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Gorenstein algebras, approximations, and Serre
duality

This chapter discusses the homological theory of modules over Gorenstein rings.
A characteristic feature is the decomposition of the module category into two or-
thogonal subcategories: the Gorenstein projective (or maximal Cohen-Macaulay)
modules and the modules of finite projective dimensions. These subcategories are
glued together via certain approximation sequences. Moreover, the Gorenstein pro-
jective modules carry modulo projectives a natural triangulated structure, and the
corresponding stable category admits a Serre functor when it is Hom-finite. This
Serre duality specialises to Tate duality when the algebra is self-injective. Also, the
category of perfect complexes admits a Serre functor.

15.1 Approximations

We establish the existence of approximations in exact categories and use the concept
of a cotorsion pair.

15.1.1 Cotorsion pairs

Let A be an exact category and C ✓ A a full additive subcategory.
A finite C-resolution of an object A in A is an admissible exact sequence (that

is, an acyclic complex)

0 �! Xr �! · · · �! X1 �! X0 �! A �! 0

such that Xi 2 C for all i. We write Res(C) for the full subcategory of objects in A

that admit a finite C-resolution.
For a class of objects C ✓ A we set

?C = {X 2 A | Extn
A
(X,Y ) = 0 for all Y 2 C, n > 0}

and

C? = {Y 2 A | Extn
A
(X,Y ) = 0 for all X 2 C, n > 0}.
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Let A be an exact category and X,Y full subcategories of A. Then (X,Y) is a
(hereditary and complete) cotorsion pair for A if

X? = Y and X = ?Y

and every object A 2 A fits into admissible exact sequences

0 �! YA �! XA �! A �! 0 and 0 �! A �! Y
A �! X

A �! 0 (15.1)

with XA, X
A 2 X and YA, Y

A 2 Y.

The sequences (15.1) are called approximation sequences, because every morphism
X ! A with X 2 X factors through XA ! A and every morphism A ! Y with
Y 2 Y factors through A! Y

A.

Remark 15.1.1 Let (X,Y) be a cotorsion pair for A and set C = X \ Y.

(1) We have XA 2 C if A 2 Y, and Y
A 2 C if A 2 X. In particular, any morphism

from X to Y factors through an object in C.

(2) The exact sequences in (15.1) are uniquely determined up to isomorphism in
the quotient category A/C. In fact, the assignment A 7! XA gives a right adjoint
of the inclusion X/C ! A/C, while the assignment A 7! Y

A gives a left adjoint of
the inclusion Y/C! A/C.

15.1.2 A decomposition theorem

The following result establishes a procedure for constructing cotorsion pairs; it is
the basis for the existence of approximations.

Proposition 15.1.2 Let A be an exact category and C ✓ A a full additive sub-
category. Set X = ?C and let Y be the closure under direct summands of Res(C).
Suppose that A = Res(X) and that C cogenerates X, that is, every object X 2 X fits
into an admissible exact sequence 0 ! X ! Y ! Z ! 0 with Y 2 C and Z 2 X.
Then (X,Y) is a cotorsion pair for A.

Proof Let A 2 A and choose an admissible exact sequence

0 �! Xr �! · · · �! X1 �! X0 �! A �! 0

with Xi 2 X for all i. We need to construct the sequences (15.1) and use induction
on r. The case r = 0 is clear. Now suppose r > 0 and let B denote the image of
X1 ! X0. By the inductive hypothesis there is an exact sequence 0! B ! Y

B !



15.1 Approximations 247

X
B ! 0 with X

B 2 X and Y
B 2 Y. We form the pushout diagram

0 0

0 B X0 A 0

0 Y
B

X A 0

X
B

X
B

0 0

and obtain an exact sequence 0 ! Y
B ! X ! A ! 0 with X 2 X and Y

B 2 Y.
This gives the first approximation sequence. Now take this sequence and form the
pushout with the sequence 0 ! X ! C ! X

0 ! 0. This yields the following
diagram

0 0

0 Y
B

X A 0

0 Y
B

C Y 0

X
0

X
0

0 0

and the sequence 0 ! A ! Y ! X
0 ! 0 has X

0 2 X and Y 2 Y. Thus we have
constructed the second approximation sequence.

It remains to show that X = ?Y and X? = Y . The first equality is clear since

X = ?C = ? Res(C).

Also, the inclusion X? ◆ Y is clear, since X? ◆ C. For the other inclusion, let
A 2 X? and consider the sequence 0 ! A ! Y

A ! X
A ! 0 which splits. Thus

A 2 Y.

15.1.3 Self-orthogonal subcategories

For applications of the decomposition theorem, we are interested in the case that
the cotorsion pair (X,Y) is given by a self-orthogonal subcategory C.
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Let A be an exact category. A full additive subcategory C ✓ A is self-orthogonal
if it is closed under direct summands and Extn

A
(X,Y ) = 0 for all X,Y in C and

n > 0.

Lemma 15.1.3 Let A be an exact category and C ✓ A a full additive and self-
orthogonal subcategory. Then Res(C) is closed under direct summands and

?C \ Res(C) = C.

Proof One can show that Res(C) = Thick(C) \ C? (Lemma 16.1.4). Clearly,
Thick(C) and C? are closed under direct summands. It follows that Res(C) is closed
under direct summands.
The inclusion ?C \ Res(C) ◆ C is clear. Thus we fix A 2 ?C \ Res(C), and an

induction on the length n of a C-resolution shows that A is in C. The case n = 0 is
clear. If n > 0, consider an exact sequence ⌘ : 0 ! A

0 ! C ! A ! 0 with C 2 C.
Then A

0 2 ?C\Res(C), and A
0 2 C by the inductive hypothesis. Thus the sequence

⌘ splits, and A is in C.

15.2 Gorenstein rings

Let ⇤ be a ring and suppose that ⇤ is two-sided noetherian. The ring ⇤ is called
Gorenstein if the injective dimension of ⇤ is finite as a left and as a right module
over itself. In that case one can show that both dimensions coincide [109, Lemma A].
We denote this dimension by d and say ⇤ is Gorenstein of dimension d.

15.2.1 Gorenstein projective modules

A ⇤-module X is called Gorenstein projective (or maximal Cohen-Macaulay) if
Exti

⇤
(X,⇤) = 0 for all i 6= 0. We set

Gproj⇤ = {X 2 mod⇤ | X is Gorenstein projective}.

Now fix a finitely presented ⇤-module X and a projective resolution

· · · �! P2

d2�! P1

d1�! P0 �! X �! 0.

For n � 1 set ⌦n
X = Im d

n and X
⇤ = Hom⇤(X,⇤).

Lemma 15.2.1 Let ⇤ be a Gorenstein ring of dimension d and X a finitely
presented ⇤-module. Then the following holds:

(1) The module ⌦n
X is Gorenstein projective for all n � d.

(2) If X is Gorenstein projective, then ⌦n
X is Gorenstein projective for all n � 1.

(3) If X is Gorenstein projective, then the sequence 0! X
⇤ ! P

⇤
0
! P

⇤
1
! · · · is

exact and X
⇤ is Gorenstein projective as ⇤op-module.

(4) The functor Hom⇤(�,⇤) induces an exact duality (Gproj⇤)op
⇠�! Gproj(⇤op).
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Proof We apply the dimension shift formula

Extp
⇤
(⌦q

X,�) ⇠= Extp+q

⇤
(X,�) (p, q � 1).

Then (1) and (2) are clear. From this we obtain the exactness of

0 �! X
⇤ �! P

⇤
0
�! P

⇤
1
�! · · ·

and therefore X
⇤ is a syzygy of arbitrarily high order. Thus X

⇤ is Gorenstein
projective by (1), and this completes (3). The assertion in (4) is then a consequence.

15.2.2 Gorenstein approximations

For Gorenstein rings there is a good approximation theory. The category of finitely
presented modules decomposes into two orthogonal subcategories which are glued
together via approximation sequences.

Theorem 15.2.2 (Auslander–Buchweitz) Let ⇤ be a Gorenstein ring. Set X =
Gproj⇤ and write Y for the category of finitely presented ⇤-modules of finite pro-
jective dimension. Then (X,Y) is a cotorsion pair for mod⇤ with X \ Y = proj⇤.

Proof We apply Proposition 15.1.2. Thus we set A = mod⇤ and C = proj⇤. This
gives X = ?C and Y = Res(C). The assumption on ⇤ implies that A = Res(X)
and that C cogenerates X; this follows from Lemma 15.2.1. More precisely, if ⇤ is
Gorenstein of dimension d, then any ⇤-module X admits a resolution

0 �! ⌦d
X �! Pd�1 �! · · · �! P1 �! P0 �! X �! 0

such that P0, . . . , Pd�1 are projective ⇤-modules. Thus X 2 Res(X), since ⌦d
X

is Gorenstein projective. If X is Gorenstein projective, choose an exact sequence
0! Y ! P ! X

⇤ ! 0 in mod⇤op such that P is projective. This yields an exact
sequence 0! X ! P

⇤ ! Y
⇤ ! 0 in Gproj⇤, since X

⇠�! X
⇤⇤.

The final assertion X \ Y = proj⇤ follows from Lemma 15.1.3.

15.2.3 The stable category

For a noetherian ring ⇤ we consider the derived category Db(mod⇤) and obtain
the singularity category (or stabilised derived category) by forming the triangulated
quotient

Dsg(⇤) =
Db(mod⇤)

Db(proj⇤)
.

An exact category A is a Frobenius category if A has enough projective objects
and enough injective objects, and if projective and injective objects in A coincide.
The stable category of A is obtained by annihilating all morphisms that factor
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through a projective object. The exact structure of A induces a triangulated struc-
ture for the stable category.

Theorem 15.2.3 (Buchweitz) Let ⇤ be Gorenstein. Then the Gorenstein projec-
tive ⇤-modules form a Frobenius category. Writing Gproj⇤ for its stable category,
the composition

F : Gproj⇤ Db(mod⇤) Dsg(⇤)

induces a triangle equivalence

Gproj⇤
⇠�! Dsg(⇤).

Proof It follows from Lemma 15.2.1 that Gproj⇤ is a Frobenius category. The
projective ⇤-modules form the subcategory of objects that are projective and in-
jective.
The functor F is exact: it takes an exact sequence 0 ! X ! Y ! Z ! 0 in

Gproj⇤ to an exact triangle F (X) ! F (Y ) ! F (Z) ! F (X)[1]. Also, F annihi-
lates all projective ⇤-modules and yields therefore an exact functor F̄ : Gproj⇤!
Dsg(⇤). The suspension in Gproj⇤ takes X to ⌦�1

X, and

F (⌦�1
X) ⇠= F (X)[1].

We construct an inverse for F̄ as follows.
Consider the category of complexes K(proj⇤) of finitely generated projective

⇤-modules up to homotopy. We identify the subcategories

Kb(proj⇤)
⇠�! Db(proj⇤) and K�,b(proj⇤)

⇠�! Db(mod⇤).

For a complex X and n 2 Z we use the following truncation:

X · · · X
n�1

X
n

X
n+1

X
n+2 · · ·

�
n

X · · · X
n�1

X
n 0 0 · · ·

id id

Now fix a complex X in K�,b(proj⇤) and choose n 2 Z such that Hi(X) = 0 for
all i  n+d. Then Coker(Xn�1 ! X

n) is Gorenstein projective, by Lemma 15.2.1.
Note that the cone of X ! �

n
X belongs to Kb(proj⇤). Thus X ⇠= �

n
X in

Dsg(⇤) and the assignment

X 7�! ⌦n Coker(Xn�1 ! X
n)

yields a functor G : Dsg(⇤)! Gproj⇤ which does not depend on n. It is not di�cult
to check that G � F̄ ⇠= Id and F̄ �G ⇠= Id.
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15.3 Gorenstein artin algebras

Let k be a commutative artinian ring and ⇤ an artin k-algebra. We write D =
Homk(�, E) for the Matlis duality over k, given by an injective k-module E.

The derived category Db(mod⇤) of a Gorenstein algebra ⇤ ‘decomposes’ into
the category of perfect complexes

Dper(⇤) = Db(proj⇤)

and the singularity category

Gproj⇤
⇠�! Dsg(⇤).

In this section we establish Serre duality for both categories.
Let C be a k-linear and Hom-finite additive category. A Serre functor is an

equivalence F : C! C together with natural isomorphisms

DHomC(X,Y ) ⇠= HomC(Y, FX)

for all objects X,Y in C.

15.3.1 Auslander-Reiten duality

Let mod⇤ denote the stable category of finitely presented ⇤-modules modulo pro-
jectives, and let mod⇤ denote the stable category modulo injectives. The functors
DTr and TrD induce mutually inverse equivalences:

mod⇤ mod(⇤op) mod⇤
Tr D

Tr D

Moreover, we have for all X 2 mod⇤ natural isomorphisms

DExt1
⇤
(X,�) ⇠= Hom⇤(�, DTrX) and DHom

⇤
(X,�) ⇠= Ext1

⇤
(�, DTrX).

15.3.2 Gorenstein projective and injective modules

Let ⇤ be Gorenstein. A ⇤-module X is Gorenstein projective if Exti
⇤
(X,⇤) = 0 for

i 6= 0. Dually, X is Gorenstein injective if Exti
⇤
(D(⇤), X) = 0 for i 6= 0. We set

Ginj⇤ = {X 2 mod⇤ | X is Gorenstein injective}.

The duality induces an equivalence

(Gproj⇤)op
⇠�! Ginj(⇤op).

Observe that a ⇤-module has finite projective dimension if and only if it has
finite injective dimension, because ⇤ is Gorenstein. Then Theorem 15.2.2 yields
two cotorsion pairs

(Gproj⇤,Y) and (Y,Ginj⇤)
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for mod⇤, where Y denotes the subcategory of modules having finite projective and
finite injective dimension.

The following lemma collects the basic properties of Gorenstein projective and
injective modules. We consider the full subcategories

Gproj⇤ ✓ mod⇤ and Ginj⇤ ✓ mod⇤.

Lemma 15.3.1 Let ⇤ be Gorenstein and X,Y 2 mod⇤. Then the following holds:

(1) The inclusion Gproj⇤! mod⇤ admits a right adjoint, taking X to GP(X).

(2) The inclusion Ginj⇤! mod⇤ admits a left adjoint, taking X to GI(X).

(3) If X is Gorenstein projective, then DTrX is Gorenstein injective.

(4) If X is Gorenstein injective, then TrDX is Gorenstein projective.

(5) If X is Gorenstein projective, then GP(GI(X)) ⇠= X in mod⇤.

(6) If X is Gorenstein injective, then GI(GP(X)) ⇠= X in mod⇤.

(7) If X is Gorenstein projective and Y is Gorenstein injective, then

Hom
⇤
(X,Y ) = Hom⇤(X,Y ).

Proof We prove one half, while (2), (4), and (6) follow by duality.

(1) The existence of the adjoint follows from Theorem 15.2.2, using also Re-
mark 15.1.1. Using the notation of the approximation sequence (15.1), the right
adjoint sends a ⇤-module A to XA.

(3) IfX is Gorenstein projective, then TrX is a Gorenstein projective ⇤op-module
by Lemma 15.2.1. Thus DTrX is Gorenstein injective.

(5) Consider the approximation sequence 0 ! X ! GI(X) ! Y ! 0, where
Y is of finite injective dimension and therefore of finite projective dimension. Let
P ! Y be a projective cover and form the following pullback.

0 X X � P P 0

0 X GI(X) Y 0

The morphism X �P ! GI(X) is a Gorenstein projective approximation, since its
kernel has finite projective dimension. Thus we have GP(GI(X)) ⇠= X stably.

(7) Fix a morphism � : X ! Y that factors through an injective module. Let
X ! P denote the approximation with P of finite projective dimension, which
exists by Theorem 15.2.2. Then P is projective, by Remark 15.1.1, and � factors
through Y , since any injective module has finite projective dimension. The dual
argument shows that � factors through an injective module when one assumes that
it factors through a projective module.
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15.3.3 Serre duality for the stable category

Auslander-Reiten duality translates into Serre duality for the stable category of
Gorenstein projective ⇤-modules.

Proposition 15.3.2 Let ⇤ be Gorenstein. For Gorenstein projective ⇤-modules
X,Y there are natural isomorphisms

Hom
⇤
(TrD(GI⌦Y ), X) ⇠= DHom

⇤
(X,Y ) ⇠= Hom

⇤
(Y,⌦�1 GP(DTrX)).

Proof We have

DHom
⇤
(X,Y ) ⇠= DExt1

⇤
(X,⌦Y )

⇠= Hom⇤(⌦Y,DTrX)

⇠= Hom⇤(GI⌦Y,DTrX)

⇠= Hom
⇤
(TrD(GI⌦Y ), X).

The first iso is induced by an exact sequence 0 ! ⌦Y ! P ! Y ! 0 with P

projective. The second iso is Auslander-Reiten duality. The third iso is induced by
⌦Y ! GI(⌦Y ); see Lemma 15.3.1. The last iso is obtained by applying TrD.

A similar sequence of arguments yields

DHom
⇤
(X,Y ) ⇠= DExt1

⇤
(X,⌦Y )

⇠= Hom⇤(⌦Y,DTrX)

⇠= Hom
⇤
(⌦Y,DTrX)

⇠= Hom
⇤
(⌦Y,GP(DTrX))

⇠= Hom
⇤
(Y,⌦�1 GP(DTrX)).

Corollary 15.3.3 Let ⇤ be Gorenstein. The assignments

X 7! ⌦�1 GP(DTrX) and Y 7! TrD(GI⌦Y )

yield mutually inverse equivalences GprojA
⇠�! GprojA. In particular, the compo-

sition ⌦�1 �GP �DTr is a Serre functor for GprojA.

Proof We have ⌦�1 �⌦ ⇠= Id ⇠= ⌦ �⌦�1 since Gproj⇤ is a Frobenius category; see
Theorem 15.2.3. Also, DTr �TrD ⇠= Id and TrD�DTr ⇠= Id. Finally, GP �GI ⇠= Id
and GI �GP ⇠= Id by Lemma 15.3.1. The isomorphism in Proposition 15.3.2 then
shows that ⌦�1 �GP �DTr is a Serre functor.

For X 2 mod⇤ we set

⌫X := X ⌦⇤ D(⇤) ⇠= DHom⇤(X,⇤).

Remark 15.3.4 If X is a Gorenstein projective ⇤-module, then a projective pre-
sentation P1 ! P0 ! X ! 0 induces an exact sequence

0 �! DTrX �! ⌫P1 �! ⌫P0 �! ⌫X �! 0
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and therefore

⌦�2(DTrX) ⇠= ⌫X.

It follows that for self-injective ⇤ the Serre functor is given by

X 7�! ⌦X ⌦⇤ D(⇤).

In particular, Serre duality equals Tate duality in this case.

15.3.4 Serre duality for the category of perfect complexes

Next we establish Serre duality for the category of perfect complexes

Dper(⇤) = Db(proj⇤).

We need the following standard isomorphisms.

Lemma 15.3.5 Let (A⇤, �B⇤, �C) be modules and suppose that A⇤ is finitely
generated projective. Then there are natural isomorphisms

B ⌦⇤ Hom⇤(A,⇤)
⇠�! Hom⇤(A,B)

and

A⌦⇤ Hom�(B,C)
⇠�! Hom�(Hom⇤(A,B), C).

Proof Straightforward.

Theorem 15.3.6 (Happel) Let ⇤ be Gorenstein. Then the derived Nakayama
functor

X 7�! X ⌦L
⇤
D(⇤)

provides a Serre functor for the category of perfect complexes Dper(⇤).

Proof Let us denote by inj⇤ the full subcategory of injective objects in mod⇤.
We have equivalences

Kb(proj⇤)
⇠�! Db(proj⇤)

⇠�! Db(Thick(proj⇤))

and analogously

Kb(inj⇤)
⇠�! Db(inj⇤)

⇠�! Db(Thick(inj⇤)).

The Nakayama functor �⌦⇤D(⇤) and its adjoint Hom⇤(D(⇤),�) induce mutually
inverse equivalences:

Db(Thick(proj⇤))
⇠ � Kb(proj⇤) Kb(inj⇤)

⇠�! Db(Thick(inj⇤))
�⌦⇤D(⇤)

Hom⇤(D(⇤),�)

If ⇤ is Gorenstein, then we have

Thick(proj⇤) = Thick(inj⇤).
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Thus the Nakayama functor gives an equivalence Dper(⇤)
⇠�! Dper(⇤), and this is

a Serre functor since for complexes X,Y and perfect X there are natural isomor-
phisms

DHomK(⇤)(X,Y ) = Homk(HomK(⇤)(X,Y ), E)

⇠= Homk(H
0 Hom⇤(X,Y ), E)

⇠= H
0 Homk(Hom⇤(X,Y ), E)

⇠= H
0 Homk(Y ⌦⇤ Hom⇤(X,⇤), E)

⇠= H
0 Hom⇤(Y,Homk(Hom⇤(X,⇤), E))

⇠= H
0 Hom⇤(Y,X ⌦⇤ Homk(⇤, E))

⇠= H
0 Hom⇤(Y,X ⌦⇤ D(⇤))

⇠= HomK(⇤)(Y,X ⌦⇤ D(⇤)).

Here, we compute morphisms in K(⇤) = K(mod⇤) and use the standard isomor-
phisms from Lemma 15.3.5.

The derived Nakayama functor X 7! X ⌦L
⇤
D(⇤) provides an equivalence

⌫ : Db(mod⇤)
⇠�! Db(mod⇤)

satisfying ⌫(Dper(⇤)) = Dper(⇤) when ⇤ is Gorenstein. Thus there is an equivalence
⌫̄ making the following square commutative

Gproj⇤ Dsg(⇤)

Ginj⇤ Dsg(⇤)

⌫

⇠
p

⌫̄

⇠
q

where the horizontal equivalences are from Theorem 15.2.3.

Lemma 15.3.7 The Gorenstein projective approximation GP induces a triangle
equivalence Ginj⇤

⇠�! Gproj⇤. Moreover

q ⇠= p �GP and ⌫̄ � p ⇠= q � ⌫ ⇠= q � ⌦�2 �DTr .

Proof For any ⇤-module X there is an exact sequence 0! X
0 ! GP(X)! X !

0 such that X 0 has finite projective dimension, by Theorem 15.2.2. Thus q ⇠= p�GP.
It follows that GP induces a triangle equivalence Ginj⇤

⇠�! Gproj⇤ since p and q

are triangle equivalences. The isomorphism ⌫̄ � p ⇠= q � ⌫ is clear and the last one
follows from Remark 15.3.4.

Corollary 15.3.8 Let ⇤ be Gorenstein. Then

⌃�1 � ⌫̄ : Dsg(⇤)
⇠�! Dsg(⇤) and ⌦ �GP � ⌫ : Gproj⇤

⇠�! Gproj⇤

are Serre functors.
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Proof We apply Proposition 15.3.2 and and Lemma 15.3.7. Thus for Gorenstein
projective ⇤-modules X,Y we obtain

DHom(pX, pY ) ⇠= Hom(pY, p⌦�1 GP(DTrX))

⇠= Hom(pY,⌃�1
pGP⌦�2(DTrX))

⇠= Hom(pY,⌃�1
q⌦�2(DTrX))

⇠= Hom(pY,⌃�1
⌫̄pX).

Thus ⌃�1 � ⌫̄ is a Serre functor for Dsg(⇤). We have ⌫̄ � p ⇠= p �GP � ⌫, and it
follows that ⌦ �GP � ⌫ is a Serre functor for Gproj⇤.

Notes

The decomposition theorem and the existence of approximations for modules over
Gorenstein rings were established by Auslander and Buchweitz [10]. The notion of
a cotorsion pair provides a convenient language; it was introduced by Salce in the
context of abelian groups [98]. The basic properties of the stable category of Goren-
stein projective modules are discussed in [27]. Serre duality for the derived category
of a finite dimensional algebra of finite global dimension is due to Happel [65], while
the notion of a Serre functor was introduced later by Bondal and Kapranov [23].
The Auslander-Reiten theory for Gorenstein projective modules was developed by
Auslander and Reiten in [15].


