Let \mathcal{M} be a ZF°-universe and let E be the relation on $M=\underline{\mathcal{M}}$ given by $\epsilon^{\mathcal{M}}$.

1. Show that the following properties are all equivalent for transitive \mathcal{M}-sets γ on which E is well-founded:
(1) γ is an \mathcal{M}-ordinal.
(2) \sqsubseteq totally orders γ.
(3) β is transitive for all $\beta \in \gamma$.
(4) Exactly one of $\alpha \in \beta, \alpha=\beta, \beta \in \alpha$ holds for all $\alpha, \beta \equiv \gamma$.
2. Verify some of the following statements for $\alpha, \beta, \gamma, \delta \in \mathbb{O}^{\mathcal{M}}$ and $\diamond \in\{+, \cdot\}$:
(i) $\alpha+\underline{0}=\alpha \& \alpha \cdot \underline{0}=\underline{0} \& \alpha^{(\underline{0})}=\underline{1}$
(ix) $\alpha \leq \beta \& \gamma \leq \delta \Longrightarrow \alpha \diamond \gamma \leq \beta \diamond \delta$
(ii) $\underline{0}+\alpha=\alpha \& \underline{0} \cdot \alpha=\underline{0} \& \underline{1} \cdot \alpha=\alpha$
(x) $\alpha \leq \beta \& \gamma<\delta \Longrightarrow \alpha+\gamma<\beta+\delta$
(iii) $\alpha \cdot \underline{1}=\alpha \& \alpha^{(1)}=\alpha \& \underline{1}^{(\alpha)}=\underline{1}$
(xi) $\underline{0}<\alpha \leq \beta \& \gamma<\delta \Longrightarrow \alpha \cdot \gamma<\beta \cdot \delta$
(iv) $\underline{0}<\alpha \Longrightarrow \underline{0}^{(\alpha)}=\underline{0}$
(xii) $0<\alpha \leq \beta \& \gamma \leq \delta \Longrightarrow \alpha^{(\gamma)} \leq \beta^{(\delta)}$
(v) $(\alpha \diamond \beta) \diamond \gamma=\alpha \diamond(\beta \diamond \gamma)$
(xiii) $\underline{1}<\alpha \leq \beta \& \gamma<\delta \Longrightarrow \alpha^{(\gamma)}<\beta^{(\delta)}$
(vi) $\alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma$
(xiv) $\alpha+\beta=\alpha+\gamma \Longrightarrow \beta=\gamma$
(vii) $\alpha^{(\beta+\gamma)}=\alpha^{(\beta)} \cdot \alpha^{(\gamma)}$
(xv) $\underline{0}<\alpha \& \alpha \cdot \beta=\alpha \cdot \gamma \Longrightarrow \beta=\gamma$
(viii) $\left(\alpha^{(\beta)}\right)^{(\gamma)}=\alpha^{(\beta \cdot \gamma)}$
(xvi) $1<\alpha \& \alpha^{(\beta)}=\alpha^{(\gamma)} \Longrightarrow \beta=\gamma$

Assuming $\mathbb{N}^{\mathcal{M}} \neq \mathbb{O}^{\mathcal{M}}$, give counterexamples for each of the following claims:
(I) $\alpha+\beta=\beta+\alpha$
(VI) $\alpha<\beta \& \underline{0}<\gamma \leq \delta \Longrightarrow \alpha \cdot \gamma<\beta \cdot \delta$
(II) $\alpha \cdot \beta=\beta \cdot \alpha$
(VII) $\alpha<\beta \& \underline{0}<\gamma \leq \delta \Longrightarrow \alpha^{(\gamma)}<\beta^{(\delta)}$
(III) $(\alpha+\beta) \cdot \gamma=\alpha \cdot \gamma+\beta \cdot \gamma$ (VIII) $\alpha+\beta=\gamma+\beta \Longrightarrow \alpha=\gamma$
(IV) $(\alpha \cdot \beta)^{(\gamma)}=\alpha^{(\gamma)} \cdot \beta^{(\gamma)}$
(IX) $\underline{0}<\beta \& \alpha \cdot \beta=\gamma \cdot \beta \Longrightarrow \alpha=\gamma$
(V) $\alpha<\beta \& \gamma \leq \delta \Longrightarrow \alpha+\gamma<\beta+\delta$
(X) $\alpha^{(\beta)}=\gamma^{(\beta)} \Longrightarrow \alpha=\gamma$

For $\gamma, \delta \in \mathbb{O}^{\mathcal{M}}$ we call γ a left divisor and δ a right divisor of the \mathcal{M}-ordinal $\gamma \cdot \delta$. If an \mathcal{M}-ordinal is a left (resp. right) divisor of each element of an \mathcal{M}-class $C \subseteq \mathbb{O}^{\mathcal{M}}$, then γ is said to be a common left (resp. right) divisor of C.
3. Prove the following for $\alpha, \beta \in \mathbb{O}^{\mathcal{M}}$:
(a) If $\alpha \leq \beta$, there is a unique $\beta-\alpha \in \mathbb{O}^{\mathcal{M}}$ with $\beta=\alpha+(\beta-\alpha)$.
(b) If $\beta \neq \underline{0}$, there are unique $\gamma, \delta \in \mathbb{O}^{\mathcal{M}}$ with $\alpha=\beta \cdot \gamma+\delta$ and $\delta<\beta$.
(c) If an \mathcal{M}-ordinal is a left divisor of α and $\alpha+\beta$, then also of β.
(d) Every non-empty \mathcal{M}-subclass of $\mathbb{O}^{\mathcal{M}} \backslash\{\underline{0}\}$ has a greatest common left divisor and a greatest common right divisor.
4. Define \mathcal{M}-relations <on $\alpha \dot{\sqcup} \beta$ and $\alpha * \beta$ and, after proving its existence, also on

$$
(\beta \rightarrow \alpha)=[f \in\{\beta \rightarrow \alpha\}:[\gamma<\beta: f(\gamma) \neq \underline{0}] \text { is finite }]
$$

for all \mathcal{M}-ordinals α, β such that there exist "natural" order-preserving \mathcal{M}-bijections with order-preserving inverses

$$
\alpha \dot{ப} \beta \rightarrow \alpha+\beta, \quad \alpha * \beta \rightarrow \alpha \cdot \beta, \quad(\beta \rightarrow \alpha) \rightarrow \alpha^{(\beta)} .
$$

Remark: You may use in 3. and 4. (without proof) that non-empty finite \mathcal{M}-subsets of \mathcal{M}-ordinals have maxima.

