Let \mathcal{M} be a ZF°-universe and let \in be the relation on $\mathcal{M} = \mathcal{M}$ given by $\epsilon^{\mathcal{M}}$.

1. Show that the following properties are all equivalent for transitive \mathcal{M} -sets γ on which \in is well-founded:

- (1) γ is an \mathcal{M} -ordinal.
- (2) \sqsubseteq totally orders γ .
- (3) β is transitive for all $\beta \in \gamma$.
- (4) Exactly one of $\alpha \in \beta$, $\alpha = \beta$, $\beta \in \alpha$ holds for all $\alpha, \beta \in \gamma$.

2. Verify some of the following statements for $\alpha, \beta, \gamma, \delta \in \mathbb{O}^{\mathcal{M}}$ and $\diamond \in \{+, \cdot\}$:

- (i) $\alpha + \underline{0} = \alpha \& \alpha \cdot \underline{0} = \underline{0} \& \alpha^{(\underline{0})} = \underline{1}$ (((ii) $\underline{0} + \alpha = \alpha \& \underline{0} \cdot \alpha = \underline{0} \& \underline{1} \cdot \alpha = \alpha$ (iii) $\alpha \cdot \underline{1} = \alpha \& \alpha^{(\underline{1})} = \alpha \& \underline{1}^{(\alpha)} = \underline{1}$ (((iv) $\underline{0} < \alpha \Longrightarrow \underline{0}^{(\alpha)} = \underline{0}$ (2) (v) $(\alpha \diamond \beta) \diamond \gamma = \alpha \diamond (\beta \diamond \gamma)$ (2) (vi) $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$ (2) (vii) $\alpha^{(\beta + \gamma)} = \alpha^{(\beta)} \cdot \alpha^{(\gamma)}$ (3)
- (viii) $(\alpha^{(\beta)})^{(\gamma)} = \alpha^{(\beta \cdot \gamma)}$

(ix) $\alpha \leq \beta \& \gamma \leq \delta \implies \alpha \diamond \gamma \leq \beta \diamond \delta$ (x) $\alpha \leq \beta \& \gamma < \delta \implies \alpha + \gamma < \beta + \delta$ (xi) $\underline{0} < \alpha \leq \beta \& \gamma < \delta \implies \alpha \cdot \gamma < \beta \cdot \delta$ (xii) $\underline{0} < \alpha \leq \beta \& \gamma \leq \delta \implies \alpha^{(\gamma)} \leq \beta^{(\delta)}$ (xiii) $\underline{1} < \alpha \leq \beta \& \gamma < \delta \implies \alpha^{(\gamma)} < \beta^{(\delta)}$ (xiv) $\alpha + \beta = \alpha + \gamma \implies \beta = \gamma$ (xv) $\underline{0} < \alpha \& \alpha \cdot \beta = \alpha \cdot \gamma \implies \beta = \gamma$ (xvi) $1 < \alpha \& \alpha^{(\beta)} = \alpha^{(\gamma)} \implies \beta = \gamma$

Assuming $\mathbb{N}^{\mathcal{M}} \neq \mathbb{O}^{\mathcal{M}}$, give counterexamples for each of the following claims:

 $\begin{array}{ll} (\mathrm{I}) & \alpha + \beta = \beta + \alpha \\ (\mathrm{II}) & \alpha \cdot \beta = \beta \cdot \alpha \\ (\mathrm{III}) & (\alpha + \beta) \cdot \gamma = \alpha \cdot \gamma + \beta \cdot \gamma \\ (\mathrm{III}) & (\alpha + \beta) \cdot \gamma = \alpha \cdot \gamma + \beta \cdot \gamma \\ (\mathrm{IV}) & (\alpha \cdot \beta)^{(\gamma)} = \alpha^{(\gamma)} \cdot \beta^{(\gamma)} \\ (\mathrm{V}) & \alpha < \beta \And \gamma \leq \delta \Longrightarrow \alpha + \gamma < \beta + \delta \end{array} \begin{array}{ll} (\mathrm{VI}) & \alpha < \beta \And \underline{0} < \gamma \leq \delta \Longrightarrow \alpha \cdot \gamma < \beta \cdot \delta \\ (\mathrm{VII}) & \alpha < \beta \And \underline{0} < \gamma \leq \delta \Longrightarrow \alpha^{(\gamma)} < \beta^{(\delta)} \\ (\mathrm{VIII}) & \alpha + \beta = \gamma + \beta \Longrightarrow \alpha = \gamma \\ (\mathrm{IX}) & \underline{0} < \beta \And \alpha \cdot \beta = \gamma \cdot \beta \Longrightarrow \alpha = \gamma \\ (\mathrm{X}) & \alpha^{(\beta)} = \gamma^{(\beta)} \Longrightarrow \alpha = \gamma \end{array}$

For $\gamma, \delta \in \mathbb{O}^{\mathcal{M}}$ we call γ a *left divisor* and δ a *right divisor* of the \mathcal{M} -ordinal $\gamma \cdot \delta$. If an \mathcal{M} -ordinal is a left (resp. right) divisor of each element of an \mathcal{M} -class $C \subseteq \mathbb{O}^{\mathcal{M}}$, then γ is said to be a *common left* (resp. *right*) *divisor* of C.

3. Prove the following for $\alpha, \beta \in \mathbb{O}^{\mathcal{M}}$:

- (a) If $\alpha \leq \beta$, there is a unique $\beta \alpha \in \mathbb{O}^{\mathcal{M}}$ with $\beta = \alpha + (\beta \alpha)$.
- (b) If $\beta \neq 0$, there are unique $\gamma, \delta \in \mathbb{O}^{\mathcal{M}}$ with $\alpha = \beta \cdot \gamma + \delta$ and $\delta < \beta$.
- (c) If an \mathcal{M} -ordinal is a left divisor of α and $\alpha + \beta$, then also of β .
- (d) Every non-empty \mathcal{M} -subclass of $\mathbb{O}^{\mathcal{M}} \setminus \{\underline{0}\}$ has a greatest common left divisor and a greatest common right divisor.
- 4. Define \mathcal{M} -relations $\langle \text{ on } \alpha \sqcup \beta \text{ and } \alpha * \beta \text{ and, after proving its existence, also on}$ $(\beta \rightarrow \alpha) = [f \in \{\beta \rightarrow \alpha\} : [\gamma < \beta : f(\gamma) \neq 0] \text{ is finite}]$

for all \mathcal{M} -ordinals α , β such that there exist "natural" order-preserving \mathcal{M} -bijections with order-preserving inverses

 $\alpha \stackrel{.}{\sqcup} \beta \twoheadrightarrow \alpha + \beta \,, \qquad \alpha \ast \beta \twoheadrightarrow \alpha \cdot \beta \,, \qquad (\beta \twoheadrightarrow \alpha) \twoheadrightarrow \alpha^{(\beta)} \,.$

Remark: You may use in 3. and 4. (without proof) that non-empty finite \mathcal{M} -subsets of \mathcal{M} -ordinals have maxima.