- 1. Exemplarily verify some of the following statements:
 - (a) For every boolean ring R and $u, v, x, y, z \in R$ we have:
 - (i) $\land, \lor, +$ are associative.
 - (ii) \land, \lor are idempotent.
 - (iii) $\land, \lor, +, \leftrightarrow, \uparrow, \downarrow$ are commutative.
 - (iv) $x \wedge 0 = 0, x \wedge 1 = x$ and $x \vee 0 = x, x \vee 1 = 1$.
 - (v) \land, \lor are mutually absorptive: $x \land (x \lor y) = x$ and $x \lor (x \land y) = x$.
 - (vi) De Morgan's laws hold: $\neg(x \land y) = \neg x \lor \neg y$ and $\neg(x \lor y) = \neg x \land \neg y$.
 - (vii) $x \to y = \neg y \to \neg x$.
 - (viii) $x \leftrightarrow y = 1 \Leftrightarrow x = y$.
 - (ix) $(x \land y) \to z = x \to (y \to z).$
 - (x) $(x \land \neg y) \lor (\neg x \land y) = x + y = (x \lor y) \land \neg (x \land y).$
 - (xi) $x \leq y \Leftrightarrow x \land y = x \Leftrightarrow x \lor y = y \Leftrightarrow x \land \neg y = 0 \Leftrightarrow y \mid x$.
 - (xii) $(u \le x \text{ and } v \le y) \Rightarrow (u \land v \le x \land y \text{ and } u \lor v \le x \lor y).$
 - (xiii) $(x \land y = 0 \text{ and } x \lor y = 1) \Rightarrow y = \neg x.$
 - (b) A boolean ring R is a boolean algebra (= complemented distributive lattice) w.r.t. (\leq , 0, 1, \neg , \land , \lor), i.e. for all $x, y, z \in R$:
 - (I) \leq is a partial order on R with least element 0 and greatest element 1.
 - (II) $x \wedge y$ is the infimum and $x \vee y$ the supremum of $\{x, y\}$ w.r.t. \leq .
 - (III) $x \land (y \lor z) = (x \land y) \lor (x \land z)$ and $x \lor (y \land z) = (x \lor y) \land (x \lor z)$.
 - (IV) $x \wedge \neg x = 0$ and $x \vee \neg x = 1$.
 - (c) Conversely, every boolean algebra $(R, \leq, 0, 1, \neg, \land, \lor)$ yields a boolean ring R with addition and multiplication given for $x, y \in R$ by:

$$\begin{array}{rcl} x + y &=& (x \wedge \neg y) \lor (\neg x \wedge y) \\ x \cdot y &=& x \wedge y \end{array}$$

2. Prove that the set R' of idempotent elements in any commutative ring R forms a boolean ring with addition $x + y = (x - y)^2$ and multiplication $x \cdot y = x \cdot y$.

3. Let R be a boolean ring and denote by Spec(R) the set of all prime ideals in R. Prove *Stone's Representation Theorem*, which states that the map

$$R \longrightarrow \mathcal{P}(\operatorname{Spec}(R))$$
$$x \longmapsto D_x = \{ \mathfrak{p} \in \operatorname{Spec}(R) : x \notin \mathfrak{p} \}$$

is an injective homomorphism of boolean rings. Conclude that the boolean rings are precisely the rings that are isomorphic to a unitary subring of ${}^{X}\mathbb{F}_{2}$ for some set X.

4. Let X be a topological space. A subset U of X is said to be *regular* if it coincides with the interior of its closure, i.e. formally $U = (\overline{U})^{\circ}$.

Prove that the set $\mathcal{R}(X)$ of regular subsets of X becomes a complete boolean algebra under the operations $\neg U = X \setminus \overline{U}$ and $U \wedge V = U \cap V$ and $U \vee V = \neg \neg (U \cup V)$.