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Abstract

In this paper we develop boundary value methods for detecting Sacker-Sell

spectra in discrete time dynamical systems. The algorithms are advancements

of earlier methods for computing projectors of exponential dichotomies. The

first method is based on the projector residual P
2 − P . If this residual is

large, then the difference equation has no exponential dichotomy. Further

criterions for detecting Sacker-Sell spectral intervals are the norm of end-

and midpoints of the solution of a specific boundary value problem. Refined

error estimates for the underlying approximation process are given and the

resulting algorithms are applied to an example with known continuous Sacker-

Sell spectrum, as well as to the variational equation along orbits of Hénon’s

map.
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1 Introduction

For non-autonomous difference equations of the form

un+1 = Anun, n ∈ Z
∗Supported by CRC 701 ’Spectral Structures and Topological Methods in Mathematics’.
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several characterizations of spectra have been developed in the literature cf. Dieci
& Van Vleck (2007) for continuous time systems. In discrete time, a generalization
to non-invertible systems in given in Aulbach & Siegmund (2001). Our focus lies on
the so called Sacker-Sell spectrum σED, which is introduced in Sacker & Sell (1978).
Its construction is based on the notion of exponential dichotomies, see Appendix A.
This spectrum is the set of values γ > 0, for which the scaled equation

un+1 =
1

γ
Anun, n ∈ Z (1)

possesses no exponential dichotomy on Z. The complementary set R+\σED is called
the resolvent set.

In Dieci & Van Vleck (2002), Dieci & Elia (2008) initial value methods, based on
the QR-algorithm and the SVD decomposition are applied for computing spectral
intervals in continuous time. These techniques are quite efficient for detecting the
whole Sacker-Sell spectrum. But if one is interested in analyzing whether (1) has an
exponential dichotomy at a given value of γ or for γ in some region of the positive
real axis, it seems to much to compute the whole spectrum.

We apply boundary value techniques for computing Sacker-Sell spectral intervals
in discrete time. Three tests are proposed; the first one is based on computing the
projector residual, while the second and third allow, roughly speaking, to read off
from the solution of the specific boundary value problem

un+1 =
1

γ
Anun + δn,N−1r, n = n−, . . . , n+ − 1, δ Kronecker symbol (2)

whether γ lies in a spectral interval or in the resolvent set. Note that the boundary
value approach captures in certain respects the global behavior. The solution of (2)
sensitively depends on γ, whereas a change of γ leads in the QR-method to a simple
shift of intervals.

The algorithms in this paper are based on a direct approach for the numerical
computation of dichotomy projectors from Hüls (2009). For extending these results
to the Sacker-Sell spectrum, pointwise estimates for the approximation error of the
solution of (2) are needed. Corresponding results are stated in Section 2, particularly
in case of periodic boundary conditions.

In Section 3, we introduce our algorithms for detecting Sacker-Sell spectral in-
tervals. In a given interval L we choose a grid Lg and compute for each γ ∈ Lg a
quantity that indicates, whether (1) possesses an exponential dichotomy.

The basis of the first test are approximate dichotomy projectors. We prove that
the projector residual ‖P 2 − P‖ is exponentially small in case of an exponential
dichotomy and in reverse, if this expression is large, then the difference equation
cannot have a dichotomy. Due to the approximation of the projectors, this approach
turns out to be computationally expensive.
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In order to reduce the effort, two further tests are developed that are based on
solving (2) with the boundary condition

un− − un+
= x, (3)

where x is a fixed vector of length 1.
Continuous Sacker-Sell spectrum occurs, for example, if the difference equation

possesses half-sided dichotomies on Z− and Z+ that cannot be continued to Z.
This is either caused by half sided dichotomy projectors of different rank or by a
tangential intersection of the range of the unstable projector on Z− with the range
of the stable projector on Z+.

The values ‖un±‖ at the end points as well as the values ‖un1,2
‖ at the midpoints

n1,2 = n∓+N

2
may be taken as an indicator. We analyze in detail that these quantities

are bounded in the resolvent set – those at the midpoints even converge to 0, while
they are expected to be large in spectral intervals.

The resulting algorithms are applied to a linear test example with known con-
tinuous Sacker-Sell spectrum, caused by half sided projectors of different rank or by
tangential intersections. In Section 4, a more realistic example is considered. Spec-
tral intervals of the variational equation along heteroclinic and homoclinic Hénon
orbits are computed. For these examples, the variational equation is asymptotically
constant. The heteroclinic case exhibits continuous spectrum, while the homoclinic
case has point spectrum only. A third example is the variational equation, obtained
from a chaotic trajectory on the Hénon attractor. The resulting difference equation,
to which we also apply our algorithms, is asymptotically non-constant.

Finally, we compare these results with QR-computations for the same examples,
and state a conclusion.

2 Error estimates

An algorithm for computing dichotomy projectors numerically is introduced in Hüls
(2009). These results are summarized in this section and refined as well as extended
error estimates are developed, particularly for the projector residual and for periodic
boundary conditions of the form (3).

Consider the linear difference equation

un+1 = Anun, n ∈ Z, (4)

and denote by Φ its solution operator. For the forthcoming analysis, we assume that
this difference equation possesses an exponential dichotomy on Z, see Appendix A.

A1 The difference equation (4) with matrices An ∈ Rk,k, having a uniformly
bounded inverse, possesses an exponential dichotomy on Z with data
(K, αs, αu, P̄

s
n, P̄ u

n ).
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The computation of dichotomy projectors is based on solving the inhomogeneous
linear system

ui
n+1 = Anui

n + δn,N−1ei, n ∈ Z, ei i-th unit vector. (5)

Using Green’s function, cf. Palmer (1988), the unique bounded solution ūZ of (5)
has the explicit form

ūi
n = G(n, N)ei, n ∈ Z, where G(n, m) =

{

Φ(n, m)P̄ s
m, n ≥ m,

−Φ(n, m)P̄ u
m, n < m,

and consequently
P̄ s

N =
(

ū1
N , . . . ūk

N

)

. (6)

In numerical computations, one restricts equation (5) to a finite interval J =
[n−, n+] ∩ Z. In Hüls (2009) the following approaches are discussed:

(1) A boundary value ansatz

un+1 = Anun + δn,N−1r, n = n−, . . . , n+ − 1, (7)

b(un−, un+
) = 0,

with periodic or projection boundary conditions b, defined as

bper(x, y) := x − y, (8)

bproj(x, y) :=

(

Y T
s x

Y T
u y

)

, (9)

where the columns of Ys and Yu form a basis of R(Qu)⊥ and R(Qs)⊥. Qs

and Qu are two complementary projectors, having the same rank as the stable
and unstable dichotomy projectors P̄ s

n and P̄ u
n , respectively. Well posedness

requires for periodic boundary conditions (8) the angle condition

∡(R(P̄ s
n−

),R(P̄ u
n+

)) ≥ σ (10)

and for projection boundary conditions (9), we assume that

∡(R(P̄ s
n−

),R(Qu)) > σ, ∡(R(P̄ u
n+

),R(Qs)) > σ, (11)

with 0 < σ ≤ π
2

for sufficiently large −n−, n+. Note that the angle between
two subspaces A and B is defined as, see Golub & Van Loan (1996),

∡(A, B) = θ ∈
[

0,
π

2

]

, where cos θ = max
u∈A,‖u‖=1

max
v∈B,‖v‖=1

uTv.

(2) Computation of the least squares solution of (5) on J .
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The question, whether the numerically computed matrix P s
N is indeed a projector

can be answered by calculating ‖(P s
N)2 − P s

N‖. This projector residual is analyzed
in the following proposition with subsequent results for boundary value and least
squares approximations.

Proposition 1 Let ui
n be an approximation of ūi

n on the intervals J = [n−, n+],
such that

‖ui
n − ūi

n‖ ≤ Cεn(n±), i ∈ {1, . . . , k}, n ∈ J

and let P s
N :=

(

u1
N , . . . uk

N

)

. Then

‖(P s
N)2 − P s

N‖ ≤ C̃εN(n±),

with an n± independent constant C̃.

Proof: Due to (6) the estimate ‖P̄ s
N − P s

N‖ ≤ C1εN(n±) holds.
Let P s

N = P̄ s
N + R, ‖R‖ ≤ C1εN(n±). It follows that

‖(P s
N)2 − P s

N‖ = ‖(P̄ s
N + R)(P̄ s

N + R) − (P̄ s
N + R)‖

= ‖P̄ s
N P̄ s

N − P̄ s
N + P̄ s

NR + RP̄ s
N + RR − R‖

= ‖P̄ s
NR + RP̄ s

N + RR − R‖ ≤ C̃εN(n±).

�

Note that ‖(P s
N)2 − P s

N‖ is a lower bound for the approximation error, which
one can compute without knowing the exact solution. Assuming an exponential
dichotomy on Z, we expect this projector residual to be small. The meaning of a
”small” residual is formalized in the following theorems, which state error estimates
for numerically computed dichotomy projectors.

2.1 Projection boundary conditions

Theorem 2 Assume A1 and let P s,u
N (n±) be approximations on J = [n−, n+] of the

dichotomy projectors P̄ s,u
N , computed using the approach (7) with projection boundary

conditions (9). Further assume that the boundary operator is defined with respect to
projectors Qs, Qu that satisfy (11) and

Φ(N, n−)R(Qu) ∩ Φ(N, n+)R(Qs) = {0}. (12)

Then
P s,u

N (n±)2 − P s,u
N (n±) = 0 (13)

and
‖P s,u

N (n±) − P̄ s,u
N ‖ ≤ C

(

e−(αs+αu)(N−n−) + e−(αs+αu)(n+−N)
)

. (14)
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Proof: Assumption (12) enables the construction of the projector P s
N(n±) with

range Φ(N, n+)R(Qs) and nullspace Φ(N, n−)R(Qu). Define P u
N(n±) := I−P s

N(n±)
and P s,u

n (n±) := Φ(n, N)P s,u
N (n±)Φ(N, n) for n ∈ J , then the cocycle property (42)

is satisfied.
The boundary condition (9) requires

un+
∈ R(Qs) = Φ(n+, N)Φ(N, n+)R(Qs) = Φ(n+, N)R(P s

N (n±)) = R(P s
n+

(n±))

and similarly un− ∈ R(P u
n−

(n±)). Therefore, the solution of the boundary value
problem is given explicitly, using Green’s function

un = G(n, N)r, n ∈ J, G(n, N) =

{

Φ(n, N)P s
N (n±), for n+ ≥ n ≥ N,

−Φ(n, N)P u
N (n±), for n− ≤ n < N,

in particular uN = P s
N(n±)r. With r = ei, i = 1, . . . , k, we get the columns of the

projector P s
N(n±) and consequently (13) holds.

Applying (Hüls 2009, Proposition 4), we obtain the estimate

‖ūN − uN‖ ≤ C̃
(

e−(αs+αu)(N−n−) + e−(αs+αu)(n+−N)
)

from which (14) follows.
�

Note that (13) also holds, if the rank of the reference projectors Qu and Qs do
not equal the rank of the dichotomy projectors. Since the boundary value problem
considers only finite intervals, equation (13) is even satisfied, if (4) possesses no
exponential dichotomy on Z.

2.2 Periodic boundary conditions

Errors that occur when solving (7) with generalized periodic boundary conditions

b(un−, un+
) = un− − un+

− x, x ∈ Rk fixed (15)

are discussed in the following theorem.

Theorem 3 Assume A1 and the angle condition (10). Denote by ūZ the unique
bounded solution of

un+1 = Anun + δn,N−1r, n ∈ Z.

Then the boundary value problem (7) with boundary operator (15) has a unique
solution uJ fulfilling for n ∈ J = [n−, n+]:

‖ūn − un‖ ≤ C
(

e−αu(n+−n) + e−αs(n−n−)
) ((

e−αu(N−n−) + e−αs(n+−N)
)

‖r‖ + ‖x‖
)

.
(16)
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Proof: First, we note that the angle conditions (10) guarantees that Φ(n+, n−)
has not an eigenvalue 1 for −n−, n+ sufficiently large. Thus, the periodic boundary
value problem has a unique solution, cf. Theorem 8, (a).

Using Green’s function, the general solution of the inhomogeneous equation (7)
has the form

un = G(n, N)r + Φ(n, n−)v− + Φ(n, n+)v+, v− ∈ R(P̄ s
n−

), v+ ∈ R(P̄ u
n+

).

We choose v−, v+ such that the boundary condition is satisfied:

0 = un− − un+
− x = G(n−, N)r + Φ(n−, n−)v− + Φ(n−, n+)v+

−G(n+, N)r − Φ(n+, n−)v− − Φ(n+, n+)v+ − x.

Thus

v− − v+ + Φ(n−, n+)v+ − Φ(n+, n−)v− = −G(n−, N)r + G(n+, N)r + x. (17)

Since ‖Φ(n+, n−)v− + Φ(n−, n+)v+‖ converges to 0 exponentially fast, we obtain a
unique solution v−, v+ of (17) with

‖v− − v+‖ ≤ C̃
(

‖G(n−, N)‖ + ‖G(n+, N)‖
)

‖r‖ + ‖x‖

≤ C̃
(

‖Φ(n−, N)P̄ u
N‖ + ‖Φ(n+, N)P̄ s

N‖
)

‖r‖ + ‖x‖

≤ C̃K
(

e−αu(N−n−) + e−αs(n+−N)
)

‖r‖ + ‖x‖.

Let Wn± be the projector, satisfying R(Wn±) = R(P̄ s
n−

), N (Wn±) = R(P̄ u
n+

). Using
the angle condition (10), we get a uniform upper bound ω for ‖Wn±‖, cf. (Hüls 2009,
Lemma A.2) and therefore

‖v−‖ = ‖Wn±(v− − v+)‖ ≤ ‖Wn±‖‖(v− − v+)‖

≤ ωC̃K
(

e−αu(N−n−) + e−αs(n+−N)
)

‖r‖ + ‖x‖.

Applying the projector I −Wn±, we prove the same estimate for ‖v+‖. As a conse-
quence it holds for n ∈ J with a constant C > 0

‖ūn − un‖ = ‖Φ(n, n+)v+ + Φ(n, n−)v−‖

≤ Ke−αu(n+−n)‖v+‖ + Ke−αs(n−n−)‖v−‖

≤ C
(

e−αu(n+−n) + e−αs(n−n−)
) ((

e−αu(N−n−) + e−αs(n+−N)
)

‖r‖ + ‖x‖
)

.

�

When computing dichotomy projectors, using periodic boundary conditions (8),
we apply (15) with x = 0 and get from Proposition 1 and (16) with n = N

‖PN(n±)2 − PN(n±)‖ ≤ C̄
(

e−αu(n+−N) + e−αs(N−n−)
)

·
(

e−αu(N−n−) + e−αs(n+−N)
)

‖r‖.

7



2.3 Least squares approach

We develop a pointwise estimate by combining Theorem 3 with a uniform estimate
from Hüls (2009) of the least squares solution on J .

Theorem 4 Assume A1, the angle condition (10), and denote by ūZ the unique
bounded solution of (5).

Then the least squares solution vJ of (7) satisfies the following inequality:

‖ūn − vn‖ ≤ C‖r‖
(

e−αu(n+−n) + e−αs(n−n−)
)

(18)

·(n+ − n−)
1

2

(

e−α(N−n−) + e−α(n+−N)
)

,

where α = min{αs, αu}.

Proof: From (Hüls 2009, Theorem 4.1) we obtain that equation (7) has a unique
least squares solution vJ , fulfilling the error estimate

sup
n∈J

‖ūn − vn‖ ≤ C‖r‖(n+ − n−)
1

2

(

e−α(N−n−) + e−α(n+−N)
)

. (19)

Note that (Hüls 2009, Theorem 4.1) gives an estimate at N = 0 with factor (n+−n−)

instead of (n+ − n−)
1

2 . But a simple inspection of the proof leads to the improved
result (19).

For getting a point-wise estimate, we consider the boundary value problem (7)
with boundary operator

b(un−, un+
) = un− − un+

− x, where x = vn− − vn+
.

By Theorem 3, this boundary value problem has a unique solution uJ that therefore
coincides with the least squares solution vJ .

Thus ‖ūn − vn‖ satisfies the inequality (16) with

‖x‖ = ‖vn− − vn+
‖ ≤ ‖vn− − ūn−‖ + ‖ūn−‖ + ‖ūn+

‖ + ‖ūn+
− vn+

‖

≤ C‖r‖(n+ − n−)
1

2

(

e−α(N−n−) + e−α(n+−N)
)

+Ke−αu(N−n−)‖r‖ + Ke−αs(n+−N)‖r‖.

This gives the estimate (18) with a generic constant C > 0.
�

The corresponding estimate for dichotomy projectors, computed via the least
squares approach, follows from (18) with n = N .

3 Sacker-Sell spectrum

The Sacker-Sell spectrum, cf. Sacker & Sell (1978), Aulbach & Siegmund (2001),
Dieci & Van Vleck (2007), also called dichotomy spectrum is for discrete time dy-
namical systems defined as

σED = {γ ∈ R+ : (20) possesses no exponential dichotomy on Z},
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where

un+1 =
1

γ
Anun, n ∈ Z, (20)

and the resolvent set is R+ \ σED. It is well known that the Sacker-Sell spectrum
consists of at most k disjoint, closed intervals, where k denotes the dimension of the
space, cf. Sacker & Sell (1978).

The following characterization of exponential dichotomies, see (Palmer 1988,
Proposition 2.6) gives in case of half-sided dichotomies a criterion for analyzing
whether γ lies in the spectrum or in the resolvent set.

Proposition 5 The following statements are equivalent:

• The difference equation (4) possesses an exponential dichotomy on Z.

• (4) has exponential dichotomies on Z− and Z+ with projectors of equal rank,
and (4) has no bounded, non-trivial solution on Z.

Denote by Φ(n, m) the solution operator of (4). Then the solution operator of
the scaled equation (20) is

Φγ(n, m) = γm−nΦ(n, m).

Let L be an interval in the resolvent set, i.e. L ∩ σED = ∅. For γ ∈ L one has

‖Φγ(n, m)P s
m‖ = γm−n‖Φ(n, m)P s

m‖ ≤ Ke−αs(n−m)γm−n = Ke−(αs+lnγ)(n−m),

and similarly, the corresponding estimate in the unstable direction follows. Thus, the
scaled equation possesses in the resolvent-interval containing 1, the same dichotomy
projectors as the original equation (4). Furthermore, the dichotomy projectors as
well as the constant K are in a resolvent-interval independent of γ.

Example 6 The difference equation

un+1 = Anun, where An =

{

A−, for n ≤ 0,
A+, for n ≥ 1,

with

A− =





1
4

6



 and A+ =





2
3

5



 (21)

possesses an exponential dichotomy on Z− for γ /∈ {1, 4, 6} and on Z+ for γ /∈
{2, 3, 5}. Due to Proposition 5, these dichotomies cannot be extended to Z for values
of γ from the union of intervals σ := [1, 2] ∪ [3, 4] ∪ [5, 6].

We transform this equation into a more general form: Let S1 and S2 be two
non-singular matrices and define the difference equation

un+1 = Anun, where An =

{

S1A−S−1
1 , for n ≤ 0,

S2A+S−1
2 , for n ≥ 1,

(22)
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with matrices A± from (21). Denote by P−s,−u
n (γ) and P+s,+u

n (γ) the corresponding
half-sided dichotomy projectors of the scaled equation (20) on Z− and Z+. By Propo-
sition 5, these dichotomies can be combined to a dichotomy on Z, if no bounded,
non-trivial solution exists. Thus

σED = σ if R(P−u
0 (γ)) ∩R(P+s

0 (γ)) = {0} for γ /∈ σ. (23)

For γ ∈ (2, 3), the half-sided dichotomy projectors are

P−u
0 (γ) = S1





0
1

1



S−1
1 , P+s

0 (γ) = S2





1
0

0



S−1
2

and for γ ∈ (4, 5) we obtain

P−u
0 (γ) = S1





0
0

1



S−1
1 , P+s

0 (γ) = S2





1
1

0



S−1
2 .

Thus (23) is equivalent to non-singularity of the matrices
(

S1e2 S1e3 S2e1

)

and
(

S1e3 S2e1 S2e2

)

.

We introduce three tests for detecting Sacker-Sell spectral intervals. In a given
interval L, we choose a grid Lg and compute for each γ ∈ Lg a quantity that indicates
whether (20) has an exponential dichotomy. The first test is based on computing
dichotomy projectors, while the second and third one analyze solutions of boundary
value problems at end- or midpoints.

3.1 Numerical detection of Sacker-Sell spectral intervals via

dichotomy projectors

From Theorem 3 and 4 we know that if an exponential dichotomy exists, then the
projector residual ‖P 2 − P‖ is small, i.e. (14) and (18) hold in case of periodic
boundary- and least squares-computations, respectively. But if the projector resid-
ual does not satisfy the corresponding inequality, then the difference equation cannot
have an exponential dichotomy on Z.

As a toy model, we choose the difference equation from Example 6. We compute
for equidistantly chosen values γ ∈ [0.01, 10] the dichotomy projector P s

N(γ) and plot
‖P s

N(γ)2 − P s
N(γ)‖. For these calculations, the periodic boundary value ansatz or

alternatively the least squares approach is applied. Note that this test is not working
with projection boundary conditions, since these boundary conditions always give
exact projectors, cf. Theorem 2.

When discussing the costs of boundary value and least squares approach, one
sees that the boundary value approach requires to solve k linear systems (7) with
unit vectors as right hand side.
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The least squares solution of this problem is given as uJ = B+R, where B+ =
BT (BBT )−1 and

B =







−An− I
. . .

. . .

−An+−1 I






, uJ =







un−

...
un+






, Ri =

{

0, i ∈ J, i 6= N − 1,
I, i = N − 1,

cf. Hüls (2009). For the computation of the Moore-Penrose inverse, we refer to
Shinozaki et al. (1972). The dichotomy projector is the N -th block component of the
solution uJ . As a consequence, the Moore-Penrose inverse contains approximations
of all dichotomy projectors within the finite interval. More precisely, the n-th block-
row of the (n − 1)-th block-column of B+ is an approximation of the dichotomy
projector P̄ s

n+n−−1.

For computing the matrix B+
ij , containing the columns from i to j of B+, we

numerically solve
BBtw = [ei . . . ej ] (24)

with a sparse LU-decomposition and obtain

B+
ij = BT w. (25)

Also the boundary value solution is computed, using a sparse LU-decomposition.

The resulting techniques are applied to the example (22) for ±n± ∈ {100, 1000}
and N = 0. In the least squares approach, we simultaneously compute 100 di-
chotomy projectors by solving (24) and (25) for i = (−n− − 50)k + 1 and j =
(−n− + 50)k, where k = 3 is the dimension of the space. A plot of the projector
residual over γ is given in Figure 1.

For periodic boundary value computations, we observe in Figure 1 that the
projector residual is small in the resolvent set, as suggested by (14). But also in the
shaded spectral intervals, this residual is of order ∆, except for a peak around the
midpoint of each interval that becomes more and more narrow as ±n± → ∞. Here
∆ denotes the machine accuracy. A closer inspection of the resulting projector P
for γ = 3.3 and ±n± = 1000 reveals that

P = S2





1 a b
0 0 0
0 0 0



S−1
2

with some a, b ∈ R that depend on the choice of S1 and S2.
One the other hand, projector residuals that are computed with the least squares

approach satisfy (18) in the resolvent set. Furthermore, Figure 1 illustrates that
these residuals are of order 1 in the shaded spectral intervals and therefore detect
nicely the Sacker-Sell spectrum. Currently we have no detailed explanation of this
behavior in the spectral intervals.

In the following section, we introduce a finer test for the precise detection of the
Sacker-Sell spectrum that is based on solving boundary value problems.
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0 1 2 3 4 5 6 7
10

−20

10
0

0 1 2 3 4 5 6 7
10

−20

10
0

‖P 2 − P‖

‖P 2 − P‖

γ

±n± = 100

±n± = 1000

Figure 1: Detection of Sacker-Sell spectral intervals (marked in gray) for
Example 6 via the projector residual for ±n± = 100 (upper figure) and
±n± = 1000 (lower figure). The red curves are computed with the least
squares ansatz, while the black curves use the boundary value approach
with periodic boundary conditions.

3.2 Numerical detection of Sacker-Sell spectral intervals via

boundary value solutions

In this section, we consider Sacker-Sell spectral intervals, caused by half-sided di-
chotomies on Z− and Z+ that cannot be combined to an exponential dichotomy onZ, see Proposition 5. We introduce two dichotomy tests that are based on solving
boundary value problems

un+1 = Anun + δn,N−1r, n = n−, . . . , n+ − 1, (26)

un− = un+
+ x. (27)

Compared to the method from Section 3.1, this approach is also feasible to high
dimensional systems.

Denote by P−s,−u
n and P+s,+u

n half-sided dichotomy projectors on Z− and Z+,
respectively. In the resolvent set, one has

rank(P−u
N ) + rank(P+s

N ) = k and R(P−u
N ) ⊕R(P+s

N ) = Rk,

while the following cases may occur in spectral intervals:

(i) rank(P−u
N ) + rank(P+s

N ) ≥ k + 1. Then, the inhomogeneous equation (26)
generically has infinitely many bounded solutions on Z.

12



(ii) rank(P−u
N ) + rank(P+s

N ) ≤ k − 1. In this case (26) generically has no bounded
solution on Z.

(iii) rank(P−u
N ) + rank(P+s

N ) = k and R(P−u
N ) ∩R(P+s

N ) 6= {0}. This situation oc-
curs, for example, when considering the variational equation along a tangential
homoclinic orbit.

The first case (i) can be reduced to (ii) and vice versa, by considering the adjoint
equation

vn+1 = (A−1
n+1)

T vn, n ∈ Z, (28)

cf. Palmer (1988). If (4) possesses half-sided dichotomies with data (K±, α±
s , α±

u ,
P±s

n , P±u
n ), then the adjoint equation (28) also has half-sided dichotomies with data

(K̃±, α±
u , α±

s , (P±u
n+1)

T , (P±s
n+1)

T ). Obviously, the sets of γ-values coincide, in which
the scaled equations

un+1 =
1

γ
Anun and vn+1 = γ(A−1

n+1)
T vn

have an exponential dichotomy on Z. If the adjoint equation has infinitely many
bounded solutions on Z, then (2) generically has no bounded solution. As a con-
sequence, it suffices to construct a test that distinguishes (ii) and (iii) from the
resolvent case. An alternative test that avoids computations with the adjoint equa-
tion is discussed at the end of this section.

The norm of the end points un− and un+
is an indicator for detecting spectral

intervals. First, we show that in the resolvent set, this expression is bounded from
above.

Theorem 7 Assume A1, the angle condition (10) and denote by ūZ the unique
bounded solution of (26) on Z. Let (un)n∈[n−,n+] be the solution of the finite boundary
value problem (26), (27), with ‖r‖ = ‖x‖ = 1. Then

‖un‖ ≤ C

{

e−αs(n−N) + e−αu(n+−n), for n+ ≥ n > N,
e−αu(N−n) + e−αs(n−n−), for n− ≤ n < N.

Proof: Let n+ ≥ n > N . Applying Theorem 3, we get

‖un‖ ≤ ‖un − ūn‖ + ‖ūn‖ = ‖un − ūn‖ + ‖Φ(n, N)P s
Nr‖

≤ C
(

e−αu(n+−n) + e−αs(n−n−)
) ((

e−αu(N−n−) + e−αs(n+−N)
)

‖r‖ + ‖x‖
)

+Ke−αs(n−N)‖r‖

≤ C̃
(

e−αu(n+−n) + e−αs(n−N)
)

.

Similarly, we obtain for n− ≤ n < N the second assertion.
�

13



Our tests for detecting spectral intervals are based on this estimate. Roughly
speaking, the difference equation (4) has no exponential dichotomy on Z, if ‖un±‖
is unbounded, cf. case (ii).

An existence result for the solution of the boundary value problem as well as es-
timates of ‖un±‖ in case of half-sided dichotomies are given in the following theorem.
Assume Rk = R(P−u

N ) ⊕R(P+s
N ) ⊕ (R(P−s

N ) ∩R(P+u
N )) (29)

and note that generic systems, fulfilling (ii) also satisfy this assumption.

Theorem 8 Let n− < N < n+ and assume that 1 is not an eigenvalue of Φ(n−, n+).

(a) Then the boundary value problem (26), (27) has a unique solution.

(b) Further assume that (4) possesses exponential dichotomies on Z− and Z+ with
data (K±, α±

s , α±
u , P±s

n , P±u
n ), such thatRk = X ⊕ Y, X = R(P−u
N ) ⊕R(P+s

N ), Y = R(P−s
N ) ∩R(P+u

N ), dim Y ≥ 1.
(30)

Let r = rX + rY , rX ∈ X, 0 6= rY ∈ Y and n− ≤ n1 < N < n2 ≤ n+. Then

‖un1
‖ + ‖un2

‖ ≥ ‖rY ‖
C

e−α−
s (N−n1) + e−α+

u (n2−N)
. (31)

(c) Assume that (4) has exponential dichotomies on Z− and Z+ such that

rank(P−u
N ) + rank(P+s

N ) = k and R(P−u
N ) ∩R(P+s

N ) 6= {0}.

Let Rk = X ⊕ Y , where X = R(P−u
N ) +R(P+s

N ), Y = X⊥, dim Y ≥ 1. Then,
(31) holds.

Proof:

(a) Two half-sided solutions of the homogeneous equation are

u−
n = Φ(n, n−)v−, for n ≤ N,

u+
n = Φ(n, n+)v+, for n ≥ N.

These half-sided solutions form a solution of the inhomogeneous equation, if

u+
N = AN−1u

−
N−1 + r ⇔ Φ(N, n+)v+ = Φ(N, n−)v− + r. (32)

Further, the boundary condition (27) requires that v− = v+ + x.

Therefore, we get

Φ(N, n−)v+ + Φ(N, n−)x + r = Φ(N, n+)v+

⇔ (Φ(N, n+) − Φ(N, n−))v+ = Φ(N, n−)x + r

⇔ (Φ(n−, n+) − I)v+ = x + Φ(n−, N)r.

By assumption, Φ(n+, n−) − I is invertible, and we obtain a unique solution
v+, v− = v+ + x.

14



(b) Let W be the projector with R(W ) = Y , N (W ) = X. Using equation (32) it
follows that

rY := Wr = W (−Φ(N, n1)un1
+ Φ(N, n2)un2

)

= −WP−s
N Φ(N, n1)un1

+ WP +u
N Φ(N, n2)un2

= W
(

−Φ(N, n1)P
−s
n1

un1
+ Φ(N, n2)P

+u
n2

un2

)

.

From the half-sided dichotomies, we obtain

‖rY ‖ ≤ ‖W‖
(

‖Φ(N, n1)P
−s
n1

‖‖un1
‖ + ‖Φ(N, n2)P

+u
n2

‖‖un2
‖
)

≤ ‖W‖
(

K−e−α−
s (N−n1)‖un1

‖ + K+e−α+
u (n2−N)‖un2

‖
)

≤ C̃
(

e−α−
s (N−n1) + e−α+

u (n2−N)
)

(‖un1
‖ + ‖un2

‖)

which proves (31).

(c) The proof of the tangential case follows along the lines of part (b), but with
the settings X = R(P−u

N ) + R(P+s
N ), Y = X⊥.

�

If the difference equation possesses for all γ ∈ σ◦
ED half-sided dichotomies with

stable projectors of different rank, then either the original or the adjoint equation
generically meets assumption (30) from Theorem 8 and consequently, the corre-
sponding solution exhibits exponential growth towards the end points. This expo-
nential growth enables the numerical detection of Sacker-Sell spectral intervals. Note
that the half-sided dichotomy rates also depend on γ. At the boundary of a spectral
interval α−

s or α+
u is zero, while these quantities increase towards the midpoint of

the spectral interval.

For Example 6, Figure 2 shows ‖un−(γ)‖ + ‖un+
(γ)‖ for the original and for

the adjoint equation. We solve the boundary value problem, using a sparse LU-
decomposition, for n− = −100, n+ = 100, N = 0 and for two random vectors x,
r, normalized to length 1. Particularly, one can read off from Figure 2 the type
of one-sided dichotomies that lead to spectral intervals. In the interval [1, 2], an
increase in the norm of the end points for the original equation corresponds to case
(ii), while the remaining spectral intervals are of type (i).
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Figure 2: Detection of Sacker-Sell spectral intervals (marked in gray) for
Example 6. The black curve is computed for the original equation, while
the red curve shows the result for the adjoint equation.

In case rank(P−u
N ) + rank(P+s

N ) ≥ k + 1 it is possible to detect spectral intervals
directly, by working with the original equation, instead, as suggested before, by using
the adjoint equation. We show that the solution of the boundary value problem (26),
(27) increases exponentially fast toward the midpoint N .

Theorem 9 Let n− ≤ n1 < N < n2 ≤ n+ and assume that 1 is not an eigenvalue
of Φ(n−, n+). Further assume that (4) possesses exponential dichotomies on Z−

and Z+ with data (K±, α±
s , α±

u , P±s
n , P±u

n ), such that Rk = Xn± ⊕ Yn±, Xn± =
R(P−s

n−
) + R(P+u

n+
), Yn± = X⊥

n±
, dim Yn± ≥ 1.

Let Wn± be the projector with R(Wn±) = Yn± and N (Wn±) = Xn±. Then the
solution of (26), (27) satisfies

‖un1
‖ + ‖un2

‖ ≥ ‖Wn±x‖
C

e−α−
u (n1−n−) + e−α+

s (n+−n2)
. (33)

Note that ‖Wn±x‖ depends, due to the construction of Xn± and Yn±, on n±.
Nevertheless, one can neglect this influence in numerical computations, if the vector
x is chosen in a generic position.
Proof: Denote by (un)n∈[n−,n+] the solution of (26). Then the boundary condition
(27) has the form

un− − un+
= Φ(n−, n1)un1

− Φ(n+, n2)un2
= x.

Thus, we get

Wn±x = Wn±

(

Φ(n−, n1)un1
− Φ(n+, n2)un2

)

= Wn±

(

P−u
n−

Φ(n−, n1)un1
− P+s

n+
Φ(n+, n2)un2

)
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and consequently

‖Wn±x‖ ≤ ‖Wn±‖
(

‖Φ(n−, n1)P
−u
n1

‖ + ‖Φ(n+, n2)P
+s
n2

‖
)

(‖un1
‖ + ‖un2

‖)

≤ C
(

e−α−
u (n1−n−) + e−α+

s (n+−n2)
)

(‖un1
‖ + ‖un2

‖),

which proves (33).
�

We apply this idea to Example 6, and choose n− = −100, n+ = 100, n1 = −50,
n2 = 50, x and r are, as before, random vectors of length 1. A plot of ‖un1

(γ)‖ and
‖un2

(γ)‖ over γ is shown in Figure 3.
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Figure 3: Detection of Sacker-Sell spectral intervals (marked in gray) for
Example 6; ‖un1

(γ)‖ in red and ‖un2
(γ)‖ in black. The dashed lines are

placed at 1 and 0.1.

Figure 4 shows the results for the tangential case (iii). In contrast to the
previous computations, we change S2e1 to S1e2 in Example 6 and consequently,
(

S1e2 S1e3 S2e1

)

is singular, while
(

S1e3 S2e1 S2e2

)

is regular. It can clearly
be observed that the interval [2, 3] belongs to the spectral set, cf. Theorem 8, (c).

3.3 Convergence of approximate spectral intervals

Let n1 and n2 be the midpoints of the respective half-intervals

n1 =

⌊

n− + N

2

⌋

, and n2 =

⌊

n+ + N

2

⌋

.
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Figure 4: Detection of Sacker-Sell spectral intervals (marked in gray) for
Example 6 in a tangential case; ‖un1

(γ)‖ in red and ‖un2
(γ)‖ in black.

The dashed lines are placed at 1 and 0.1.

If the original equation (4) has an exponential dichotomy with rates αs, αu, then
the scaled equation (20) has the dichotomy rates αs + ln γ and αu − ln γ for |γ − 1|
sufficiently small.

In spectral intervals, we get under the assumptions of Theorem 8

‖un1
(γ)‖ + ‖un2

(γ)‖ ≥ ‖rY ‖
C

e
−(α−

s +ln γ)
“

N−n−
2

”

+ e
−(α+

u −lnγ)
“

n+−N

2

” ,

and in case of Theorem 9, we obtain

‖un1
(γ)‖ + ‖un2

(γ)‖ ≥ ‖Wn±x‖
C

e
−(α−

u −ln γ)
“

N−n−
2

”

+ e
−(α+

s +lnγ)
“

n+−N

2

” .

We assume a uniform lower bound for ‖rY ‖ and ‖Wn±x‖ which is typically satisfied
in our numerical computations, where r and x are chosen at random.

In the resolvent set, it follows from Theorem 7

‖un1
(γ)‖ ≤ C1

(

e
−(αu−lnγ)

“

N−n−
2

”

+ e
−(αs+lnγ)

“

N−n−
2

”

)

, (34)

‖un2
(γ)‖ ≤ C2

(

e
−(αs+ln γ)

“

n+−N

2

”

+ e
−(αu−ln γ)

“

n+−N

2

”

)

. (35)

Consequently, if the solution uZ(γ) of the inhomogeneous scaled equation (2)
satisfies

max {‖un1
(γ)‖, ‖un2

(γ)‖} ≤ ε (36)
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for −n−, n+ sufficiently large and ε small, then our results guarantee that γ lies in
the resolvent set.

In particular
γ̄− = e−αs , γ̄+ = eαu

defines the boundary of a resolvent interval. Using (36), we get the numerically
computed boundaries

γnum
− = min

γ∈[γ̄−,γ̄+]

{

max{‖un1
(γ)‖, ‖un2

(γ)‖} ≤ ε
}

, (37)

γnum
+ = max

γ∈[γ̄−,γ̄+]

{

max{‖un1
(γ)‖, ‖un2

(γ)‖} ≤ ε
}

. (38)

Theorem 10 With the notions and assumptions from above, it holds for −n−, n+

sufficiently large that

γ̄− ≤ γnum
− ≤ γ̄− · max

{

e
− ln

“

ε
C1

”

2

N−n− , e
− ln

“

ε
C2

”

2

n+−N

}

,

γ̄+ ≥ γnum
+ ≥ γ̄+ · min

{

e
ln

“

ε
C1

”

2

N−n− , e
ln

“

ε
C2

”

2

n+−N

}

.

Proof: Applying (34), (35) for γnum
− close to γ̄− = e−αs yields

ε ≤ ‖un1
(γnum

− )‖ ≤ C1e
−(αs+ln γnum

− )
N−n−

2 , (39)

ε ≤ ‖un2
(γnum

− )‖ ≤ C2e
−(αs+ln γnum

− )
n+−N

2 , (40)

and consequently we obtain from (39) that γnum
− ≤ e

− ln
“

ε
C1

”

2

N−n− e−αs and from (40)

we get γnum
− ≤ e

− ln
“

ε
C2

”

2

n+−N e−αs .
Combining these two results, the first estimate follows. Similarly, we prove the

second estimate for γnum
+ close to γ̄+ = eαu .

�

We use (37) and (38) numerically and obtain γnum
± for Example 6 with ε = 0.1 and

−n−, n+ ∈ {100, 500, 2000}, cf. Table 1. The solutions of the respective boundary
value problems are computed for γ = 0.01 · i, i = 1, . . . , 700.

±n±

100 [0.90, 2.13] [2.85, 4.20] [4.80, 6.78]
500 [0.99, 2.01] [2.96, 4.05] [4.97, 6.14]
2000 [1.00, 2.00] [2.99, 4.01] [4.99, 6.04]

Table 1: Computation of spectral intervals.
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4 Sacker-Sell spectrum along Hénon orbits

We apply the algorithms from the previous section to the variational equation along
orbits of the well known Hénon map, cf. Hénon (1976), Mira (1987), Devaney (1989),
Hale & Koçak (1991), defined as

f(x) =

(

1 + x2 − ax2
1

bx1

)

with parameters a = 1.4, b = 0.4.

4.1 Heteroclinic orbits

First, a heteroclinic orbit

x̄n+1 = f(x̄n), n ∈ Z, lim
n→±∞

x̄n = ξ±

with respect to the fixed points

ξ± =

(

z
bz

)

where z =
b − 1 ∓

√

(b − 1)2 + 4a

2a

is computed, using the techniques, introduced in Beyn et al. (2004), Hüls (2005).
Note that an exponential dichotomy on Z of the variational equation

un+1 = Df(x̄n)un, n ∈ Z,

is equivalent to transversal intersections of the unstable manifold of ξ− with the
stable manifold of ξ+. The Sacker-Sell spectrum and especially its distance from 1
gives information about the closeness to tangential heteroclinic orbits. The results
of the algorithms from the previous section for ±n± = 100 are given in Figures 5, 6
and Table 2.
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Figure 5: Detection of Sacker-Sell spectral intervals for the variational
equation along a heteroclinic Hénon orbit. Projector residual of the least
squares ansatz in red and of the boundary value approach in black.
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Figure 6: Detection of Sacker-Sell spectral intervals for the variational
equation along a heteroclinic Hénon orbit, via the second approach, ap-
plied to the original equation (black) and the adjoint equation (red).

±n±

100 [0.122, 0.205] [1.999, 3.275]
500 [0.126, 0.198] [2.030, 3.188]
2000 [0.127, 0.196] [2.036, 3.172]

Table 2: Computation of spectral intervals along a heteroclinic orbit with
a sampling of γ in 0.001 steps and ε = 0.1, using the midpoints un1,2

.

Note that Df(ξ−) possesses the eigenvalues σ1 ≈ −2.0376 and σ2 ≈ 0.1963 while
the eigenvalues of Df(ξ+) are σ3 ≈ 3.1676 and σ4 ≈ −0.1263. The Sacker-Sell
spectrum in this example is σED = [−σ4, σ2] ∪ [−σ1, σ3].

4.2 Homoclinic orbits

We apply our algorithm to the variational equation along a homoclinic orbit

x̄n+1 = f(x̄n), n ∈ Z, lim
n→±∞

x̄n = ξ−.

This example only exhibits point spectrum

σED = {−σ1, σ2}.

Figures 7, 8 and Table 3 show the resulting output of our algorithms.
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Figure 7: Detection of Sacker-Sell spectrum for the variational equation
along a homoclinic Hénon orbit. Projector residual of the least squares
ansatz in red and of the boundary value approach in black.
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Figure 8: Detection of Sacker-Sell spectrum for the variational equation
along a homoclinic Hénon orbit, via the second approach, applied to the
original equation (black) and the adjoint equation (red).

±n±

100 [0.188, 0.206] [1.994, 2.081]
500 [0.195, 0.198] [2.029, 2.046]
2000 [0.196, 0.196] [2.036, 2.039]

Table 3: Computation of spectral intervals along a homoclinic orbit with
a sampling of γ in 0.001 steps and ε = 0.1, using the midpoints un1,2

.
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4.3 An orbit on the attractor

We construct a chaotic orbit on the Hénon attractor for the classical parameters
a = 1.4, b = 0.3 by iterating a suitable initial point. Then our algorithms are
applied to the corresponding variational equation.

In this example, the linearization is not asymptotically constant. It is not known,
whether the assumptions from Section 3.2 are satisfied. Using the projector residual,
we cannot decide, whether this equation has continuous or discrete spectrum. The
only hint is given by the least squares curve that has no plateaus in Figure 9. The
output of the second and third approach in Figure 10 and Table 4 suggest that this
difference equation has only point spectrum.
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Figure 9: Detection of Sacker-Sell spectrum for the variational equation
along a trajectory on the attractor. Projector residual of the least squares
ansatz in red and of the boundary value approach in black.

±n±

100 [0.176, 0.225] [1.334, 1.650]
500 [0.189, 0.202] [1.441, 1.529]
2000 [0.199, 0.202] [1.495, 1.530]

Table 4: Computation of spectral intervals along a trajectory on the
Hénon attractor with a sampling of γ in 0.001 steps and ε = 0.01, using
the midpoints un1,2

.
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Figure 10: Detection of Sacker-Sell spectrum for the variational equation
along a trajectory on the attractor, via the second approach, applied to
the original equation (black) and the adjoint equation (red).

4.4 Comparison with the QR-approach

We compare our results with the discrete QR-method, combined with Steklov aver-
aging, cf. Dieci & Van Vleck (2002), Dieci & Elia (2008). A rough implementation
for computing Sacker-Sell spectra of the difference equation (4) can be written as
follows. Choose Zn− = I and iterate

QiRi = Zi, Zi+1 = AiQi, for i = n−, . . . , n+ − 1,

where QiRi = Zi denotes the unique QR-decomposition of the matrix Zi, cf. Golub &
Van Loan (1996). Let H > 0. Compute for ℓ = 1, . . . , k and m = n−, . . . , n+−1−H

a(ℓ, m) =
1

H
log

(

m+H
∏

i=m

Ri(ℓ, ℓ)

)

,

define
a−(ℓ) = min

m
a(ℓ, m), a+(ℓ) = max

m
a(ℓ, m),

and obtain an approximation of the ℓ-th spectral interval by
[

ea−(ℓ), ea+(ℓ)
]

.
We repeat the numerical experiments using the QR-method for ±n± = 2000 and

H = 1000. For Example 6, we obtain in the transversal case the intervals

[0.9979, 2.0052], [3.0002, 4.0069], [4.9991, 6.0225],

and in the tangential case with S2e1 = S1e2 one has

[0.9995, 2.0781], [2.8976, 4.0066], [4.9990, 6.0129].
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One observes that the QR-algorithm, as described above, only detects half-sided
dichotomies. In order to detect Sacker-Sell spectrum on the real line, one addition-
ally has to check in case (iii), cf. Section 3.2, whether R(P−u

N )∩R(P+s
N ) 6= {0}. For

this task, the authors of Dieci et al. (2010) use an Evans-function approach that is
based on computing the determinant of a matrix, consisting of a basis of R(P−u

N ) and
R(P+s

N ). Note that these bases already have been computed in the QR-algorithm.
In the Hénon example, we get the following spectral intervals in case of

• a heteroclinic orbit

[0.1260, 0.1963], [2.0372, 3.1721],

• a homoclinic orbit

[0.1959, 0.1963], [2.0361, 2.0395],

• the trajectory on the attractor

[0.1934, 0.2036], [1.4718, 1.5494].

We do not analyze computing times formally. In our numerical experiments, we
observe that the discrete QR-method is relatively cheap, and its numerical effort
compares to just a few samples in the boundary value approach.

4.5 Conclusion

We have introduced three approaches for detecting Sacker-Sell spectra that are based
on solving linear boundary value problems for γ on a grid. A detailed error analysis
is presented. The proposed methods also detect spectral intervals, caused by tangen-
tial intersections of the corresponding stable and unstable subspaces of half-sided
dichotomies. On the one hand, our methods for detecting the whole Sacker-Sell
spectrum are more expensive than QR-techniques, which do not require sampling.

The proposed algorithms are very efficient for scanning small intervals and par-
ticularly for analyzing whether a given difference equation has an exponential di-
chotomy. Using the first algorithm that computes the projector residual, one ad-
ditionally obtains an accurate approximation of the corresponding stable projector.
The second method solves boundary value problems for the original and the adjoint
equation, while it suffices to consider the original equation for the third ansatz. In
the latter case, Theorem 10 provides precise estimates for the numerically detected
Sacker-Sell spectrum with respect to the finite computational interval [n−, n+].

Furthermore, the shape of the boundary value solutions (exponential growth
towards the end points or the midpoint) provides information on the type of the
one-sided dichotomies that lead to spectral intervals.

25



A Exponential dichotomy

In this appendix, we briefly introduce the notion of an exponential dichotomy, cf.
Coppel (1978), Palmer (1988). Consider the linear difference equation

un+1 = Anun, n ∈ Z, An invertible, (41)

and its solution operator Φ, defined as

Φ(n, m) :=







An−1 . . . Am, for n > m,
I, for n = m,

A−1
n . . . A−1

m−1, for n < m.

Definition 11 The linear difference equation (41) possesses an exponential di-

chotomy with data (K, αs, αu, P
s
n, P u

n ) on J ⊂ Z, if there exist two families of pro-
jectors P s

n and P u
n = I − P s

n and constants K, αs, αu > 0, such that the following
statements hold:

P s
nΦ(n, m) = Φ(n, m)P s

m ∀n, m ∈ J, (42)

‖Φ(n, m)P s
m‖ ≤ Ke−αs(n−m)

‖Φ(m, n)P u
n ‖ ≤ Ke−αu(n−m)

∀n ≥ m, n, m ∈ J.

Exponential dichotomies widely apply in dynamical systems theory. For example
when considering connecting orbits of fixed points or homoclinic trajectories, cf. Hüls
(2007), of autonomous and non-autonomous difference equations

xn+1 = fn(xn), n ∈ Z,

exponential dichotomies of the variational equation

un+1 = Dfn(xn)un, n ∈ Z
have a geometric interpretation. In the autonomous case stable and unstable man-
ifolds intersect transversally cf. Palmer (1988), while in non-autonomous systems,
the same holds true for the corresponding stable and unstable fiber bundles, see
Hüls (2006).
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