
ATOMIC SELF-DIFFUSION IN QUASICRYSTALS
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ABSTRACT

A molecular dynamics study on atomic self-diffusion in Frank-Kasper type do-
decagonal quasicrystals is presented. It is found that the quasicrystal-specific flip
mechanism for atomic diffusion, predicted by Kalugin and Katz, indeed occurs in
this system. However, in order to be effective, this mechanism needs to be catalyzed
by other defects, such as half-vacancies. For this reason, flip diffusion is difficult to
distinguish from standard vacancy diffusion.

1. Introduction

There has recently been much interest in atomic self-diffusion in quasicrystals,
mostly triggered by a paper by Kalugin and Katz1, where a diffusion mechanism
specific to quasicrystals was proposed. The elementary process in this flip mech-

anism consists of certain quasicrystal-specific rearrangements of atoms, where the
initial and final configurations are energetically almost degenerate. In quasicrys-
tals which are decorations of quasiperiodic tilings, the flip mechanism consists of a
reshuffling of certain local tile configurations, along with their decorations1.

Flip diffusion has so far been studied in pure tiling models, without bothering
about a specific atomic decoration of the tilings2,3. While such an approach may
prove that elementary flip processes do add up to diffusive behaviour, the physical
feasibility of the flip mechanism and the magnitude of flip diffusion remain much less
certain. In particular, activation energies of elementary flips cannot be estimated
without a concrete atomic structure, and in a reshuffling of tiles atoms may have
to move only much smaller distances than the vertices of the tiles. Those questions
cannot be studied without having a specific atomic structure in mind.

We therefore propose to study the feasibility of flip diffusion in a concrete atomic
model quasicrystal, by means of molecular dynamics (MD) simulations. For such a
simulation, not only a realistic model structure, but also (short range) interatomic
potentials stabilizing the model structure are needed. Fortunately, this has become
available: Dzugutov4 has found a one-component system with a simple potential,
which solidifies into a quasicrystalline structure known already before as a realistic
model of dodecagonal quasicrystals5,6.

In Section 2, we shall describe this model structure in more detail, along with
some ideas on potential flip moves, before we present our MD simulation results in
Section 3. We finally conclude in Section 4.
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2. Description of the Model Structures

The structure found by Dzugutov4 in his MD simulation is a layered structure
which, apart from some defects, is periodic in one direction, but quasiperiodic and
12-fold symmetric in the plane perpendicular to it. It basically is of Frank-Kasper
type, i.e., it is mostly tetrahedrally close-packed, and can be described as a periodic
stacking ABAB̄ of a dodecagonal layer A and two hexagonal layers, B and B̄,
which are just rotated with respect to each other by 30◦. The atoms in layer A

form the vertices of a simple tiling of squares, triangles, asymmetric hexagons and
30◦ rhombi. The whole structure is, in fact, a decoration of such a tiling5,6. The
tiles occurring in the structure, together with their decorations, are shown in Fig. 1.
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Fig. 1. The basic tiles with their decorations. Height coordinates are in fractions of the period
length. Two elementary rearrangements of tiles and atoms are shown. One subdivision of a hexagon
is replaced by a different one through an intermediate step (top line), and two rhombi are replaced
by a square (bottom line). In all these elementary steps, a whole column of (dotted) A layer atoms
is replaced by a slightly jagged column of B/B̄ layer atoms, or vice versa. These columns are shown
on the right. A whole column thus has to move a quarter of a period length upwards or downwards.

All structures built on a tiling with squares and triangles only are perfectly
tetrahedrally close-packed. Such structures are therefore very rigid, and there are
also very few small groups of tiles that can be reshuffled. If hexagons or rhombi
are present, however, some atoms are not close-packed: there are some octahedra
occurring in the interior of hexagons, and near the obtuse corners of rhombi. Near
those octahedra, the structure is much softer. Moreover, in such structures there
are also many local tile configurations which can easily be reshuffled. Some of these
tile flips are shown in Fig. 1. In all the moves, a whole column of atoms has to move
upwards or downwards (Fig 1), whereas other atoms move very little. Obviously,
such a move is very unlikely, since the vertical distance of atoms is already rather
small. If one introduces a vacancy in the column, however, the move becomes much
easier. Since between two atom positions in a column there is another good atom
position, a neighboring atom can then move half-way into the vacancy, effectively
splitting it into two half-vacancies, which then can move up and down the column,
thereby transforming it. Such half-vacancies therefore efficiently catalyze the moves
shown in Fig. 1. They are responsible for the breaking of periodicity in z-direction.
Note that the movement of atoms in the xy-plane is much small than that of the
vertices. In our simulations, structures built on several different tilings are used,
both perfectly ordered as well as disordered ones, each containing about 8000 atoms.



3. Results of the Molecular Dynamics Simulations

Our MD simulations were all done with a standard 4th-order predictor-corrector
algorithm7, at constant temperature and constant pressure. To keep atoms suffi-
ciently mobile, a rather high simulation temperature of T = 0.6 (in Lennard-Jones
units) was used, compared to a melting temperature of Tm = 0.75 for the ide-
alized structures, and Tm = 0.7 for Dzugutov’s structure, which was obtained in
a simulation4. Since Dzugutov’s structure contains many defects of all kinds, we
decided to use, in our simulations, the idealized structures described in the last
section, and to introduce defects in a controlled way where necessary. The pure
square-triangle tiling structures turned out to be very stable, as predicted. The
same is true for structures containing asymmetric hexagons. Regions with isolated
rhombi are found to have a clear tendency to transform into hexagons, and then re-
main immobile. Only more disordered structures, where also pairs of rhombi occur,
are somewhat more mobile. After very long simulations, these latter structures even
developed vacancies, whereas the other structures only developed half-vacancies. In
order to accelerate this, and since also Dzugutov’s structure contains many holes,
we decided to introduce some vacancies artificially, in a controlled way, on different
classes of sites. Vacancies are most effective when they are introduced on sites in
the interior of hexagons, which are involved in the formation and disappearance of
rhombi inside hexagons. When introduced on other sites, vacancies had a somewhat
lesser effect. As expected, mobility is primarily in the periodic direction, whereas
in the quasiperiodic plane atoms move much less (Fig. 2). It can clearly be seen,
however, that the tiling is reshuffled, and periodicity is broken.

Fig. 2. Comparison of the initial configuration with the result after 100’000 simulation steps,
for a structure based on a tiling with hexagons, containing about 2% vacancies inside hexagons. On
the left, a projection on the xz-plane is shown, with initial and final positions connected. It can be
seen that atoms primarily move vertically, with small horizontal displacements (zig-zags). On the
right, a projection of the initial and final structures on the xy-plane is shown. The tiling has been
reshuffled, and at different z-coordinates one has different tilings, so periodicity is slightly broken.
Atoms which have moved are primarily inside hexagons.



To analyze the equilibrium structures in more detail, we first cooled them to
zero temperature, then calculated the Voronoi and its dual Delaunay partitioning,
and determined from the latter the distribution of the sizes of holes in the structure.
In all cases, in addition to the small holes inside tetrahedra and octahedra also a
number of half-vacancies had developed, and with less ordered initial structures, or
when some initial holes were present, even an equilibrium distribution of full vacan-
cies had formed. In the cases where only half-vacancies had formed, we probably
still were away from equilibrium. It is particularly interesting that if in Dzugutov’s
structure all full vacancies were filled with additional atoms, a similar equilibrium
distribution of vacancies formed again after a while. Some representative histograms
of hole sizes are shown in Fig. 3.

In agreement with our theoretical picture, atoms indeed make discrete jumps
in our simulations (Fig. 4). These jumps are much bigger in the periodic direction
than in the quasiperiodic direction, but even in the latter they are still discernible,
although atoms make only very few jumps and most don’t move at all.

Fig. 3. Histogram of hole sizes for differ-
ent structures, after cooling to zero tempera-
ture. There are holes inside tetrahedra, holes
inside octahedra, half-vacancies, and full va-
cancies, where entire atoms fit in. The data
of Dzugutov’s structure is shown in solid, both
before and after the full vacancies have been
filled. The data for a structure based on a tiling
with hexagons is shown dashed, after a very
long simulation, both with (short dashed) and
without (long dashed) initial holes.

Fig. 4. Histograms of distances between ini-
tial and final atom positions, after 100’000 sim-
ulation steps. Distances both in the (periodic)
z-direction and within the (quasiperiodic) xy-
plane are shown for a structure based on a tiling
with hexagons and initial holes. In the periodic
direction, atoms get much farther, and there are
clear, discrete step sizes. In the quasiperiodic
direction, step sizes are much smaller, but there
are still discrete step sizes apparent.

4. Discussion and Conclusions

A careful analysis of the final states shows that flip moves indeed occur in our
model quasicrystals. Such flip moves have also been observed by Dzugutov (pri-
vate communication). Their activation energy is prohibitively high, however, unless
there are other defects present as well, which can catalyze the flips. Particularly



efficient such catalyzers are half-vacancies and vacancies. We have found that a siz-
able density of such half-vacancies and vacancies is always present in equilibrium,
which therefore makes flip diffusion possible. Unfortunately, due to the (necessary)
presence of vacancies and half-vacancies, the contributions of flip diffusion and clas-
sical vacancy diffusion are very hard to separate. We should emphasize, however,
that the flip mechanism, although catalyzed by vacancies, is qualitatively different
from vacancy diffusion, in that the passage of a vacancy without flips associated
with it leaves the structure unchanged, whereas with the flips the structure is left
completely reshuffled after the passage of the vacancy.

Our model quasicrystal are somewhat untypical in that they are periodic in one
direction, which causes problems because isolated flips have to break periodicity
and thus lead to larger mismatches. Moreover, our models are mostly tetrahedrally
close-packed, which makes them very rigid, and which is also not very typical for
quasicrystals. Still, we believe that our results are relevant also for (stable) icosa-
hedral quasicrystals, which are completely non-periodic and not Frank-Kasper like.

As is well known, molecular dynamics is too slow to reliably measure the diffusion
constant directly in a simulation. It is a good tool, however, to identify the relevant
moves, and to measure their activation energy. The actual diffusion constant then
can be obtained from a Monte Carlo simulation, using the moves and activation
energies determined in the MD simulation. This is planned for the future.
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