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Cohomology groups for projection tilings of codimension 2
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Abstract

The gap-labelling group, which provides the set of possible values of the integrated density of states on gaps in the spectrum of a
Hamiltonian describing particles in a tiling, is frequently related to the cohomology of the tiling. We present explicit results for the
cohomology of many well-known tilings obtained from the cut and projection method with codimension 2, including the (generalized)
Penrose tilings, the Tübingen triangle tiling, the Ammann–Beenker tiling, and the Socolar tiling. © 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

This article is about topological invariants for tilings,
specifically for projection tilings, which play a major role in
the description of quasicrystals. These invariants are coho-
mology groups of groupoids. The latter arise in the context
of tilings since the motions from tile to tile do in general not
form a group but rather a groupoid. For projection tilings,
which are obtained from a higher-dimensional periodic
structure, matters simplify enormously and we have several
isomorphic descriptions of this cohomology which we sim-
ply call the cohomology of the tiling. First, it is isomorphic
to the Czech cohomology of the local isomorphism class of
the tiling (suitably topologized). Second, and more impor-
tant from the computational point of view, it is isomorphic
to the cohomology of the higher-dimensional periodicity
lattice with coefficients derived from the local isomorphism
class. And third, it is isomorphic to theK-groups of the
C∗-algebra associated with the groupoid.

These invariants yield an important step towards the
classification of tilings. As they are invariants of the tiling
groupoid, they are the same for locally isomorphic tilings
and even for tilings which are mutually locally derivable
[1] or topological equivalent [2]. We mention these equiva-
lence relations because the construction of a tiling from an
atomic structure will certainly not be unique.
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Furthermore, the invariants play a role in the labelling
of the gaps in the spectrum of a Hamiltonian describing
the particle motion in the tiling. TheC∗-algebra of the
tiling groupoid turns out to be the algebra of observables.
The Hamiltonian thus belongs to it and also its spectral
projections associated with the gaps, i.e. projections on
(generalized) eigenstates of all energies up to the gap. The
K0-class of such a projection furnishes a label for the gap
which is stable under perturbations. Furthermore, there is a
trace on theC∗-algebra coinciding in the physically relevant
representation with the trace per unit volume. It induces
a homomorphism from theK0-group of the algebra toR
and the image of this homomorphism is the gap-labelling
group. The values of the integrated density of states on gaps
belong to that group. More about this can be found in [3–5].
Unfortunately, the above-mentioned isomorphism between
cohomology andK-groups is only abstractly known. It
would be desirable to have an explicit formula for it, or
even more to have a direct physical interpretation of the
cohomology groups which would allow us to interpret the
results obtained below in physical terms.

2. Canonical projection tilings

The class of tilings to which the results of [6,7] apply are
obtained by cut and projection from higher-dimensional pe-
riodic structures. For the cut and projection method, we use
the formulation of [8]. The space such a tiling covers, here
denotedE, is a linear space (of dimensiond) embedded in
a higher-dimensional periodic polyhedral complex and its
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tiles ared-faces of that complex projected ontoE. But not
all d-faces are projected to yield tiles; only those for which
the dual of the face (the complex comes with a fixed dual
complex) intersectsE. Starting with these data,E and the
polyhedral complex, one obtains in this way a tilingT pro-
vided the complex is in a regular position relative toE. The
local isomorphism classMT of T can be obtained by look-
ing not only at one fixed position for the complex but at all
its translates. This gives a whole set of tilings. If one ne-
glected the subtleties which arise if the complex is not in
a regular position, one would obtain a parametrization of
this set by the torus (E⊥×E)/Γ , whereE⊥ is a comple-
mentary subspace ofE, andΓ the periodicity lattice. But
the singular positions are most important for the topology of
MT . Each singular position of the complex actually yields
two or more tilings, so that one has to make an additional
choice to obtain a tiling. LetS ⊂ E⊥ be the set of singu-
lar positions (interpreting a position relative toE as a vec-
tor in E⊥). MT can be described as the quotient (E⊥

c ×E/Γ
whereE⊥

c is a completion ofE⊥\S in some non-Euclidean
topology and there exists a continuous surjectionE⊥

c →E⊥
having only one preimage for each regular point but sev-
eral preimages for singular points. A singular point has as
many preimages as there are additional choices, and all these
preimages are in different connected components ofE⊥

c al-
though they are limit points ofE⊥\S. This still does not
describe completely the topology ofE⊥

c , but it illuminates
how the topological information is encoded in the setS. In
all interesting cases, the setS can be described as follows:
there is a finite set{Hα}α of hyperplanes ofE⊥ such thatS
is the union of all its translates under the natural action of
Γ . We call these planes and their translates singular planes.
The Hα are simply the planes which are generated by the
boundary faces of the so-called acceptance domains. The
canonical choice is to take for the acceptance domains the
projections of the duals of thed-faces ontoE⊥ (alongE). If
the tiling is decorated, there may be further singular planes,
whose points correspond to tilings which may carry different
decorations.

Table 1
Cohomology groups of various codimension 2 tilingsa

Tiling H0 H1 H2 H3 H4 L f lα r1 r2

Octagonal Z Z
5

Z
9 0 0 3 4 2 3 0

Octagonal (decorated) Z Z
8

Z
23 0 0 8 4+4 2, 4 4 0

Penrose Z Z
5

Z
8 0 0 1 5 1 4 0

Decagonal TTT Z Z
5

Z
24 0 0 5 5 5 4 0

Generalized Penroseγ ∈ (1/2) + Z[τ ] Z Z
10

Z
34 0 0 15 5+5 4, 4 4 0

Generalized Penroseγ ∈ {(1/3), (2/3)} + Z[τ ] Z Z
10

Z
44 0 0 30 5+5 6, 7 4 0

Generalized Penrose —γ generic Z Z
10

Z
49 0 0 40 5+5 8, 8 4 0

Dodecagonal Z Z
7

Z
28 0 0 14 6 6 3 0

Dodecagonal (decorated) Z Z
12

Z
59 0 0 24 6+6 6, 6 4 0

Heptagonal (d=4) Z Z
6

Z
15

Z
22

Z
18 1 7 1 12 7

a For each tiling, the quantitiesL, f, lα and rk also are given, which enter into the formulae for the cohomology groups. If the translation orbits of
singular planes split into two orbits under the point group, their numberf is given as the sum of the lengths of these point group orbits. Aslα is constant
on each point group orbit, it is listed only once per orbit, separated by a comma in the case of two orbits.

3. Cohomology groups

The first important quantity which governs the qualitative
behaviour of the cohomology is the numberL of Γ -orbits
of intersection points, as we call points which constitute the
intersection ofd⊥ singular planes.d⊥ is the dimension of
E⊥ and is called the codimension of the tiling. IfL is infinite,
then the cohomology is infinitely generated [6]. There are
simple criteria under which this is the case.

Suppose now thatL is finite. It is a general result that the
cohomology groupHk(T ) of the tilingT is non-trivial only
if 0≤k≤d. For d⊥=1, one obtains [6]

Hd−k(T ) ∼= Z

(
d + 1
k + 1

)
if k ≥ 1 and Hd(T ) = Zd+L.

This is quite a simple result, in particular asL=1 for the
canonical choice of the acceptance domain (no decoration).
Ford⊥=2, the result is more complicated. It depends also on
Hα and its stabilizersΓ α. More precisely, it depends on the
rank of Γ α, on the numberlα of Γ α-orbits of intersection
points in Hα, and on the rankrk of the module generated
by all submodulesΛk+1Γ

α ⊂ Λk+1Γ whereΓ Λ is the
exterior ring ofΓ , i.e.

ΛkΓ ∼= Z

(
d + 2

k

)
.

A density argument shows that, in order to have finitely
generated cohomology, the ranks of all stabilizersΓ α must
be equal to (d+2)/2. If f is the number of translation orbits
of singular planes, one obtains [7]Hk(T ) ∼= ZDk , with

Dd−k =
(

d + 2
k + 2

)
− rk − rk+1

+f

(
(d + 2)/2

k + 1

)
, k > 0,

Dd =
(

d + 2
2

)
− d − 1 − L − r1 +

∑
α

(
d

2
+ lα

)
.
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The cases of higher codimension become more involved, but
there is a strategy for computing them [9].

4. Results

Using the formulae above, the cohomology has been
computed for several well-known two-dimensional tilings
with five-, eight-, 10- and 12-fold symmetry, and for a
four-dimensional tiling with 14-fold symmetry, all with
d⊥=2. The computations were done with a computer
program which is a derivative of a program to compute
Wyckoff positions of crystallographic space groups [10].
One basically had to enumerate the intersections of singu-
lar planes modulo lattice translations. For convenience, the
singular planes and their intersections were further grouped
into orbits under the point group of the lattice. The results
are summarized in Table 1.

The octagonal and dodecagonal tilings in Table 1 are the
usual Amman–Beenker and Socolar tilings, respectively
[11,12]. The latter is mutually locally derivable with the
shield tiling [13]. The matching rule decoration of these
tilings induces a further set of singular planes [14], so that
they are not locally derivable from their undecorated coun-
terparts. The decagonal tilings are the Tübingen triangle
tiling or TTT [1,13], the Penrose tiling, and a generalized
Penrose tiling withγ ∈ (1/2) + Z[τ ] (recall that the gen-
eralized Penrose tilings depend on an extra parameterγ

[15]). We found that the cohomology distinguishes only two
further classes of generalized Penrose tilings (with five-fold
symmetry), one forγ ∈ (1/3) + Z[τ ] or γ ∈ (2/3) + Z[τ ],
and the generic case. The heptagonal tiling (which is actu-
ally even 14-fold symmetric) is four-dimensional, and has as
acceptance domain a 14-gon, which is the convex hull of the
projection of a generating 14-star of vectors of the lattice.

Note that two-dimensional tilings with seven- or 14-fold
symmetry andpolyhedralacceptance domain have all in-
finitely generated cohomology.
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