1. (a) Let R be a boolean ring and $u, v, x, y, z \in R$.
(i) $\wedge=\cdot$ and + are associative by definition of a ring and together with the law of distributivity and the commutativity of + we compute for V :

$$
(x \vee y) \vee z=x+y+z+x y+x z+y z+x y z=x \vee(y \vee z)
$$

(ii) $\wedge=$. is idempotent by definition of a boolean ring and using $2=0$ we get:

$$
x \vee x=2 x+x^{2}=0+x=x
$$

(iii) + is commutative by definition of a ring and $\wedge=$. by Lemma 1.1.3. This implies the commutativity of \vee and \leftrightarrow, which in turn yields that of \uparrow and \downarrow.
(iv) Clearly, $x \wedge 0=0, x \wedge 1=x, x \vee 0=x$ and $x \vee 1=2 x+1=1$, since $2=0$.
(v) Using the idempotence of $\wedge=\cdot$ and $2=0$:

$$
\begin{aligned}
& x \wedge(x \vee y)=x(x+y+x y)=x+2 x y=x \\
& x \vee(x \wedge y)=x+x y+x^{2} y=x+2 x y=x
\end{aligned}
$$

(vi) Using $2=0$:

$$
\left.\begin{array}{rl}
\neg(x \wedge y)=x y+1+2(x+y+1) & =\neg x \vee \neg y \\
\neg(x \vee y)= & x+y+x y+1
\end{array}\right)=\neg x \wedge \neg y
$$

(vii) Using $\neg \neg y=y$ (because of $2=0$) and the commutativity of V :

$$
x \rightarrow y=\neg x \vee y=\neg \neg y \vee \neg x=\neg y \rightarrow \neg x
$$

(viii) Using the idempotence of $\wedge=\cdot$ and $2=0$ we compute

$$
x \leftrightarrow y=(\neg x \vee y)(\neg y \vee x)=(x y+x+1)(x y+y+1)=x+y+1,
$$

such that $x \leftrightarrow y=1 \Leftrightarrow x+y=0 \Leftrightarrow x=y$.
(ix) Using (vi) and the associativity of V :

$$
(x \wedge y) \rightarrow z=\neg(x \wedge y) \vee z=\neg x \vee \neg y \vee z=x \rightarrow(y \rightarrow z)
$$

(x) Using the idempotence of $\wedge=\cdot$ and $2=0$:

$$
\left.\begin{array}{rl}
(x \wedge \neg y) \vee(\neg x \wedge y) & =(x y+x) \vee(x y+y)
\end{array}=x+y+6 x y=x+y\right) ~(x \vee y) \wedge \neg(x \wedge y)=(x+y+x y)(x y+1)=x+y+4 x y=x+y
$$

(xi) Using $x \rightarrow y=x y+x+1, x \wedge y=x y, x \vee y=x y+x+y, x \wedge \neg y=x y+x$ and $2=0$ it is easy to see:

$$
x \leq y \Leftrightarrow x \rightarrow y=1 \Leftrightarrow x \wedge y=x \Leftrightarrow x \vee y=y \Leftrightarrow x \wedge \neg y=0
$$

Clearly, $x y=x \Rightarrow y \mid x$. Conversely, let's assume now $x=u y$ for some u. From (xuy) $x y=x u y$ and $(x y) x=x y$ we get $x=x u y \leq x y \leq x$. Hence, we have $x \leftrightarrow x y=(x \rightarrow x y)(x y \rightarrow x)=1$ such that $x=x y$ by (viii), so $x \leq y$.
(xii) Let $u \leq x$ and $v \leq y$. By (xi) this means $u \wedge x=u$ and $v \wedge y=v$ such that $(u \wedge v) \wedge(x \wedge y)=u \wedge v$ by associativity of \wedge, i.e. $u \wedge v \leq x \wedge y$. Similarly, $u \vee x=x$ and $v \vee y=y$ such that $(u \vee v) \vee(x \vee y)=x \vee y$, i.e. $u \vee v \leq x \vee y$.
(xiii) If $x \wedge y=0$ and $x \vee y=1$, then $y=x+x \wedge y+x \vee y=x+1=\neg x$.
(b) Let R be a boolean ring. Then we have:
(I) (xi) and (iv) yield $0 \leq x \leq 1$.

We have $x \leq x$ because of $x \wedge x=x$ in view of (ii) and (xi). If $x \leq y$ and $y \leq x$, then $x \leftrightarrow y=1$, so $x=y$ by (viii). If $x \leq y \leq z$, then $x=x \vee 0 \leq y \vee z=z$ by (iv), (xii), and (xi).
(II) By (v) and (xi) $x \wedge y$ is a lower bound and $x \vee y$ an upper bound of $\{x, y\}$. If $z \leq x$ and $z \leq y$, then $z=z \wedge z \leq x \wedge y$ by (xii) and (ii). If $x \leq z$ and $y \leq z$, then $x \vee y \leq z \vee z=z$ by (xii) and (ii).
(III) Using the idempotence of $\wedge=\cdot$ and $2=0$:

$$
\begin{aligned}
& x \wedge(y \vee z)=x y+x z+x y z=(x \wedge y) \vee(x \wedge z) \\
& x \vee(y \wedge z)=x+y z+x y z=(x \vee y) \wedge(x \vee z)
\end{aligned}
$$

(IV) Using the idempotence of $\wedge=\cdot$ and $2=0$:

$$
\begin{aligned}
& x \wedge \neg x=c \begin{array}{c}
x(x+1) \\
x \vee \neg x=x+(x+1)+x(x+1)
\end{array}=4 x+1=0 \\
& =4 x+1=1
\end{aligned}
$$

(c) Let $(R, \leq, 0,1, \neg, \wedge, \vee)$ be a boolean algebra and define $\cdot=\wedge$ and + as follows:

$$
x+y=(x \wedge \neg y) \vee(\neg x \wedge y)
$$

It is clear that $\cdot=\wedge$ and \vee are commutative and idempotent. They are associative, since for $\diamond=\wedge$ resp. $\diamond=\vee$ both $(x \diamond y) \diamond z$ and $x \diamond(y \diamond z)$ are easily checked to be the infimum resp. supremum of $\{x, y, z\}$. We will use the following observations:

Lemma.

(1) If $x \wedge y=0$ and $x \vee y=1$, then $y=\neg x$.
(2) $\neg(x+y)=(\neg x \wedge \neg y) \vee(x \wedge y)$.
(3) $\neg(x \wedge y)=\neg x \vee \neg y$.

Proof. (1) We calculate $y=y \wedge 1=y \wedge(x \vee \neg x)=(x \wedge y) \vee(y \wedge \neg x)=y \wedge \neg x \leq \neg x$. Interchanging the roles of y and $\neg x$, we get $\neg x \leq y$. Hence, $y=\neg x$.
For (2) choose $z=(\neg x \wedge \neg y) \vee(x \wedge y)$ and $w=x+y$. For (3) choose $z=\neg x \vee \neg y$ and $w=x \wedge y$. In both cases $z \wedge w=0$ and $z \vee w=1$ such that we can use (1).

Now it is easy to see that $(R,+, \cdot)$ is a ring:

- The associativity of \cdot and $1 \cdot x=x=x \cdot 1$ show that (R, \cdot) is a monoid.
- The commutativity of \wedge and \vee yields the commutativity of + . Since $\neg 0=1$ by (1), we have $x+0=(x \wedge 1) \vee(\neg x \wedge 0)=x \vee 0=x$. By a straightforward calculation using (2) both $(x+y)+z$ and $x+(y+z)$ are equal to

$$
(x \wedge \neg y \wedge \neg z) \vee(\neg x \wedge y \wedge \neg z) \vee(\neg x \wedge \neg y \wedge z) \vee(x \wedge y \wedge z)
$$

proving the associativity of + . Finally, $x+x=0 \vee 0=0$, i.e. each element of R is its own inverse w.r.t. + . This shows that $(R,+)$ is an abelian group.

- Using (3) for the first identity we get the distributive law

$$
\begin{aligned}
x y+x z & =((x \wedge y) \wedge(\neg x \vee \neg z)) \vee((\neg x \vee \neg y) \wedge(x \wedge z)) \\
& =\quad(x \wedge y \wedge \neg z) \vee(x \wedge \neg y \wedge z)
\end{aligned}=x(y+z) .
$$

2. Clearly, $0,1 \in R^{\prime}$. Let $x, y, z \in R^{\prime}$. The calculation

$$
(x-y)^{4}=x-4 x y+6 x y-4 x y+y=x-2 x y+y=(x-y)^{2}
$$

shows that $x+^{\prime} y=(x-y)^{2}=x+y-2 x y$ yields an operation $+^{\prime}$ on R^{\prime}. It has 0 as neutral element, satisfies $x+^{\prime} x=0$, is commutative and also associative because of

$$
\left(x+^{\prime} y\right)+^{\prime} z=x+y+z-2(x y+x z+y z)+4 x y z=x+^{\prime}\left(y+^{\prime} z\right) .
$$

Thus $\left(R^{\prime},+^{\prime}\right)$ is an abelian group. Given that \cdot is commutative, we see that $x \cdot{ }^{\prime} y=x \cdot y$ induces an operation ${ }^{\prime}$ on R^{\prime}. It only remains to check the distributive law:

$$
x \iota^{\prime}\left(y+^{\prime} z\right)=x(y-z)^{2}=(x y-x z)^{2}=x \cdot^{\prime} y+^{\prime} x \iota^{\prime} z
$$

3. We have $D_{x y}=D_{x} \cdot D_{y}$, since $x y \notin \mathfrak{p} \Leftrightarrow(x \notin \mathfrak{p}$ and $y \notin \mathfrak{p})$ for prime ideals \mathfrak{p}.

For $D_{x+y}=D_{x}+D_{y}$ we have to verify $x+y \notin \mathfrak{p} \Leftrightarrow(x \notin \mathfrak{p}, y \in \mathfrak{p}$ or $y \notin \mathfrak{p}, x \in \mathfrak{p})$ for all prime ideals \mathfrak{p}. The implication \Leftarrow is true, since \mathfrak{p} is an ideal. To check \Rightarrow assume now $x+y \notin \mathfrak{p}$. If $x \in \mathfrak{p}$, then necessarily $y \notin \mathfrak{p}$ because \mathfrak{p} is an ideal, so we are done. If we had $x \notin \mathfrak{p}$ and $y \notin \mathfrak{p}$, we would have $\neg x, \neg y \in \mathfrak{p}$ by Lemma 1.1.4, since \mathfrak{p} is a prime ideal, and thus the contradiction $x+y=\neg x+\neg y \in \mathfrak{p}$.
Clearly, $D_{1}=\operatorname{Spec}(R)=1$ because prime ideals are proper.
This shows that D is a ring homomorphism. It remains to verify its injectivity. So let $x \in R$ with $x \neq 0$. Then $\neg x$ is a zero divisor (because of $\neg x \wedge x=0$) and thus contained in some maximal ideal \mathfrak{p} of R. By Lemma 1.1.4 we have $x \notin \mathfrak{p}$, so $D_{x} \neq 0$.
The final statement readily follows from $\mathcal{P}(X) \cong{ }^{X} \mathbb{F}_{2}$ (see Remark 1.1.9).
4. Let us write $\circ,-, \backslash$ for the functions that associate with subsets $U \subseteq X$ their interior $\circ U=U^{\circ}$, their closure $-U=\bar{U}$, and their complement $\backslash U=X \backslash U$.
From general topology we have the following properties for all $U, V \subseteq X$:
(i) \circ and - preserve \subseteq and we have $\circ \subseteq-$ pointwise.
(ii) $\circ \circ=\circ$ and $--=-$ and $\backslash-=\circ \backslash$ and $\backslash \circ=-\backslash$.
(iii) $\circ(U \cap V)=\circ U \cap \circ V$ and $-(U \cup V)=-U \cup-V$.
(iv) $\circ U \cap-V \subseteq-(U \cap V)$.

For the possibly non-standard fact (iv) just observe that for open M with $M \subseteq U$ and closed N with $U \cap V \subseteq N$ the set $\backslash(M \cap \backslash N)$ is closed and contains V.

Lemma. For all $U, V \subseteq X$:
(1) U regular $\Leftrightarrow U=\neg \neg U$.
(2) $\circ \subseteq \neg \neg$.
(3) $\neg \neg \neg 0=\neg \circ$.
(4) $\neg \neg \neg \neg=\neg \neg$.
(5) $\circ U \cap \neg \neg V \subseteq \neg \neg(U \cap V)$.
(6) $\neg \neg(U \cap V) \subseteq \neg \neg U \cap \neg \neg V$ with equality if either U or V is open.

Proof. (1) Since $\neg=\backslash-=0 \backslash$ we have $\neg \neg=0 \backslash \backslash-=0-$.
(2) Applying $\backslash-\backslash$ on the left to $\circ \subseteq-$ gives $\circ=\circ \circ=\circ \backslash \backslash \circ=\backslash-\backslash \circ \subseteq \backslash-\backslash-=\neg \neg$.
(3) Applying \neg on the left and \circ on the right to (2) we get $\neg \circ \supseteq \neg \neg \neg \circ$, whereas applying $\neg \circ$ on the right to (2) gives $\neg \circ=\circ \neg \circ \subseteq \neg \neg \neg \circ$.
(4) Apply \backslash on the right to (3) and use $\neg=\circ \backslash$.
(5) Applying \backslash - \backslash to (iv) for the last step yields

$$
\begin{aligned}
\circ U \cap \neg \neg V=\backslash(-\backslash \circ U \cup-\neg V) & =\backslash-(\backslash \circ U \cup \neg V) \\
& =\backslash-\backslash(\circ U \cap-V) \subseteq \neg \neg(U \cap V)
\end{aligned}
$$

(6) The inclusion is clear. So without loss of generality let's assume that U is open. Then $U=\circ U$ and $\neg \neg V=\circ \neg \neg V$ such that using (5) twice and then (4) gives

$$
\neg \neg U \cap \neg \neg V \subseteq \neg \neg(U \cap \neg \neg V) \subseteq \neg \neg \neg \neg(U \cap V)=\neg \neg(U \cap V)
$$

As a consequence of the lemma we see using (1) that, if U and V are regular, then so is $\neg U$ by (3) and $U \vee V$ by (4) and $U \wedge V$ by (6).
Thus \neg, \wedge, \vee are indeed well-defined operations on $\mathcal{R}(X)$.
We next verify the defining properties of a complete boolean algebra:
(I) Since the partial order \leq on $\mathcal{R}(X)$ will be characterized by $U \leq V \Leftrightarrow U \wedge V=U$, we must choose $\leq=\subseteq$. With this choice it is then obvious that \leq is a partial order with \emptyset as a least element and X as a greatest element.
(II) Clearly, $U \wedge V$ is the infimum of $\{U, V\}$. To check the existence of suprema pick $\mathcal{Y} \subseteq \mathcal{R}(X)$. As a union of open sets $Y=\bigcup \mathcal{Y}$ is open. Hence, $Y \subseteq \neg \neg Y$ by (2) and by (1) and (4) $\neg \neg Y$ is a regular upper bound of \mathcal{Y}. Actually, $\neg \neg Y$ is the supremum of \mathcal{Y}, since for each regular Z with $Y \subseteq Z$ we have $\neg \neg Y \subseteq \neg \neg Z=Z$ by (1).
(III) Both distributive laws for \wedge and \vee follow with a straightforward computation from (1) and (6) and the distributive laws for \cap and \cup.
(IV) Clearly, $U \wedge \neg U=U \backslash \bar{U}=\emptyset$. If U is open, then $U \cup \neg U=\backslash \partial U$ is a dense set (otherwise there would be an open W with $W \subseteq \partial U=\bar{U} \backslash U$, which is absurd). So in particular for regular U we have $U \vee \neg U=\neg \backslash-(U \cup \neg U)=\neg \backslash X=\neg \emptyset=X$.
This proves that $\mathcal{R}(X)$ is a complete boolean algebra.

