1. The goal of this exercise is to give an alternative, direct proof of the Compactness Theorem that does not rely on Gödel's Completeness Theorem.

The product $\prod_{i \in I} \mathcal{M}_i$ of a non-empty family $(\mathcal{M}_i)_{i \in I}$ of boolean-valued S-structures with common set of assigned variables is the boolean-valued S-structure \mathcal{M} with the same set of assigned variables and $\mathcal{M} = \prod_{i \in I} \mathcal{M}_i$ and $R^{\mathcal{M}} = \prod_{i \in I} R^{\mathcal{M}_i}$ and

$$\sharp^{\mathcal{M}}(m^1,\ldots,m^r) = \left(\sharp^{\mathcal{M}_i}(m^1_i,\ldots,m^r_i)\right)_{i\in I}.$$

(a) Assume that \mathcal{M}_i has witnesses for every $i \in I$. Prove *Loś Theorem*, which states that for all maximal ideals \mathfrak{m} in $\mathbb{R}^{\mathcal{M}}$ and S-sentences π

$$\mathcal{M}/\mathfrak{m}\vDash \pi \, \Leftrightarrow \, ig(\pi^{\mathcal{M}_i}ig)_{i\in I}
ot\in \mathfrak{m}$$
 .

(b) Deduce the *Compactness Theorem*, which states that an S-theory T is satisfiable if and only if every finite subset of T is satisfiable.

(c) Conclude for all S-theories T and S-formulas φ that $T \vDash \varphi$ if and only if $T' \vDash \varphi$ for some finite subset T' of T.

Hint for (b): Take for I the set of all finite subsets of T.

2. Let T be an S-theory with equality \equiv that admits an infinite \equiv -respecting model. Show that for every set X there is a \equiv -respecting model \mathcal{M} of T with $X \subseteq \underline{\mathcal{M}}$.

Hint: Apply the Compactness Theorem to an S'-theory extending T where S' is a vocabulary obtained from S by adding for each element of X a constant symbol.

For the next two exercises, we view rings R as \equiv -respecting S^{Ring} -structures \tilde{R} with

 $\label{eq:delta} \mathbf{0}^{\tilde{R}} = 0\,, \quad \mathbf{1}^{\tilde{R}} = 1\,, \quad \oplus^{\tilde{R}} = +\,, \quad \odot^{\tilde{R}} = \,\cdot\,.$

3. We want to see that being noetherian is not a *first-order property* for rings.

(a) Show that there is a non-noetherian commutative ring R with the property $\tilde{R} \vDash \varphi$ for all S^{Ring} -sentences φ with $\tilde{\mathbb{Z}} \vDash \varphi$.

(b) Conclude that there cannot exist an S^{Ring} -sentence φ with the property that for all commutative rings R we have $\tilde{R} \models \varphi$ if and only if R is noetherian.

Hint for (a): Use the Compactness Theorem to obtain such a ring R with a non-zero element that for all n is divisible by the product of the first n positive integers.

4. The Lefschetz principle for S^{Ring} -sentences φ says the following are equivalent:

- (1) $\tilde{K} \vDash \varphi$ for some algebraically closed field K of characteristic 0.
- (2) $\tilde{K} \vDash \varphi$ for every algebraically closed field K of characteristic 0.
- (3) There exist infinitely many primes p such that there is an algebraically closed field K of characteristic p with $\tilde{K} \models \varphi$.

Prove the implications $(2) \Rightarrow (3) \Rightarrow (1)$.

Hint for $(3) \Rightarrow (1)$: Take an infinite set I of primes such that there exist algebraically closed fields K_i of characteristic $i \in I$ with $\tilde{K}_i \vDash \varphi$. Then choose a maximal ideal \mathfrak{m} in ${}^{I}\mathbb{F}_2$ that contains the characteristic functions χ_i of all elements i of I.