexagon, and in the 3D case two fat and two skinny
rhombohedra forming a rhombic dodecahedron. For an elementary MC step, a tiling site
is chosen at random. If it is inside a hexagon or dodecahedron, the energy cost ∆E of the
flip is computed, and the site is flipped with a probability min(1, e−β∆E), where β is the
inverse temperature. MC steps in which a non-flippable site is chosen are counted too, but
the tiling is left unchanged. After each attempted flip, the physical time is advanced by
1/N , where N is the number of vertices in the system, so that a complete MC sweep takes
one unit of time. It is easy to see that this procedure satisfies detailed balance.

Since the average probability of accepting a proposed flip becomes rather small at low
temperatures, we use an accelerated version of the algorithm described above, which is due
to G. Barkema12. It is completely equivalent to the standard algorithm. The basic idea is
to make a flip at every time step, i.e., to avoid any rejection of a proposed flip. In order to
maintain detailed balance, two conditions must be satisfied: flippable sites must be chosen
with the correct relative probability, which is proportional to min(1, e−β∆E), and are then
flipped with certainty, and after each flip the physical time must be incremented by the
average survival time of the state before the flip, in order to compensate for not rejecting
any flips. This average survival time is equal to 1/Np0, where p0 is the probability of
leaving the state unchanged in the next attempted MC move in the standard algorithm.
In order to implement this accelerated algorithm, it is necessary to know the energy cost of
all possible flips at any time, and one must be able to chose those flips with the correct rel-
ative probabilities. This creates some bookkeeping overhead, but at low temperatures this
overhead is by far compensated by not having to reject any flips after a costly computation
of the energy cost of an attempted flip.

The accelerated algorithm is used to measure directly the thermodynamic properties of
the random tiling system, such as the specific heat, as well as to measure some order pa-
rameters of the system. Particular attention is payed to phason assisted diffusion, for which
the diffusion constant has been measured. In addition to such direct measurements, the
accelerated algorithm can also be used in combination with entropic sampling techniques13.
With entropic sampling, the Boltzmann probability distribution e−βE is replaced by the
(initially unknown) distribution e−S(E), where S(E) is the entropy of the system. This
probability distribution has the property that all possible energies of the system occur
with equal probabilities. This can be used in the simulation: in an iterative procedure, the
entropy function S(E) is adapted until a uniform energy distribution is reached13. In this
way, the entropy S(E) can be obtained directly, and various thermodynamic properties
can be computed from it. The accelerated algorithm can easily be combined with entropic
sampling. The most efficient way is to integrate the time spent at the different (discrete)
energy values, and to adapt S(E) so that these times become uniformly distributed. The
acceleration proves particularly useful for those energy ranges where the entropy varies
rapidly, i.e., near the boundaries of the spectrum.



3. Results

In Fig. 1, the diffusion constant D, as obtained in direct MC simulations, is shown for
different sample sizes as a function of inverse temperature (Arrhenius plot). In the octago-
nal case, there is an unphysical diffusion mechanism which dominates at low temperatures.
It makes use of the periodic boundary conditions, but is suppressed for large enough sample
sizes at any fixed temperature. We have eliminated the effect of this unphysical mechanism
by finite size scaling. The limiting curve shows a very smooth behaviour. In the icosahedral
case, however, the diffusion constant shows a sudden change in slope at β ≈ 1.3, which
becomes more pronounced with increasing system size. This change in slope can be inter-
preted in terms of a phase transition (see below). In the icosahedral case, finite size effects
are important even at relatively large temperatures. For both systems, the behaviour of
the diffusion constant can be understood in terms of a correlated random walk model14.
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Fig. 1. Diffusion constant as a function of inverse temperature in logarithmic scale (Arrhenius plot), for

different sizes of the octagonal (left) and the icosahedral tiling (right).
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Fig. 2. Specific heat as a function of temperature, for different sizes of the octagonal (left) and the

icosahedral tiling (right). Curves are from entropic sampling simulations, whereas points are from direct MC

simulations.

In Fig. 2, the specific heat for different system sizes is shown. The curves are computed
from S(E), which was determined by entropic sampling. With only moderate compu-
tational effort, remarkably smooth specific heat curves could be obtained. Only for the



largest samples and near the maximum the curves are somewhat noisy. For many tem-
peratures the specific heat has been determined also in direct MC simulations. These
specific heat values are perfectly compatible with the entropic sampling results. It is most
remarkable that in the octagonal case the specific heat per vertex converges very rapidly.
Even the result for the 239-approximant is already very close to the limit. On the other
hand, in the icosahedral case the specific heat seams to diverge slowly, at the same tem-
perature where the diffusion constant shows a sudden change in slope. Moreover, we have
confirmed the result of Dotera and Steinhardt6 that the susceptibility associated with the
sheet magnetization6 rapidly diverges with system size, again at the very same tempera-
ture. These three features are clear indications of a phase transition at this temperature.

From the entropic sampling results the entropy per vertex at infinite temperature, σ0,
can easily be determined: it is simply the maximum of S(E)/N . With finite size scaling
we obtain in the infinite system limit a value of σ0 = 0.432(1) for the octagonal case, and a
value of σ0 = 0.2470(5) for the icosahedral case. These values are compatible with previous
results15,10,16, although in the octagonal case a small discrepancy remains15

4. Conclusions

Direct MC simulations and entropic sampling simulations for octagonal and icosahe-
dral random tiling systems have been presented. In the icosahedral case, all our results
consistently suggest the existence of a phason unlocking transition at a unique, finite tem-
perature. In particular, the specific heat and the susceptibility of the sheet magnetization
both diverge at the same temperature where the phasonic diffusion constant shows a sud-
den change of slope. In the octagonal case, on the other hand, there is no sign of a phase
transition. More detailed results will be presented elsewhere.

The author would like to thank G. Barkema for introducing him to the accelerated MC
algorithm used in this paper.
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