Let \mathcal{M} be a $(\mathbb{ZF}^{\circ} \cup \mathsf{INF})$ -universe. Denote by \in the relation on $M = \underline{\mathcal{M}}$ given by $\epsilon^{\mathcal{M}}$ and denote by \mathbb{O} the \mathcal{M} -class consisting of all \mathcal{M} -ordinals.

A cumulative \mathcal{M} -hierarchy is by definition a sequence $\langle V_{\alpha} \rangle_{\alpha \in \mathbb{O}}$ of \mathcal{M} -sets with the properties $V_{\beta-1} \sqsubseteq V_{\beta}$ for all $\beta \in \mathbb{O}_{+1}$ and $V_{\beta} = \bigsqcup V[\beta]$ for all $\beta \in \mathbb{O}_{\lim}$.

1. Let $\langle V_{\alpha} \rangle_{\alpha \in \mathbb{O}}$ be a cumulative \mathcal{M} -hierarchy and $\mathbb{V} = \bigcup_{\alpha \in \mathbb{O}} \mathbb{V}_{\alpha}$ with $\mathbb{V}_{\alpha} = \varepsilon^{-1}(V_{\alpha})$.

Prove the *Reflection Principle*, which states that for every S^{Set} -sentence π there is a closed and unbounded \mathcal{M} -class C_{π} in \mathbb{O} such that for every $\alpha \in C_{\pi}$

$$\mathcal{M}|_{\mathbb{V}} \vDash \pi \Leftrightarrow \mathcal{M}|_{\mathbb{V}_{\alpha}} \vDash \pi.$$

Hint: Convince yourself in a first step that for every \mathcal{M} -class function $f: \mathbb{O} \to \mathbb{O}$ the \mathcal{M} -class $\{\alpha \in \mathbb{O} : f(\gamma) < \alpha \text{ for all } \gamma < \alpha\}$ is closed and unbounded in \mathbb{O} .

2. Let \prec be a set-like \mathcal{M} -class relation \prec on C and call \mathcal{M} -class functions $r \colon C \to \mathbb{O}$ \prec -ranking if the strict inequality r(X) < r(Y) holds for all $X, Y \in C$ with $X \prec Y$.

Prove:

(a) \prec is well-founded on C iff there exists a \prec -ranking \mathcal{M} -class function r on C.

Assume from now on that \prec is well-founded on C. Prove the following:

- (b) The rank $\operatorname{rk}_{C,\prec}$ is the unique \prec -ranking \mathcal{M} -class function r on C such that for all $Y \in C$ and $\alpha < r(Y)$ there exists some $X \in C_{\preceq \infty Y}$ with $r(X) = \alpha$.
- (c) If \prec is transitive on C, then the transitive collapse and rank on C w.r.t \prec coincide, i.e. $t_{C,\prec} = \operatorname{rk}_{C,\prec}$.

Compute transitive collapse $t_{X, \in}$ and rank $\operatorname{rk}_{X^{\infty}, \in}$ for the following \mathcal{M} -sets X:

- (d) $X = \langle \underline{2}, \underline{1} \rangle$.
- (e) $X = \underline{2} * \underline{1}$.
- (f) $X = \mathsf{P}(\underline{3})$.

3. Let \mathbb{HF} be the \mathcal{M} -class consisting of all well-founded \mathcal{M} -sets X with $\mathrm{rk}(X) \in \mathbb{N}^{\mathcal{M}}$. Prove that $\mathcal{M}|_{\mathbb{HF}}$ is a (ZF° \cup POW \cup CHO \cup REG)-universe, i.e. it satisfies all ZFC axioms except INFINITY.

4. Prove that every \mathcal{M} -set is well-orderable if for every infinite \mathcal{M} -set X there is an injective \mathcal{M} -function $X * X \to X$. Conclude that ZF-universes \mathcal{M} satisfy CHOICE if and only if $X * X \simeq X$ for all infinite \mathcal{M} -sets X.