Logic and Set Theory Universitéat Bielefeld
Solutions 1 SS 2019

1. (a) Let R be a boolean ring and u, v, z,y, z € R.

(i) A = and + are associative by definition of a ring and together with the law
of distributivity and the commutativity of + we compute for V:

(xVy)Vz=zx4+y+z+ay+az+yzt+azyz = zV(yVz)
(ii) A = - is idempotent by definition of a boolean ring and using 2 = 0 we get:
Ve =2r+2° =0+ =21

(iii) + is commutative by definition of a ring and A = - by Lemma 1.1.3. This
implies the commutativity of V and <+, which in turn yields that of 1 and |.

(iv) Clearly, tA0=0,zAl=z,2V0=xand zV1=2x+1=1, since 2 =0.
(v) Using the idempotence of A =+ and 2 = 0:

cAN(xVy) =z(z+y+tay) =c+2zy =2
zV(rANy)= c4zy+a2iy =z +2zy =2

(vi) Using 2 = 0:

“(zAy)=a2y+1+2(z+y+1)=—-aV-y
“(zVy)= z+yt+ay+1 = —x Ay

(vii) Using ==y = y (because of 2 = 0) and the commutativity of V:
rT—y = xVy = yVx =Yy —> T
(viii) Using the idempotence of A = - and 2 = 0 we compute
ry=(aVy(yvVe) = (zy+zx+1)(azy+y+1) =x+y+1,
suchthat r v y=1r+y=0&z=1y.
(ix) Using (vi) and the associativity of V:
(xANy) =2z ==(zAy)Vz=—-2V-yVz=2zx—(y— 2
(x) Using the idempotence of A = - and 2 = 0:
(xA-y)V(~zAy) = (ey+2)V(zy+y) =x+y+6ry=x+y
(VY A=(zAy) = (r+y+ay)(zy+1) =x+y+doy=z+vy
(xi) Usingz wy=ay+z+1l,cANy=zy,zVy=zy+ax+y,cANy=zxy+zx
and 2 = 0 it is easy to see:
r<y s r—y=1rsANy=z < rzVy=y < xAN-y=0

Clearly, xy = z = y | =. Conversely, let’s assume now = = uy for some u.
From (zuy)zry = zuy and (zy)r = xy we get z = zuy < xy < x. Hence, we
have z <> xy = (v — zy)(xy — x) = 1 such that z = xy by (viii), so z < y.

(xii) Let u < z and v < y. By (xi) this means u A x = u and v A y = v such that
(uAv) A (x Ay) =uAv by associativity of A, i.e. u Av <z Ay. Similarly,
uVx =2z and vVy =y such that (uVv)V(xVy)=xVy,ie uVo<zxVy.

(xiii) f x Ay=0and xVy=1,theny=z+zxAy+zxVy=z+1=—x.
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(b) Let R be a boolean ring. Then we have:

(I) (xi) and (iv) yield 0 < z < 1.
We have x < x because of x A z = z in view of (ii) and (xi).
If  <yandy <z then z <3 y =1, so x =y by (viii).
fr<y<z thenzx=2Vv0<yVz=zby (iv), (xii), and (xi).

(IT) By (v) and (xi) x Ay is a lower bound and = V y an upper bound of {z,y}.
If 2z<zand z <y, then 2 =2 Az <x Ay by (xii) and (ii).
Ifr<zandy <z thenxVy<zVz=zby (xii) and (ii).

(III) Using the idempotence of A = - and 2 = 0:

cAN(yVz)=ayt+az+ayz=(xAy)V(zAz)
eV (yANz)= c+yz+azyz = (xVy AzVz2)

(IV) Using the idempotence of A = - and 2 = 0:

T A\-x = z(x +1) = 2z =0
sVz=z+(x+1)+z(z+1)=4r+1=1

(c) Let (R,<,0,1,—,A,V) be a boolean algebra and define - = A and + as follows:
vty = (A-y)V(zAy)

It is clear that - = A and V are commutative and idempotent. They are associative,
since for ¢ = A resp. ¢ = V both (z ¢ y) ¢ z and z ¢ (y © z) are easily checked to be
the infimum resp. supremum of {x,y, z}. We will use the following observations:

Lemma.

(1) Ifx ANy=0and xVy =1, then y = .
(2) ~(z +y)=(~z A-y) V(zAy).
(3) ~(x Ay) =~z V -y

Proof. (1) We calculate y = yAl =yA(xV-x) = (xAy)V(yA—-x) =yA-z < .
Interchanging the roles of y and —z, we get —x < y. Hence, y = —x.

For (2) choose z = (mx A —y) V (z Ay) and w = x +y. For (3) choose z = -z V -y
and w = x Ay. In both cases 2 Aw = 0 and 2z Vw = 1 such that we can use (1). O
Now it is easy to see that (R,+, -) is a ring:

e The associativity of - and 1-2 = 2 = x - 1 show that (R, -) is a monoid.

e The commutativity of A and V yields the commutativity of +. Since =0 = 1
by (1), we have x4+ 0 = (z A1)V (-2 A0) = 2 V0 = z. By a straightforward
calculation using (2) both (z + y) + z and = + (y + z) are equal to

(xAN-yA=2)V(cx AyA—2)V(cz Ay Az) V(T Ay Az),

proving the associativity of 4. Finally, x + z =0V 0 = 0, i.e. each element
of R is its own inverse w.r.t. +. This shows that (R, +) is an abelian group.

e Using (3) for the first identity we get the distributive law
ry+xz=((zAy)A(—zV-z2)V((~zV-y AAz))
= (xANyA=z)V(xA—yAz) =z(y+2).
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2. Clearly, 0,1 € R'. Let x,y,z € R'. The calculation

(z —y)*
shows that = +'y = (z — y)? = z +y — 2y yields an operation +' on R'. It has 0 as
neutral element, satisfies z +' x = 0, is commutative and also associative because of

(x+y+z2=0+y+2z—20@y+zz+yz)+doyz = x+ (y+' 2).

Thus (R', +) is an abelian group. Given that - is commutative, we see that z-'y = z-y
induces an operation - on R'. It only remains to check the distributive law:

= —dry+6ry —day+y = —22y+y = (z—y)?

v/ (y+Hz2) =aly—2)? = (ay—a2)  =ax'y+ a2

3. We have D, = D, - D,, since zy € p < (x € p and y ¢ p) for prime ideals p.

For Dy, = D, + D, we have to verify t +y € p < (v €p,y€pory & p,z €p)
for all prime ideals p. The implication < is true, since p is an ideal. To check =
assume now x +y € p. If z € p, then necessarily y ¢ p because p is an ideal, so we
are done. If we had x € p and y ¢ p, we would have -z, -y € p by Lemma 1.1.4,
since p is a prime ideal, and thus the contradiction x +y = -« + -~y € p.

Clearly, D; = Spec(R) = 1 because prime ideals are proper.

This shows that D is a ring homomorphism. It remains to verify its injectivity. So
let + € R with « # 0. Then —z is a zero divisor (because of =z A x = 0) and thus
contained in some maximal ideal p of R. By Lemma 1.1.4 we have x € p, so D, # 0.

The final statement readily follows from P(X) = XF, (see Remark 1.1.9).
4. Let us write o, —, \ for the functi(gls that associate with subsets U C X their
interior o U = U°, their closure —U = U, and their complement \U = X \ U.

From general topology we have the following properties for all U,V C X:
(i) o and — preserve C and we have o C — pointwise.
(ii) co=oand ——=—-and \— =0\ and \ o =—\.
(iii) o(UNV)=0UNoVand (UUV)=-UU-V.
(iv) cUN-V C—(UNYV).

For the possibly non-standard fact (iv) just observe that for open M with M C U
and closed N with U NV C N the set \(M N\N) is closed and contains V.

Lemma. For all U,V C X:
(1) U regular < U = ——U.

(3 ———0 = —J 0,

(5) cUN ==V C—=(UNV).
(6) ~—(UNV) C —==UN-=V with equality if either U or V is open.
Proof. (1) Since = =\— =0\ we have == =0\ \ —=o-.
(2) Applying \ —\ on the left too C — giveso = oo =o\\o=\-\o C\-\— = -

(3) Applying = on the left and o on the right to (2) we get =0 O =——0, whereas
applying — o on the right to (2) gives o =0-10 C ==-o0.

(4) Apply \ on the right to (3) and use = =o\\.
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(5) Applying \ -\ to (iv) for the last step yields

oUN—-V = \(-\oUU-=V) = \-(\oUU=V)
= \-\(cUN-V) € ==(UNV)

(6) The inclusion is clear. So without loss of generality let’s assume that U is open.
Then U = oU and ==V = o ==V such that using (5) twice and then (4) gives

As a consequence of the lemma we see using (1) that, if U and V' are regular, then

sois U by (3) and UV V by (4) and U AV by (6).
Thus —, A, V are indeed well-defined operations on R(X).
We next verify the defining properties of a complete boolean algebra:

(I) Since the partial order < on R(X) will be characterized by U <V < UAV = U,
we must choose < = C. With this choice it is then obvious that < is a partial order
with () as a least element and X as a greatest element.

(IT) Clearly, U AV is the infimum of {U, V'}. To check the existence of suprema pick
Y C R(X). As a union of open sets Y = |J ) is open. Hence, Y C ==Y by (2) and
by (1) and (4) ==Y is a regular upper bound of ). Actually, ==Y is the supremum
of Y, since for each regular Z with Y C Z we have ==Y C —=—Z = Z by (1).

(III) Both distributive laws for A and V follow with a straightforward computation
from (1) and (6) and the distributive laws for N and U.

(IV) Clearly, U A-U = U\ U = (). If U is open, then U U —=U = \0U is a dense set
(otherwise there would be an open W with W C 9U = U \ U, which is absurd). So
in particular for regular U we have UV ~U = -\ ~(UU-U) ==\ X = - = X.

This proves that R(X) is a complete boolean algebra.



