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Introduction

The Selberg zeta function of a locally symmetric space X of rank one encodes
the lengths and monodromy maps of closed geodesics. For spaces of finite
volume, there is a rich theory including the relation of this zeta function to
regularized determinants of Laplacians, which is proved using the trace for-
mula for the isometry group G of the universal covering space of X. The case
of vector bundles over the unit sphere bundle S(X), which are parametrized
by representations σ of a proper Levi subgroup M , has for a long time been
treated only for compact X due to the lack of knowledge of the Fourier trans-
forms of weighted orbital integrals on the generalised principal series. These
Fourier transforms have been calculated explicitly in [4], and applications
to zeta functions for odd-dimensional hyperbolic manifolds were given in [6]
and [7] under the assumption that the only non-semisimple elements of the
fundamental group Γ of X are the unipotent ones. In that case, the relevant
Fourier transform simplified, and one could check that its contribution to the
formula for the logarithmic derivative of the Selberg zeta function had integer
residues. This is necessary for the proof of the meromorphic continuation of
that function.

In the present paper, we present a new formula for those Fourier trans-
forms in terms of characters of several (in fact, infinitely many) represen-
tations of M including σ. This enables us to reformulate the contribution
from a cusp to the determinant formula with the help of the trace formula
for a discrete subgroup of M , which was trivial in the neat case. It turns
out the the full contribution from a cusp has at least half-integer residues in
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general. We restrict ourselves to test functions in the subspace Ccon(G) of
the Schwartz space spanned by wave packets. The application to the Selberg
zeta function will be given in another paper.

We will mostly apply the notation of our paper [4]. Thus, let G be
a connected semisimple Lie group of real rank one contained in its simply
connected complexification, and let K be a maximal compact subgroup of G.
For g ∈ G, we have the Weyl discriminant

DG(g) = det(Id− Ad(g))g/gg

and the orbital integral

JG(g, f) = |DG(g)|1/2

∫
G/Gg

f(xgx−1)

defined for all f in the Schwartz space C(G). We choose a proper parabolic
subgroup with Levi decomposition P = MN and a Cartan subgroup A of M .
We denote the (one-dimensional) vectorial part of A by AR, so that we have
direct product decompositions A = AIAR and M = MIAR, and we fix a
positive multiple λP of the roots of aR in n to normalise the Haar measure
on AR. Using the map HP : G → a defined by

HP (kan) = log a for k ∈ K, a ∈ AR, n ∈ N

and its analogue for the opposite parabolic P̄ of P with respect to M , one
defines the weight factor v(x) = λP (HP (x)−HP̄ (x)) and the weighted orbital
integral

JM(m, f) = |DG(m)|1/2

∫
G/Gm

f(xmx−1)v(x) dx

for f ∈ C(G) and m ∈ M such that G0
m ⊂ M .

We identify a∗R,C with C so that λP corresponds to 1 and denote the
derivative of a holomorphic function h by ∂P h. The twist of an irreducible
representation σ of M by λ ∈ a∗R,C is defined as σλ(ma) = σ(ma)aλ for

m ∈ M , a ∈ AR. Thereby we identify M̂ = M̂I × ia∗R, and we write the
Plancherel measure of M as a contour integral

1

2πi

∫
M̂

h(σ) dσ =
∑

σ∈M̂I

1

2πi

∫
ia∗R

h(σλ) dλ.
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The distributional trace of an admissible representation π of G will be de-
noted by Θπ. The generalised principal series πP,σ induced from σ via P is
realised it in the compact picture, a space of functions on K unchanged under
twists by λ ∈ ia∗R. This makes it possible to define the weighted character

JP (σ, f) = − tr(πP,σ(f)JP̄ |P (σ)−1∂P JP̄ |P (σ)),

where JP̄ |P (σ) denotes the Knapp-Stein intertwining operator from πP,σ to πP̄ ,σ.
As in [4], we consider a version of Arthur’s invariant tempered distribu-
tions IM(m, f) defined in [1], section 10, viz.

IP (m, f) = JM(m, f)− |DM(m)|1/2 1

2πi

∫
M̂

Θσ̌(m)JM(σ, f) dσ

− |DM(m)|1/2
∑

σ∈M̂I

n(σ)

2
Θσ̌(m)Θπσ(f),

where 2n(σ) is the order of the zero of the Plancherel density of G at σ.

1 An alternative formula for the Fourier trans-

form

For applications in the trace formula, it is more natural to consider, for
m ∈ M such that G0

m ⊂ M , the partially normalised weighted orbital integral

J̃M(m, f) = |DG
M(m)|1/2

∫
G/Gm

f(xmx−1)v(x) dx,

where
DG

M(m) = det(Id− Ad(m))g/m.

We assume that the compact quotient G0
m/AR has volume one, so that inte-

grating over G/AR gives the same result. This shows that J̃M(m, f) depends
continuously on m. It is related to the earlier version as

JM(m, f) = |DM(m)|1/2J̃M(m, f),

where
DM(m) = det(Id− Ad(m))m/gm .
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Of course, we can also define the invariant distribution ĨP (m) in the same
fashion, which is related to our earlier distribution as

IP (m, f) = |DM(m)|1/2ĨP (m, f).

Let A be a Cartan subgroup of M and Λ ⊂ a∗C the set of A-integral
weights. The set of roots of aC in nC is denoted by Σ+

P . If Σ is a half-system
of positive roots of aC in mC and λ ∈ Λ the infinitesimal character of a finite-
dimensional representation σ of M , then there exists w ∈ W (M, A) such that
wλ is Σ-dominant, and we set

ΘΣ,λ = εM(w)Θσ,

where Θσ(m) = tr σ(m) is the character of σ. If λ ∈ Λ is not regular, then
we set ΘΣ,λ = 0.

Theorem 1 If f ∈ Ccon(G) and m ∈ M such that G0
m ⊂ M and mλP ≥ 1,

then

ĨP (m, f) =
1

2πi

∫
M̂

Ω̃P (m, σ̌)Θπσ(f) dσ

with a function Ω̃P that is continuous in σ and given by

Ω̃P (m, σ) =
∞∑

n=1

∑
α∈Σ+

P

λP (Hα)

2

(
ΘΣ,λ−nα(m)

n− λ(Hα)
+

ΘΣ,w0λ−nα(m)

n− w0λ(Hα)

)
,

where λ ∈ Λ is the Σ-dominant infinitesimal character of σ.

The convergence of the series should be uniform on compact subsets of its
domain of definition, but the necessary estimates seem too cumbersome to
be carried out in general. On the subset where mλP > 1, the convergence is
easily seen to be absolutely uniform on compact subsets.

Proof. Since both sides are class functions of m, we can assume that
m = a ∈ A, where the condition G0

a ⊂ M now means that a ∈ A′′ in the
notation of [4]. In Theorem 1 of that paper we had also considered, for
a ∈ A′, the distribution

IP,Σ(a, f) = ∆Σ(a)ĨP (a, f)

and computed its Fourier transform in terms of a function

ΩP,Σ(a, σ) = ∆Σ(a)Ω̃P (a, σ),
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where ∆Σ is the Weyl denominator for Σ. Recall that for σ|AR
6= 1 with

Σ-dominant infinitesimal character λ ∈ a∗C and for aλP > 1 we had proved a
formula

ΩP,Σ(a, σ) =
1

2

∑
w∈W (G,A)

εM(w)awλ
∑

α∈Σ+
P

λP (Hα)
∞∑

n=1

a−nα

n− wλ(Hα)
.

We had also seen by Abel summation that the series is uniformly convergent
with all invariant derivatives, hence smooth on {a ∈ A′′ | aλP ≥ 1}.

Using Lemma 1 of [4], we split the sum over W (G, A) into a sum over
W (G, AR) ∼= {1, w0} and a sum over w ∈ W (M, A). Then we substitute wα
for α and bring the summation over w innermost. The interior sum can be
expressed in terms of the function

Φν(a) =
∑

w∈W (M,A)

εM(w)awν .

Assuming that a ∈ A′ and dividing by ∆Σ(a), we obtain our formula for Ω̃P

with the help of the identity

ΘΣ,ν(a) = ∆Σ(a)−1Φν(a),

which is Weyl’s character formula for regular ν while both sides vanish for
singular ν.

For general a ∈ A′′ such that aλP ≥ 1, we have

ĨP (a, f) = lim
a′→a

IP,Σ(a′, f)

∆Σ(a′)
=

DΠaIP,Σ(a, f)

DΠa∆Σ(a)
,

where a′ stays in A′, Πa ∈ S(aI,C) is the product of the coroots Hα over
all roots in the set Σa = {α ∈ Σ | aα = 1}, and DΠa is the corresponding
differential operator on A that is applied before evaluating at a. Our formula
will follow from the identity

ΘΣ,ν(a) = lim
a′→a

Φν(a
′)

∆Σ(a′)
=

DΠaΦν(a)

DΠa∆Σ(a)
(1)

if we can show that

CMaΩP,Σ(a, σ) = DΠaΩP,Σ(a, σ)
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exists in the space of tempered distributions on M̂ and can be obtained by
differentiating and passing to the limit termwise.

This is obvious for aλP > 1 as the series is then absolutely uniformly
convergent on compact subsets together with all derivatives. In Theorem 5
of [4] an alternative formula was found, viz.

∑
w∈W (M,A)

εM(w)
∑

α∈Σ+
P

Πa(w(λ− nα))aw(λ−nα)

n− λ(Hα)

=
∑

w∈W (M,A)

εM(w)
∑

α∈Σ+
P

Πa(sαwλ)awλ−nα

n− wλ(Hα)
. (2)

Actually, only the equality of the series obtained by summing either side
over all natural numbers n was proved, but that is a power series in the
AR-component of a, whose terms are uniquely determined. The alternative
series was shown to converge for all a ∈ A′′ with aλP ≥ 1. Since the equality
of terms extends to the larger domain, our series is convergent there, too. �

When m ∈ M approaches the set where G0
m 6⊂ M then ĨP (m, f) blows

up with leading term given by the ordinary orbital integral. Here, we need a
partially normalised version of the latter, viz.

J̃G(m, f) = |DG
M(m)|1/2

∫
G/Gm

f(xmx−1) dx

for m ∈ M such that G0
m ⊂ M , of course with the same normalisation of

Haar measure as for J̃M(m, f). Now for elements m ∈ M such that G0
m 6⊂ M ,

let βm be the only reduced root of (gm, aR) positive with respect to P and
denote the corresponding coroot by Hβm ∈ aR. One defines

ĨP (m, f) = lim
aR→1

(
ĨP (maR, f) + λP (Hβm) log

∣∣∣aβm/2
R − a

−βm/2
R

∣∣∣ · J̃G(maR, f)
)

,

where aR runs through the nontrivial elements of AR. We have the following
analogue of Theorem 6 of [4].

Theorem 2 If f ∈ Ccon(G) and m ∈ M such that G0
m 6⊂ M , then

ĨP (m, f) =
1

2πi

∫
M̂

Ω̃P (m, σ̌)Θπσ(f) dσ
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with Ω̃P (m, σ) given by

1

2

∑
w∈{1,w0}

 ∞∑
n=1

∑
α∈Σ+

P

λP (Hα)
ΘΣ,wλ−nα(m)

n− wλ(Hα)
− λP (Hβm)

ΘΣ,wλ(m)

n


− λP (Hβ)ΘΣ,wλ(m) log

β(Hβm)

2

 ,

where λ ∈ Λ is the Σ-dominant infinitesimal character of σ, and the term
containing the real root β has to be omitted if that root does not exist.

Proof. Again we may assume that m = a ∈ A, and the condition G0
a 6⊂ M

implies a ∈ AI . Since our distribution is related to its analogue considered
in [4] as

ĨP (a, f) =
CMaIP (a, f)

DΠa∆Σ(a)
,

we can obtain its Fourier transform as

Ω̃P (a, σ) =
CMaΩP (a, σ)

DΠa∆Σ(a)
.

In Theorem 6 of [4] we have already computed

CMaΩP (a, σ) =
1

2

∑
w∈W (G,A)

εM(w)awλ
∑

α∈Σ+
P

Πa(sαwλ)φα(a, wλ),

where

φα(a, λ) = λP (Hα)
∞∑

n=1

a−nα

n− λ(Hα)

if aα 6= 1, while

φα(a, λ) = λP (Hα)

(
∞∑

n=1

(
1

n− λ(Hα)
− 1

n

)
− log

α(Hβa)

2

)

if aα = 1.
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The terms common to both cases can be easily combined into a sum
over Σ+

P . In order to treat the additional contribution from Σ+
P,a = {α ∈ Σ+

P |
aα = 1}, we use the identity

∑
w∈W (G,A)

εM(w)

λP (Hβa)Πa(wλ)−
∑

α∈Σ+
P,a

λP (Hα)Πa(sαwλ)

 = 0

proved in [4], p. 95. The term log
α(Hβa )

2
is nonzero (in fact, equal to log 2)

only for the roots from the subset Σ+
Pγ ,a = {α ∈ Σ+

P | aα = 1, γα = 1}, where
γ = exp 2πHβ is the element in the centre of MI introduced in [3], §24. In
the analogue of the above identity

∑
w∈W (Gγ ,A)

εM(w)

λP (Hβ)Πa(wλ)−
∑

α∈Σ+
Pγ,a

λP (Hα)Πa(sαwλ)

 = 0

for the group Gγ we can enlarge the summation to W (G, A). Now we get

CMaΩP (a, σ) =
1

2

∑
w∈W (G,A)

εM(w)

−λP (Hβ) log
β(Hβa)

2
Πa(wλ)awλ

+
∞∑

n=1

∑
α∈Σ+

P

λP (Hα)
Πa(sαwλ)awλ−nα

n− wλ(Hα)
− λP (Hβa)

Πa(wλ)awλ

n

 ,

where the term containing β has to be omitted if there is no real root β
in Σ+

P . As in the preceding proof, we split the sum over W (G, A), substitute
wα for α and bring the summation over W (M, A) innermost. Rewriting the
terms with the aid of the identity (2), we obtain

CMaΩP (a, σ) =
1

2

∑
w∈{1,w0}

−λP (Hβ) log
β(Hβa)

2
DΠaΦwλ(a)

+
∞∑

n=1

∑
α∈Σ+

P

λP (Hα)
DΠaΦwλ−nα(a)

n− wλ(Hα)
− λP (Hβa)

DΠaΦwλ(a)

n

 .

It remains to divide by DΠa∆Σ(a) and use formula (1). �
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2 The non-semisimple contribution to the trace

formula

In the trace formula, weighted orbital integrals appear in the cuspidal terms
on the geometric side. In the invariant trace formula, they are replaced by
the invariant distributions IP or their analogues IM (see [5]). We will see that
for groups G of real rank one the total contribution from a cusp simplifies if
we use the alternative formulae from Theorems 1 and 2.

If Γ is a lattice in G and P a cuspidal parabolic subgroup with Levi
decomposition P = MN , we denote the projection of Γ∩P to M by ΓP . For
λ ∈ Λ there is w ∈ W (M, A) such that wλ is the Σ-dominant infinitesimal
character of a representation σ of M , and we set

dΓ,Σ(λ) = εM(w) dim V ΓP
σ .

Theorem 3 If f ∈ Ccon(G), Γ is a lattice in G and P = MN is a cuspidal
subgroup, then ∑

[δ]⊂ΓP

|ΓP,δ|−1ĨP (δ, f) =

∫
M̂

Ω̃P,Γ(σ̌)Θπσ(f) dσ,

where [δ] runs through the conjugacy classes in ΓP and Ω̃P,Γ(σ) equals

1

2

∑
w∈{1,w0}

 ∞∑
n=1

∑
α∈Σ+

P

λP (Hα)
dΓ,Σ(wλ− nα)

n− wλ(Hα)
−

d′Γ,Σ(wλ)

n

− d′′Γ,Σ(wλ)

 .

Here λ is the Σ-dominant infinitesimal character of σ and

d′Γ,Σ(λ) =
∑

[δ]⊂ΓP
Gδ 6⊂M

|ΓP,δ|−1λP (Hβδ
)Θλ(δ),

d′′Γ,Σ(λ) =
∑

[δ]⊂ΓP
Gδ 6⊂M

|ΓP,δ|−1λP (Hβδ
)Θλ(δ) log

β(Hβδ
)

2
.

Proof. For fixed σ ∈ M̂I realised on a finite-dimensional vector space Vσ,
the space of the induced representation π = IndMI

ΓP
(σ) consists of all classes
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of measurable functions φ : MI → Vσ such that φ(δm) = σ(δ)φ(m) for all
δ ∈ ΓP and m ∈ MI . As usual, one proves that for h ∈ L1(MI) we have

π(h)φ(m) =

∫
ΓP \MI

K(m, m′)φ(m′) dm,

where
K(m, m′) =

∑
δ∈ΓP

h(m−1δm′)σ(δ).

We have the trace formula

tr π(h) =

∫
ΓP \MI

tr K(m,m) dm.

For h equal to the constant 1, we get the projection π(1) onto the MI-
invariants, and this trace formula becomes

[π : 1MI
] =

∑
[δ]⊂ΓP

|ΓP,δ|−1Θσ(δ).

By Frobenius reciprocity, the left-hand side equals

[σΓP
: 1ΓP

] = dim V ΓP
σ .

In particular, we get

dΓ,Σ(λ) =
∑

[δ]⊂ΓP

|ΓP,δ|−1Θλ(δ).

Together with the definitions of d′Γ,Σ(λ) and d′′Γ,Σ(λ), this allows us to write
the result we get from Theorems 1 and 2 in the asserted form. �

3 The non-semisimple contribution to the Sel-

berg zeta function

The Selberg zeta function encodes the lengths of closed geodesics on the lo-
cally symmetric space X/Γ, where X is a symmetric space on which G acts
transitively from the right. One may also include the monodromy represen-
tations in an equivariant vector bundle over the unit tangent bundle of X,
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pushed down to X/Γ. There is a G-invariant symmetric bilinear form on g

such that the Riemannian metric on the tangent space at x is identified with
the restriction of that form to the orthogonal complement of the stabiliser
of x in g. We assume that the value of that form on H ∈ aR is λP (H)2.

The Selberg zeta function ZΓ(σ, s) depends on a representation of MI ,
which encodes the vector bundle, and a complex number s with Re s � 0.
We assume that the representation is

⊕
w∈W (G,AR) wσ (consisting of one or

two summands) and set σs(maR) = σ(m)asλP . The logarithmic derivative of
ZΓ(σ, s) considered as a function of s2, viz.

1

2s
· Z ′

Γ(σ, s)

ZΓ(σ, s)
,

equals the hyperbolic contribution to the trace formula for the test function
fs ∈ Ccon(G) such that

Θπσs′
(fs) = Θπw0σs′

(fs) = (s2 − s′2)−1

while Θπσ′
s′
(fs) = 0 for σ′ ∈ M̂I different from (the classes of) σ and w0σ.

The full trace formula converges only after some regularisation. We
choose the following version (cf. [2]). For a finite subset S of the complex
plane and any meromorphic function hs, write

[h(s)]s∈S =
∑
s∈S

h(s)
∏
s′′∈S
s′′ 6=s

(s′′2 − s2)−1,

which depends linearly on h. The version of the resolvent identity

[(s2 − s′2)−1]s∈S =
∏
s∈S

(s2 − s′2)−1,

which is valid for s′ /∈ S, shows that

Θπσs′
([fs]s∈S) = O

(
|s′|−2#(S)

)
as |s′| → ∞.

Theorem 4 If S is a finite subset of the open right complex half-plane with
sufficiently many elements, then∑

[δ]⊂ΓP

|ΓP,δ|−1ĨP (δ, [fs]s∈S) =
∑

σ′∈{σ,w0σ}

[
1

2s
Ω̃+

P,Γ(σ̌′s)

]
s∈S

,
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where

Ω̃+
P,Γ(σs) =

∞∑
n=1

∑′

α∈Σ+
P

λP (Hα)dΓ,Σ(µ− nα)

n− (±sλP + µ)(Hα)
−

d′Γ,Σ(µ)

n

− d′′Γ,Σ(µ).

Here µ is the Σ-dominant infinitesimal character of σ, and the sign has to
be chosen so that the denominator is holomorphic for Re s > 0. The dash
at the summation sign means that the terms with denominators vanishing at
s = 0 have to be omitted.

Proof. First we show that the terms with vanishing denominators could
have been omitted already in Theorems 1, 2 and 3. Indeed, let us plug in
a representation σs, whose Σ-dominant infinitesimal character is sλP + µ.
Since the weighted character JM(σs, f) is regular at s = 0, the unnormalised
version JP (σs, f) has a pole at s = 0 if and only if the Plancherel density has
a zero there, in which case w0σ = σ. Then the averaging over w ∈ {1, w0}
makes Ω̃P (m,σs) symmetric in s and removes the pole. Thus its residue,
which is just the coefficient of 1

s
in the series, vanishes.

Now we come to the proof of the asserted formula. According to Theo-
rem 3, the left-hand side equals∑

σ′∈{σ,w0σ}

1

2πi

∫ i∞

−i∞

[
Ω̃P,Γ(σ̌′s′)

s2 − s′2

]
s∈S

ds′.

Here we plug in the formula for Ω̃P,Γ(σs′) given in that Theorem. Since
Θπw0σ = Θπσ , we may omit the averaging over w ∈ {1, w0}. Then apply the
following fact.

Let h be a function which is holomorphic on a neighbourhood of either
the left or right complex half-plane and satisfies h(s) = O(|s|c) with c <
2#(S)− 1, where S is as in the theorem. Then

1

2πi

∫ i∞

−i∞

[
h(s′)

s2 − s′2

]
s∈S

ds′ =

[
h(±s)

2s

]
s∈S

,

where we have to choose the sign + if h is holomorphic in the right half-plane
and the sign − if h is holomorphic in the left half-plane. This follows from
the residue theorem applied to a half-disc about 0 with radius tending to
infinity.

In our series, we have to isolate the first few terms so that the rest is
holomorphic in one of the half-planes. �
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