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Abstract

A general method is presented which proves that an appropriately cho-
sen set of matching rules for a quasiperiodic tiling enforces quasiperi-
odicity. This method, which is based on self-similarity, is formulated in
general terms to make it applicable to many different situations. The
method is then illustrated with two examples, one of which is a new set
of matching rules for a dodecagonal tiling.

1. Introduction

With the discovery of more and more thermodynamically stable, perfect quasicrys-
tal systems it has become unlikely that the formation of quasicrystals is due to a
purely entropic effect, as had been assumed in random tilings models [1]. At least
for some of the recently discovered F-type icosahedral quasicrystals it seems nec-
essary to include, besides entropic effects, also an energetic mechanism favouring
quasiperiodic arrangements of atoms in order to understand the high perfection
of these quasicrystals. The simplest models with interactions favouring quasiperi-
odicity are tiling models, in which the atoms are assumed to form stable clusters,
represented by tiles, and the residual interactions between the clusters are such
that they favour a quasiperiodic arrangement of the clusters. In order that these
inter-cluster interactions be effective, they must be sufficiently strong, which is in
contrast to random tiling models, where one assumes that they are very weak so
that they can be neglected at high temperature.
In the following, we shall deal only with tilings and interactions between tiles
(“matching rules”). We shall present a general method to prove that a given set of
local interactions or matching rules enforces a quasiperiodic ground state. Whether
or not such a quasiperiodic ground state remains stable at positive temperature
is still under debate and will not be further discussed. Our proof is based on the
self-similarity present in all tilings applied to the description of quasicrystals so far.
The various arguments of our proof are not new; they have been used in different
combinations by other authors as well, e.g. by de Bruijn [1] for the Penrose tiling.
Rather, the aim of this paper is to put together all the necessary ingredients of
the proof and to state them in general terms, in order to provide a method that
works in many cases. Due to lack of space, many of our arguments can only be
sketched, and we must refer to a future publication for further details.

The remainder of the paper is organised as follows. In section 2, the strategy of the
proof is described in general terms, providing all the necessary ingredients. The
proof is then illustrated with two examples, in section 3 with R. Ammann’s well
known matching rules for the octagonal square-rhombus-tiling, and in section 4
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with a new set of matching rules for a dodecagonal tiling. In section 5 we conclude
with some final remarks.

2. The General Procedure

In this section we describe the general strategy of the proof. Suppose that a set of
prototiles is given, together with appropriate local rules for joining these prototiles.
Typically, these rules are expressed in terms of markings of the prototiles that must
match. Since we are going to use the self-similarity present in the tilings admitted
by the matching rules, this self-similarity must be defined in terms of the prototiles.
We assume that a decomposition rule is given, according to which each prototile is
disected in a unique way into similar tiles smaller by a factor λ. These smaller tiles
carry again the markings defining the matching rules. The decomposition must
respect the matching rules: tiles that match must have decompositions that match.
The decomposition rule allows us to construct tiling covering larger and larger
areas, eventually even the whole plane, by repeatedly applying the decomposition
step and enlarging the resulting tiling each time by a factor λ, to get back to the
original tile size.
Let us now explore the set of all tilings admitted by the matching rules. We
do this by a three step procedure. The first step has been described in detail
in Ref. [3] and serves to prove that the matching rules enforce non-periodicity.
We note that every global tiling admitted by the matching rules has a unique
decomposition which is again admitted by the matching rules. The idea is to
prove that there exists a unique inverse operation, called composition. That is, we
must prove that for each tiling there exists a unique tiling larger by a factor λ of
which the current tiling is the decomposition. For that, two things must be shown,
namely: i) Given any tiling admitted by the matching rules, each of its tiles can be
composed, together with part of its neighborhood, to a unique “supertile”. This
supertile may depend on the neighborhood, but the uniqueness makes sure that no
contradiction arises when the supertiles for different tiles are constructed. ii) The
markings which the supertiles inherit from the small tiles must enforce matching
rules that are equivalent to those of the corresponding tile of the original size. If
these two points are satisfied we can show that the matching rules enforce non-
periodicity. To see this enforcement, suppose that we have a tiling left invariant
by some translation. We can now apply the composition procedure to this tiling.
Due to the uniqueness of composition, no information is lost in this process. With
each composition step, the period length, expressed in the scale of the current tile
size, shrinks by a factor λ, until it is so small that peridodicity can be ruled out
by inspection of all possible local neighborhoods.
The procedure described above is a standard method [3] to prove that a set of
matching rules enforces non-periodicity. So far, however, we haven’t learned any-
thing on the possible quasiperiodicity of the tilings admitted by the matching rules.
Therefore, in a second step, we shall describe how to construct such tilings, in-
cluding the markings, by a method that guarantees their quasiperiodicity, namely
the projection method [4]. In the projection method, the vertices of the tiling are
projections of certain nodes of a higher dimensional lattice onto a subspace, called
physical space. All those lattice nodes are projected which fall into an appropri-
ate window region in the orthogonal complement of physical space. Rules are set
up for joining vertices to form tiles, and how tiles, bonds or vertices have to be
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marked. In order to maintain quasiperiodicity, these rules may depend only on
where in the window the corresponding objects fall. There are uncountably many
different tilings obtained in this way, depending on the position of the window
relative to the lattice. If we can find such a projection method which produces
tilings with the correct and correctly decorated tiles, such that the decorations of
neighboring tiles match, we have an infinity of quasiperiodic tilings admitted by
the matching rules.
In a third step, we have to show that there are no other tilings admitted by
the matching rules. We shall again use the self-similarity, which we therefore
must define also for the projection tilings. This can be done in a global way [5].
Each tiling has a unique deflation and inflation, as decomposition and composition
are called in this context. Both the deflation and the inflation of a tiling get
their markings from the projection method. All we have to do is to check that
decomposition and deflation on the one hand and composition and inflation on the
other hand exactly agree. Given any tiling admitted by the matching rules, we can
now construct a sequence of quasiperiodic projection tilings which agree with it on
larger and larger areas. To show that there exists a projection tiling which agrees
with the given tiling in a ball of radius R, we repeatedly apply the composition
procedure to it (n times), until the original ball of radius R is contained in some
vertex neighborhood of the composed tiling. Then we take a projection tiling
containing the same vertex neighborhood, and apply to both tilings n times the
decomposition and deflation procedure, respectively, which reproduces the original
tiling, plus a projection tiling which agrees with it on a ball of radius R. In this way,
any tiling admitted by the matching rules can be obtained as a limit of projection
tilings. It can be shown that these limits are projection tilings themselves, so
that we can prove that actually all tilings admitted by the matching rules are
quasiperiodic projection tilings.

3. Ammann’s Octagonal Tiling

As a first example we consider Ammann’s matching rules for the octagonal tiling
[3,6]. In Fig. 1, a piece of such a tiling is shown, and one can see the constituant
tiles with their markings. Underlaid in gray are the markings of its composition.
The matching rules demand that the half-circles on the edges match, and that the
markings at the vertices form arrows. Socolar [6] has already proved that these
rules enforce quasiperiodicity, using the concept of Ammann bars. We present
here an independent proof, which seems somewhat more transparent.
The first step in our procedure has already been done in [3], so that we won’t
repeat it here. We directly pass to step two and present how the markings are
obtained in the projection method. The window region is an octagon, as shown
in Fig. 2, and the markings are chosen as follows: The octagon is divided by
four lines through its center which are perpendicular to the possible bonds. The
orientation of a bond, indicated by the half-circle, is chosen according to whether
the midpoint of the bond is left or right of the corresponding line. Furthermore,
the octagon is divided into eight sectors, such as the shaded one. To each sector
there corresponds an orientation of the arrow on a vertex. It is easy to verify that
with such an assignment all the tiles are correctly decorated, and by construction
the decorations of neighboring tiles must match. It is also straightforward to check
that deflation and inflation for the projection tiling agree with composition and
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Fig. 1. A piece of Ammann’s octagonal tiling with mark-
ings defining the matching rules. Its composition is un-
derlaid in gray.

Fig. 2. Subdivision of the win-
dow region for Ammann’s octag-
onal tiling.

decomposition as given by Ammann [3], so that we can apply the reasoning of step
three. The only subtle point is that there are so called singular (projection) tilings,
for which there are vertices or bond midpoints falling on the boundaries between
the different subregions of the window, so that the decoration is not unique. This
ambiguity can be resolved by an infinitesimal translation of all vertices, although
not in a unique way, so that in such a case we obtain several different tilings, all
with a valid decoration. These singular tilings can however be obtained as limits
of regular tilings.

4. A New Dodecagonal Tiling

As a second example we present a new set of matching rules for a dodecagonal
tiling, a piece of which is shown in Fig. 3. The tiling consists of squares, triangles
and threefold symmetric hexagons. The markings defining the matching rules
and the decomposition rules are indicated in Fig. 3. The triangle may have two
different markings, and each tile comes in a left handed and in a right handed
version. The matching rules demand that arrows on edges match, and that the
markings at the vertices form a “cross”. Note that there are left crosses and right
crosses. With arguments similar to those in [3], it is not very difficult to show
that a unique composition exists, but we don’t have the space to go into details.

The essential point is that a change of scale by λ =
√

2 +
√

3 is chosen [5], and

not λ = 2 +
√

3, which simplifies the task considerably. The projection method
to construct this tiling has been given in [7]. Its window region is a dodecagon,
shown in Fig. 4 with the subdivisions corresponding to the different markings. As
with Ammann’s tiling, the lines decide on the orientation of the bonds, and the
shaded sector corresponds to one orientation of the cross. The line which divides
the shaded sector separates regions corresponding to left crosses and right crosses
of a given orientation. It is straigthforward to check that these assignments lead
to the markings and decomposition rules shown in Fig. 3, so that we can apply

4



Fig. 3. A piece of a dodecagonal tiling with markings
defining a new set of matching rules. Its composition is
underlaid in gray.

Fig. 4. Subdivision of the window
region for the dodecagonal tiling.

the standard reasoning of section 2. Singular tilings are dealt with as in section 3.
The tiling presented here is closely related to another dodecagonal tiling, given by
Socolar [6]. The undecorated versions of these tilings can be locally derived from
each other [8]. The same happens to be true for the decorated tilings, although
our matching rules have been found independently. By superimposing Socolar’s
Ammann bars on our tiling it is not difficult to see that they impose matching
rules equivalent to ours, which provides a alternate proof for Socolar’s matching
rules [6].

5. Concluding Remarks

We have presented a general method to prove that a set of matching rules enforces
quasiperiodicity. This method can work, of course, only if the matching rules are
correctly chosen from the very beginning. Unfortunately, we do not have a method
to find the correct matching rules for a given tiling.
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