Let \mathcal{M} be a ZFC⁻-universe and denote by \in the relation on $M = \underline{\mathcal{M}}$ given by $\epsilon^{\mathcal{M}}$ and abbreviate as usual $\mathbb{W} = \mathbb{W}^{\mathcal{M}}$ and $\omega = \omega^{\mathcal{M}}$. Moreover, for every \mathcal{M} -cardinal κ , write \mathbb{H}_{κ} for the \mathcal{M} -class consisting of all well-founded \mathcal{M} -sets X with $|X^{\infty}| < \kappa$.

Define $\Box = \operatorname{It}_{\mu \mapsto \underline{2}^{\mu}, \omega}$ and $\lambda^{<\kappa} = \bigsqcup_{|\mu|=\mu < \kappa} \lambda^{\mu}$ for \mathcal{M} -cardinals λ and κ .

1. Let $\kappa > \omega$ be an \mathcal{M} -cardinal. Prove the following:

- (a) \mathbb{H}_{κ} forms an \mathcal{M} -set of cardinality $\underline{2}^{<\kappa}$.
- (b) \mathbb{W}_{κ} forms an \mathcal{M} -set of cardinality \beth_{κ} .
- (c) $\mathbb{H}_{\kappa} \subseteq \mathbb{W}_{\kappa}$ with equality if and only if $\kappa = \beth_{\kappa}$.
- (d) $\mathcal{M}|_{\mathbb{H}_{\kappa}} \models \mathsf{EXT} \cup \mathsf{EMP} \cup \mathsf{PAI} \cup \mathsf{UNI} \cup \mathsf{INF} \cup \mathsf{CHO} \cup \mathsf{REG} \cup \mathsf{REP}$ if κ is regular.
- (e) $\mathcal{M}|_{\mathbb{W}_{\kappa}} \vDash \mathsf{EXT} \cup \mathsf{EMP} \cup \mathsf{PAI} \cup \mathsf{UNI} \cup \mathsf{INF} \cup \mathsf{CHO} \cup \mathsf{REG} \cup \mathsf{POW}.$

2. Recursively define for all $n \in \mathbb{N}$ the *n*-th derivative of a normal \mathcal{M} -class function f on the \mathcal{M} -ordinals as $f^{(n)} = (f^{(n-1)})'$ for n > 0 and $f^{(0)} = f$.

Furthermore, let us call an \mathcal{M} -class C a Grothendieck universe in \mathcal{M} if it satisfies

- (i) C is transitive,
- (ii) $[X, Y] \in C$ for all $X, Y \in C$,
- (iii) $\mathsf{P}(X) \in C$ for all $X \in C$,
- (iv) $\bigsqcup_{i \in I} X_i$ for all families $\langle X_i \rangle_{i \in I}$ of elements of C with $I \in C$.

(a) Prove for regular \mathcal{M} -cardinals $\kappa > \omega$ the equivalence of the following statements:

- (1) $\underline{2}^{\lambda} < \kappa$ for all \mathcal{M} -cardinals $\lambda < \kappa$.
- (2) $\mu^{\lambda} < \kappa$ for all \mathcal{M} -cardinals $\mu, \lambda < \kappa$.
- (3) $\kappa = \beth_{\kappa}$.
- (4) $\kappa = \beth_{\kappa}^{(n)}$ for all $n \in \mathbb{N}$.
- (5) $\mathbb{H}_{\kappa} = \mathbb{W}_{\kappa}$.
- (6) \mathbb{W}_{κ} is a Grothendieck universe in \mathcal{M} .

Regular \mathcal{M} -cardinals $\kappa > \omega$ that satisfy these conditions are called *inaccessible*.

(b) Conclude that there exist ZFC-universes without inaccessible cardinals.

3. Show the following:

- (a) $\kappa \leq \underline{2}^{<\kappa} \leq (\underline{2}^{<\kappa})^{\operatorname{cof}(\kappa)} = \underline{2}^{\kappa}$ for every infinite \mathcal{M} -cardinal κ .
- (b) $\underline{2}^{<\kappa} = \kappa^{<\kappa}$ for every infinite successor \mathcal{M} -cardinal κ .
- (c) \mathcal{M} satisfies GCH iff $\underline{2}^{<\kappa} = \kappa$ for every infinite \mathcal{M} -cardinal κ .
- (d) If κ is a singular \mathcal{M} -cardinal such that there is some \mathcal{M} -cardinal $\lambda < \kappa$ with the property $\underline{2}^{\mu} = \underline{2}^{\lambda}$ for all \mathcal{M} -cardinals μ with $\lambda \leq \mu < \kappa$, then $\underline{2}^{\kappa} = \underline{2}^{\lambda}$.

4. Prove that for every infinite \mathcal{M} -cardinal κ there exists an \mathcal{M} -set $X \sqsubseteq \mathsf{P}(\kappa)$ with $|X| = \kappa^+$ such that $|U| = |V| = \kappa$ and $|U \sqcap V| < \kappa$ for all $U, V \vDash X$ with $U \neq V$.