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1 Logic

1.1 Boolean rings

The field Fy = {0, 1} with two elements is a natural choice to encode logical values.
Here 0 should be interpreted as “false” and 1 as “true”. More generally, the following
class of rings will turn out to be useful for the proof of independence results:

Definition 1.1.1. A boolean ring is a unitary ring R such that all its elements are
idempotent, i.e. 2 = z holds for all x € R.

Every boolean ring R can be equipped with a unary operation — (NOT), sixz binary
operations N\, V,—, <>, 1,] (AND, OR, THEN, IFF, NAND, NOR ), and a relation < given
for all x,y € R as follows:

r = r+1

T ANy = Ty
rVy = rT+y+ay
r—y = —rVy
rey = (=Y Ay —a)
r Ty = ~(z Ay)
rly = ~(z Vy)

z <y & r—=y=1

Exercise 1.1.2. Each of the operations =, +, -, A, V, —, <>, ] on a boolean ring can
be expressed using just the NAND operation T (e.g. mx = = 1 x).

Lemma 1.1.3. Every boolean ring R # 0 is commutative and has characteristic 2.

Proof. Let z,y € R. Using 2° = x, y* = y and 2° + zy + yz +¢° = (x+y)2 =x+vy
we get 2z = 0 with x = y and then in general zy = —yzr = yz. O]

Ring-theoretic ideals in boolean rings are order-theoretic ideals:

Lemma 1.1.4. A subset I of a boolean ring R is an ideal if and only if 0 € I and
rzyel=>xVyelandz<yel=xzecl foralz,yeR.

All prime ideals in a boolean ring R are maximal and an ideal I in R is mazximal
if and only if for all x € R we have the equivalence x & I < —x € I.

Proof. For every ideal I we have 0 € [ and x,y € [ implieszVy=ac+y+ay el
and x <y € [ impliesx =x(z »y) =z(-zVy) =z(-x+ay+y)=xy € l.

Conversely, let ] C RwithOe landx,ye [ =xVyelande<yel=x€el
for all x,y € R. Using Lemma 1.1.3 we see z +y = (z—y) V (—zy) so that it suffices
to check zy <y for all x,y € R in order to conclude that I is an ideal:

(zy) =y = =(zy) Vy = (ay+ 1) +y+ (zy+1)y = 1

This proves the first statement.


https://en.wikipedia.org/wiki/Ideal_(order_theory)

If I is a prime ideal and x & I, then -z € [ because of xt-x =0€ [. If [ is a
proper ideal and x € I, then -z & [ because of x + —x = 1 ¢ I. But ideals I with
the property = € [ < —x € I must be maximal, since then 1 = -z + x € [ + Rz for
every x € I. This proves the second statement, since maximal ideals are prime. [J

We will often use the following rules to calculate in boolean rings (see Problem
Set 1, Exercise 1 for the next two exercises):

Exercise 1.1.5. For every boolean ring R and u,v,z,y, 2 € R we have:

(i) A,V,+ are associative.
(ii) A,V are idempotent.
(iii) A,V,+, <>, T, ] are commutative.
(iv) 2A0=0,zAl=zand xVO=z,2V1=1
(v) A,V are mutually absorptive: x A (xVy)=x and 2V (z Ay) = .
(vi) De Morgan’s laws hold: —(z Ay) = -z V -y and —(z Vy) = -z A —y.

(vili) z+y=1&z=y.

(ix) (zAy) = z=2— (y — 2).

(x) @A-y)V(zAy)=z+y=(aVy A(zAy).

xi) z <y e rzANy=z & xVy=y S xzANy=0< y|z
(xii) (u<zandv<y) = (uAv<zAyanduVov<zVy).

)
)
)
)
)
1)
(vil) x = y =~y — .
)
)
)
)
i)
)

(xiii) (xrAy=0andzVy=1) = y=—a.

Exercise 1.1.6. Every boolean ring R is a boolean algebra (= complemented dis-
tributive lattice) w.r.t. (<,0,1,-,A, V), i.e. for z,y,z € R:

0
(1) @
(III) a:/\(y\/z) (xAy)V(zAz)andzV (yAz)=(zVy) A(zVz2).
vy z

< is a partial order on R with least element 0 and greatest element 1.

Ay is the infimum and x V y the supremum of {z,y} w.r.t. <.

—r=0and zV —-x =1.

Conversely, every boolean algebra (R, <,0,1,—,A,V) defines a boolean ring R
with addition and multiplication given for x,y € R by:

z+y = (A~y) V(T AY)
r -y = AN

Exercise 1.1.7. Using Lemma 1.1.4 and Exercise 1.1.6, the principal ideal generated
by an element y of a boolean ring R is easily seen to be {x € R: z < y}.



Beside F, the following is the prototypical example of a boolean ring:
Example 1.1.8. For every set X the power set P(X) is a boolean ring with

A+ B = (A\B)U(B\ A),
A-B = ANB

for all A, B € P(X). In this case (0,1,—,A,V,<) = (0, X, X\,N,U, ).
As a subring of P(X), every o-algebra on a set X is a boolean ring,.

Remark 1.1.9. The function P(X) — T, that associates with subsets of X their
characteristic functions is a ring isomorphism.

The NOT operation — for boolean rings induces a duality in the following sense:

Lemma 1.1.10. If a set R is a boolean algebra w.r.t. (<,0,1,—,A,V), then it is also
a boolean algebra w.r.t. (<P, 1,0,—,V,A) and — defines an involutive isomorphism
from (R7 Sa 07 17 ) /\7 \/7 <, =+, Ta i) to (Ra SOP’ 17 07 ™ \/7 /\7 +, 4, \1/7 T)

Proof. The first part is obvious. The last part easily follows with Exercise 1.1.5. [

Definition 1.1.11. The dual R of a boolean ring R is the boolean ring induced on
the set R by the boolean-algebra structure (< 1,0,-,V,A).

A subset F' C R is said to be a filter resp. an ultrafilter in the boolean ring R if F
15 an ideal resp. a maximal ideal in R .

Lemma 1.1.12. A subset F' of a boolean ring R is a filter if and only if 1 € F' and
r2yeF=xNyeFandx>yec F=x¢cF forallz,y € R.

A filter F' in a boolean ring R is an ultrafilter if and only if for all x € R we have
the equivalence v & F < —x € F.

Proof. This is Lemma 1.1.4 for R . O

Lemma 1.1.13 (Ultrafilter Lemma). Every proper filter in a boolean ring R is
contained in some ultrafilter.

Proof. This is a reformulation of the fact that every proper ideal in R is contained
in a maximal ideal. (The proof uses Zorn’s lemma.) O

To be able to assign boolean values to first-order formulas with quantifiers we will
mostly work with boolean rings that are complete in the following sense:

Definition 1.1.14. A boolean ring R is said to be complete w.r.t. U C P(R) if
every Y € U has an infimum N\Y and a supremum \/'Y w.r.t. <.
A boolean ring R is complete if R is complete w.r.t. P(R).

Example 1.1.15. The power set P(X) of any set X is a complete boolean ring with
infimum AY = (Y and supremum \/Y = |JY for every Y C P(X).
Every o-algebra is as a boolean ring complete w.r.t. the set of its countable subsets.



Example 1.1.16. In view of Exercise 1.1.6 every boolean ring R is complete w.r.t.
the set of its finite subsets Y = {y;,...,y,} C R with

/\Y =y N+ ANy, and \/Y =y V-V, .

As a consequence, every finite boolean ring is complete, in particular so is F,.

1.2 Formulas

We will now introduce a formal language that we will use later on to talk about “sets”
and, more generally, about elements of other mathematical structures.

Definition 1.2.1. Let S = (Sp, Sg,, Sk, Sc)ren be a vocabulary consisting of sets

S, = {L,— A} of logical symbols,
S of r-ary relation symbols,
Sk of r-ary function symbols,

that are pairwise disjoint and with Se C Spy.
Part of this vocabulary S are the sets

St = Sgro of truth symbols,

Sy = Sko of individual symbols,
Sy = Sr\Se¢ of variable symbols,
Sc of constant symbols.

The set T = U,en Tn of S-terms is with T_; = defined by

Ty = {(ZL‘):ZL‘ES[},
To = T
U {(t,....t)r €N ESp,, (t,...,t) €T\ Taa}.
The set F = J,, ey Fn of S-formulas with F_; = 0 is defined by

Fo = {(L}u{tts,....t,) :r €Nt € S, (tyy... t) €T},
Fn = Fua

{(_>>S07¢) () € Fo \}_72172}
{(/\,x,ap):xGSV,QOEJ:n,I\}"n,Q}.

S-terms t in T, \ T,_1 and S-formulas w in F, \ F,,_, have rank rk(t) = n and
rk(m) = n, respectively. They are called atomic if they have rank 0.

U
U

Whenever we want to stress the dependence on the vocabulary S, we will write Tg
and Fgq instead of T and F.

Using induction on the rank of formulas and terms we have the following important
statements about their unique decomposition:



Remark 1.2.2. Every S-term ¢ has the form (f, ¢, ...,¢,) with uniquely determined
r €N, € Sp, and S-terms ty,...,t, of strictly smaller rank than .

Similarly, every S-formula 7 occurs in exactly one of the forms (L), (,¢,...,t,.),
(=, 0,0), (A, z, ) with uniquely determined entries in either case, where ¢ and
are S-formulas of strictly smaller rank than 7.

The remark makes it possible to prove facts about terms and formulas by structural
induction and to define functions with domain 7 or F by structural recursion.

Definition 1.2.3. The symbols of an S-term t are recursively defined as

sym(t) = {£} Usym(t) U---Usym(t,) fort=(4t,...,t,) with £ € Sg,,

and the symbols of an S-formula 7 as

{1} form= (1),
sym(r) = {#} Usym(t;) U---Usym(t,) form=(8,t,...,t,.) with§ € Sg,,
{=}Usym(p) Usym(¢)  form= (=, 0,9),
{A\,z} Usym(p) form=(\,z,¢).

For X € {L,(R,7),(F,r), T,1,V,C} and — € {t,m} set symy(—) = sym(—) N Sx.
The free variables of an S-formula w are the elements of
symy, (7)) Usymyp(m)  for m atomic,
fvar(m) = fvar(p) Uftvar(yp)  for m = (—, ¢, 1),
far(o) \ {z}  for 7 = (A, 2,9).

We call S-formulas in Fg = {m € Fg : fvar(r) = 0} S-sentences and S-terms in
Ts = {t € Tg : symy(t) = 0} variable-free S-terms.

A set of S-sentences is called an S-theory.

To improve readability we occasionally use for tuples (s, sq,...,s,) the following
alternative notation as tree:

s, 5,
So

Example 1.2.4. With this notation the following are examples for S-formulas where
9071/] € ST7 x,y,z € SV7 ﬁr € SR,r: Ky € SF,r:

y\ /z A
Lo ot oy b
\\/ \/ VARY
Ty © r = - A
ﬁ \j‘/ \ / \A/ \ /

e L zhy (p—ofrlyxz)z)  AJ(L—=9) (0= hr) = Aylaz)



The S-formula 7 displayed rightmost has the set sym(7) = {—, ¢, 41,2, \, vy, 8, 2}
of symbols, symy, (7) = {x,y, z} of variables and fvar(m) = {¢, x, z} of free variables.
Here are some examples of S-terms:

T T

L\
| \/

T *1T (*1.7: *o *3I'y2)
The rightmost S-term ¢ has sym(t) = {*q, %1, ¥, *3,y, 2} and symy,(t) = {z,y, z}.

Given that the set S; = {L, —, A} of logical symbols at our disposal is very limited,
we introduce the following abbreviations, where @, 1) € Fg stand for formulas, x € Sy
for a variable, s,t € Tg for terms and ~ € Sy, for a binary relation symbol:

‘ﬁ for \_/ + for ‘ﬁ
- (p— 1) T -1
¥
o \e/ o - Y
\A/ for ‘ﬁ \v/ for \_>/
(eAY) (e =) (eVe) (=)
e v Y e P Y
. VoY o v Y
\<—>/ for \A/ \+/ for ‘ﬁ
(pev) (g2 Y)AW =) (p+v) (e o)
e v \/\/ e W \v/
\T/ for ‘ﬁ \¢/ for ﬁ‘
(eTv)  —(pAy) (i) —(pVvy)
x ﬁ‘ s 1
\/ \/
T @ A st ~
\V/ for L \7/ for L
Ve oAy sFt  as~t



Definition 1.2.5. Let S and S be two vocabularies with Sy, C Sy, and Spr C S}:’T
and Sk, C S;ir for all r > 0.

An S-S'-substitution is a function f: S;U Sy — Tg U Fg with f(S;) C Ty and
f(Sp) C Fy. For such f and each S-term t we define the S'-term

f t)—{ f(x) fort = () with x € Sy,
()= (8, fulte), .-, fu(tn)) fort = (8,14, ..., t,) with § € Sp, and r > 0,

and for each S-formula 7 the S'-formula

( (L) form= (1),
f(e) for m = (p) with ¢ € Sy,
fo(m) =9 (8, fults), ..., fu(t,)) form=(4,t1,...,t.) with § € Sg, withr >0,
(—>7f*(90)7f*(@/)) fOTTr: (_>790a¢)7
\ (/\>xvff(90)) Jorm= (/\,[B,ép),

where f* denotes the S-S'-substitution with f*(z) = (x) and f*(v) = f(v) for v # z.
If there exists an S-S'-substitution f with {v € S;USy : f(v) # (v)} C {vy,..., v}

and w is an S-formula, then we introduce the following alternative notation for f.(m):

7T(Ul/f(vl)a s >Us/f(vs))

Example 1.2.6. Let z € Sy, w,y,2 € S, ¢ € Sp, =,€ € Spo, § € Sp; and

T=(@=y—(p—=V,r=ty).

Assuming x # y, we get by substitution the S-formula

m(z/w,y/tr,p/wez) = (w=fr = (wez =\, o =ttx)).

The following notion of safe substitutability will later be used in the substitution
axioms of our formal proof system:

Definition 1.2.7. An S-Term t is said to be safely substitutable for an individual
symbol y € St in an S-formula 7 if

T 18 atomic
or m=(—,p,0) and t is safely substitutable for y in ¢ and ¢
or m=(\,z,¢) and
either y ¢ fvar(m)
or x ¢ symy(t) and t is safely substitutable for y in ¢.

Example 1.2.8. Let 7 be the formula
ANz Zy—=V,zZ#vy)

with x # y. Then z is not safely substitutable for y in 7. Note that

m(y/z) = (NN 2 Fy = Vo Z2).



1.3 Structures

So far formulas are nothing but compilations of symbols according to certain rules.
To give them a meaning we want to interpret them in so-called structures:

Definition 1.3.1. Let S be a vocabulary.

A boolean-valued S-structure M consists of

M an underlying non-empty set,

R an underlying non-trivial boolean ring,

S(}A a subset of Sy, of assigned variables,

tM o function M™ — M for every § € Sﬁ/ﬁ, = Sp,\ (Sv \ S‘/}/I),
tM a4 function M™ — RM for every 4 € Sprs

such that the definition of the value ™' € RM for S-formulas m with fvar(m) C S‘//Vl
given below makes sense, i.e. the boolean ring R must be complete w.r.t.

{{@Mﬁ ta € M} = (A, x, ) is an S-formula with fvar(m) C S{,Vl} .
We call M fully assigned or unassigned if Sp' = Sy or Si' = 0, respectively.
The value t"' € M in M of an S-term t with symy (t) C Sy is defined as

M= M8 fort= (8,4, ..., 1) with § € Sk,

The value 7' € R™ in M of an S-formula 7 with fvar(r) C Si' is

T

Aaea & Jorm=(N,z.9),

0 form= (1),
Mmoo ) W) form= (8,4, L) with § € Sy,
T MM for = (=, 0,1),
(

where My is the boolean-valued S-structure with the same underlying set and boolean
ring as M, S(}AZ = SY U} and with xMi(@) =a and iji =tM for all 4 # x.

We write M E n synonymously for m™' = 1. For sets of S-formulas I1 with free
variables in Syt we write M E 11 in case M E « for all w € II.

Given that M E 11, we call M a boolean-valued model of II.

We write M E w[Z/d)] for tuples T = (x4, ..., x,) of pairwise distinct symbols in Sy,
and @ = (ay,...,a,) € M" in case M% = (o (MG e B

We say that M has witnesses if for all S-formulas 7 of the form A ¢ and tuples
Z=(xy,...,z,) of pairwise dzstmct symbols in Sy \ {z} and @ = (a4,...,a,) e M"
there exists a € M such that 7' = goM(a a>

Boolean-valued S-structures M with R = Fy are called S-structures. Accordingly,
S-structures M with M E 11 are called models of 1.



For (sets of) S-formulas 11, II' we write I1 & I (resp. I1 E' 1I') if every fully
assigned model (resp. boolean-valued model) M of 11 is a model (resp. boolean-valued
model) of IU', too. We call 11 satisfiable (resp. boolean-valued satisfiable) if there is a
model (resp. boolean-valued model) of T1. Finally, 11 is said to be tautological (resp.

boolean-valued tautological ) if () F 1 (resp. O E' 1I).

S-formulas ™ and o are semantically equivalent (resp. boolean-valued semantically
equivalent ) if (7 <> o) is tautological (resp. boolean-valued tautological).

An r-ary relation $ on M is definable in M if there are finitely many elements
bi,...,by € M and an S-formula m with fvar(w) C {xy,..., %, Y1,--.,Ys} such that:

$ = {(al,...,ar) GMT:./\/li:ﬂ[(xl,...,mr,yl,...,ys)/(al,...,ar,bl,...,bs)}}

Remark 1.3.2. For every set M the r-ary relations § on M correspond to functions
£ M" — Fy via f(z) = 1 < z € 4. We will say £ is given by #, and vice versa.

With this terminology, for S-structures M and every § € Sg, the function #M s
given by an r-ary relation on M.

Lemma 1.3.3. Fvery S-structure has witnesses.

Proof. This holds because for every non-empty family (z;);c; of elements in F, there
exists j € I with A\,.; 2; = ;. ]
Example 1.3.4. The S-formula L is (boolean-valued) unsatisfiable and T (boolean-
valued) tautological. The S-formulas ¢, ==, (¢ V L), (T — ¢) are (boolean-valued)

semantically equivalent.
Remark 1.3.5. In every boolean-valued S-structure M, for ¢ € {V, A, <>, +, 1,1}
and S-formulas ¢, ¢ with fvar(¢) U fvar(y) C S3, we have:

()™M = =M

(po)™ = sOMOwM“
(Vo)™ = Ve ©™"

This easily follows with the calculation rules for boolean rings, e.g.:

(_'QO)M:(§0—>_L>M:(,DM—>J_M:_'QOM\/0:_'QOM

(o V)M = (mp = )M = ()™ = M = M = M = M v M

T

(Vo)™ = (CA 0™ = = Auert 9™ = Vieus ¢

Remark 1.3.6. S-formulas ¢ and v are (boolean-valued) semantically equivalent
iff ™ = ™M for every (boolean-valued) S-structure M by Exercise 1.1.5 (viii).

Lemma 1.3.7. The set Rg of the equivalence classes of S-formulas under semantic
equivalence 1s a boolean ring under the operations

—lp] =[] and [plo ] = [pody] for o€ {AV, = <+ 1,1}

10



Proof. The well-definedness follows from Remarks 1.3.5 and 1.3.6. n

Remark 1.3.8. More generally, let 11 be a set of S-formulas and let Ry be the set
of the equivalence classes of S-formulas under the equivalence relation that identifies
¢ and ¢ iff IT E (¢ <> ). Similarly as in Lemma 1.3.7, Ry naturally becomes a
boolean algebra, the so-called Lindenbaum-Tarski algebra of 1.

Lemma 1.3.9. Let M be a boolean-valued S-structure and m a mazimal ideal in R™.
If M has witnesses, then the S-structure M /m with M/m = M and

(g, omy) =1 & M (my, . m,) €m for b € S,

ttM/m(ml,...,mr) = tMimy,...,m,) forﬁES%/m:S%
satisfies M/mE 1 < 7™ & m for all S-formulas © with fvar(r) C S‘/}A/m = S

Proof. Note that R™M /m = F, canonically. We will show FMMWE | o Ma Zgm
for all S-formulas 7, tuples ¥ = (z4,...,x,) of distinct variable symbols in S}, and
a= (a,...,a,) of elements in M. To do this, we use structural induction on .
In case 7 = L or m = fit; ---t, or m = (¢ — ) the claim is obvious by induction
and because the canonical map R — RM /m — F, is a morphism of boolean rings.
It remains to consider the case 7 = A\, ¢, where we may assume x; # x for all j.
Since M has witnesses, there exists b € M such that

7 (@)

aM/ma 1 o SO(M/“‘)@Z) =1 foralla e M

(7,) z (&,x)
P @M(a,a) Zm foralae M < aMa = SOM(‘”’) gm. 0

The following result will be proved later as a consequence of Gédel’s Completeness
Theorem. It also has a short direct proof (see Problem Set 2, Exercise 1):

Theorem 1.3.10 (Compactness Theorem). An S-theory T is satisfiable if and only
if every finite subset of T is satisfiable.

Another corollary of the Completeness Theorem is the following:
Theorem 1.3.11. T F ¢ < T E ¢ for every S-theory T and S-formula .

In particular, S-formulas are tautological iff they are boolean-valued tautological.
Propositional logic

Definition 1.3.12. Fiz a vocabulary S = S™" consisting of a set Sy of countably
many truth symbols and with S, =0 for all v #0 and S, =0 for all r.

Remark 1.3.13. An S™"-structure M is determined by a set M together with the
function Sy~ — Fy given by the rule ¢ — M(p) = o™ (0).

11



The formal language of propositional logic is functionally complete in the sense
that every boolean function Fy — F, is given by an appropriate S* “~formula:

Theorem 1.3.14 (Functional completeness). For every function f: 5 — Fy with
n € N there exists an S*"-formula ™ with an n-element set symp(m) = {1, @0t
of truth symbols such that for all S*"-structures M

M= f(M(py),- ., M(gn)) .-

Proof. By induction on its support every function f: Fy — F, is seen to be polyno-

mial, i.e. there exist A; ;€ Fy with f(32; asei) = D20 D 1o < cicn My @iy * 0 Uiy -
Choosem =), >\ /\; ¢i,» where the “sums” are taken in some fixed order. U]
1

,,,,, i, 70
Proof (alternative). Let {xy,...,x,,} = f~'(1). Take for 7 = \/7", AV gpjij, where
¢ has to be read as ¢ and ¢' as ¢ and \/, as L and A\, as T. O

Remark 1.3.15. The first proof of Theorem 1.3.14 indicates how one can show that
{T,+, A} is a so-called functionally complete set of logical connectives, while the
second one indicates how this can be done for {—=, A} and {—, V}.

Definition 1.3.16. An S-formula 7 is called propositionally tautological if there is
a tautological ST -formula @ and an SPL_S-substitution f with T = fi(p).

Example 1.3.17. (A, ¢V-/\,p) with x € Sy, ¢ € Fg is propositionally tautological.

Remark 1.3.18. Whether a given formula is propositionally tautological can algo-
rithmically be verified by the method of truth tables or with other SAT solvers.

1.4 Theories

Recall that an S-theory is by definition just a set of S-sentences.

Definition 1.4.1. An S-theory with equality = is an S-theory over a vocabulary
with = € Sgo that contains at least the following S-sentences:

(R) For all x € Sy, an axiom of reflexivity
N r=x.
(S) For all x,y € Sy an axiom of symmetry
AxAy($Ey—>yE$).
(T) For all z,y,z € Sy an axiom of transitivity

NNANE=y— (y=2—a=2)).

12
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(C) Forallr €N, x1,91,...,2,,y. €Sy and (§,0) € (Sg, X {—=}) U (Sk, x {=})

an axiom of congruence
/\ml/\yl “'/\xr/\yr<x1 = — ( - (xr =Yr — (ﬂ‘rlxroﬁylyr))))

A boolean-valued S-structure M respects = if ="(my,my) =1 & m; = m,.

Lemma 1.4.2. Let M be a (boolean-valued) model of an S-theory T with equality =.
The (boolean-valued) S-structure M /- with R*= = R and M /- = M/, where ~
is given by my ~ mqy & EM(ml,mg) =1 and with

ﬁM/E([ml]"'W[mr]) = ﬁM(mla"'amT) fOTﬁ € SR,W

U (). my)) = [ ma. o my)] for s € S = S

respects = and satisfies aM~E = M for all S-formulas m with fvar(mw) C S{/\-A/: = S
In particular, M /- is a =-respecting (boolean-valued) model of T'.

Proof. To see that ~ is an equivalence relation use that M satisfies (R), (S), (T) and

for the well-definedness of '~ use that M satisfies (C). By structural induction we

obtain the identities 7= = 7™M, ]

Example: Commutative ring theory

Definition 1.4.3. Fiz a vocabulary S = S™™¢ consisting of sets

Sre = {=} of an equality symbol,

Sy of countably many variable symbols,
Se = {o0,1} of two constant symbols,

Sy = {®,0} of two binary function symbols,

and with Sp, =0 for all v # 2 and Sg, =0 for all r & {0,2}.

Definition 1.4.4. Let S = S™™¢. CRT (“commutative ring theory”) is the minimal
S-theory with equality = that contains the following S-sentences:

(1) For all distinct x,y,z € Sy and ¢ € {®,®} an axiom of associativity
Ne\JA((z0y) 0 2) = (w0 (yo2)).
(2) For all distinct x,y € Sy and o € {®,®} an axiom of commutativity
N\, (Toy) = (yor).
(3) For all x € Sy and (e,o) € {(@,®),(1,©)} an axiom of identity
N.(ecx)=x.
(4) For all distinct x,y € Sy an axiom of invertibility
/\z\/y(a: dy)=0.
(5) For all distinct x,y,z € Sy, an axiom of distributivity

N\ O (y @ 2)) = (O Y) @ (r© 2)).
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Example: Zermelo—Fraenkel set theory
Definition 1.4.5. Fiz a vocabulary S = S° consisting of sets

Sra = {=, €} of two binary relation symbols,
Sy of countably many variable symbols,

and with Sg, =0 for all v # 2 and Sc =0 and Sg, =0 for all v # 0.

Definition 1.4.6. Let S = S, ZFC is the minimal S-theory with equality = that
contains the following S-sentences:

(EXT) For all distinct x,y,v € Sy an axiom of extensionality
/\xAy(/\v(vevaey) —r=y).
(EMP) For all distinct x,v € Sy an axiom of empty set
Ve Avd x
(PAL) For all distinct x,y, z,v € Sy, an axiom of pairing
/\x/\y\/z/\v((v =xVuo=y) e vez).
(UNI) For all distinct x,y,v,w € Sy an axiom of union

/\x\/y/\v(\/w(v EWAWET) > VEY).

(REP) For alln € N and distinct x,y, u, v, 0,wy, . ..,w, € Sy and each S-formula ¢
with fvar(y) C {z,u,v,wy,...,w,} an axiom of replacement

Ao, N, Ne(AJu ez = A (0 = v =10)) —
V,A(vey <V, (uexAp)).

(POW) For all distinct x,y,u,v € Sy an axiom of power set

NV N (0 Sz = vey)

with short hand
vCax for A (uev—uex).
(INF) For all distinct x,y,u,v,w € Sy an axiom of infinity
V.@ex AN\, (vex = vU{v}ex))

with short hand
vU{v}ex for \ (wez AN\, (uew+ (uevVu=nu))),
gex for \/ (vexA\udv).
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(CHO) For all distinct x,y, u,u,v,w € Sy an axiom of choice
\/y/\v(vex—>\/ﬁ(uev/\uey)))
with short hand

afx  for N, (vex—\ uewv),
/\vi&wéxvﬂwzg for AN, ,(vexAwex)—
(v=wV A, (uev—=udw))),
\/!ugo for VA, (¢ u=1u) where o= (uevAuey).
(REG) For all distinct x,u,v € Sy an axiom of regularity

N(x# o=V (vexNznNv=0))

with short hand
r#@ for \[,vex,

rNuv=a for A, (uex— udv).

We will denote by XXX the minimal S-theory with equality = that contains all the
axioms of type XXX, so

ZFC = EXT UEMP UPAI UUNI UREP UPOW U INF UCHO UREG.

Example: Peano arithmetic

Definition 1.4.7. Fiz a vocabulary S = SV consisting of sets

Sra = {=} of an equality symbol,

Sy of countably many variable symbols,
Se = {0} of a zero symbol,

Sk1 = {S} of a successor symbol,

and with Sg, =0 for all v # 2 and Sg, =0 for all r > 1.

Definition 1.4.8. Let S = ST, PA (“Peano arithmetic”) is the minimal S-theory
with equality = that contains the following S-sentences:

(1) For all x € Sy, an axiom of non-circularity
N, Sz #0.
(2) For all distinct x,y € Sy, an axiom of unique successor
/\x/\y(Sx =Sy—z=vy).

(8) For alln € N and all distinct z,wy, ..., w, € Sy and each S-formula ¢ with
fvar(¢) C {x,w,,...,w,} an axiom of induction

ANy N, (P /@) NN = p(2/ST))) = A\, )

Example 1.4.9. The natural numbers can be regarded as a model N of PA, the
so-called standard model, with N =N, @" = 0, and $"(n) =n + 1 for all n € N.
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1.5 Formal proofs

One common approach to formalize the concept of a mathematical proof is to devise
rules specifying how formulas can be manipulated. After selecting several tautological
formulas as axioms, these rules are then used to infer new sentences from the axioms
and from the sentences of a given theory.

The rules and axioms should be sound in the sense that all inferred sentences are
satisfied in all models of the theory. Vice versa, completeness is desirable in the sense
that it be possible to infer all sentences that are satisfied in all models of the theory.

The proof system below — a Hilbert-style deduction system — will turn out to be
both sound and complete. It was chosen to resemble the Metamath Proof Explorer:

Definition 1.5.1. An S-rule (of inference) is a pair (Pre, Con) of sets of S-formulas.
In case Pre = {1, ..., ¢,} and Con = {4y, ..., 1} we write this rule as

P15 Ps

@Z}l)"'adjt'

The set Rg of S-rules of predicate calculus consists of the following S-rules:
(MP) For all p,v € Fg a rule of modus ponens:

o, (o =)
(0

(GE) For all ¢ € Fg and x € Sy a rule of generalization:
®

AV

The set Ag of S-axioms of predicate calculus consists of the following S-formulas:

(O) For every propositionally tautological p € Fg an axiom of tautology:
¥
(N\) Forallxz € Sy, ¢ € Fg with x & fvar(p) an axiom of universality:
(0= Ay ®)
(Q) Forallx € Sy, ¢,v € Fg an axiom of quantified implication:

(Aelp =) = (Ao = N\ V)

(/) Forall p € Fg, v € Sy, t € Tg with the property that t is safely substitutable
for x in ¢ an axiom of substitution:

(Ay o — w(x/t))
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For every S-theory T we recursively define the set T, = |J,,en T of S-formulas
provable from T by
TO - AS U T,
T, = T,_; UJ{Con : (Pre,Con) € Ry with Pre CT,,_;} forn>0.

n

Instead of ¢ € T, we usually write T'+ ¢. Whenever it seems necessary to stress
the dependence on S, we will use the notation g for F.

A T-proof of ¢ is a finite sequence (o1,..., 05 1,05 = @) of S-formulas such
that for every k € {1,...,s} either ¢, € Ty or there exist i,j € {1,...,k — 1} with
w; = (@; — @) or there emists i € {1,...,k — 1} and x € Sy with o, = )\, @;.

Using induction it is evident that an S-formula has a T-proof if and only if it is
provable from T'. Provable formulas are semantically correct in the following sense:

Lemma 1.5.2 (Soundness). For every S-theory and every S-formula ¢:
T =T E ©

Proof. This follows from T ' Pre = T'F’ Con for all (Pre, Con) € Rg together with
the fact that all the S-formulas in (O), (A), (Q), (/) are tautological. O

Definition 1.5.3. A vocabulary S is an extension by constants of the vocabulary S
if So € S¢, Sy = Sy, Spr = ER,T for all v and Sg, = EFJ for all r > 0.

The next lemma collects the important properties of the provability relation .

Lemma 1.5.4. For all S-theories T, T and p,v € Fg, x € Sy and every extension
by constants S of S we have the following properties for - =1tg:
) If p e Ag or o € T, then T + ¢.
YIfTF@ and T DT, thenT F .
) If T @ and T+ (@ — ), then T+ 1.
GE) If Tk o, then T = A\, ¢.
)
)

A
F

=
T =X X

CP) If T+ ¢, then there is a finite subset T of T with T - ¢.
FC) If T+, then T k5 ¢.

g

(
(
(
(
(
(

Proof. (AX), (FM), (MP), (GE), (FC) are clear.
To prove (CP), assume T F ¢. Then we can choose a T-proof (py,...,¢,) of ¢
and observe that T+ ¢ with T = {7m € T : m = ¢, for some k € {1,...,s}}. O

Lemma 1.5.5 (Generalization and specialization). For every S-theory T, all ¢ € Fg
and all x,y € Sy with y & fvar(\, ¢):

Thoex/y) & THEN ¢

Moreover, T+ N\, ¢ = T F o(x/t) whenever t € Tg is safely substitutable for x in .
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Proof. Apply (AX) with (A, ¢ = ¢(x/t)) € Ag and (MP) to obtain the last statement.
The implication < in the first statement is the special case t = y.

For = we get T'= A\, (x/y) from T+ ¢(z/y) with (CE), so T' = o(z/y)(y/z) = ¢
with the already shown <, and then finally 7'+ A ¢ using (GE) again. O

Lemma 1.5.6. Given an extension by constants S of S with infinitely many variable
symbols, we have for every S-theory T, all p € Fg with m-element set symq(¢)\ S =
{c1,..., ¢} of constant symbols and every m-element set {x,, ..., x,,} C Sy \fvar(yp):

T|_§§0 <~ TI_S /\xl"'/\xm90<cl/x17'-'acm/xm)

Proof. < holds due to (FC) and Lemma 1.5.5.

To verify = let (¢q,...,¢,) be a T-proof of ¢ over the vocabulary S and let
{c1,..., ¢} = (symp (o) U--- Usyme(p,)) \ Se be an n-element set. Given that
Sy is infinite, it is possible to choose an n-element set {y,,...,y,} C Sy of variable
symbols containing none of the symbols in symy, (¢;)U---Usymy, (@) U{z, ..., 2}

Let ¢z = Soi(cl/yla cee 7Cn/yn)' Then (@017 cee a,lvbs) 1S a T—pI’OOf of @(Cl/yb s acm/ym)
over S. Lemma 1.5.5 now yields T Fg /\I1 e /\wm oler/xy, .o e/ Th). ]

Lemma 1.5.7 (Deduction). For every S-theory T and ¢ € Fg and ) € Fg:

THE(p—=y) & TU{ptFy

Proof. If T F (p — ), then TU{¢} - (¢ — ) by (FM) and the following tree
diagram illustrates how ¢ is provable from 7' U {¢}:

e (p—=1)

N/

Conversely, assume 7' U {¢} F . It is then enough to show T F (¢ — ) for all
ke{l,...,s}inaTU/{p}tproof (¢,...,1,) of 1b. We fix k and let 7 = (¢ — 1;,).

In case ¢, = ¢ we have T+ 7 according to () and (AX).

In case ¢, € Tj, the following tree diagram shows how 7 is provable from 7"

(b — )
N/

In case there are i,j € {1,...,k — 1} with ¢; = (¢; = ;) we may inductively
assume T 15 = (¢ = ¥;), 9 = (¢ — 1;) and then see that 7 is provable from 7"

Uy,

o (Mo — )

N/

o m=(m—m)
N/

In case thereis ¢ € {1,...,k — 1} with ¢, = A %; we now may inductively assume

T

T F moo = (¢ — ;) and then see that 7 is provable from T as follows:
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Too = Ae oo (Moo = M) Tor = (¢ = Apw) (o1 = ™)

NS ~N S

o= (Ao = i) m = (T — T)

\/

s

Lemma 1.5.8 (Double negation). For every S-theory, all ¢ € Fg:
Ty & TE-mp

Proof. Let (v,9") € {(p, =), (==, ¢)}. Then we have T - (¢p — 9) using (AX)
such that (MP) yields T = T - /. O

1.6 Completeness theorem

In this section we prove Godel’s Completeness Theorem according to which a theory
(of predicate calculus with infinitely many variable symbols) is satisfiable if and only
if it is consistent. The idea of the proof we present here is due to Henkin.

Definition 1.6.1. An S-theory T is inconsistent if T'F L. It is consistent otherwise.
Lemma 1.6.2. For inconsistent S-theories T" we have T' - ¢ for all S-formulas .
Proof. By (AX) we have T + (L — ¢) € Ag such that (MP) gives T'F ¢. O

Lemma 1.6.3. For every S-theory T and all S-sentences ¢ we have:
(1) T is inconsistent iff T+ ¢ and T + —p.
(2) T U{p} is inconsistent iff T+ —p.
(3) If T is consistent, then so is T U {¢} or T'U{—¢}.

Proof. In (1) we have = by Lemma 1.6.2 and < follows from (MP).
(2) is the special case of Lemma 1.5.7 for ¢ = L.
(3) follows from (1), (2) and Lemma 1.5.8. O

Lemma 1.6.4. For every inclusion-wise totally ordered set P of consistent S-theories
their union T = |J P is again a consistent S-theory.

Proof. By (CP) it is enough to check that every finite subset T of 7" is consistent.
Since T' C |J P is finite and P is totally ordered, there is some T' € P with T C T".
The consistency of 7" then implies the consistency of T in view of (FM). O

Corollary 1.6.5. Every consistent S-theory is contained in a maximal consistent
(i.e. inclusion-wise mazximal consistent) S-theory.

Proof. This follows immediately from Lemma 1.6.4 with Zorn’s lemma. O]
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Lemma 1.6.6. For every maximal consistent S-theory T we have:
(1) T peT o pgT < T —p for all S-sentences .
(2) (p =) eT < (& T orp €T) for all S-sentences p,1).

(3) N, €T < \,~p €T for all S-sentences )\, ¢.
(4) o(z/t) € T for allt € Tg and S-sentences \,p € T.

Proof. (1) The first and third implication <= hold thanks to (AX), the second implica-
tion < is due to the maximality of 7" in view of Lemma 1.6.3 (3) and the implication
T+ ¢ = T —p holds because of Lemma 1.6.3 (1).

(2) If p,(p — 1) € T, then ¢ € T by (MP) and (1). This shows =. To check «
let o ¢ T or¢p €T. By (1) there is my € {—p, ¥} with g € T, som=(p =) €T
by (MP) because of (my — 7) € Ag.

(3) This follows from (1) and Lemmas 1.5.5 and 1.5.8.

(4) T+ p(x/t) by (MP) because of (A, ¢ — p(z/t)) € As. Now use (1). O

Definition 1.6.7. An S-theory T has witnesses if for every S-sentence \, o ¢ T
there exists some t € Tg with p(x/t) ¢ T.

An S-ultratheory is a mazimal consistent S-theory with witnesses.

Lemma 1.6.8. For every S-ultratheory T' and every S-sentence of the form A, ¢
we have N\, € T if and only if (x/t) € T for allt € Tg.

Proof. < holds, since T" has witnesses, and = follows from Lemma 1.6.6 (4). O
The following key result implies that every S-ultratheory is satisfiable:

Theorem 1.6.9. Let T be an S-ultratheory. Then the unassigned S-structure My
with My =Tg and
ﬁMT(ml,...,mr)zl & fmy---m, €T forte Sg,,
ijT(ml,...7mT) = fmy---m, fortiES%T
satisfies My Em < e T for all S-sentences .

Proof. Abbreviate M = My and let 7 be an S-sentence.
In case m = L we have M ¥ 7 and, since T is consistent, m ¢ T'.
In case m = ft, - - - t, we have M F 1 < w € T by definition.
In case m = (¢ — 9) we have by structural induction and Lemma 1.6.6 (2)

MET & MEpor MEY) & (pgToryveT) & nel.
In case m = A\, ¢ with induction, oM = o(z/t)™ and Lemma 1.6.8 we see

ME®T & MEp/t)forallt € Tg < p(z/t)eT forallte Ty & neT.
]
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Lemma 1.6.10. For consistent S-theories T and extensions by constants S of S
with infinite Sy and S¢ \ Se = {c, : \, ¢ € T} and pairwise distinct c,

T =TU{e(x/c,):\V,p T}
is a consistent S-theory.

Proof. To arrive at a contradiction assume T 5 L. In view of (CP) and Lemma 1.5.6
there are \/, ¢1,...,V, ¢, € T such that with ¢; = ;(z;/c,,) we have

T(m) = TU{@ZJiZZ’E{l,...,m}} |—S(m) 1 (*)

for m = n with S the extension by constants of S with Sém) \Sc ={cps--rcy, 1

Assuming that (x) holds for some m € {1,...,n} we get by Lemma 1.5.7
(m=1) Fgim

Lemma 1.5.6 yields 7= = gom—1) A, —¢m and therefore 7= = gom—1) -V, ©m
by Lemma 1.5.8. Another application of Lemma 1.5.7 then shows

7D = T D ULV, 9} Py L.
By induction this finally yields the contradiction 7" g L. O

We make the following definition so that the Completeness Theorem can be stated
in such a way that it applies both to propositional logic and to predicate logic:

Definition 1.6.11. A wvocabulary S has enough variables if Sy, is empty or infinite.

Theorem 1.6.12. Assume S has enough variables. For every consistent S-theory T
there is an extension by constants S of S and an S-ultratheory T with T C T.

Proof. We can recursively define vocabularies S™ and $™-theories 7™ C T™ with
SO — S, SgL) = { Cp :\/xgoGT("_l)},
TO = T, T = TV U {pefe,) V9 e TV

such that S™ is an extension by constants of ™~V with pairwise distinct symbols Cyp-
Using Lemma 1.6.10 (in case Sy is infinite) and Corollary 1.6.5 we can assume by
induction that every T™

Let S be the extension by constants of S with S¢ = |
It is enough to verify that T is an S-ultratheory.

is a maximal consistent S (")-theory.
N Sgl) and T' = |J, e ™.
By Lemmas 1.5.6 and 1.6.4 it follows that T is consistent. To prove the maximal
consistency, we must show that T U {¢} is inconsistent for every S-sentences o & T.
Choosing n € N such that ¢ € Fm, the maximal consistency of T™ shows that the
S™_theory T™ U {¢} and so by (FM), (FC) the S-theory T U {¢} is inconsistent.
Finally, T has witnesses, since for all S-sentences A, ¢ T we have \/ ,—p € T by
Lemma 1.6.6 (3), so ~p(z/c_,) € T and thus p(z/c_,) ¢ T by Lemma 1.6.6 (1). O
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Corollary 1.6.13. If S has enough variables, every consistent S-theory is satisfiable.
Proof. Combine Theorems 1.6.9 and 1.6.12. O]

Theorem 1.6.14 (Completeness Theorem). Assuming that S has enough variables,
for every S-theory T and all S-formulas ¢:

T & TEF o & TEp

Proof. By Lemma 1.5.5 we can assume that ¢ is an S-sentence.
The first implication = is Lemma 1.5.2 and the second implication = is clear.
To verify the missing implication T'F ¢ = T F ¢ assume that T I/ ¢. Then
Tt/ == by Lemma 1.5.8, so by Lemma 1.6.3 (2) T'U {—¢} is consistent and thus
by Corollary 1.6.13 satisfiable, i.e. T . m

As a corollary, we can now prove the Compactness Theorem:

Proof of Theorem 1.3.10. We may assume that S has enough variables, since an

S-theory is satisfiable iff it is satisfiable as an S-theory for all S with Sy D Sy.
Now, according to (CP), T is consistent iff every finite subset of T is consistent.

But by Theorem 1.6.14 a theory is consistent iff it is satisfiable. m

Proof of Theorem 1.3.11. Similarly as in the previous proof, we may assume that S
has enough variables. But then Theorem 1.3.11 is part of Theorem 1.6.14. O]

Theorem 1.6.15. Assume Sy, is infinite and S has only countably many symbols.
Then every consistent S-theory T admits a model whose underlying set is countable.

Proof. Let T be an S-ultratheory constructed as in the proof of Theorem 1.6.12.
Then the underlying set 75 of the model Mz of T D T is countable. O

Example 1.6.16. Let S = S7*"°. Theorem 1.6.15 and the Compactness Theorem
(Theorem 1.3.10) imply the existence of countable S-structures that satisfy all the
S-sentences satisfied by the natural numbers but contain “infinite” elements:

Let Th(N) be the set of all S-sentences satisfied in the standard model N of PA (see
Example 1.4.9). We consider an extension by constants S of S with S\ S¢ = {c}
and T = Th(N) U {¢, : n € N} where ¢, = ¢ # t,, with t, =@ and t,, = St,,_;.

Clearly, for every finite subset 1" of T, the standard model N of PA becomes a model
of T by choosing ¢ = max{n € N: ¢, € T} + 1. So, according to Theorems 1.3.10
and 1.6.15 there is a model A/ of T whose underlying set is countable. In particular,
N is a model of Th(N) with an element ¢V, which cannot be obtained from @ by a
finite number of applications of the successor operation sV,
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2 Set Theory

2.1 Universes

Just as commutative ring theory studies =-respecting models of CRT (Definition 1.4.4)
we regard set theory as the study of models of ZFC (Definition 1.4.6).

Definition 2.1.1. Let T' C ZFC be an Sset—theory with equality =.

A T-universe is an unassigned =-respecting model M of T, where the elements of

M are called M-sets and the subsets of M definable in M are called M-classes.

To begin with, let us unravel what the satisfaction of the cryptic axioms of ZFC
means for T-universes in common mathematical language:

Remark 2.1.2. A T-universe M consists of a set M = M together with a binary
relation £ given by ™, which in case ZF° = EXT UEMP UPAI UUNI UREP C T has
the following properties:

(1) EXTENSIONALITY. The following function M — P (M) is injective:
X—=e'X)={VeM:VeX}
(2) EMPTY SET. There exists 1 € M with
e () = 0.
(3) PAIRING. For all X|Y € M there exists [X,Y] € M with
e ((X,Y]) = {X,Y}.

(4) UnION. For all X € M there exists | | X € M with
e (UX) = e '(X)
where | |C={V € M :V W for some W € C} for M-classes C'.

(5) REPLACEMENT. For every X € M and all partial functions f: e '(X) - M
definable in M there exists f[X] € M with

e (fIX]) = f(e(X)).
In case ZF° UPOW C T the binary relation £ on M will additionally satisfy:
(6) POWER SET. For all X € M there exists P(X) € M with
e '(P(X)) = P(E (X))

where P(C) ={V e M:UeV =UecCforal Ue M} for M-classes C.
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In case ZF°UINF C T

(7) INFINITY. There exists an inductive X € M, i.e. with the properties 0 = 4 £ X
and V4 1= |[V,[V,V]] € X for all V € e”'(X).

In case ZF° UCHO C T

(8) CHOICE. For all X € M such that e”'(V) with V € £'(X) are non-empty
and pairwise disjoint there exists Y € M with

E'V)Ne (V)| =1 forall V e e 1(X).

And finally, in case ZF° UREG C T*:
(9) REGULARITY. For all X € M with X # [ there exists V € £~ '(X) with
e 'V)Nne (X)) = 0.

For X € M the elements of £ (X) are called M-elements of X.
We will say that an M-class C' forms an M-set if there exists an M-set X such
that C' = £ '(X). In this case we write [C] for X.
We use the common abbreviations
ZF~ = 7ZF° UPOW U INF , ZFC™ ZF~ UCHO,
ZF = 7ZF UREG, ZFC = 7ZFC™ UREG.

Remark 2.1.3. For all M-sets X we have [E_l(X)] =X.

Convention 2.1.4. From now on, fix a ZF°-universe M, abbreviate M = M and
denote by £ the relation on M given by .

2.2 Elementary sets

To construct many elementary sets, the assumption that M merely is a ZF°-universe,
which does not necessarily satisfy POWER SET, INFINITY, CHOICE and REGULARITY,
is enough.

Definition 2.2.1. Let X, Y, Vi,...,V, be M-sets and let C' be an M-class.

We introduce the following notation for the M-set'Y listed in the right column of
the table whenever E_l(Y) equals the corresponding entry in the left column:

= (Y) Y
{(VeM 3 [V Do ]
(Vee(X):-- }| [VEX: - ]
{(Vi,Va, ... V3 [V Ve, o V]

Instead of | |[V1, Va, ..., V,] we usually write Vi UV, L ---UV,.
X C C means (X)) C C and in this case X is called an M-subset of C.
X CY means X T e '(Y) and in this X is called an M-subset of Y.
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Lemma 2.2.2. For M-sets Xy,...,X, there exists an M-set [X;,..., X,].

Proof. We get M-sets [X;] = [X;, X;| using PAIRING. Given M-sets [X,..., X, 4]
and [X;] PAIRING and UNION yield the M-set

| X0 X (X)) = (XL X)L
Now use induction. O
Lemma 2.2.3 (SEPARATION). For M-sets X and M-classes C' there is an M-set
Xnc=[VeX:ve(].
Proof. Let 7 be an S*'-formula, fvar(m) C {v,wy,...,w,}, Wi,..., W, € M with
C={VeM: MEx|(v,w,... w,)/(V,W,... , W)}
Take ¢ = ((u=v Avex) A7) with distinct u,z € S5\ {v,w;, ..., w,}. Then

f = {(U,V)€M2:./\/ll=go[(u,v,x,wl,...7wn)/(U,V,X,W1,...7Wn)]}
= {(V,\V)eM*:VeXandVeC}

is a partial function e~ '(X) - M definable in M. REPLACEMENT now yields the
M-set f[X], which has the desired property. H

Lemma 2.2.4 (DIFFERENCE). For M-sets X and M-classes C' there is an M-set
X\C=[UeX:UgC].
Proof. The set M\ C' is an M-class, since C'is one. So take X \C' = XMN(M\C). O
Lemma 2.2.5 (INTERSECTION). For non-empty M-classes C' there is an M-set
[]c = [V:VeWforal WeC].

Proof. Theset D ={V € M :V W for all W € C} is an M-class, since C is one.
Take [ |C' = X M D for some arbitrarily chosen X € C. ]

Definition 2.2.6. We will write X \Y for X ~ & (Y and [ X for [1e”"(X).
Instead of [ [V, Vs, ..., Vo] we usually write VA VoM1--- MV,
The (ordered) M-pair formed by M-sets X and Y is defined as

(X,Y) = [X,[X,Y])
and then recursively the M-tuple of M-sets X;,...X,, as
(Xq,..., X)) = ((Xy,..., X1, X,) .
For M-classes C' and D we define their cartesian product as the M-class
CxD = {(U,V):UeCandV € D}.
We also write X * D for e (X)) *x D and C Y for Cx ' (Y).
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Lemma 2.2.7 (CARTESIAN PRODUCT). For M-sets X and Y there is an M-set
XY = (X)xe (V).

Proof. Since the functions fy;: € '(Y) — M, V + (U, V), are definable in M, we
firstly get for each U £ X an M-set f;[Y] = [(U,V) : V 2 Y] by REPLACEMENT.
Secondly, g: " (X) — M, U + fy[Y], is also definable in M such that applying
REPLACEMENT again yields the M-set g[X]. Finally, take X «Y = | | g[X]. O

Exercise 2.2.8. Assuming M satisfies POWER SET, find another proof of CARTE-
SIAN PRODUCT that uses UNION and SEPARATION but not REPLACEMENT.

Definition 2.2.9. The disjoint union of M-sets X and Y is
Xuy = ([0 *X)u([1]+Y)
where 0 = A and 1 = [0]. We then define for M-sets X,,..., X, and X € {1}
XX, = (X1 X, )=X,.

Relations

Definition 2.2.10. We call a relation $ between M-classes Cy,...,C,,, i.e. a subset
of Cy x ---x C,, an M-class relation if it is definable in M. Whenever the M-class

<$> = {<U177Un> : (Ul,-..,Un) S $}
forms an M-set we say that $ forms an M-set and then write [$] for [($)].

As to be expected, an M-class function is an M-class relation that is a function.
Lemma 2.2.11. An M-class function f: C — D forms an M-set if and only if its
domain C forms an M-set. In this case, its image f(C) also forms an M-set.

In particular, for every M-set X the restriction f|E71(X) forms an M-set f|x.
Proof. 1t [C] = X for some M-set X, then [f(C)] = f[X]| by REPLACEMENT and
then [f] = (X * f[X]) 1 (f) by CARTESIAN PRODUCT and SEPARATION.

For the converse note that p: (f) — C, (U, V) + U, is definable in M and has
image C. So REPLACEMENT yields [C] = p[Z] if [f] = Z for some M-set Z. O

Definition 2.2.12. M-subsets ¢ of X;*---xX,, are called n-ary M-relations between
the M-sets X;,...,X,,. In case X = X| =--- = X,, we speak of M-relations on X.

Observe that ¢ gives rise to an M-class relation
<A> — {(U]_,...,Un> . <U]_7...,Un> EO}.
In case & is a binary M-relation we write U oV instead of (U, V') £ ¢ and we say

that ¢ is injective, functional etc. if & has the respective property.

Given that ¢ is a binary M-relation on X we call ¢ reflexive, transitive, a partial
order, an equivalence relation etc. if the relation & has the respective property.

Accordingly, an M-element of X is said to be a minimal element, least element,
greatest element etc. w.r.t. o if it has the respective property w.r.t. $.
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The main purpose of the next exercise is to introduce some notations:
Exercise 2.2.13. Let fC X %Y and g C Y % Z be M-relations and A C X.

(i) IDENTITY ON X. The identity on £~ ' (X) forms an M-set
idy = [(U,U): U e X].
(ii) DOMAIN OF f. The domain of f forms an M-set
dom(f) = [U:(U,V) e [].
(iii) IMAGE OF f. The image of f forms an M-set
img(f) = [V :(U,V) E f].
(iv) INVERSE OF f. The inverse relation of f forms an M-set
=1y (U V) e fl.
(v) RESTRICTION OF f. The restriction of f to £ '(A) forms an M-set
fla = WU V)ef:UEA]
(vi) IMAGE OF A UNDER f. The image of £ *(A) under f forms an M-set
f1A] = img(fla)-
(vii) COMPOSITION OF f AND g. The composition g o f forms an M-set

gof = [UW): (U, V)e fand (V,W) e g].

Definition 2.2.14. We write f: X — Y to indicate that [ is an M-function, i.e.

a functional M-relation, with dom(f) = X and img(f) C Y.
We say that f: X — Y is surjective, if img(f) =Y.
We say that f: X — Y is bijective if f is injective and surjective.
For M-functions we also write f(U) =V instead of U o V.

Lemma 2.2.15 (QUOTIENT SET). For each equivalence relation ~ on an M-set X

there exists a surjective M-function

forX =X/, Us~U=[V:U~V].

Proof. Clearly, F: e '(X) — M, U — ~[U], is definable in M such that according

to Lemma 2.2.11 we can take f_ = [F].
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Definition 2.2.16. For M-sets X and M-classes D we define the M-class
{X - D} = {f e M: fisan M-function X — D} |

~

where f: X — D means that dom(f) = X and img(f) C D.

M-functions X € {I — M} are called families of M-sets. Such families X will
be often written as (X;);=; where X; = X (i).

Lemma 2.2.17 (UNION OF FAMILIES). For every family (X;);=; of M-sets there
exist M-sets

L |X = |[Xiciel] and | |X; = | |[li]*X,:ie1].
el el
Proof. By IMAGE we have [X; : i € ], so the first statement follows with UNION.
The function ' (I) — M given by i + [i] * X; is definable in M, hence forms an

M-set Y according to Lemma 2.2.11. Apply the first statement to the family (Y;);z;
to get the second statement. O]

Lemma 2.2.18 (FUNCTION SET). Assume M satisfies POWER SET. For all M-sets
X and Y there exists an M-set

(X = Y] = [f: fis an M-function X — Y.

Proof. 1t is not hard to see that C' = {f : f is an M-function X — Y} is an M-class.
Using POWER SET and SEPARATION we can take [X — Y| =P(X xY)NC. O

Lemma 2.2.19 (PRODUCT OF FAMILIES). Assume M satisfies POWER SET. For
every family (X;);z; of M-sets there exists an M-set

X X, = |f:(f)ies is a family of M-sets with f; £ X; for all i £ I] .
=l

Proof. C ={f e€{l - M}: f;e X, foralli e I} is an M-class. With UNION OF
FAMILIES, FUNCTION SET and SEPARATION X, , X; = [ — | |z, X;] N C. O

Entering the universe

With all these constructions it now is straightforward to mimic “inside of M” state-
ments and proofs about sets to obtain corresponding results for M-sets. For instance,
we can formulate and prove an analog of the Knaster—Tarski Theorem for M-sets:

Definition 2.2.20. (X, <) is called a complete lattice in M if < is a partial order
on X such that every M-subset Y T X has an infimum and a supremum w.r.t. <.

Example 2.2.21. If P(X) exists, then (P(X),C) is a complete lattice in M, where
for each Y C P(X) its infimum is [ Y and its supremum | | Y.

Lemma 2.2.22 (Knaster—Tarski). Let (X, <) be a complete lattice in M, f: X — X
preserve <, and X' =[x £ X : f(x) = z]. Then (X7, <) is a complete lattice in M.

Proof. This is proved similarly as Problem Set 3, Exercise 4. m
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2.3 Ordinal numbers

Natural numbers are useful for counting because they have the property that whenever
finitely many things have been labeled by natural numbers (say with 0,1,2,... n)
there is a unique smallest natural number that comes next (here n + 1).

Trying to find an analog of natural numbers inside M readily leads to the notion
of M-ordinals. The principle of induction even works for more general M-classes,
which are called well-founded.

Well-founded relations

Definition 2.3.1. A binary M-class relation < on C' is called well-founded on C' if
every non-empty M-class C' C C has a <-minimal element, i.e. an element Y € C’
such that there is no X € C" with X < Y.

A binary M-class relation < on C' is called set-like if
Cox ={UeC:U=<X}
forms an M-set for all X € C.

Theorem 2.3.2 (Well-founded induction). Let < be a well-founded M-class relation
on 0 and let C' C Q be an M-class. Then C' = Q) if for all 5 € Q2:

0 CC = BeC

Proof. For every <-minimal element $ in the M-class ©\ C' we must have Q5 C C,
so B € C by assumption, which is absurd. O

Ordinals
Definition 2.3.3. An M-class C is transitive if « € § = o € C for every 5 € C.
An M-set X is transitive if £ (X) is transitive.
A binary M-class relation is a well-order if it is a well-founded strict total order.
M-ordinals are transitive M-sets v well-ordered by [(a, B) : a E B E 7).

We will denote by QO the M-class of all M-ordinals equipped with the M-class
relation < given by a < f < a E .

An M-class ) is called an initial segment of O if either Q = O or Q = O, for
some M-ordinal c.

Remark 2.3.4. An M-set X is transitive iff | [ X C X iff Y C X for all Y £ X.
If an M-set X is transitive, so is X U [X] and, if it exists, P(X).
If C' is a non-empty M-class of transitive M-sets, then | |C and [ | C are transitive.

Example 2.3.5. 0=, 1=0U10], 2=1U[1], ... are M-ordinals.
2 LI [[1]] is transitive but not an M-ordinal.
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We will now show step by step that the M-class @ of all M-ordinals is transitive
and that < is a set-like well-order on it.

Lemma 2.3.6. O is transitive.

Proof. Let a  f € 0. We need to show a € Q. Since £ well-orders 3, it also
well-orders a because of a C 8 by transitivity of 8. To verify that « is transitive
take v £ 0 E a. Firstly, the transitivity of g yields 6 £ # and then also v £ § such
that, secondly, the transitivity of £ on [ implies v £ a as required. O]

Corollary 2.3.7. The relation < on Q is set-like. More precisely, for all o € O

a=[y:v<al = [0].

Proof. Use EXTENSIONALITY and the fact that M-elements of M-ordinals are again
Me-ordinals according to Lemma 2.3.6. O]

Lemma 2.3.8. For M-ordinals o and [ the following hold:

(1) a < B iff a © B and in this case a = min(f \ «).
(2) a C 5 orBLCa.

Proof. (1) = holds by transitivity of 5 and since < is trichotomous on .

For < assume o T 8 and let 7 = min(5 \ «). Clearly, 7 < 8 such that it suffices
to show o = ~. Since 7 is also an M-ordinal by Lemma 2.3.6 and f is transitive,
this is equivalent to d < a < ¢ <« for all 6 < 5. Now ¢ < « implies 6 < a by the
minimality of 7. Vice versa, 6 < o and d £ v would lead to v < § < o and then to
the contradiction v < a, since < is a strict total order on .

(2) Clearly, v = M is an M-ordinal with v C « and v C §. If both of these
inclusions were proper, we would have the contradiction vy < aM g =+ by (1). O

Corollary 2.3.9. The relation < on Q s a strict total order.

Proof. Let o, B,v € O.
By Lemma 2.3.8 (1) we have a £ aand a < f < v = a < 7.
By Lemma 2.3.8 (1) and (2) exactly one of @ = 8, @ < 3, < « holds. ]

Lemma 2.3.10. For non-empty M-classes C' of M-ordinals their intersection [ |C
1s an M-ordinal, which is the minimum of C.

Proof. Tt follows from [ |C C « for every a € C that [ |C is an M-ordinal and then
by Lemma 2.3.8 that it is the infimum of C' in . Hence, it is enough to check that
C has a minimum. To do this, pick some v € C. If v is not a minimum of C, then
[ < v:a € C]=~MNC is non-empty and the minimum § of M C is also the
minimum of C": Indeed, if we had § £ « for some o € C', by Corollary 2.3.9 we would
have o < 9, then o < v because of § < 7, and thus a e y M C. O
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Corollary 2.3.11. The relation < on O is a set-like well-order.
Proof. Combine Corollaries 2.3.7 and 2.3.9 and Lemma 2.3.10. O]

Remark 2.3.12. O does not form an M-set «, since otherwise we would have o € O
by Lemma 2.3.6 and Corollary 2.3.11, i.e. the contradiction o < a.

Hence, M does not form an M-set either (otherwise so would O = M M Q).

Lemma 2.3.13. For M-sets X of M-ordinals their union | | X is an M-ordinal,
which is the supremum of X in Q.

Proof. Clearly, | | X is transitive and by Corollary 2.3.11 well-ordered, so | | X € O.
Lemma 2.3.8 implies that | | X is the supremum of X. ]

Lemma 2.3.14. FEvery transitive M-subclass C' of O is an initial segment.

Proof. 1If C' = O, there is nothing to show. Otherwise C' C O_, for « = min O \ C.
Indeed, v € C' and a < v would imply a < v and then o € C' by transitivity of C.
It follows that C' forms an M-set a1 C, which is transitive and well-ordered by <,
i.e. it is an M-ordinal. Now use Corollary 2.3.7. O

Successor and limit ordinals

There are two fundamentally different types of ordinals: successor and limit ordinals.
The existence of limit ordinals will only be guaranteed by INFINITY.

Lemma 2.3.15. For every M-ordinal o also o+ 1 = a U [a] is an M-ordinal and
a+1=[Hr€e0:v>a}, ie. a+1 is the least M-ordinal greater than .

Proof. Since « is transitive, so is a4 1. It is also straightforward to see that o + 1
is well-ordered by £ with maximum «, since « is well-ordered by E.

The second part follows from Lemma 2.3.10 since, as a consequence of Lemma 2.3.8
and Corollary 2.3.9, o + 1 is the infimum of {y € @ : v > a} in O. O

Definition 2.3.16. An M-ordinal 3 is a successor ordinal in M with predecessor
B—1=aif B=a+1 for some M-ordinal oc. Otherwise 5 is a limit ordinal in M.

Write O, for the M-class of all successor ordinals in M.

Write Qy,, for the M-class of all limit ordinals in M.

Example 2.3.17. 0 is a limit ordinal.

1=0+1,2=1+1, ... are successor ordinals.

Lemma 2.3.18. An M-ordinal B is a successor ordinal iff 5 = (|| 5) + 1.
An M-ordinal B is a limit ordinal iff = |B iff a+1 < B for all a < .
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Proof. Clearly, | |8 < 8 < (| |5)+1 by Corollary 2.3.7 and Lemmas 2.3.8 and 2.3.13.
If | |8 < B, then (| |B) 4+ 1= by Lemma 2.3.15. If f =a + 1, then | |8 = a < f.

For all @ < 8 we have a + 1 < 8 by Lemma 2.3.15 where the inequality always is
strict for limit ordinals 8 and is an equality for successor ordinals § with a = f—1. [

Theorem 2.3.19 (Transfinite induction). Let Q2 be an initial segment of O and let
C CQ be an M-class. Then C = Q) if the following hold:

(i))VeQnNO,,:(—-1eC = pel)
(1)) VB eQNOy, : (Va<f:ael) = peC)

Proof. 1f Q\ C were non-empty, it would have a minimum S. So if  were a successor,
then § — 1 € C contradicting (i). By (ii) # cannot be a limit ordinal either. O

Normal functions

Many important M-class functions defined on the M-ordinals are order-preserving
and continuous (w.r.t. order topology). Such functions are called normal.

Convention 2.3.20. For this subsection fix an initial segment €2 in O.

Definition 2.3.21. An M-subclass C' of Q is said to be closed in Q if | | X € C for
every non-empty M-set X T C with | | X € .
As usual, if C forms an M-set, then this M-set is called closed in €, if so is C.

An M-class function f: Q — O is normal if it preserves < and commutes with | |,
i.e. f(L1X)=L1f[X] for all non-empty M-sets X C Q with | | X € Q.

Whether a given function is normal can be checked with the following criterion:

Lemma 2.3.22. An M-class function f: Q — O is normal iff f(—1) < f(B) for
successor ordinals 5 € Q and f(B) = || f|B] for limit ordinals § € 2\ {0}.

Proof. = We get f(6—1) < f(B) for successor ordinals 3, since f is order-preserving,
and f(B) = || f[B] for limit ordinals 5 € Q \ {0}, since then g = | | 5.
< To verify that f preserves < we apply transfinite induction to the M-class

C={0eQ: fla) < f(B) for all a < S}.

Let a < f € Q. We must show f(a) < f(B). If 8 is a successor ordinal, then this
holds by assumption, if « = f—1, and by induction, if « < —1. If § is a limit ordinal,
then ov < @ + 1 < 8 such that by assumption f(a) < f(a+1) < || f[8] = f(B).

It remains to verify f(| | X) = || f[X] for non-empty M-sets X of M-ordinals in
for which the supremum 8 = | | X of X belongs to Q. If § £ X, then f(8) =| | f[X]
because f is order-preserving. If § & X, then [ is a limit ordinal different from 0
and X is unbounded in 3 such that f(8) = | | f[8] = || f[X], where the first equality
holds by assumption and the second one uses again that f is order-preserving. [J
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Example 2.3.23. The successor function s: @ — O, a — «a + 1, preserves <.
However, it is does not commute with | |, if there exists a non-zero limit ordinal 3

in M, since then s(8) = 8+ 1# 8 =|]s[F]

Lemma 2.3.24. If f: Q — Q is an M-class function that preserves <, then f is
an isomorphism (2, <) — (C, <) onto its image C and o < f(«) for all o € Q.

Proof. If § < a € Q with f(a) < f(B), then f(8) < f(a) < f(5), which is absurd.
Moreover, if f(a) < a, then f(f(a)) < f(«). Hence, {a € Q: f(a) < a} cannot

have a minimum and must therefore be empty. O]

Lemma 2.3.25. The image of a normal M-class function f: Q — Q is closed in §2
and either is unbounded in Q, if ) has no mazximum, or contains the mazimum of §2.

Proof. Let C' =1img(f) and take X C C non-empty. By Lemma 2.3.24 the identity
is dominated by f, hence the second statement, and f~': C' — Q also preserves <.
Now, on the one hand, if | | f7'[X] € ©, then | | X = f(|| f'[X]) € C because f
commutes with | |.
On the other hand, if | | f'[X] & ©, then f~'[X] is unbounded in € and, conse-
quently, X = f[f '[X]] is unbounded in C such that by the already proved second
statement X is unbounded in Q, i.e. | | X ¢ Q. ]

We collect some more properties of normal M-class functions:

Lemma 2.3.26. For normal M-class functions f: Q2 — Q the following hold:

(a) f(B) € Oy \ {0} for all B € QN Oy \ {0}

(b) f(B) =Uacs fla+1) forall 5 € Q\{0}.

(c) f ={aeQ: f(a) =a} is closed in Q.

(d) If g: Q — O is a normal M-class function, so is go f: Q — Q.

(e) For each ¢ € Q with f(0) < § the M-set (§ + 1) Mimg(f) has a maximum, i.e.
there is a greatest element in the image of f less than or equal to 6.

Proof. (a) Because of f(5) = || f[#] by Lemma 2.3.22 f[3] is unbounded in f(f).
Hence, f(/3) must be a non-zero limit ordinal.

(b) If B is a limit, then [f(a+ 1) : o < §] = f[f] and the formula holds because f
commutes with | |.
If B is a successor, [f(a+ 1) : a < 5] has maximum f(3) because f preserves <.

() f(LUIX) =] f[X]=|]X for non-empty X C Qf with | | X € Q,s0||X € Q.
(d) Preserving < and commuting with | | clearly is preserved by composition.

(e) The M-set X = f~'[6 + 1] is non-empty with | | X € Q. The claim therefore
follows from f(| | X) =[] f[X] =[]0 + 1) Mimg(f). O

Exercise 2.3.27. Consider €2 equipped with the order topology. Show:
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(i) The limit points of 2 in  are the non-zero limit ordinals in 2.

)
(ii) The isolated points of 2 consist of 0 and the successor ordinals in (2.
(iii) M-subclasses of Q are closed in € if they are closed in the topological sense.
)

(iv) M-class functions f: 2 — O that preserve < commute with | | iff they are
continuous.

Natural numbers

Definition 2.3.28. Natural numbers in M are M-ordinals o such that there is no
limit ordinal v in M with 0 < v < a.
Write N for the M-class of natural numbers in M.

An M-set X 1is finite if there is a bijective M-function X — « for some natural
number o in M. Otherwise it is infinite.

Theorem 2.3.29 (Induction for natural numbers). Let C' C NM be an M-class.
Then C =NM if0e C anda+1€ C foralla € C.

Proof. If we had C' # N, then the assumptions would imply that 8 = min(NM \CO)
is a limit ordinal different from 0, which contradicts the definition of N™. n

For instance, induction can be used to prove that the M-subsets of a natural
number always form an M-set, even when POWER SET in general might not hold:

Lemma 2.3.30. For all « € N™ the M-class P(2~"(a)) forms an M-set P(a).

Proof. Let C be the M-class of all natural numbers  in M for which P(£™'(a))
forms an M-set P(«). Clearly, 0 € C because we can take P(0) = [4] and if « € C
then we can take P(av+ 1) =P(a) U [X U[a] : X EP(«a)] to conclude a«+1 € C. O

Lemma 2.3.31. Assuming M satisfies INFINITY, N forms a set w, which is the
intersection of all inductive M-sets.

Proof. The set D of all inductive M-sets is an M-class, which is non-empty thanks
to INFINITY. Clearly, w =[]D 1 N™M again is inductive such that =7 (w) = NM
according to Theorem 2.3.29. Consequently, w =[]|D = [NM]. [

Corollary 2.3.32. Assuming M satisfies INFINITY, w is the least limit ordinal in
M different from Q.

Proof. Evidently, N*! is transitive and inherits the well-order of @, so w € ©. By
definition M-ordinals different from 0 and less than w are successor ordinals. Also w
cannot itself be a successor ordinal, since then it would be a natural number, leading
to the contradiction w < w. O]

Remark 2.3.33. With the argument given in the proof of Corollary 2.3.32 and,
given that limit ordinals are inductive, it is easy to see that M satisfies INFINITY iff
NM £ @ iff there exists at least one limit ordinal in M iff N™ forms an M-set.
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Remarkably, there may be more natural numbers in M than those given by the
“external” natural numbers:

Remark 2.3.34. The function N — N™, n — n, with n+1=mn-+1, is injective
because of |E71(ﬂ)‘ = n. An argument similar to the one given in Example 1.6.16
shows that it is not necessarily surjective for every choice of M (if there is any choice
at all), i.e. we might have

N = {n:neN} ¢ N

Then N cannot be an M-class because otherwise NM \ N would have a minimum g,
but then §—1 = n for some n € N leading to the contradiction 5 =n+1=n+1 € N.

So if we want the natural numbers that are used to construct formulas to be the
same as the natural numbers in M, we must postulate this as an additional axiom.

2.4 Recursive definitions
Well-founded recursion

Definition 2.4.1. Let < be an M-class relation on C.

If X € C lies in an M-set Y T C that is closed under <-predecessors, i.e. with
the property U <V = UEY forallU € C andV Y, we define

Ciox = |_|{Y € M :Y is closed under <-predecessors and X £ Y C C'}

and call it the <-predecessor closure of X in C.

We say that the relation < admits predecessor closures in C' if every element of C'
has a <-predecessor closure in C'.

Example 2.4.2. Clearly, £ admits predecessor closures in any transitive M-class C'
consisting of transitive M-sets. In this case, Ciyx = X U [X] for all X € C'.

In particular, the <-predecessor closure of o € O is a + 1.

Lemma 2.4.3. Set-like M-class relations < that admait predecessor closures in C'
are well-founded on C, if each non-empty M-subset of C' has a <-minimal element.

Proof. We must prove that every non-empty M-class D C C' has a minimal element.

To do this, pick Y € D. Then there is a minimal element X in the M-set C ey MD.
If X were not minimal in D, then there would be an z & C_x M D, leading to the
contradiction z £ Cyeey T D. O

Theorem 2.4.4 (Well-founded recursion). Let < be a set-like well-founded M-class
relation on C' that admits predecessor closures in C'. Then for every M-class function
g: M — M there exists a unique M-class function f: C'— M such that

FX) = g({(X, [fle,y])) forall X €C.

35



Proof. Let f = U,cp h be the M-class relation defined by
F = {h:thereisXGC’andh: Ciox = M
such that h(Z) = g(({Z, h|C<Z>) for all Z € Csoy}

To begin with, f is a function, since otherwise there would be h: Cie — M and
W': Ci=y — M in F such that the M-class {Z £ Coyx M Cy=y : W(Z) # B(Z)}
would be non-empty, hence have a minimal element Z, leading to the contradiction

Wz) = g((Zhle.,)) = 9((Z.Wle.,)) = W(Z).

We now prove dom(f) = C' with well-founded induction (Theorem 2.3.2). For this,
take X € C with CLx C dom(f). It is easily checked that

CjOOX - [X] L |_| [Ojoow . W E C-<X] .
From this and the definition of f we can therefore conclude C~y \ [X] C dom(f).
Hence, f|CjooX\[X] L [<X,g((X,f|C<X>)>] lies in F', so X € dom(f).

To verify uniqueness let f': C'— M be another M-class function with the property
that f'(X) = g((X, [f'lc_,])) forall X € C. Then D ={X € C: f(X) = f'(X)}
is an M-class and for every X € C with C_x C D we have

F(X) = 9((X, [flew ) = 9((X [Fley])) = F1(X).
This shows X € D. Using Theorem 2.3.2 once again yields D = C, ie. f = f. [

Recursion for ordinals

Definition 2.4.5. Let Q) be an initial segment of Q. An Q-sequence is an M-class
function x: Q — M, usually written as (x,)qcq-

For B € Q we also write (x,)q<p5 for the family (x,).ep of M-sets.

Corollary 2.4.6 (Recursive definition of sequences). Let Q be an initial segment
of O. For every M-class function f: M — M there is an Q-sequence (x,)qocq With

rg = f({B, (Ta)acp)  forall p €.

Proof. This is a direct consequence of Theorem 2.4.4. m

Lemma 2.4.7. Assuming M satisfies INFINITY, every M-class relation < on C'
admits predecessor closures in C'.

Explicitly, Cy 1is the w-iterate of [X| under V | |[[Coy] : U E V].

Proof. Let Z be the w-iterate of [X] under V — | |[[CLy] : U E V].
By definition it is Z = | |,_,, Z, where Zy = [X] and Z,,; = | |[[Cy] : U E Z,].
So we have to show for Z £ C_~ y that

{aeNM:Z, C Oy} = NY,

which clearly is true by induction. The inclusion C~y E Z holds because Z C C' is
closed under <-predecessors and contains X. O
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Remark 2.4.8. Using Lemmas 2.4.3 and 2.4.7 and assuming M satisfies INFINITY,
the relation £ is seen to be well-founded on M iff M satisfies REGULARITY.

Iterates

Definition 2.4.9. The f-iterate f°(X) of an M-set X under an M-class function
f: M — M is given by the Q-sequence Ity x = (f’B(X)>5E@ recursively defined by
fiX) = X,
fX) = F(F7HX)) for Be Oy,
fB(X) = |_|a<,3 fUX) for B € Oy \ {0}
Lemma 2.4.10. Let Q) be an initial segment of @ and v € Q and f,g: M —
M-class functions with It (Q) € Q and It, (1) C Q. Then the following hold:
(a) If a < f(a) for all o € Q, then Ity | is normal.
(b) If a < f(a) for all o € Q, then Tty |o preserves <.
(¢) If flo preserves < and f(a) < g(a) for all a € Q, then we have f°(8) < ¢°(v)
forall o6 <~ and 5 € Q.
Proof. (a) Because of f°1(X) < f(f* (X)) = f°(X) for successor ordinals § €
and fﬁ(X) = |_|a<ﬁ fY(X) for limit ordinals 5 € Q\ {0} we can apply Lemma 2.3.22.
(b) Use a similar argument as for (a).

(¢) By induction we may assume f*(0) < g”(7) for all @ < 5. The claim is then
clear for non-zero limit ordinals 5. For § = 0 it holds anyway. If  is a successor
-1

ordinal, then f7(6) = f(f771(8)) < f(¢" (7)) < 9(¢" (7)) = ¢° (7). O

As an application we can prove that normal M-class functions @ — O have
arbitrarily large fixed points:

Lemma 2.4.11. Assuming M satisfies INFINITY, for every normal M-class function
f: 00— O its M-class {y € O : f(v) =~} of fizred points is unbounded in Q.

Proof. Fix any limit ordinal 0 # 0 in M (e.g. take 6 = w). For every M-ordinal «
the M-ordinal v = | | [fﬂ(a) : B < 6] satisfies

fO) =@y <6) = | |[fHM@):8<d] =7 = fHo)=a.
Il

Ordinal arithmetic

Definition 2.4.12. For two M-ordinals o, 8 their ordinal sum o+ 3 is the B-iterate
of a under v — v+1, their ordinal product a3 is the -iterate of 0 under v — v+«
and their ordinal power @ s the B-iterate of 1 under v+ 7 - a.

Remark 2.4.13. Assuming M satisfies INFINITY, it now is easy to construct integers
and rational numbers in M. For instance take (w * w)/. as the M-set of integers in
M where ~ is defined by (o, 8) ~ (o, ') & a+  =a + 3.
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2.5 Transitive collapse

Definition 2.5.1. Let C' be an M-class equipped with a set-like well-founded M-class
relation < that admits predecessor closures in C'.

The rank function on C' w.r.t. < is the M-class function rko - : C — O with
rko<(X) = | | [tkex(W)+1: W € Cox] forall X €C.

The unique surjective M-class function to o : C — T - satisfying
te<(X) = te[[Cx]] foral X €eC
is called the transitive collapse of (C, <).

Example 2.5.2. The transitive collapse of ({0,2,4}, <) is given by n —
For M-ordinals 3 we have rkg - (f) = 8 = tg - (8).

i.
Remark 2.5.3. For M-subclasses D C C' we do not necessarily have T, . C Tt o,
e.g. for D={1,[1],2U[1]} and C ={0}U D it is Tp . ={0,1,2} Z C = T¢ ..

Lemma 2.5.4. Let (C, <) be as in Definition 2.5.1. For every M-subclass B C C
and all X € C we have rkp (X) < 1ke o (X) with equality if Csex E B.

Proof. Assuming by induction rkp (W) < rke (W) for all W € B_y, we get

rkp <(X) Ulrkp (W) +1: W € B.x]

z Ulke, (W) +1: W € Cox] = rke(X).

and, assuming rkg (W) = 1ke (W) for W € B_x with C~y, C B, even equality,
if Cu~x E B, since then BLx = C,x and Cyoy E Cooy E Bfor W e Cly. [

Lemma 2.5.5. T _ is transitive and tc - is a homomorphism (C, <) = (Tx <, E).

Proof. Abbreviate t =t. . and T' = Tt .
Firstly, for all U € V € T there is X € C with V =#(X) =t[[C.x]], so U € T..
Secondly, X <Y = t(X) et[[CLy]] =t(Y) for all X,Y € C. O

Definition 2.5.6. An M-class relation < is extensional on an M-class C' if the
implication C_x = Cy = X =Y holds for all X,Y € C.

Example 2.5.7. The relation £ is extensional on M (and thus also on any transitive
M-class) by EXTENSIONALITY.

Lemma 2.5.8. M-class relations < that well-order C are extensional on C.

Proof. Just observe that X is the minimum of C'\ C_x. O]
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Mostowski collapse

Theorem 2.5.9 (Mostowski’s Isomorphism). Let (C, <) be as in Definition 2.5.1.
If the relation < is extensional on C, then the transitive collapse te - is the one and
only isomorphism (C, <) — (D, E) where D is a transitive M-class.

Proof. Abbreviate t = to  and T' = T <.

Ift: C — T were not injective, then {Y € C : ¢(X) = ¢(Y") for some X € C'\ {Y}}
would have a minimal element Y. So we would have ¢(X) = ¢(Y) for some X # Y,
ie. t{Cox] = t[C.y] and therefore C_y = C_y by the minimal choice of Y, contra-
dicting extensionality.

To verify that ¢t' is a morphism (7, ) — (C, <) we show t(X) et(Y) = X <Y
for all X,Y € C. So let t(X) e t(Y) = t[[C.y]]. Then there exists Z € C_y with
t(X) =t(Z). The injectivity of ¢t now implies X = Z < Y.

To prove uniqueness, let t': (C, <) — (D, ) be another isomorphism such that D
is a transitive M-class. Assuming t # t', the M-class {Y € C : t(Y) # t'(Y)}
would have a minimal element Y. Then t(Y) = t[[C.y]] = t'[[Cy]] E #'(Y), where
the inclusion is due to the fact that ¢’ is a morphism. By transitivity of D every
U et (Y) N t(Y) belongs to D, so there would be X € C with ¢'(X) = U e ¢'(Y).
Hence, X <Y because t'~' is a morphism, leading due to the minimal choice of YV
to the contradiction U = #'(X) = t(X) e t(Y). O

As a corollary, M-ordinals are up to isomorphism the only well-ordered M-sets:

Corollary 2.5.10. If an M-set X is well-ordered by an M-relation <, there is a
unique isomorphism ty o : (X, <) — (a, <) where type (X, <) = a is an M-ordinal.

Proof. Take type,, (X, <) = [Tx <] and use Lemma 2.5.8 and Theorem 2.5.9. O

Corollary 2.5.11. The identity idg is the only automorphism of (0, <) and, if M
satisfies INFINITY and REGULARITY, id,; is the only automorphism of (M, E).

Proof. Combine Lemma 2.3.6, Corollary 2.3.11, and Theorem 2.5.9 for the first and
Remark 2.6.3, Example 2.5.7, and Theorem 2.5.9 for the second statement. O

In contrast to Remark 2.5.3 we have the following positive result:
Lemma 2.5.12. Let X C o where a is an M-ordinal. Then type (X, <) < a.

Proof. Let t = tx .. It clearly is sufficient to prove ¢(3) < 3 for all 8 £ X because
this implies type,, (X, <) = t[X] C . But indeed we have t(3) = t[X_3] C 3 if we
assume inductively ¢(a) < o for all @ E X_j. O

Lemma 2.5.13. An M-class C' is closed and unbounded in O iff it is the image of
a normal M-class function f: QO — Q.

In this case, [ is determined by C' and is called the enumerator Ens of C'.
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Proof. The “if” part follows from Lemma 2.3.25.

For the “only if” part, consider the inverse f: {2 — C' of the transitive collapse t¢ ..
Now 2 is a transitive M-subclass of O, so it is an initial segment by Lemma 2.3.14.
Thus 2 = O, since [Q)] = a with a € O would imply that C' is bounded by | |a. We
already know from Theorem 2.5.9 that f preserves < such that it only remains to
show that f commutes with | |. So let X be any non-empty M-set of M-ordinals.
Then f[X] is bounded in C because X is bounded in O and f is an isomorphism.
Since C' is closed in O, the supremum | | f[X] of f[X] in O lies in C, so is the
supremum in C'. Using that f is an isomorphism, we can conclude f(| | X) = | | f[X].

Due to Lemma 2.3.24 and Theorem 2.5.9 ! and hence f is determined by C. O

Recall that, when M satisfies INFINITY, the M-class Q@ of fixed points of every
normal M-class function f: @ — O is closed and unbounded in O.

Definition 2.5.14. Assuming M satisfies INFINITY, the derivative f' of a normal
M-class function f: O — Q s the enumerator of o’.

2.6 Well-founded sets

Convention 2.6.1. In this section, we assume that M satisfies INFINITY.

All M-sets that can be constructed by iterated “elementary operations” — such as
taking unions, intersections, pairs, power sets etc. — from the empty M-set [ are
well-founded in the sense described below.

Definition 2.6.2. The transitive closure of an M-set X is the E-predecessor closure
of X in M. We denote it by X*.

An M-set X is said to be well-founded if £ is well-founded on X .
We denote by W the M-class of all well-founded M-sets and for a € O set

W, = {X e W:rk(X) <a} where rk(X) = rky=(X).
Remark 2.6.3. M satisfies REGULARITY iff W = M.
Lemma 2.6.4. The following hold:

(a) W is transitive.

(b) E is well-founded on W.

(c) 1k(X) = rky < (X) for all X € W.

(d) tk(X) =|rk(W)+1: W e X] for all X €¢ W.
(e) tk(X) <1k(Y) for all X EY € W.

(f) O CW and rk(a) = « for all a € Q.

(9) X € W for all M-sets X with X CW.
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Proof. (a) Let X e Y € W. If £ is well-founded on Y, then so it is on X C Y.
(b) Using (g) apply Lemma 2.4.3.
(c) Using (g) apply Lemma 2.5.4 with [B] = X C W = C.
(d) Use (a) and (c).
(e) Use (a) and (d).
(f) O C W by definition of M-ordinal and Example 2.4.2. Apply Lemma 2.5.4
with B =0 C W = C and use (c) and (d) to get rk(a) = rky (o) = kg () = a.

(g) Let P = | Jyex W™

We must show that every non-empty ¥ C X = [X] U P has a minimal element.
Now either Y\ [X] is empty, in which case X is a minimal element of Y = [X], since
X E X C W is impossible. Or Y \ [X] has an element Z minimal in P € W. But
then also X & Z, since otherwise we would have X £ P such that by Lemma 2.4.7
there would be § € N™ and a sequence (Xa)a<p With X, E X, ; and X, = X3 = X,
so [X, : o < B] C X7° would not have a minimal element, but X; e X C W. O

Exercise 2.6.5. W is characterized as the smallest M-class C' with the property
XLCC& X el for all M-sets X, i.e. any such C' necessarily contains W.

Theorem 2.6.6. W, = P(Wﬁ,l) Jor successor ordinals 3 and Wy = Ua<6 W, for
limit ordinals 3 in M.

Proof. We need X C Wy_; <& X € Wy for all M-sets X and successor ordinals /3.
Here, = follows from Lemma 2.6.4 (d) and < from Lemma 2.6.4 (e).

The identity Wy = {J,. 3 W, is obvious for limit ordinals . O

a<f
Corollary 2.6.7. Each Wy forms an M-set Wy for 8 < w. It is finite for B < w.

Assuming M satisfies POWER SET, Wy forms an M-set Wy even for all 8 € O.
In this case, Wy is the [3-iterate of 1 under X — P(X).

Proof. This is a direct consequence of Theorem 2.6.6 and Lemma 2.3.30. For the
claim about finiteness prove by induction X ~ a = P(X) ~2@ foralla < w. O

Remark 2.6.8. Assuming M satisfies (INFINITY and) REGULARITY, M satisfies
POWER SET iff Wy forms an M-set for every M-ordinal 3.

2.7 Subuniverses

Using the results from the last section, we discuss how to obtain from a 7T-universe a
(T UREG)-universe where T is either of the theories ZF° U INF, ZF~, or ZFC™, which
will demonstrate the relative consistency w.r.t. T" of the axiom of regularity.

Convention 2.7.1. For this section, fix a ZF°-universe M.

Definition 2.7.2. For T C M denote by M| the S°-structure with

Ml =T and ﬁM|T = IjM|TxT for g € {=¢}.
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Lemma 2.7.3. Let T' be a transitive M-class such that every M|p-class that forms
an M-set forms an M|p-set. Then M| is a ZF°-universe where for all X,Y € T':

(1) (M) (X)) = (M) 7TH(X).

(2) gMir =g M.

(3) XYM = (X YN

(4) UM x =M X

(5) fIXPMT = FIXIM for every partial function f: €7 (X) - T definable in M|y

(6) If M EPOW, then M|y EPOW and PMIT(X) =PM(X)NT.
(7,9) If M EINF and T C W™, then M|y E INF UREG and QM7 = QM N T.
Moreover, [T'* ¢ = [T C AT for every M|p-class C

Proof. (1) This holds since 7' is transitive.

(2) 0 is an M |p-class forming the M-set g™,

(3) {X,Y} is an M|p-class forming the M-set [X, Y.

@[ Me(X)={VeT:VeW forsome W € T with W £ X} = | M7 (X)
by transitivity of 7', showing it is an M|p-class, which forms an M-set | [ X

(5) Let 7 be an $5-formula, fvar(r) C {z,wy,...,w,}, Wi, ..., W,, € M with
T ={ZeM: MEx|(z,w,...,w,)/(Z,Wi,..., W)}
and ¢ an S>*-formula, fvar(o) C {u, v, w1, .-, wut, Wiir, ..., W, € T with
F={UV)eT?: MlpEol(uo,w,...,w,)/(V,IWy, ..., W,)]}.
Then f is also definable in M as
f= {(U,V) e M*: ME a”[(u,v,wl,...,wn)/(KWI,...,Wn)]},

where ¢ is recursively given as

1 for o = L,
o = ((71'(2:/1’) A7(z/y)) A xﬁy) for 0 = xfy with § € {=, €},
(" = ¥7) for o = (¢ = ¥),

N, (m(z/z) = &7) for o = A\, .

All in all, f(""(X)) is an M |p-class, which forms an M-set f[X]M.
6)PMEHX))NT={VeT:UeV =UeX forallU e T} =PMr(="}(X))
by transitivity of 7', showing it is an M|p-class, which forms an M-set P (X) M T.

(7,9) T € WM means that £ is well-founded on Ty = Mgy for every X € T,
hence M F REG by Remark 2.6.3.
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Using T C WM, Exercise 1 of Problem Set 4, and the transitivity of 7' we get
OMNT = {aeT:aandall y <« are transitive} = QM7

which then also implies NMT = NMNT.

It remains to check M| £ INF. Now 0 € NMI7 by (2) and a+1 = aUi[o] € NMIr
for all « € NMIT by (3) and (4). Therefore we have N7 = N™ by induction in M,
showing that the M|p-class NMI7 forms an M-set, which is inductive. O

Assuming M satisfies INFINITY, the M-class T'= W meets all the hypotheses of
Lemma 2.7.3 by Lemma 2.6.4. This gives the following relative consistency result:

Theorem 2.7.4. If M E ZFC™, then M|w F ZFC.
Hence, the consistency of ZFC™ implies the consistency of ZFC.

Proof. Let us first argue that we can apply Lemma 2.7.3 to T'= W. Indeed, the
M-class W is transitive by Lemma 2.6.4 (a) and for every M|y-class that forms an
M-set X we have X C W such that X € W by Lemma 2.6.4 (g).

Assume now that M satisfies CHOICE and let X € W be such that all V g X are
non-empty and pairwise disjoint. Choose an M-set Y with [~ (V 1Y) = 1 for
every V £ X. By Lemma 2.6.4 (a) and (g) Y’ = Y M| | X is an M |y-set, which still
has the property |~ (V NY")| = 1 for every V € X.

This shows M E ZFC™ = M|w F ZFC. Now use the Completeness Theorem. [J

2.8 Cardinal numbers

Mostly we will require M to satisfy CHOICE in this section. But to a certain degree,
comparing the sizes of M-sets is possible without assuming CHOICE. For instance,
the relation < on M, where X <Y holds iff there is an injective M-function X — Y,
evidently is reflexive and transitive. The next result concerns the symmetry of <.

The equivalence theorem

Theorem 2.8.1 (Cantor-Bernstein—Schroder). Assume M satisfies POWER SET or
INFINITY. If there are injective X — Y and Y — X, there is a bijective X — Y.

Proof assuming POWER SET. Let f: X — Y and ¢g: Y — X be injective. Because
h:P(X) = P(X), W — X ~ g[Y ~ f[W]], preserves C it has a fixed point Z by
Example 2.2.21 and Lemma 2.2.22. Then f|, U g '|x_z: X — Y is bijective ]

Proof assuming INFINITY. Let f: X — Y and g: Y — X be injective. Recursively
let Xy =X, Xg = g[Y] and X,y = (go f)[Xa], Xowy = (g0 f)[X}] for a € NM.
Then X, J X, 3 X,,;, J X/, and with Z, = X, \ X,

(g © f>|Za: Za - Zoz—i—la

are bijective. Combining them yields a bijective h = (g o f)|, Uidx_z: X — g[Y],
with Z = | | [Z, : « € NM]. Allin all, g 'oh: X — Y is a bijective M-function. [J
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Remark 2.8.2. Assuming M satisfies POWER SET and CHOICE, Theorem 2.8.1
will become a direct consequence of Corollary 2.8.10 and Theorem 2.9.2 below.

Cardinals
Convention 2.8.3. From now on, let M be a ZF° UPOW-universe.

Definition 2.8.4. An M-cardinal is an M-ordinal k such that for all o < K there
1s no biyective M-function o — K.

We write K for the set of all M-cardinals.
Remark 2.8.5. With Lemma 2.2.18 it is clear that K is an M-class.

Observe that for every M-set X by POWER SET we have an M-set

WO(X) = [ EP(X * X) : < is a well-order] .
It is then not hard to see that the following set is an M-class
O.x = {a € O : type (X, <) = a for some < E WO(X)} :

Definition 2.8.6. The cardinality of an M-set X that is well-orderable, i.e. for
which OLx is non-empty, is defined as | X| =[]0~x-.

Lemma 2.8.7. The cardinality | X| of a well-orderable M-set X is the least k € O
such that there exists a bijective M-function X — k. In particular, | X| € K.

Proof. Clearly, |X| € O by Lemma 2.3.10 and there is a bijective X — | X].
Conversely, every bijective f: X — k with x € O induces a well-order < on X
with x < y < f(x) < f(y) such that type (X, <) = k. Hence, | X| < k. O

Corollary 2.8.8. Let X,Y be well-orderable M-sets. Then |X| = |Y| is equivalent
to the existence of a bijective M-function X — Y.

Proof. Use Lemma 2.8.7 and that inverses of bijective M-functions are bijective. []
Theorem 2.8.9. For all well-orderable M-sets X,Y the following are equivalent:

(a) [X] < Y|

(b) There is an injective X — Y.

(c) There is a surjective Y — X or X = [A.
Proof. (a) = (b) This is clear because of | X| < |Y| < | X| C |Y].

(b) = (c) If X # [, then for each f: X — Y there exists some g: Y \ f[X] — X.
If f is injective, then f~' U g is a surjective M-function ¥ — X

(c) = (b) If g: Y — X is surjective, fix some well-order < on Y. Then f: X — Y
given by U +— min_ ¢ '[[U]] is injective because of g o f = idx.

(b) = (a) If there is an injective X — Y, there also is an injective f: X — |Y|.
Then | X| < type(f[X], <) <|Y] in view of Lemmas 2.5.12 and 2.8.7. O

44



Corollary 2.8.10. For all well-orderable M-sets X, Y :
X=2XYandY =X = |X|=|Y]
Proof. This is immediate by Theorem 2.8.9. O]

Lemma 2.8.11. The natural numbers in M are the finite M-cardinals.

Proof. 1t is enough to show that C' = {a € NM v =~ « for some v < a} is empty.
If not, let @« = min C' and let f: v — «a be a bijective M-function with v < a. Since
a # 0, also v # 0 and we obtain a bijective M-function (go f)[,_1: 7y -1 —-a—1
where g: o — « is the transposition of « — 1 and f(y — 1). Hence, « — 1 € C, in
contradiction to a = min C'. [

Lemma 2.8.12. All infinite M-cardinals are limit ordinals in M.

Proof. By Remark 2.3.33 there is nothing to show if M does not satisfy INFINITY,

so let us suppose it does. It is enough to check |a+ 1| = || for all infinite a € O.
But this is indeed the case, since e.g. the M-function f: a +1 — « with f(a) =0
and f(y) =+ 1forall y <w and f(y) = for all w < v < « is bijective. O

Lemma 2.8.13. For every M-set X of M-cardinals | | X is an M-cardinall.
Proof. If we had |a| < a for a =| | X, then by Lemma 2.3.13 there would be k £ X
with |a] < k < «, contradicting Corollary 2.8.10 and Lemma 2.8.7. O

Successor cardinals

Definition 2.8.14. The Hartogs number of an M-set X 1is defined as
X" = |_|[04+l:04€@ with o < X7 .

Remark 2.8.15. The M-class {a+1: a € O with a < X} forms indeed an M-set,
as is easily implied by the observation that o < X if and only if there exists an
Me-subset Y of X and a well-order < on Y such that type,, (Y, <) = a.

Lemma 2.8.16. | X|" =[]a € O:a £ X] €K for all M-sets X.

Proof. Let k =[la € O:a £ X]. Then x < |X|" since | X|" £ X by definition. If
o < |X|*, then there exists f < X with a < 8, so @ < X. This implies |X|" = .
Finally, x € K, since otherwise || < k and then x ~ |k| < X, which is absurd. [

Remark 2.8.17. If X is well-orderable, then x A X < x > |X| by Theorem 2.8.9
for all M-cardinals k. So in this case, | X|" is the least M-cardinal greater than | X]|.

Corollary 2.8.18. K s closed and unbounded in Q.

Proof. Lemma 2.8.13 states that K is closed in Q. For each a € O we have with
Lemma 2.8.16 that o < |a|" € K. O
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If M satisfies INFINITY, the M-class K, = K\ NM of infinite M-cardinals is still
closed and unbounded in Q. Its enumerator is the so-called “aleph function”:

Definition 2.8.19. If M satisfies INFINITY, write X for the enumerator of K.
Lemma 2.8.20. If M satisfies INFINITY, Ny is the S-iterate of w under k k't

Proof. Let f =1t + . Then f is normal by Lemma 2.4.10 (a).

By Lemma 2.5.13 it is enough to check that the image of f is K.

For the inclusion img(f) C K, by induction and Lemmas 2.8.13 and 2.8.16 it is
enough to show that w is an M-cardinal. Assuming the contrary, |w| < w would be a
natural number in M, so |w|" = |w| + 1 < w by Lemma 2.8.11, which is impossible.

If there were k € K, \ img(f), we will show by induction x > f(5) for all 5 € O,
which is a contradiction since the image of f is unbounded in @ by Lemma 2.3.25.

Indeed, k > w = f(0) by Corollary 2.3.32 and Lemma 2.8.12.

For 8 € O, with k > f(8 — 1) we have k > f(B —1)" = f(B) # k.

For 8 € Oy, with k > f(«) for all « < 8 we have k > | | f[8] = f(5) # k. O

Definition 2.8.21. M-cardinals of the form k™ with k € K are successor cardinals
and infinite M-cardinals that are not successor cardinals are limit cardinals in M.

Write Ky, for the M-class of all successor cardinals in M.

Write Ky, for the M-class of all limit cardinals in M.

Remark 2.8.22. All non-zero natural numbers in M are successor cardinals.
The infinite successor cardinals are the Rz where 3 is a successor ordinal.

The limit cardinals are the Ng where 3 is a limit ordinal.

2.9 Well-orderable sets

Theorem 2.9.1 (Well-ordering theorem). An M-set X is well-orderable iff there is
an M-function f: P(X) N [4] = X with f(Y)EY for all non-empty Y C X.

Proof. = Choose an M-relation < that well-orders X. Then the rule V' +— min_V
yields an M-function P(X) \ [7] — X.

< It suffices to find an M-bijection v — X for some M-ordinal 7. Taking some
M-set Z with Z & X, Theorem 2.4.4 yields an M-class function h: O — M with

ha) = {f(X\h[a]) if X Z hlal,

A otherwise.

Foralla < Sin C =1[0 € O: h(d) E X] we have h(«a) £ h[f] and h(B) E X \ R[],
hence h(a) # h(3). This proves that h|o: C — & '(X) is injective and applying
Lemma 2.2.11 to (h|c)~" shows that h|o forms an M-set h: v — X. It is not hard
to see that v = min{d € O : h(J) Z X }. In particular, h(y) #Z X such that X C hlvy].
Hence, h: v — X is bijective, which finishes the proof. n
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There are many equivalent formulations of CHOICE. To collect just a few of them:
Theorem 2.9.2. The following are equivalent:

(i) M satisfies CHOICE.
(i1) Ky Xi # 1A for all (X;)ie; with X; # 2.
(1ii) Every M-set is well-orderable.

(iv) ZORN’S LEMMA. For each M-set X each M-relation < on X has a <-mazimal
element, if < partially orders X and every <-chain in X (i.e. M-subset of X
that is totally ordered by <) has an upper bound in X w.r.t. <.

(v) Every surjective p: X — Y has a right inverse s: Y — X, i.e. po s = idy.

Proof. (i) = (ii) Obviously, X = [[i] * X; : i £ I] is an M-set of pairwise disjoint
non-empty M-sets. Hence, there is an M-set Y such that V MY has exactly one
Me-element for all V £ X. It follows that Y M| | X & XK, ; X;.

(ii) = (iil) Let Z be an arbitrary M-set. Take for X the identity on I = P(Z)\ [Z]
to obtain f: P(Z) \ [A] = M with f(Y) Y for all Y C Z. Now use Theorem 2.9.1
to conclude that Z is well-orderable.

(iii) = (iv) Let < be a well-order on X. To arrive at a contradiction, we assume <
has no maximal elements. Let K be the M-set of <-chains in X and let s: K — X
associate with each <-chain its upper bound w.r.t. < that is minimal w.r.t. <.

By Theorem 2.4.4 we get an M-class function f: O — M with f(a) = s(f|a])
for each @ € O with f[a] € K. Indeed, we will then have f[a] € K for all a € O,
assuming by induction for all 5,7 < « that 8 <y = f(8) < f(7). This assumption
is justified, since for all 8 < a we have f(5) < s(f[a]) = f(a) because f(5) € f|a]
and < has no maximal elements.

All in all, this shows that f is a homomorphism (O, <) — (2~ '(X), <). Hence, it
is injective. So Lemma 2.2.11 yields the contradiction that O forms an M-set.

(iv) = (v) Let p: X — Y be surjective. Consider the M-set
S=|Z%X:ZCVY andpos=idy,

equipped with the M-relation T, which clearly is a partial order and satisfies | | K € S
for every C-chain K in S. It follows that there is maximal element s: Z — X in S.
We must have Z =Y, since otherwise there would be y £ Y \. Z and then z = p~'[[y]]
due to the surjectivity of p such that s T s U [(y,x)] E S.

(v) = (i) Let X be an M-set such that the M-elements V' of X are non-empty and
pairwise disjoint. Define Z = | | X and let p: Z — X be the surjective M-function
sending each U £ Z to the uniquely determined V' £ X with U £ V. Choose a right
inverse s: X — Z of p. Then for Y =img(s)itis VY = [s[V]] forall V E X. O

Corollary 2.9.3. Assuming M satisfies CHOICE, every M-equivalence relation ~
on X has a system of representatives (sy)yex, , i.e. sy U for allU € X/_.
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Proof. Due to Theorem 2.9.2 (v) the canonical surjective M-function f_: X — X/,
(see Lemma 2.2.15) has a right inverse (sy)pex,. - O

2.10 Cardinal arithmetic

Convention 2.10.1. From now on, we assume M to be a ZFC™ -universe. Recall
that this means that M satisfies all ZFC axioms except possibly REGULARITY.

Definition 2.10.2. Sums, products, and powers of M-cardinals k and X\ are

A

KB = /<;®)\:|/<;>k>\|, K :H)\—DKH.

More generally, define for families (k;);e; of M-cardinals:

Dro= Un| @ -

1=l =] =y

ZEI
Remark 2.10.3. For all M-sets X and Y it is easy to check the formulas

X|elY] = |xuy|, |X[e|]=

XM= |y - X]|.

Moreover, [P(X)| = 2%, since the M-function P(X) — [X — 2] mapping ¥ C X to
the characteristic M-function of Y is bijective. Finally, with the help of CHOICE, it
is straightforward to verify for all families (X;);=; of M-sets the identities:

EB|Xz| = qu’ ) ®|Xz| =

=l =l =yl

Exercise 2.10.4. Show that a® S =a+ S and a® B =a- S and o = a® for all
natural numbers o and 3 in M.

Exercise 2.10.5. For all &, \, 1, v € K, (k;)icr, (Mi)ier € {I = K}, O € {®,®}:

() 0®r=r (xi) (k)" = R
(i) 0® Kk =0 (xil) k<A & p<v = KOpu<AOV
(iif) 1@k =r (xiii) k<A & O0<pu<v = k"' <N\
(iv) ’=1=1"
- (xiv) @a<)\/€—)\®/€
(v) 0<k = 0"=0 () ® A
XV K=K
(vi) KOA=AOk A
no_ p
(Vi) (KOX) Op=rO(AO ) (xvi) (@yes k)" = Qs s
1 ’L_ )‘i
(vii) kM@ = (ko @ (e OV A= Qe
(i) (k@ A" = K" @M (xvill) w; SNVIET =@, ki < PN
(x) K =k @ K" (xix) Kk; S NVIET = Qe ki < Qe N
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The anti-lexicographic order < on QO Q), which restricts to the “natural” well-orders
on the cartesian products a * § for a;, 8 € O (see Problem Set 4, Exercise 4) is not
set-like. The following alternative order < however is:

Lemma 2.10.6. Let < be the M-class relation on D = QO x Q given by
(a,8) < (., 3) & (max [Oz,ﬁ] < max [O/,B/] or
(max [a,ﬁ] = max [o/,ﬁ’] and (o, ) < (0/,5'})) )

Then the following hold:

(i) < is a set-like well-order with transitive collapse t: D — O.

(1) DZa0) forms the M-set a* o for each o € Q.

(111) t{A x \] = X\ for each infinite X € K.

Proof. (i) It is not hard to check that < is a well-order on D, which is set-like because
of Doy C e '(yx7) for all X = (o, ) € D with v = max [a, f].

According to Corollary 2.5.10 we have ¢(X) = type (X, <) € O for all X € D. It
only remains to show that every o € @ belongs to the image of t. Since the M-class
function g: O — D given by a +— («,0) is a morphism (0, <) — (D, <), f=tog
is an endomorphism of (0, <). Hence, a < f(a) € img(t) by Lemma 2.3.24. Given
that img(t) is transitive, this proves a € img(t).

(i) This is obvious.

(iii) Since ¢({cv, 0)) = t[[D=a0]] by (ii) we get v < f(a) =t x a] for all a € O.
Actually, f is normal because for limit ordinals 5 in M it is

f(ﬂ) = t[ﬁ*ﬂ] = |_|a<5t[04*a] = |_|a<5f(a)'

We need to show that the M-class C' = {/\ e K : f(A)# )\} is empty. Assume not
and let A =minC. Then w < X < f(N).

On the one hand, we cannot have A = w, since for a < w we have the inequality
[f(@)] = [tla*a]| = |laxal = |a] - [o] <w, so f(e) <w, hence f(w) < w.

On the other hand, we also cannot have w < A, since then A < f(X) = | | <\ f()
by Lemma 2.8.12, i.e. there would be w < o < A with A < f(«). But this would give
the absurd A < |f(a)| = |a| < a where the equality is due to the choice of A. O

Theorem 2.10.7. For all kK, A € K with infinite A we have
K@ A = max|k, A],
K® A = max [k, Al if K #0,
o= 20 if2 <k <2
Proof. We may assume 0 < x < A. Then Exercise 2.10.5 yields the inequalities
A=0BA < KON < ABA =20 < AR,

A=10A< k@A < AD N,

So we just need A®A = A, which follows from Lemma 2.10.6 (iii) since ¢ is bijective. [
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Lemma 2.10.8 (Konig’s Theorem). Let (k;);=; and (\;);=r be two families of M-
cardinals with k; < \; for all i € I. Then the following strict inequality holds:

@ K < ® A
el el

Proof. According to Theorem 2.8.9 it suffices to show that no M-function f: X — Y
with X = | |;c; k; and Y = 3K,_; \; can be surjective. Denote by p; the canonical
projection Y — \; and define Y; = (p;of) [[Z]*l-{z] We then clearly have |Y;| < k; < A;.
In particular, \; \ Y; # & and according to Theorem 2.9.2 then also K,_; \; \ 'Y; # &.
Because of K,_; \; \ Y; C Y ~ img(f) it follows that f is not surjective. O

Lemma 2.10.9 (Cantor’s Theorem). xk < 2" for all M-cardinals k.

Consequently, k" = 2% for all infinite M-cardinals .

Proof. Exercise 2.10.5 and Lemma 2.10.8 directly give k =P, _,. 1 < &, .. 2 = 2".
The last part then follows from the first with Theorem 2.10.7. ]

Proof without CHOICE. Each f: k — P(k) is not surjective, since [z E k : x & f(z)]
does not belong to the image of f. Now use Remark 2.10.3 and Theorem 2.8.9. [J

Lemma 2.10.10. For every family (k;);=x of M-cardinals with k; > 1 for all i £ X
the following inequality holds:

Proof. Abbreviate 0 = @@, k; and p = Q) K-

Let us first treat the case where A is infinite. We have \ < 2’\ = Q)2 < pin view
of Lemma 2.10.9 and Exercise 2.10.5. Theorem 2.10.7 therefore implies A @ p = p.
By Theorem 2.9.2 (ii) A * 3,2\ 5; — | |icx 5: given by (i, f) — (i, f;) is surjective.
Thus we get 0 < A ® p = p as desired.

Let us now deal with finite A\. For A < 1 all is clear. For A > 1 let ¢/ = Doy 1 ki
and p' = ®icy_q ki- We assume o' < p' and p' > 1 by induction. Then B

p = Pl®’f>\—;>l and o = UI@”A—l < pl@li)\_l < p/®/<a,\_l =p.

Here, the last inequality holds by Theorem 2.10.7 if p’ or K1 is infinite. If both are
finite, calculate with the natural numbers m = p' — 2 and n = Ky-1—2in M. [

Lemma 2.10.11. For all families (k;);=\ of M-cardinals we have

We even have equality, if A is infinite and x; > 0 for all i € .
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Proof. Abbreviate k = | |._, k; and 0 = @, k;. The observation |;|ZE,\ KiCA*KR

gives the inequality. Since k; < ¢ for all 7, it is k < ¢. If moreover k; > 0 for all i,
then A = @,e, 1 < 0,50 A®k = max [\, k] < o for infinite A by Theorem 2.10.7. O

The slogan “Countable unions of countable M-sets are countable.” can be seen as
a special case of Lemma 2.10.11. More generally, we obtain the following result:

Corollary 2.10.12. For infinite M-cardinals k and all families (X;);=; we have:
L]
el

Proof. Let A = |I| and x; = | X;|. Then with Lemma 2.10.11 and Theorem 2.10.7

I| <k and | X;| <k forallie] = <kK.

||_|iE]Xi|S|@iE>\K’i|§>\®UiE>\I{iSK®K:/{' u

Lemma 2.10.13. For all families (k;);=\ of M-cardinals we have

R < (|_|ni)A.

iEX EA
We even have equality, if X is infinite and k; > 0 for alli € X and (k;);=y is increasing.
Proof. Abbreviate k = | |,_, #;- The inequality holds because of 3K,y ; = [\ —» .
If A is infinite, take an M-bijection f: Ax A — A, which is possible by Theorem 2.10.7.
Now A\ is the disjoint union of the pairwise disjoint M-sets X; = f[[j]*A] with j £ \.
Because of | X;| = A, it follows that X; must be unbounded in A, hence | |,-y x; = &

. S . A

since (K;);e is increasing. So £" = @), |_|iEXj Fi < Qjex ®iEXj Fi = @yex Fis the

inequality holding since x; < @),y k; for all i £ X, given that x; > 0 for all 7. [
J

Cofinality

When trying to evaluate cardinal powers £ for infinite M-cardinals x and A, one
naturally comes across the notion of cofinality. Understanding cofinal M-subsets only
is relevant for non-zero limit ordinals, in which case cofinal simply means unbounded.

Definition 2.10.14. If X C Y are M-subsets of O, we say that X is cofinal in YV
if for every v €Y there exists some 6 £ X with v <.

The cofinality of a € O is the least cardinality of a cofinal M-set in «, formally
cof(a) = |_| [k € K: k= |X] for some M-set X T o with X cofinal in o] .

An infinite M-cardinal k is regular if cof (k) = k. Otherwise it is singular.

Remark 2.10.15. Let X be an M-subset of an M-ordinal a.
If « is a limit ordinal, then X is cofinal in « iff X is unbounded in a.
If v is a successor, then X is cofinal in « iff X contains the maximum o — 1 of «.
In particular, cof(a) = 1 iff « is a successor ordinal.
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Example 2.10.16. w is regular since every unbounded subset of w is infinite.
Lemma 2.10.17. Let « € O and X T « with | | X = a. Then cof(a) < | X].
Proof. Just observe that | | X = o means that X is unbounded in a. ]

Lemma 2.10.18. Let X and Y be M-subsets of an M-ordinal o both cofinal in o.
Then there is f: X — Y that preserves < whose image is cofinal in Y .

Proof. Take for f: X — Y the M-function given by z — minfy Y : 2 <y]. O

Corollary 2.10.19. Let « and 8 be M-ordinals such that there exists an M-function
f: a— B preserving < whose image is cofinal in . Then cof(a) = cof(5).

Proof. For every cofinal X in « the image f[X] is cofinal in /3, hence cof(5) < cof(«).

Vice versa, for every cofinal Y in by Lemma 2.10.18 there is g: Y — f|a] with
cofinal image. Then (f ' o g)[Y] is cofinal in o because f~': f[a] — o preserves <.
This shows that we also have cof(«) < cof(f). O

Remark 2.10.20. Let 3 be a non-zero limit ordinal in M. Then cof(Rg) = cof(3).
Since cof(8) < f < Ry, it follows that, if N is regular, then necessarily Rz = 3.

In particular, R, is singular.

Lemma 2.10.21. For all o € O the cofinality cof(«) is the least A € K such that
there is a normal f: A — « whose image is cofinal in o.

Proof. Clearly, cof(a) < X if there exists f: A — a whose image is cofinal in a.
Now let A = cof(a). Note that A = 1, if «v is a successor, and in any case there
exists g: A — a with cofinal image. Take for f the M-function recursively given by

5) = max [g(8 — 1), f(# —1)+1] if §is a successor ordinal,
f(B) = { L] /18] if 5 is a limit ordinal.

It follows by transfinite induction that f has all the properties claimed in the lemma.
In particular, observe that | | f[5] < a for every non-zero limit ordinal 5 < A, given
that f[8] C « cannot be cofinal in « because of |f[5]| < |5] < 8 < A =cof(a). O

Lemma 2.10.22. For all o € O it is cof(cof(ar)) = cof () < |o| < av.

Proof. The inequalities cof(cof(a)) < cof(a) < |a| < a hold since « is cofinal in «.
The inequality cof(cof(a)) > cof(a) follows from Lemma 2.10.18 because the
composition of increasing M-functions with cofinal image again has cofinal image. [J

Corollary 2.10.23. cof(«) is reqular for every non-zero limit ordinal o« in M.

Proof. We have cof(cof(«)) = cof(a) according to Lemma 2.10.22. Evidently, cof(«)
is not finite, since then by Remark 2.10.15 we would have cof(«) = cof(cof(a)) = 1
or cof () = 0, so a would itself be a successor ordinal or 0. O
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Theorem 2.10.24. For every k € K the cofinality cof (k) is the least A € K such
that there exists (py)y<x with M-cardinals p, <k for ally <X and k= @, _, iy

Proof. Firstly, let A = cof(x). By Lemma 2.10.18 thereis f: A — x with cofinal image.
Take y1, = [f(7)|- Then clearly u, < x and in view of Lemma 2.8.12 k = [ | _, f(7).
Lemma 2.10.11 and Theorem 2.10.7 yield k <@,y iy CA@ | oty SA® K < k.

Secondly, let A € K with A < cof(x). If k = P, _, p, with M-cardinals 1, < &,
Lemma 2.10.11 and Theorem 2.10.7 would yield £ < A®| ], px < K, 80 5 = || _; pix
because of A < . Lemma 2.10.17 would then give the contradiction cof(k) < A. [

Corollary 2.10.25. Let k € K. Then k is singular iff there is an M-cardinal A < K
and a family (ji,)<x of M-cardinals with p., < x for all v < X\ and k = GBKA [l -

Proof. = Take A = cof(k) < k and apply Theorem 2.10.24.
< Theorem 2.10.24 implies cof(k) < A < k. O

It follows that the M-cardinals N4, are regular:
Lemma 2.10.26. Every infinite successor cardinal in M s reqular.

Proof. Let 0 € K and kK = 0" and A = cof(x). Theorem 2.10.24 allows us to write
K = ®v</\ p with M-cardinals 1, < K, i.e. p, < 0. If £ were singular, then A < o,
leading with Theorem 2.10.7 to the contradiction kK < A ® |_|7</\ py < 0. O

Let us write K, for the M-class consisting of all regular cardinals in M.

Corollary 2.10.27. K, is unbounded in Q.
Proof. This follows from Lemma 2.10.26 because K, is unbounded in O. O

Corollary 2.10.28. The regular cardinals in M are precisely w, all infinite successor
cardinals in M, and all regular M-cardinals that are fived points of N.

Proof. Use Example 2.10.16, Remarks 2.8.22 and 2.10.20, and Lemma 2.10.26 and
observe that every M-cardinal x with N, = x is a limit cardinal. O]

Remark 2.10.29. Regular limit cardinals in M different from w are referred to as
weakly inaccessible. They are the regular fixed points of N in K.

There are choices of M (if there are any at all) such that M does not have weakly
inaccessible cardinals. Namely, if x is the smallest weakly inaccessible M-cardinal,
then M|, is a ZFC-universe without weakly inaccessible cardinals where L, is the
M-class of constructible sets of rank x (to be constructed in Definition 2.11.5).
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Cardinal exponentiation

The point of this subsection is to derive that in order to compute the powers x” for
infinite M-cardinals & and X it is enough to know 2" and v for all v € K.

Lemma 2.10.30. x < ™ for all k € K__.

Proof. For A = cof(k) there are according to Theorem 2.10.24 M-cardinals ., <
with £ = @, _, #1, such that Lemma 2.10.8 yields £ < @),k = K. O

The following result strengthens Lemma 2.10.9 for infinite M-cardinals:
Lemma 2.10.31. x < cof(2%) for all k € K.

Proof. For every family (j.,). <, of M-cardinals with sz, < 2" Lemma 2.10.8 and Theo-
rem 2.10.7 show @, _, s, < Q. 2" = (2")" = 2". Now apply Theorem 2.10.24. [

Example 2.10.32. 2“ # X, because of cof(X,) = w.

So there are restrictions for what the cardinality 2“ of the “continuum in M” can
be apart from the obvious limitation w < 2“ due to Cantor’s Theorem.

Lemma 2.10.33. For all k, A € K, with A < cof(k) it is

A A
K" = max |k, |—|Iu|=u<f<'“ .

Proof. Because of A < cof(x) we have the identity [\ — ] = |,_.[A = 7]. So

’Y<I€[

A

K S ®'y</< ’,}/’A S H®|_|'y<n ’ﬁy’)\ S H®/€>\ = HA

and thus £* = max |k, [ 1| by Lemma 2.10.11 and Theorem 2.10.7. O

Lemma 2.10.34 (Hausdorft’s formula). For all u, A € K we have
() = p" et

Proof. Let k = .
By Lemma 2.10.26 we have cof (k) =  such that in case A < k = cof (k) we get with
Lemma 2.10.33 and Theorem 2.10.7 that x” = max [FL, |_|‘U‘:U<H 0)‘] <K® u’\ < K
In case k < A Lemma 2.10.9 and Theorem 2.10.7 show that p < k < A < 2% = .
We then conclude once again with Theorem 2.10.7 that x @ p* = p* = 2" = x*. O

Lemma 2.10.35. For all k € Ky, and A € K with cof(k) < A we have

A cof (k)

K'Y =p with p = |—|Iu\=u<n'“>\'

Proof. Let o = cof(x). By Theorem 2.10.24 there is a family ()., of M-cardinals
with 1 < p, <k and k = @KU p. Using Lemma 2.10.10 and Theorem 2.10.7 we

A A A o Ao A
thengetﬁ §(®"/<Uu7) :®7<U/1”Y§®fy<ap:p S(H) =k L
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All in all, we have the following rules for computing cardinal powers:

Theorem 2.10.36. For all k, A € K, the following holds:

s if A < cof(k) and if i > Kk for some |u| = pu < K,

N if A < cof(k) and if i’ < K for every |u| = p < &,

T et if cof(k) < A < &k and if ;> < K for every |pu| = p < K,
2’\ if k<A

Proof. The first case follows from p* < k* < (u*)* = p* with Theorem 2.10.7.
The second case follows for K = u* from Lemma 2.10.34 and Theorem 2.10.7.
If  is a limit cardinal, then in the second and third case k = |_|| plmp<n uA such that
the second case is due to Lemma 2.10.33 and the third case due to Lemma 2.10.35.
By Lemma 2.10.26 the third case cannot occur, if x is a successor cardinal.
The fourth case follows with Theorem 2.10.7 and Lemma 2.10.9. O

Corollary 2.10.37. For all k, A € K, the power &* has the form r or 2* or ')

for some v € K with cof(v) < A <v < k.

Proof. Let us assume £~ # r and k" # 2. We may choose v € K_, minimal with the
property v* = . By Theorem 2.10.36 we then have v* = ') with cof (1) < A < v,

since neither v < \, as this implies 2* = v = £*, nor u < v < p* for some p = |y,

A A A A R TP A A
as this implies ¢~ = v" = k", nor v~ = v, as this implies k" =" =v <k < rk". O

Continuum hypothesis

For every M-cardinal k Cantor’s Theorem tells us that 2" is an M-cardinal greater
than x. The General Continuum Hypothesis (GCH) postulates 2% = ™ for all infinite
M-cardinals k, i.e. it insists that there is no M-cardinal between s and 2".

Lemma 2.10.38 (Exponentiation under GCH). Assuming p* = 2" for all p € K,
the powers of all k, A € K, can be computed as follows:
if A < cof(k),
= kT ifcof(k) <\ < & :
ATaf K< A
Proof. Tn case A < cof (k) we have k < k" = max [k, [ ,uA} < k by Lemma 2.10.33
and since p* < 2/ = (u@ A\ < & for |u| = 4 < & by Theorem 2.10.7.
In case cof (k) < A < K use k < K < K" = 2" = kT by Lemmas 2.10.9 and 2.10.30.
Finally, in case k < X we have x* = 2" = k™ according to Theorem 2.10.7. O]

Remark 2.10.39. Let f*': K — K. be the M-class function given by x — 2.
Then f™ preserves < and x < cof (f*()) for all k € K, by Lemma 2.10.31.
Remarkably, this turns out to be the only provable restriction for the value of 2"
for regular M-cardinals x, a result known as Easton’s Theorem:
Given an S™'-formula with two free variables defining in each ZFC-universe M an

M-class function g™ K, eg = Ko that preserves < with the property & < cof (QM(KD
for all k € K,,. Then there exists a ZFC-universe M with M Koog = et
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2.11 Constructible sets

The next goal is to show that CHOICE and GCH are satisfied in the ZF-subuniverse
M|y, of any ZF-universe M where L is the smallest transitive M-class that contains
all M-ordinals. We now turn to the somewhat technical construction of L.

Convention 2.11.1. In this section, we assume that M is a (ZF° U INF)-universe.

Internal definability

Let H = J,,cy H,, be recursively defined by Hy = () and H,, = P(H,,_,) for all n > 0.
Consider the canonical map H — W, = HIF which is given by the recursive rule

T = T = [g:uéx].

This map is injective and — assuming now for simplicity 0 = ) and n+ 1 =n U {n}
for all n € N — it extends the map N — NM described in Remark 2.3.34.

[\]

Example 2.11.2. For instance, we have {(0,1),2} = [(Q, l},_}.

Without loss of generality we will assume that the vocabulary S = S Set was chosen
such that Sy, = N and S, USr = {L,—,\,=,¢} C H. This makes it possible to
mimic inside M the definition of S to obtain an analogous vocabulary S™ in M.
Repeating the constructions of Definition 1.2.1 inside M, we define SM_terms and
SM_formulas in the obvious way. In particular, for every S-formula ¢ we have the
corresponding S™-formula . Note however that not every SM_formula needs to
arise in this way. Namely, there are “more” S™-formulas than S-formulas whenever
the canonical map N — N is not bijective. After all, we can mimic the definition
of F as presented in Definition 1.3.1 inside M. Here, the following special case will
be sufficient for what we need:

Definition 2.11.3. For every M-set X consider the M-set
Fy = |(n, f) : 7 is an SM-formula and f: fvar(m) — X] .
Define an M-function Fx — 2, (7, ) — 750 such that 77 =1 iof and only iof

o m =z =y and f(z) = f(y) o,
o m=1 ey and f(z) € f(y) or
o T = (gojw) and (@X,flfvar(gp) — Q or wX,f'fvar(v,b) — l) or,
o T :Amgo and 0 & [gpx’fz U EX] with f;(x) =w and f;(y) = f(y) fory # .
Fory < w let Ty, be the M-set consisting of all (w,z,a) where 7 is an SM_formula,

T = (Ty)a<p 15 a family of pairwise distinct variables of SM and a = (Aa)a<p—ry 15 @
family of M-elements of X such that v < < w and fvar(n) C [z, : a < f].
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We will write X F w[z/a] synonymously for afaltarn = 1 where (m,x,a) ETxg
and f: [z, :a < fB] = X given as f;(x,) = a, for a <.

An M-subset Y of X is said to be definable in X if there exists (m,x,a) € Ty
such that Y = X, . , where with 3 = dom(z)

Xoza = |bp1 EX : X Eqx/b] forb: B — X with blzg_; =al.

Actually, to justify this definition we need to prove that indeed there exists M-sets
Fx and Ty, and X, , , as described above. This is clear by the following lemma,
which holds even without knowing that M satisfies POWER SET:

Lemma 2.11.4 (FUNCTION SET WITH FINITE DOMAIN). For all M-sets X and Y
with finite X there is an M-set

(X = Y] = [f: fis an M-function X — Y.

Proof. For every finite M-subset Y’ of Y also X *Y" is finite, so P(X * Y’) exists
due to Lemma 2.3.30 and then so does [X — Y] as an M-subset. Since the image
of every X — Y is finite, we can take [X — V] = [ |y £y g [X = Y. O

Constructible sets
Definition 2.11.5. Denote by D: M — M the M-class function given by
D(X) = [Y :Y is a definable M-subset in X |,

i.e. D(X) is the image of the M-function px: Tx, — M given by (m,x,a) — X, , .
Let Ly be the B-iterate of & under D and define L = (o Lg where Ly = e (Lg).
The M-sets in 1L are said to be constructible.

We call M constructible if every M-set is constructible.
Remark 2.11.6. D(X) forms a boolean subalgebra of P(2™(X)) in M.

Lemma 2.11.7. For all M-sets X and M|y -classes C we have [C] £ D(X).

More generally, for every S-formula ™ and every tuple (x,,)men of distinct variable
symbols in Sy that contains all free variables of w, and (a,,)men with a,, € X it is

M'E_l(X) ': W[(xm)m<n/(am)m<n] ~ X ': ﬂ[<xa>a<n/<aa>a<n]
where (To)acn and (@q)a<n are the families of M-sets with x,, = ., and a,, = a,,.
Proof. By structural induction on 7. O

Lemma 2.11.8. X C D(X) and D(X) is transitive for all transitive M-sets X .
Consequently, (L,)qaco s a cumulative M-hierarchy (see Problem Set 5).
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Proof. For every V £ X by transitivity V = [U € X : U € V] £ D(X). In particular,
for all V. E W £D(X) we have V £ D(X) because of V E W C X. O

Lemma 2.11.9. For every finite M-subset Y of an M-set X we have Y ED(X).

Proof. Let f: o — Y be bijective with a € N, Clearly, 77 £ D(X), so assume Y # &
and inductively Y' = Y\ [f(a—1)] ED(X). But then Y = Y'U[f(a—1)] ED(X). O

Lemma 2.11.10. For convenience define L., = IL. The following hold:

(a) Lg is transitive for every f € O U {oo}.

(b) Ls =Wg for every B < w and Ly C Wy for every B € O U {oo}.

(c) LsNO =04 for all B € QU {oo}, so B €Lgyy \ Lg for all g € O.
(d) X € L for each M|y -class that forms an M-set X.

Proof. (a) This is a direct consequence of Lemma 2.11.8 and Remark 2.3.4.

(b) Assuming by induction Ls = Ws_; we get Ly =D(Lg_1) =P(Ws_;) = Wp
for all 0 < B < w by Corollary 2.6.7 and Lemma 2.11.9, which implies the first claim.
The second claim follows by induction from Theorem 2.6.6.

(c) In view of (a) and (b) we have Ly; N O = 0" for all B € QU {oo} just as
in the proof of Lemma 2.7.3 (7,9) where 0™ s the M |p,~class consisting of all
a € Lz such that o and all v £ « are transitive. We need to verify 8 = L M1 Q.
Assume by induction that o = L, MO for every o < . If § is a limit ordinal, then
8= |_|a<5 o= |—|a<,8 L,MO=LzNQO. If 3 is a successor ordinal, then

B-1=L,,N0 = [0"1] € D(Ly )NO = N0,

where the penultimate step used Lemma 2.11.7. By transitivity we get 8 £ Lz M1 Q.

If the inclusion were proper, there would be an M-ordinal v > 3 with v £ Lg, so

again by transitivity € Lg = D(Lg_;) and thus § —1 & 8 C Lg_4, a contradiction.
(d) Let 7 be an S5 _formula, fvar(m) C {v,wy,...,w,}, Wi,..., W, € L with

C={VelL M|, Exl[v,w,...,w,)/(V,Wy,...,W,)]},

forming an M-set. Since €' — O, V — min{a € O : V € L,,,}, forms an M-set,
there exists a € O with W, ..., W, € L, and C CLL,. As a consequence, we have

C={Vel,: M|y, Ex[v,w,...,w,)/(V,W,....,W,)]}.

By the Reflection Principle (see the solution of Exercise 1 on Problem Set 5), replacing
« if necessary by a larger M-ordinal, we may assume that

C = {VELQ:M|LQ |:W[(v,wl,...,wn)/(V,Wl,...,Wn)]}.

But then [C] ED(L,) = L1 C L in view of Lemma 2.11.7. O
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Theorem 2.11.11. M|, is a constructible (ZF° U INF UREG)-universe.
If M satisfies POWER SET, then so does M|y..

Finally, if M|¢ is a (ZF° U INF UREG)-universe for some transitive M-class C,
then necessarily LMle = Lg for some B € OU {oc}. In particular, LM =L,

Proof. Using Lemmas 2.7.3 and 2.11.10 we can conclude M|, E ZF° U INF UREG
and M E POW = M|, E POW.

Now for every transitive M-class C' such that M| is a (ZF° U INF UREG)-universe
we have with the argument given in the proof of Lemma 2.7.3 (7,9) O™le = ONC and
NMle = NM. It then follows that Wﬁ/l‘c =W, and the M|q-set of SMle_formulas
agrees with the M-set of S™-formulas such that analyzing the definition of D we
may conclude DMle = D|c. Hence, LMe =1, for all &« € @ N C by recursion in M.

By Lemma 2.3.14 O N C = O_4 for some € OU {oco}. Moreover, since oMle is
inductive, § is a limit ordinal or co. So LMle = U, coMic Lo = Uaecpla =L O

Remark 2.11.12. Let M be a ZFC-universe. It is not hard to see that K C KM,
However, equality does not hold in general.

Exercise 2.11.13. The M-class L in any ZFC-universe M is the smallest transitive
M-class C containing all M-ordinals such that M| is again a ZFC-universe.

Relative consistency of the axiom of choice

This subsection will establish that M|, satisfies CHOICE. The simple reason for this
is that it is not hard to explicitly define a well-order on the M-class L.

Lemma 2.11.14. For every well-orderable M-set X also D(X) is well-orderable.

More precisely, denoting by WO the M-class of all M-relations that are well-
orders, there exists an M-class function WO — WO, < — <°, such that for every
well-order < of X the M-set <° is a well-order of D(X).

Proof. Tt is not very hard to see that the M-set of all $*-formulas is well-orderable.
So we can fix an M-relation <” that well-orders it.

For every well-order < on an M-set X denote by <" the well-order on T, that
compares elements (7, x,a) in Ty, lexicographically looking firstly at 7 with <7,
secondly at dom(z) = dom(a) 4+ 1 with <, thirdly at « with the lexicographic order
on the product X <dom(z) W Induced by <, and finally at a with the lexicographic
order on the product X <dom(a) X Induced by <.

Finally, we use the canonical surjective M-function px: T ; — D(X) to obtain a
well-order <° given by U <"V < min_r py [U]] <" min_r px [V O

Theorem 2.11.15. There is an M-class relation < that well-orders L.

Proof. Let v € O and recursively assume that well-orders <, are given on all L,
with o <y such that <, is the restriction of < for all a < 8 < 7.
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If v is a limit ordinal, define <, =[ |, <.

If v is a successor ordinal, define <., for X,Y & L, via
Xel,yandY e L, ;and X <, ;Y or,
X=<Y & {XFL, jandY &L, and X <, Y or,
XE L’Y—l and Y ¢ L’\/—l'
Clearly, in either case <. will be a well-order on L. with the property that <,
is the restriction of <3 for all & < 3 <. By recursion we now obtain an M-class

function o — <, and we can take for < the M-class relation | J, o <a-
With Lemma 2.4.3 it follows that < well-orders L. O

Corollary 2.11.16. If M = ZF~, then M|y, E ZFC.
Hence, the consistency of ZF~ implies the consistency of ZFC.

Proof. Assume that M E ZF~. Theorem 2.11.11 already states that M|, F ZF holds.
By Theorem 2.9.2 it thus suffices to show that every M| -set X is well-orderable.
But according to Theorems 2.11.11 and 2.11.15 there exists an M| -class relation <
on IL that well-orders IL. Since L is transitive, < induces a well-order on X C L. [

Relative consistency of GCH

Before proving that M|y satisfies GCH, we need some preparations. Most importantly,
the Lowenheim—Skolem Theorem and an internal version of the Reflection Principle.

Convention 2.11.17. In this subsection, we assume that M is a ZFC-universe.
With CHOICE at hand we can calculate the cardinalities of the M-sets Lg:

Lemma 2.11.18. For every infinite M-set X we have |D(X)| = | X].
Consequently, |Lg| = |B| for all infinite M-ordinals 3.

Proof. On the one hand, we have |X| < |D(X)| because of X C D(X), and, on the
other hand, |D(X)| < |Tx,| = max [|X|,w] = |X].

Now take w < 8 € Q. Clearly, |3| < |Lg| because of 3 T Lg. Since L, is finite for
o < w and using induction we may assume |L,| < max [|a|,w] < || for all a < 3.

If 8 is a limit ordinal, then [Lg| = ||, Lol < @oepllal < 18-

If B is a successor ordinal, then |Lg| = |D(Lg_y)| = |Ls_1| = |8 — 1| = |B]. O

Definition 2.11.19. An M-subset Y of an M-set X is said to be elementary if the
equivalence Y F m[x/a] & X E wlx/a] holds for every (m,x,a) € Ty,.

The following criterion is useful for determining whether an M-subset is elementary
and saves us from having to do structural induction on SM_formulas each time:

Lemma 2.11.20. An M-subset Y of an M-set X is elementary if and only if the
implication X N\ X, ., #4 = Y N X, .. # &2 holds for every (m,x,a) € Ty;.
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Proof. Let (m,x,a) € Tyy. We have to show Y F 7z /a] & X F w(z/al.

This is clear for atomic 7.

By structural induction it holds in case m = (p = ).

Finally, consider 7 = A\ ¢. We may then assume y # z, for all « < § = |x| and
let (¢, z,a) € Ty, with z_LBy: r and z5 = y. Then < holds because Y C X and by
structural induction. To see = let X 7 w[x/a], i.e. X N\ X, , , # I, so by assumption
then Y\ X, . , # 4. Structural induction yields Y \Y,,, , # &, ie. Y Z w[x/a]. [

Lemma 2.11.21 (Downward Léwenheim-Skolem Theorem). For all M-sets Z C X
there exists an elementary M-subset Y of X with Z CTY and |Y| < max [|Z], w].

Proof. Choose a well-order < on X. According to Lemma 2.11.20Y = | | _ Y, with

Yo =Zand Y, = Y, U [min< W(m,za)eTy  withW =X\ X, ,# JZ}

is an elementary M-subset of X. Since |Y;| = |Z| < max [|Z],w] induction yields
Yorul < Yol @ Ty, 4| < max [|Z],w]

because of [Ty, ;| < max [|Y,],w]. Consequently, |Y| < max [|Z],w], too. O

Lemma 2.11.22 (Internal Reflection Principle). For each regular M-cardinal k > w
and cumulative M-hierarchy (V,,)oco with the property |V, | < k for all a < K the
M-set [04 < K :V, is an elementary M-subset of VH} 15 closed and unbounded in k.

Proof. To prove closedness, let W be a non-empty M-subset of x such that V, is
an elementary M-subset of V, for all v £ W. Let a = | |W. We have to show that
Y =V, is an elementary M-subset of X = V,.. We use Lemma 2.11.20.

So take (7, x,a) € Ty, with X \ X, , # 4. Because the M-function a has finite
image and the M-sets V., with v £ W are pairwise comparable by C, there is y € W
with (7, z,a) € Ty, 1- Then V, N\ X, ., # X, s0Y \ X, , # & because of v < a.

To prove unboundedness, let ¢ < k. Define o = | | _, «, recursively by

o<w
ay =€ and a,,; = I_l [%,w,aug (mx,a) ETy, g with XN X, #2

where v, ;4 = min [(5 <Ko, <Odwith Vi X, # JZ] and as before X =V,.
Again we use the criterion Lemma 2.11.20 to verify that Y =V, is an elementary
M-subset of X.

So take (m,x,a) € Ty; with X ~\ X, , # &. Similarly as above when we proved
closedness, we have (r,z,a) € Ty, ; for some 0 <w. Hence, V,, N X_. , #1
and thus Y \ X, , , # Z because of Vo, < Q- T

Clearly, ¢ < a. So all that remains to be checked is a < k. Assuming a, < Kk by
induction on o < w we derive o, < K from ‘Tv%yl‘ < max [|V, |,w] < k= cof(k).
But then we immediately get a@ < K because of w < k = cof(k). O]
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Theorem 2.11.23. M|y, is a constructible (ZF° U INF UCHO UREG)-universe for
every reqular M-cardinal k > w, i.e. it satisfies all ZFC axioms except POWER SET.

Proof. Applying the lemma from the solution of Exercise 3 on Problem Set 5 we
immediately see that M|y, FEXT UEMP UPAT UUNI U INF UCHO UREG. Since L, is
transitive, the constructibility of M|y, holds then by Theorem 2.11.11.

It remains to check M|y, F REP. To do this, let f: = '(X) » L, with X € L, be
definable in M|, . Then there exists an S-formula 7 with fvar(r) C {v,wy,...,w,}
and with W,,... W, € L, such that as M-sets

fIX] = [VEL,: Ml Erl(v,wy,...,w,)/(V.Wy,...,W,)]].

where o = |_|VEf[X} min [5 <K:VE L5:|. Picking some w < v < k such that X € L.,
the transitivity of L, gives X C L., so using Lemma 2.11.18 | X| < |L,| = |v] < &.
Since k is regular, we can conclude that a < k. Replacing « by a larger M-ordinal less

than x, we may assume Wy, ..., W, £ L, and additionally in view of Lemma 2.11.22
that L, is an elementary M-subset of L,. We then get f[X]eD(L,) =L, C L,
with the help of Lemma 2.11.7. This finishes the proof of M|, F REP. n

Since we have already proven that the consistency of ZF~ implies the consistency
of ZFC (see Corollary 2.11.16), the next result establishes the consistency of ZFC
together with GCH granted the consistency of ZF .

Theorem 2.11.24. If M is constructible, then it satisfies GCH.

Proof. Let A be an infinite M-cardinal. We have to prove 2 = AT. Given that we
already now A\* < 2* from Lemma 2.10.9, it is sufficient to check P(\) T L,+ as this
with Lemma 2.11.18 will yield the missing inequality 2* = [P(\)] < |Ly+| = AT,

Take W E P()). Since M is constructible, there is some M-cardinal x > X such
that W £ L,.. In view of Lemma 2.10.26 we may assume that  is regular, which will
ensure that M|y, is a constructible (ZF° U INF UREG)-universe by Theorem 2.11.23.

The Léwenheim—Skolem Theorem (Lemma 2.11.21) lets us choose an elementary
M-subset Y of L, such that Z =AU [W]CY and |V] < max [|Z],w] = .

According to Mostowski’s Isomorphism Theorem (Theorem 2.5.9) the transitive
collapse is an isomorphism ¢: (7' (Y), ) — (T, &) where T is a transitive M-class.

Since Y is an elementary M-subset of L, and t is an isomorphism, M| is a
constructible (ZF° U INF UREG)-universe, so T' = L4 for some infinite M-ordinal /3
by Theorem 2.11.11.

The transitivity of A and the fact W C X imply that Z is transitive. It is easy to see
that the transitive collapse t is the identity when restricted to transitve M-subsets
of Y. Hence, W = (W) € T'= L. To obtain as required W & L,+, it only remains
to observe Lg C L,+ because |8] = |Lg| = |Y| < X yields B < A™. O
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2.12 Boolean-valued sets

In this section we will often cite [Jec03] and [Bell1] for technical proofs and definitions.
The treatment in these sources is sometimes a little sketchy. The most recommendable,
well-written, and self-contained source on the subject is in my opinion still [Ros69].

It is natural to identify M-sets X with their characteristic M-functions X — 2. Of
course, this approach is not completely consistent in the sense that the M-elements
of the domain of these M-functions are not characteristic M-functions themselves.
This can be remedied by a hierarchical construction as given in the next definition,
taking there for A the boolean ring F,. But why we are really interested in this
construction is that clever choices of A will give rise to boolean-valued models of
ZFC where certain S-formulas (e.g. describing GCH) are not satisfied.

Convention 2.12.1. In this section, we will assume that M is a ZFC-universe and
fix a complete boolean ring (A, +, -) in M and consider the M-class A = £~ '(A)
as a boolean ring with addition given by + and multiplication given by .

Remark 2.12.2. A is complete w.r.t. P(A) but in general not complete w.r.t. P(A),
i.e. each M-subset of A has a supremum but not necessarily each subset of A.

It is easy to see that the following is well-defined using well-founded recursion:

Definition 2.12.3. Let B = J, o B, with B,] = B, and let =,€: B> — A be the
functions definable in M determined by the following properties for all X,Y € B:

(a) (By)aco is the cumulative M-hierarchy such that for all o € O

B, = [Z 2 Z 1s an M-function B — A with B £ Ba] .

(b) XeY= \/UEdom(Y) (X ~UA Y(U)>

(c) XmY=X€EYAY E@X where X €Y = \jcjom)(X(U) = U €Y).

We will denote by M, the unassigned boolean-valued S-structure with My = B
and RM* = A and =M =~ and M = €.

We refer to the elements of B as A-valued M-sets.

As could be hoped for, this construction gives rise to a boolean-valued model of
ZFC. The verification is lengthy but straightforward. To give an idea of how it can

be undertaken, we sketch a proof of the following result but we will later just refer to
the literature for the computations necessary to check the remaining axioms of ZFC:

Lemma 2.12.4. M, is a boolean-valued model of an S-theory with equality =.

Proof. We have to check that M satisfies (R), (S), (T), (C) in Definition 1.4.1.
This is obvious for (S).

63



To check (R) take X € B. By induction assume U ~ U =1 for all U £ dom(X).
Then U€ X >U~UAXU)=X(U),ie. X(U)>U€ X =150 X~X=1.

To verify (T) and (C) it is enough to prove that X Y <Y ~ 7 — X ~ Z and
XrY<Xe/Z—-sYeZand XY <Ze X —>Z€VYforall X|Y,Z e B. We
do this simultaneously by induction following the proof of [Jec03, Lemma 14.16].

Firstly, by induction Y = Z <U€Y -U€ Z,ie U Y <Y -U€Z
for all U € dom(X),s0o X(U) = U €Y <Y ~Z— (X(U)— U€ Z). Taking
the infimum over all such U yields X e Y <Y ~ 7 — X € Z. With a similar
argument Y e X <Y x~7Z—-7Z€X. Hence, X Y <Y =7 —- X=xZ7.

Secondly, X Y < X ~U =Y xU< (X=UAZU)) = (Y =UANZU)) by
induction for all U £ dom(Z). Hence, X Y <X € Z Y € Z.

Thirdly, X r Y < X eY <X(U)-Ue€Y < Z=UANXU)) - Z€Y
where the last inequality holds since Z ~ U < U € Y — Z € Y by induction for all
Uedom(X). Thus X =Y <Z€ X — Z€ Y, finishing the proof. ]

Remark 2.12.5. One might think that it is necessary in Definition 2.12.3 to replace B
with B = {X € B: X(U) = U € X} to make sure that the axiom of extensionality is
satisfied in M. Even though it is indeed possible to make this replacement (as done
in [Ros69]) it is not necessary (as follows from the presentation in [Jec03; Belll]).

Actually, for every A-valued M-set X the A-valued M-set X’ with domain dom(X)
and X'(U) = U € X for all U & dom(X) belongs to B’ and satisfies X' ~ X = 1.

We can map each M-set in the obvious way to its corresponding “characteristic
function” in the boolean-valued model M as follows:

Definition 2.12.6. For M-sets X define 1 x recursively as the A-valued M-set with
domain [1y : V € X ] taking constant value 1 € A.

Denote by 1 the M-class function M — B, X — 1.

Lemma 2.12.7. For all A-valued M-sets U and M-sets X we have

Uely = \/ Ur1y.

VEX

Proof. See [Belll, Theorem 1.23]. O

An S-formula 7 is said to be restricted if every quantifier in it appears restricted, i.e.
for every subformula of 7 of the form A ¢ the S-formula ¢ has the form (z e y — 9)
for some y € Sy, and some S-formula ). We leave it to the reader to turn this into a
precise definition. Logicians often call such formulas A, (see Lévy hierarchy).

The following observation is very helpful for verifying that M, E ZFC:

Lemma 2.12.8. For every restricted S-formula m and all tuples & = (xq,...,x,) of
pairwise distinct symbols in Sy and @ = (ay,...,a,) € M" and 1; = (1,,,...,1, )

M E 7[@)d) < M, F r[7/1,].
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In particular, we have for all M-sets X, Y the following equivalences:

XeY <:>]1X€]1Y:1

Proof. See [Belll, Theorem 1.23] or [Jec03, Lemma 14.21]. O

Remark 2.12.9. In case A = F, Lemma 2.12.8 is true for general S-formulas 7, i.e.
also for unrestricted ones, and 1 is injective. Hence, My, is equivalent to M in the
sense that 1 embeds M into My, as an elementary substructure.

To work with the boolean-valued structure M, it is convenient to know that it
has witnesses. This fact can be deduced with the following useful construction:

Definition 2.12.10. The boolean mixture of families (A;);=;r and (B;);=; of M-sets
with A; € A and B; € B for all i € I is the A-valued M-set X =) ._, A;B; with
domain | |,.,; dom(B;) such that for all U £ dom(X) we have

(ZiEI AiBi)(U) = ViEI Ai ANU € Bi .

Lemma 2.12.11 (Mixing Lemma). Let (A;);=; and (B;);=; be families of M-sets
with A; € A and B; € B for all i & I such that A; N A; < B, = B; for alli,j & I.
Then for all j € I the following inequality holds:

Aj < By ) i AiBi
Proof. See [Belll, Lemma 1.25]. O
Corollary 2.12.12 (Maximum Principle). M, has witnesses.

Proof. See [Belll, Lemma 1.27]. O

Given an S-formula 7 whose distinct free variables are x1, ..., z, and given further-
more A-valued M-sets X, ..., X,_;, an A-valued M-set X, is said to be an existential

r—1»

witness for m via xy, ..., — X, ..., X, i My En[(z,...,2.)/ (X, ..., X))

We are now in the position to state the central results about boolean-valued sets.
Theorem 2.12.13. M, is a boolean-valued model of ZFC. Moreover:

(EMP) 1y = 7 is an existential witness for

N, vfz via x— .

(PAI) For A-valued M-sets X and Y the A-valued M-set [X,Y]" taking constant

value 1 with domain [X,Y] is an existential witness for

NA((v=azVu=y) o vez) viaxyz— XY, [X,Y]".
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(UNI) For A-valued M-sets X the A-valued M-set |_|AX taking constant value 1
with domain | |[dom(V) : V £ dom(X)] is an existential witness for

AV, (vewnwez) < vey) viaz,y— X, | [*X.

(POW) For A-valued M-sets X the A-valued M-set P*(X) taking constant value 1
with domain [V € [dom(X) — A] : V(U) < X(U) for all U £ dom(X)] is an

existential witness for

A C e vey) viaz,y— X,PHX).

(INF) 1, is an existential witness for

(@ex AN\, (ver = vU{v}ex)) viax—1,.

Proof. See [Jec03, Theorem 14.24| and [Belll, Theorem 1.33]. O

Let Ordinal(x) be an S-formula 7 such that for all ZFC-universes N the equivalence
N E wlz/a] < a € OV holds. Similarly, we fix three further S-formulas Cardinal(z),
InjectsInto(z, y), Bijective(x, y) with the obvious properties indicated by the naming.

For each A-valued M-set X with Ordinal(X) = 1 let X% be an existential witness
for an S-formula 7 via z,y — X, N% with the property that for all ZFC-universes N
the equivalence N E 7[(z,y)/ (o, k)] < (o € OV and x = X)) holds.

For A-valued M-sets X and Y we will write X <Y in case InjectsInto(X,Y) =1
and X ~ Y in case Bijective(X,Y) = 1.

Lemma 2.12.14. For all A-valued M-sets X and Y the following are true:
(i) X = Laom(x)-
(1) | X|=1Y]=1x ~1y.
(iii) Ordinal(X) = \/ .o X ~ 1,, in particular Ordinal(1,) = 1 for all o € O.
(iv) Ty, = N‘]i for all a € Q.
(v) Cardinal(1,) =1 for all o < w.
(vi) N} ~ 1, = 1.
Proof. See |Belll, Theorems 1.44, 1.49, 1.50 and Lemma 1.52]. O

Remark 2.12.15. A perhaps less clumsy formulation of Lemma 2.12.14 could be
given in terms of the ZFC-universes M, = (M, /m)/= for maximal ideals m of A.

For instance, denoting by X, the M,-set that is the equivalence class of the
M -set 1y in M,,, property (iv) translates into (R, )n < Nﬁ:“‘ for all m € Spec(A).
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Definition 2.12.16. An antichain in a boolean ring (A, +, -) in M is an M-subset
X of A such that x Ay # 0 for all x,y e X.

We say that a boolean ring (A, +, -) in M is ccc (or that it satisfies the countable
antichain condition) if all of its antichains X are at most countable, i.e. | X| < w.

Lemma 2.12.17. If (A, +, -) is ccc, the equivalences X € K < Cardinal(1y) = 1
and |X| = Y| & 1y =~ 1y hold for all M-sets XY and 1y ~ N‘ﬁa for all a € Q.

Proof. See |Belll, Theorem 1.51]. ]

2.13 Forcing

We briefly discuss the relation between boolean-valued M-sets and so-called forcing.
We do this just out of curiosity. The only thing needed later from this section are
Examples 2.13.5 and 2.13.8. As before, we will use the ideal language and relate it
to the language of filters that is more commonly encountered in the literature.

By Theorem 2.12.13, Corollary 2.12.12, and Lemmas 1.3.9 and 1.4.2 we know that
the quotients M,, = (M, /m)/- are ZFC-universes for all maximal ideals m in A.
Furthermore, via 1 every M-set X can be mapped to a corresponding M,,-set [1 x].
It is thus natural to wonder whether along these lines it is possible to regard M., in
a certain sense “as an extension of M by adjoining m”.

This works under (very strong) assumptions on M and m.

Namely, if M is transitive, i.e. £ is given by €, we can define another transitive
=-respecting S-structure M[m] with underlying set M[m] = {X™ : X € B} where

X" = {U™:U € dom(X) such that X(U) € m}.

If now m is an M-prime ideal, i.e. for families (z;);=; of M-sets with z; € A we
have A\,.; z; € m only if z; € m for some ¢ £ I, then M[m] and M,, are isomorphic
([Jec03, Exercise 14.15]). In this situation, M[m] is called a forcing extension of M.

Remark 2.13.1. By Lemma 1.1.4 all M-prime ideals in A are maximal.

Theorem 2.13.2. Let M be transitive and let m be an M-prime ideal in A.
Then M[m] is a ZFC-universe with M C M[m] and m € M[m] and Q™M™ = QM.
If N is another transitive ZFC-universe with M C N andm € N, then M[m] C N.

Proof. See [Jec03, Theorem 14.5]. One checks for instance X = 1% forall X € M. [

Remark 2.13.3. M-prime ideals in A exist, if M is transitive and its underlying
set is countable (see [Jec03, Lemma 14.4]). Since the existence of countable transitive
models of a given finite subset of ZFC is provable, one can replace the hypotheses of
Theorem 2.13.2 by the assumption that M merely has to be a model of a finite subset
of ZFC large enough to prove the theorem. With this reformulation the theorem
becomes provably non-vacuous and in this modified form it can be used to obtain
independence results.
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Instead of “adjoining M-prime ideals of complete boolean rings in M” many people
prefer “adjoining M-generic filters of partially ordered sets in M”. Essentially these
two approaches are the same as indicated by the observations collected below.

Forcing notions and forcing language

Definition 2.13.4. A forcing notion in M is a partially ordered set (P, <) in M.
For p,q € P we say that p extends ¢ (or that p is stronger than ¢) if p < q.
If p and q have a common extension, i.e. if there isr € P with r < p and r < q,
they are called compatible. An M-subset D of P is said to be dense if every p e P
has an extension in D, i.e. there is r € D with r < p.

Example 2.13.5 (Cohen’s Forcing Notion). For M-sets I let P; be the M-set of
M-functions X — 2 with X C I and |X| < w ordered by p < ¢ < p Jg.

Remark 2.13.6. If (A, +, -) is a boolean ring in M, then two non-zero p,q £ A
are compatible in the partially ordered set (A ~ [0], <) iff p A ¢ # 0.

Theorem 2.13.7. For every partially ordered set (P, <) in M there is a complete
boolean ring (A, +, ) in M and a homomorphism v: (P, <) — (AN[0], <) with dense
image that reflects compatibility, i.e. p and q are compatible in P iff 1(p) A t(q) # 0.

Moreover, ((A,+, ), ) is up to isomorphism uniquely determined. We refer to it
as a boolean completion of (P, <).

Proof. See |Jec03, Corollary 14.12]. ]

Example 2.13.8 (Cohen Algebra). Consider (P, <) as in Example 2.13.5 and view
[[ — 2] = .-, 2 as a topological space in M equipped with the product topology
where 2 carries the discrete topology. Then the M-set A; of regular M-subsets
of [I — 2] becomes a complete boolean ring (A;,+, -) in M with the operations
described in Exercise 4 of Problem Set 1.

Let v: P — A; N [0] be given by «(p) = [fE[I = 2]: pC f].

It is not hard to see that ((A;,+, -),¢) is a boolean completion of (P;, <). Indeed,
for all p,q € P we have p J ¢ = «(p) C ¢(q). Furthermore, the image of ¢ is dense
in A; \ [0] because it is a basis of the topology of [I — 2] that consists of closed
and open (so in particular regular) M-subsets of [I — 2]. Finally, two M-functions
p,q E P agree on their common domain dom(p) Mdom(q) iff ¢(p) M¢(q) is non-empty.

Convention 2.13.9. Fix a forcing notion (P, <) in M and moreover (A, +, -) and
¢ as in Theorem 2.13.7. We then continue to use the notation of Convention 2.12.1
and consider P = £7'(P) as a partially ordered set under <.

We can now introduce the forcing relation I-. Some of its important properties are
collected in [Jec03, Theorem 14.7] and [Belll, Theorem 2.5|. All of them are evident
from the calculation rules for boolean rings and the fact that M, has witnesses.
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Definition 2.13.10. Let o = 7M%)% where 7 is an S-formula and & = (z4,...,z,)
a tuple of pairwise distinct symbols in Sy and @ = (ay,...,a,) € B'.

For p € P one says that p forces o if 1(p) < o. In this case we write pIF 0.
Lemma 2.13.11. p I o iff M/m E 7[Z/d] for every m € Spec(A) with «(p) & m.

Proof. This follows readily from Corollary 2.12.12 and Lemma 1.3.9. O

Forcing extensions by filters

Definition 2.13.12. A filter in P is a non-empty subset of P withq >p € F = q € F
for all p,q € P and such that for all p,q € F there isr € F withr < p and r < q.

A filter in P is M-generic if it intersects every dense M-subset of P non-trivially.

Lemma 2.13.13. The assignment F' — mp = {x € A : x < 1(p) for everyp € F'}
maps M-generic filters in P to M-prime ideals in A.

Proof. See |Jec03, Lemma 14.13 and Exercise 14.10]. O

If M is transitive and F' is an M-generic filter in P one can define again a transitive
=-respecting S-structure M[F] with underlying set M[F] = {X" : X € B} where

X' = {U" : U € dom(X) such that X(U) € F}.

It turns out that F' € M[F] = M[mp]. Moreover, M|F| has the universal property
that M[F] C N for all transitive ZFC-universes N with M C A and F € \V.

2.14 Independence of GCH

We will now apply the theory of boolean-valued sets to construct ZFC-universes N
where the cardinality of PN(wN) is szv. Obviously, such N will violate GCH.

Convention 2.14.1. Fix an M-ordinal a such that N, = R, and let I = w«X,. With
this choice of I, let (P, <) = (P}, <) be Cohen’s Forcing Notion from Example 2.13.5
and take (A, +, ) to be its boolean completion described in Example 2.13.8.

Lemma 2.14.2. (A, +, ) is ccc and |A| =X,

Proof. See |Belll, Corollary 2.11] and use the assumption R = N ]

a-

The choice of I above provides us with “many A-valued M-subsets of 1,” that do
not arise from M-subsets of w. Namely, we will consider the following ones:

Definition 2.14.3. Define (U,) <y, to be the family of A-valued M-sets given by

dom(U,) = dom(1,) = [1, : 0 < w] for v <X, such that for o <w

U,(1,) = [f el = 2]: f({o,7) =1].
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Observe that U, (1, ) is the preimage of 1 under the canonical projection X, 22
onto the (o,7)-th component. Hence, it is open and closed and thus regular, so it
belongs to A. The closedness also shows that =U, (1,) = A\ U,(1,).

Lemma 2.14.4. For ally < <R, and p € P and (o,7) € dom(p) we have:

(i) U, el,=1.

(i) U,(1,) =1, € U,.
fii) 1(p) < 1, € U, & p((5,7)) = L and (p) < ~(1, € U,) & pl({7,7) = 0.
(w) U, =~ Us; = 0.

Proof. (i) U, €1,=A,_,(U,(1,) = 1,€1,)=1sincel, €1,=1for 7 <w.
(i) 1,€ U, =V, 1, =1, AU/(L,)) =U,(1,) since 1, =~ 1, =0 for 7 # 0.
(iii) Let f € [/ — 2]. We must show f & «(p) = f £ U,(1,) iff p({(o,v)) = 1 and

feup) = f£U,(1,) iff p({(o,v)) = 0. This is clear by definition of + and U,

(iv) Assume U, ~ U; # 0. Since the image of ¢ is dense in A \ [0] there is ¢ £ P

T<w(

such that «(q) < U, = Us. Because of | dom(q)| < w we can therefore choose 0 < w
such that (o, 7) & dom(q) for all 7 < X,. Then we can pick any p € P with p < ¢
(i.e. extending ¢) and p({o,7)) = 1 and p({0,d)) = 0. Using (iii) we can conclude
up) <1,€ U,A~(1, € Us) < (U, = Us). But we also have «(p) < 1(q) < U, = Us.
Combining these two inequalities yields the absurd ¢(p) = 0. O

Denote by InjectiveFunctionFromTo(u, x, y) some fixed S-formula 7 such that for
all ZFC-universes N and N-sets U, X, Y we have N F 7[(u,z,y)/(U, X,Y)] if and
only if U is an injective N -function with domain X and image contained in Y.

We will use the non-surprising notation (X, Y)* for [X L [X, Y]A}A where X, Y € B.
Theorem 2.14.5. P* (Nﬁ)) ~ Nﬁa.

Proof. Abbreviate P, = P*(1,). By Lemmas 2.12.14, 2.12.17 and 2.14.2 we have
1,~ Nfﬂ =land Iy ~ N‘ﬁa. So it is sufficient to show P, ~ Ty .

On the one hand, using once more Lemmas 2.12.14, 2.12.17 and 2.14.2, we have
the inequality |dom(P,,)| < |[w — A]| = |A|* = N; =R, 50 P, X Tgome,) = 1y, -

On the other hand, in view of Lemma 2.14.4 (i) and (iv), it is possible to show that
InjectiveFunctionFromTo(U, 1y _,P,) = 1 where U is defined as the A-valued M-set
with dom(U) = [(1,, UAY>A v < N,] taking constant value 1 (for a more detailed
argument see the proof of [Belll, Theorem 2.12]). Hence, 1y =P, too. O

Corollary 2.14.6. GCH is independent of ZFC, i.e. if there is any ZFC-universe
at all, then some ZFC-universes satisfy GCH and some do not.

Proof. By the results of § 2.11 we may replace M by M|, to make sure that M
satisfies GCH. Then 2 is a valid choice for o because of X5 = Ry by Lemmas 2.10.26
and 2.10.38. Assuming o = 2 Theorem 2.14.5 shows that M, does not satisfy GCH
since Nﬁt o N‘ﬁl according to Lemmas 2.12.14, 2.12.17 and 2.14.2. O
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