For S-formulas φ with exactly one free variable x and S-terms t let $\varphi(t)$ be $\varphi(x/t)$.

1. This exercise treats the abstract version of Gödel's 2nd Incompleteness Theorem.

Let T be a consistent S-theory such that there exists a function that associates with each S-sentence φ a variable-free S-term $\lceil \varphi \rceil$ with the following two properties:

(i) EXISTENCE OF FIXED POINTS. For every S-formula ψ with exactly one free variable there exists an S-sentence φ with

$$T \vdash (\varphi \leftrightarrow \psi(\ulcorner \varphi \urcorner)) .$$

(ii) ENCODABILITY OF PROVABILITY. There exists an S-formula Pr with exactly one free variable such that

$$T \vdash \varphi \implies T \vdash \Pr(\ulcorner \varphi \urcorner) .$$

- (iii) FORMAL ENCODABILITY OF PROVABILITY. For every S-sentence φ $T \vdash (\Pr(\ulcorner \varphi \urcorner) \rightarrow \Pr(\ulcorner \Pr(\ulcorner \varphi \urcorner) \urcorner)) .$
- (iv) FORMALIZATION RESPECTS IMPLICATION. For all S-sentences φ and ψ $T \vdash (\Pr(\ulcorner(\varphi \to \psi)\urcorner) \to (\Pr(\ulcorner\varphi\urcorner) \to \Pr(\ulcorner\psi\urcorner))).$
- (a) Prove *Löb's Theorem*, which states for every *S*-sentence φ $T \vdash (\Pr(\ulcorner \varphi \urcorner) \rightarrow \varphi) \Rightarrow T \vdash \varphi$.
- (b) Deduce the Second Incompleteness Theorem, which states $T \not\vdash \neg \Pr(\ulcorner \bot \urcorner)$.
- *Hint for (b):* Apply (i) to $(\Pr(x) \to \varphi)$.
- **2.** (a) Give a PA-proof of the S^{Peano} -sentence $1 \neq 2$ where 1 = S0 and 2 = SS0.
 - (b) Give a CRT-proof of the S^{Ring} -formula $(\bigwedge_x (e \odot x) \equiv x \to e \equiv 1)$ with $e \neq x$.

3. Decide for each of the axioms $\varphi \in \operatorname{ZFC} \setminus \operatorname{\mathsf{REP}}$ whether $\hat{\mathbb{N}} \models \varphi$ and whether $\hat{\mathbb{R}} \models \varphi$ with strict posets (X, <) viewed as S^{Set} -structures \hat{X} via $\underline{\hat{X}} = X$ and $\epsilon^{\hat{X}} = <$.

4. Let (X, \leq) be a *complete lattice*, i.e. a partially ordered set in which each subset has both an infimum and a supremum, and let f be an endomorphism of (X, \leq) .

Prove the Knaster-Tarski Theorem, which states that the set of fixed points of f

$$X^f = \{x \in X : f(x) = x\}$$

forms itself a complete lattice with respect to \leq , so in particular is non-empty.

Hint: Prove as a first step that f has a least fixed point and a greatest fixed point. Then apply this knowledge to suitable complete sublattices of (X, \leq) .