
Logic and Set Theory Universität Bielefeld
Solutions 1 SS 2019

1. (a) Let R be a boolean ring and u, v, x, y, z ∈ R.

(i) ∧ = · and + are associative by definition of a ring and together with the law
of distributivity and the commutativity of + we compute for ∨:

(x ∨ y) ∨ z = x+ y + z + xy + xz + yz + xyz = x ∨ (y ∨ z)

(ii) ∧ = · is idempotent by definition of a boolean ring and using 2 = 0 we get:

x ∨ x = 2x+ x2 = 0 + x = x

(iii) + is commutative by definition of a ring and ∧ = · by Lemma 1.1.3. This
implies the commutativity of ∨ and↔, which in turn yields that of ↑ and ↓.

(iv) Clearly, x ∧ 0 = 0, x ∧ 1 = x, x ∨ 0 = x and x ∨ 1 = 2x+ 1 = 1, since 2 = 0.

(v) Using the idempotence of ∧ = · and 2 = 0:

x ∧ (x ∨ y) = x(x+ y + xy) = x+ 2xy = x
x ∨ (x ∧ y) = x+ xy + x2y = x+ 2xy = x

(vi) Using 2 = 0:

¬(x ∧ y) = xy + 1 + 2(x+ y + 1) = ¬x ∨ ¬y
¬(x ∨ y) = x+ y + xy + 1 = ¬x ∧ ¬y

(vii) Using ¬¬y = y (because of 2 = 0) and the commutativity of ∨:
x→ y = ¬x ∨ y = ¬¬y ∨ ¬x = ¬y → ¬x

(viii) Using the idempotence of ∧ = · and 2 = 0 we compute

x↔ y = (¬x ∨ y)(¬y ∨ x) = (xy + x+ 1)(xy + y + 1) = x+ y + 1 ,

such that x↔ y = 1⇔ x+ y = 0⇔ x = y.

(ix) Using (vi) and the associativity of ∨:
(x ∧ y)→ z = ¬(x ∧ y) ∨ z = ¬x ∨ ¬y ∨ z = x→ (y → z)

(x) Using the idempotence of ∧ = · and 2 = 0:

(x ∧ ¬y) ∨ (¬x ∧ y) = (xy + x) ∨ (xy + y) = x+ y + 6xy = x+ y
(x ∨ y) ∧ ¬(x ∧ y) = (x+ y + xy)(xy + 1) = x+ y + 4xy = x+ y

(xi) Using x→ y = xy + x+ 1, x ∧ y = xy, x ∨ y = xy + x+ y, x ∧ ¬y = xy + x
and 2 = 0 it is easy to see:

x ≤ y ⇔ x→ y = 1 ⇔ x ∧ y = x ⇔ x ∨ y = y ⇔ x ∧ ¬y = 0

Clearly, xy = x ⇒ y | x. Conversely, let’s assume now x = uy for some u.
From (xuy)xy = xuy and (xy)x = xy we get x = xuy ≤ xy ≤ x. Hence, we
have x↔ xy = (x→ xy)(xy → x) = 1 such that x = xy by (viii), so x ≤ y.

(xii) Let u ≤ x and v ≤ y. By (xi) this means u ∧ x = u and v ∧ y = v such that
(u ∧ v) ∧ (x ∧ y) = u ∧ v by associativity of ∧, i.e. u ∧ v ≤ x ∧ y. Similarly,
u∨x = x and v∨ y = y such that (u∨ v)∨ (x∨ y) = x∨ y, i.e. u∨ v ≤ x∨ y.

(xiii) If x ∧ y = 0 and x ∨ y = 1, then y = x+ x ∧ y + x ∨ y = x+ 1 = ¬x.
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(b) Let R be a boolean ring. Then we have:

(I) (xi) and (iv) yield 0 ≤ x ≤ 1.
We have x ≤ x because of x ∧ x = x in view of (ii) and (xi).
If x ≤ y and y ≤ x, then x↔ y = 1, so x = y by (viii).
If x ≤ y ≤ z, then x = x ∨ 0 ≤ y ∨ z = z by (iv), (xii), and (xi).

(II) By (v) and (xi) x ∧ y is a lower bound and x ∨ y an upper bound of {x, y}.
If z ≤ x and z ≤ y, then z = z ∧ z ≤ x ∧ y by (xii) and (ii).
If x ≤ z and y ≤ z, then x ∨ y ≤ z ∨ z = z by (xii) and (ii).

(III) Using the idempotence of ∧ = · and 2 = 0:

x ∧ (y ∨ z) = xy + xz + xyz = (x ∧ y) ∨ (x ∧ z)
x ∨ (y ∧ z) = x+ yz + xyz = (x ∨ y) ∧ (x ∨ z)

(IV) Using the idempotence of ∧ = · and 2 = 0:

x ∧ ¬x = x(x+ 1) = 2x = 0
x ∨ ¬x = x+ (x+ 1) + x(x+ 1) = 4x+ 1 = 1

(c) Let (R,≤, 0, 1,¬,∧,∨) be a boolean algebra and define · = ∧ and + as follows:

x + y = (x ∧ ¬y) ∨ (¬x ∧ y)

It is clear that · = ∧ and ∨ are commutative and idempotent. They are associative,
since for � = ∧ resp. � = ∨ both (x � y) � z and x � (y � z) are easily checked to be
the infimum resp. supremum of {x, y, z}. We will use the following observations:

Lemma.

(1) If x ∧ y = 0 and x ∨ y = 1, then y = ¬x.
(2) ¬(x+ y) = (¬x ∧ ¬y) ∨ (x ∧ y).
(3) ¬(x ∧ y) = ¬x ∨ ¬y.

Proof. (1) We calculate y = y∧1 = y∧ (x∨¬x) = (x∧y)∨ (y∧¬x) = y∧¬x ≤ ¬x.
Interchanging the roles of y and ¬x, we get ¬x ≤ y. Hence, y = ¬x.
For (2) choose z = (¬x ∧ ¬y) ∨ (x ∧ y) and w = x+ y. For (3) choose z = ¬x ∨ ¬y
and w = x∧ y. In both cases z ∧w = 0 and z ∨w = 1 such that we can use (1). �

Now it is easy to see that (R,+, · ) is a ring:

• The associativity of · and 1 · x = x = x · 1 show that (R, · ) is a monoid.

• The commutativity of ∧ and ∨ yields the commutativity of +. Since ¬0 = 1
by (1), we have x+0 = (x∧ 1)∨ (¬x∧ 0) = x∨ 0 = x. By a straightforward
calculation using (2) both (x+ y) + z and x+ (y + z) are equal to

(x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ z) ,

proving the associativity of +. Finally, x + x = 0 ∨ 0 = 0, i.e. each element
of R is its own inverse w.r.t. +. This shows that (R,+) is an abelian group.

• Using (3) for the first identity we get the distributive law

xy + xz = ((x ∧ y) ∧ (¬x ∨ ¬z)) ∨ ((¬x ∨ ¬y) ∧ (x ∧ z))
= (x ∧ y ∧ ¬z) ∨ (x ∧ ¬y ∧ z) = x(y + z) .
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2. Clearly, 0, 1 ∈ R′. Let x, y, z ∈ R′. The calculation

(x− y)4 = x− 4xy + 6xy − 4xy + y = x− 2xy + y = (x− y)2

shows that x+′ y = (x− y)2 = x+ y− 2xy yields an operation +′ on R′. It has 0 as
neutral element, satisfies x+′ x = 0, is commutative and also associative because of

(x+′ y) +′ z = x+ y + z − 2(xy + xz + yz) + 4xyz = x+′ (y +′ z) .

Thus (R′,+′) is an abelian group. Given that · is commutative, we see that x·′y = x·y
induces an operation ·′ on R′. It only remains to check the distributive law:

x ·′ (y +′ z) = x(y − z)2 = (xy − xz)2 = x ·′ y +′ x ·′ z

3. We have Dxy = Dx ·Dy, since xy 6∈ p⇔ (x 6∈ p and y 6∈ p) for prime ideals p.

For Dx+y = Dx + Dy we have to verify x + y 6∈ p ⇔ (x 6∈ p, y ∈ p or y 6∈ p, x ∈ p)
for all prime ideals p. The implication ⇐ is true, since p is an ideal. To check ⇒
assume now x+ y 6∈ p. If x ∈ p, then necessarily y 6∈ p because p is an ideal, so we
are done. If we had x 6∈ p and y 6∈ p, we would have ¬x,¬y ∈ p by Lemma 1.1.4,
since p is a prime ideal, and thus the contradiction x+ y = ¬x+ ¬y ∈ p.

Clearly, D1 = Spec(R) = 1 because prime ideals are proper.

This shows that D is a ring homomorphism. It remains to verify its injectivity. So
let x ∈ R with x 6= 0. Then ¬x is a zero divisor (because of ¬x ∧ x = 0) and thus
contained in some maximal ideal p of R. By Lemma 1.1.4 we have x 6∈ p, so Dx 6= 0.

The final statement readily follows from P(X) ∼= XF2 (see Remark 1.1.9).

4. Let us write ◦, −, \ for the functions that associate with subsets U ⊆ X their
interior ◦U = U◦, their closure –U = U , and their complement \U = X \ U .

From general topology we have the following properties for all U, V ⊆ X:

(i) ◦ and – preserve ⊆ and we have ◦ ⊆ – pointwise.
(ii) ◦ ◦ = ◦ and – – = – and \ – = ◦ \ and \ ◦ = – \.
(iii) ◦(U ∩ V ) = ◦U ∩ ◦V and –(U ∪ V ) = –U ∪ – V .
(iv) ◦U ∩ – V ⊆ –(U ∩ V ).

For the possibly non-standard fact (iv) just observe that for open M with M ⊆ U
and closed N with U ∩ V ⊆ N the set \(M ∩ \N) is closed and contains V .

Lemma. For all U, V ⊆ X:
(1) U regular ⇔ U = ¬¬U .
(2) ◦ ⊆ ¬¬.
(3) ¬¬¬◦ = ¬◦.
(4) ¬¬¬¬ = ¬¬.
(5) ◦U ∩ ¬¬V ⊆ ¬¬(U ∩ V ).
(6) ¬¬(U ∩ V ) ⊆ ¬¬U ∩ ¬¬V with equality if either U or V is open.

Proof. (1) Since ¬ = \− = ◦ \ we have ¬¬ = ◦ \ \ − = ◦ –.
(2) Applying \ – \ on the left to ◦ ⊆ − gives ◦ = ◦ ◦ = ◦ \\◦ = \ – \ ◦ ⊆ \ – \− = ¬¬.
(3) Applying ¬ on the left and ◦ on the right to (2) we get ¬◦ ⊇ ¬¬¬◦, whereas
applying ¬◦ on the right to (2) gives ¬◦ = ◦¬ ◦ ⊆ ¬¬¬◦.
(4) Apply \ on the right to (3) and use ¬ = ◦ \.
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(5) Applying \ – \ to (iv) for the last step yields
◦U ∩ ¬¬V = \(– \ ◦U ∪ –¬V ) = \ –(\ ◦U ∪ ¬V )

= \ – \(◦U ∩ – V ) ⊆ ¬¬(U ∩ V )

(6) The inclusion is clear. So without loss of generality let’s assume that U is open.
Then U = ◦U and ¬¬V = ◦¬¬V such that using (5) twice and then (4) gives

¬¬U ∩ ¬¬V ⊆ ¬¬(U ∩ ¬¬V ) ⊆ ¬¬¬¬(U ∩ V ) = ¬¬(U ∩ V ) .
�

As a consequence of the lemma we see using (1) that, if U and V are regular, then
so is ¬U by (3) and U ∨ V by (4) and U ∧ V by (6).

Thus ¬, ∧, ∨ are indeed well-defined operations on R(X).

We next verify the defining properties of a complete boolean algebra:

(I) Since the partial order ≤ on R(X) will be characterized by U ≤ V ⇔ U∧V = U ,
we must choose ≤ = ⊆. With this choice it is then obvious that ≤ is a partial order
with ∅ as a least element and X as a greatest element.

(II) Clearly, U ∧V is the infimum of {U, V }. To check the existence of suprema pick
Y ⊆ R(X). As a union of open sets Y =

⋃
Y is open. Hence, Y ⊆ ¬¬Y by (2) and

by (1) and (4) ¬¬Y is a regular upper bound of Y . Actually, ¬¬Y is the supremum
of Y , since for each regular Z with Y ⊆ Z we have ¬¬Y ⊆ ¬¬Z = Z by (1).

(III) Both distributive laws for ∧ and ∨ follow with a straightforward computation
from (1) and (6) and the distributive laws for ∩ and ∪.
(IV) Clearly, U ∧ ¬U = U \ U = ∅. If U is open, then U ∪ ¬U = \∂U is a dense set
(otherwise there would be an open W with W ⊆ ∂U = U \ U , which is absurd). So
in particular for regular U we have U ∨ ¬U = ¬ \ –(U ∪ ¬U) = ¬ \X = ¬∅ = X.

This proves that R(X) is a complete boolean algebra.
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