1. Exemplarily verify some of the following statements:
(a) For every boolean ring R and $u, v, x, y, z \in R$ we have:
(i) $\wedge, \vee,+$ are associative.
(ii) \wedge, \vee are idempotent.
(iii) $\wedge, \vee,+, \leftrightarrow, \uparrow, \downarrow$ are commutative.
(iv) $x \wedge 0=0, x \wedge 1=x$ and $x \vee 0=x, x \vee 1=1$.
(v) \wedge, \vee are mutually absorptive: $x \wedge(x \vee y)=x$ and $x \vee(x \wedge y)=x$.
(vi) De Morgan's laws hold: $\neg(x \wedge y)=\neg x \vee \neg y$ and $\neg(x \vee y)=\neg x \wedge \neg y$.
(vii) $x \rightarrow y=\neg y \rightarrow \neg x$.
(viii) $x \leftrightarrow y=1 \Leftrightarrow x=y$.
(ix) $(x \wedge y) \rightarrow z=x \rightarrow(y \rightarrow z)$.
(x) $(x \wedge \neg y) \vee(\neg x \wedge y)=x+y=(x \vee y) \wedge \neg(x \wedge y)$.
(xi) $x \leq y \Leftrightarrow x \wedge y=x \Leftrightarrow x \vee y=y \Leftrightarrow x \wedge \neg y=0 \Leftrightarrow y \mid x$.
(xii) $(u \leq x$ and $v \leq y) \Rightarrow(u \wedge v \leq x \wedge y$ and $u \vee v \leq x \vee y)$.
(xiii) $(x \wedge y=0$ and $x \vee y=1) \Rightarrow y=\neg x$.
(b) A boolean ring R is a boolean algebra ($=$ complemented distributive lattice) w.r.t. $(\leq, 0,1, \neg, \wedge, \vee)$, i.e. for all $x, y, z \in R$:
(I) \leq is a partial order on R with least element 0 and greatest element 1 .
(II) $x \wedge y$ is the infimum and $x \vee y$ the supremum of $\{x, y\}$ w.r.t. \leq.
(III) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$ and $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$.
(IV) $x \wedge \neg x=0$ and $x \vee \neg x=1$.
(c) Conversely, every boolean algebra ($R, \leq, 0,1, \neg, \wedge, \vee$) yields a boolean ring R with addition and multiplication given for $x, y \in R$ by:

$$
\begin{array}{lll}
x+y & = & (x \wedge \neg y) \vee(\neg x \wedge y) \\
x \cdot y & = & x \wedge y
\end{array}
$$

2. Prove that the set R^{\prime} of idempotent elements in any commutative ring R forms a boolean ring with addition $x+^{\prime} y=(x-y)^{2}$ and multiplication $x \cdot^{\prime} y=x \cdot y$.
3. Let R be a boolean ring and denote by $\operatorname{Spec}(R)$ the set of all prime ideals in R. Prove Stone's Representation Theorem, which states that the map

$$
\begin{aligned}
& R \longrightarrow \mathcal{P}(\operatorname{Spec}(R)) \\
& x \longmapsto D_{x}=\{\mathfrak{p} \in \operatorname{Spec}(R): x \notin \mathfrak{p}\}
\end{aligned}
$$

is an injective homomorphism of boolean rings. Conclude that the boolean rings are precisely the rings that are isomorphic to a unitary subring of ${ }^{X} \mathbb{F}_{2}$ for some set X.
4. Let X be a topological space. A subset U of X is said to be regular if it coincides with the interior of its closure, i.e. formally $U=(\bar{U})^{\circ}$.
Prove that the set $\mathcal{R}(X)$ of regular subsets of X becomes a complete boolean algebra under the operations $\neg U=X \backslash \bar{U}$ and $U \wedge V=U \cap V$ and $U \vee V=\neg \neg(U \cup V)$.

