- **1.** (a) Let R be a boolean ring and $u, v, x, y, z \in R$.
 - (i) $\wedge = \cdot$ and + are associative by definition of a ring and together with the law of distributivity and the commutativity of + we compute for \vee :

 $(x \lor y) \lor z = x + y + z + xy + xz + yz + xyz = x \lor (y \lor z)$

(ii) $\wedge = \cdot$ is idempotent by definition of a boolean ring and using 2 = 0 we get:

$$x \lor x = 2x + x^2 = 0 + x = x$$

- (iii) + is commutative by definition of a ring and $\wedge = \cdot$ by Lemma 1.1.3. This implies the commutativity of \lor and \leftrightarrow , which in turn yields that of \uparrow and \downarrow .
- (iv) Clearly, $x \land 0 = 0$, $x \land 1 = x$, $x \lor 0 = x$ and $x \lor 1 = 2x + 1 = 1$, since 2 = 0.
- (v) Using the idempotence of $\wedge = \cdot$ and 2 = 0:

$$x \wedge (x \vee y) = x(x + y + xy) = x + 2xy = x$$
$$x \vee (x \wedge y) = x + xy + x^2y = x + 2xy = x$$

(vi) Using 2 = 0:

$$\neg (x \land y) = xy + 1 + 2(x + y + 1) = \neg x \lor \neg y$$

$$\neg (x \lor y) = x + y + xy + 1 = \neg x \land \neg y$$

(vii) Using $\neg \neg y = y$ (because of 2 = 0) and the commutativity of \lor :

 $x \to y = \neg x \lor y = \neg \neg y \lor \neg x = \neg y \to \neg x$

(viii) Using the idempotence of $\wedge = \cdot$ and 2 = 0 we compute

$$x \leftrightarrow y = (\neg x \lor y)(\neg y \lor x) = (xy + x + 1)(xy + y + 1) = x + y + 1,$$

such that $x \leftrightarrow y = 1 \Leftrightarrow x + y = 0 \Leftrightarrow x = y.$

(ix) Using (vi) and the associativity of \lor :

$$(x \land y) \to z = \neg (x \land y) \lor z = \neg x \lor \neg y \lor z = x \to (y \to z)$$

(x) Using the idempotence of $\wedge = \cdot$ and 2 = 0:

$$(x \land \neg y) \lor (\neg x \land y) = (xy + x) \lor (xy + y) = x + y + 6xy = x + y (x \lor y) \land \neg (x \land y) = (x + y + xy)(xy + 1) = x + y + 4xy = x + y$$

(xi) Using $x \to y = xy + x + 1$, $x \land y = xy$, $x \lor y = xy + x + y$, $x \land \neg y = xy + x$ and 2 = 0 it is easy to see:

$$x \leq y \Leftrightarrow x \rightarrow y = 1 \Leftrightarrow x \land y = x \Leftrightarrow x \lor y = y \Leftrightarrow x \land \neg y = 0$$

Clearly, $xy = x \Rightarrow y \mid x$. Conversely, let's assume now x = uy for some u. From (xuy)xy = xuy and (xy)x = xy we get $x = xuy \le xy \le x$. Hence, we have $x \leftrightarrow xy = (x \to xy)(xy \to x) = 1$ such that x = xy by (viii), so $x \le y$.

- (xii) Let $u \leq x$ and $v \leq y$. By (xi) this means $u \wedge x = u$ and $v \wedge y = v$ such that $(u \wedge v) \wedge (x \wedge y) = u \wedge v$ by associativity of \wedge , i.e. $u \wedge v \leq x \wedge y$. Similarly, $u \vee x = x$ and $v \vee y = y$ such that $(u \vee v) \vee (x \vee y) = x \vee y$, i.e. $u \vee v \leq x \vee y$.
- (xiii) If $x \wedge y = 0$ and $x \vee y = 1$, then $y = x + x \wedge y + x \vee y = x + 1 = \neg x$.

- (b) Let R be a boolean ring. Then we have:
 - (I) (xi) and (iv) yield $0 \le x \le 1$. We have $x \le x$ because of $x \land x = x$ in view of (ii) and (xi). If $x \le y$ and $y \le x$, then $x \leftrightarrow y = 1$, so x = y by (viii). If $x \le y \le z$, then $x = x \lor 0 \le y \lor z = z$ by (iv), (xii), and (xi).
 - (II) By (v) and (xi) $x \wedge y$ is a lower bound and $x \vee y$ an upper bound of $\{x, y\}$. If $z \leq x$ and $z \leq y$, then $z = z \wedge z \leq x \wedge y$ by (xii) and (ii). If $x \leq z$ and $y \leq z$, then $x \vee y \leq z \vee z = z$ by (xii) and (ii).
 - (III) Using the idempotence of $\wedge = \cdot$ and 2 = 0:

$$x \wedge (y \lor z) = xy + xz + xyz = (x \land y) \lor (x \land z) x \lor (y \land z) = x + yz + xyz = (x \lor y) \land (x \lor z)$$

(IV) Using the idempotence of $\wedge = \cdot$ and 2 = 0:

$$x \wedge \neg x = x(x+1) = 2x = 0 x \vee \neg x = x + (x+1) + x(x+1) = 4x + 1 = 1$$

(c) Let $(R, \leq 0, 1, \neg, \land, \lor)$ be a boolean algebra and define $\cdot = \land$ and + as follows:

$$x + y = (x \land \neg y) \lor (\neg x \land y)$$

It is clear that $\cdot = \wedge$ and \vee are commutative and idempotent. They are associative, since for $\diamond = \wedge$ resp. $\diamond = \vee$ both $(x \diamond y) \diamond z$ and $x \diamond (y \diamond z)$ are easily checked to be the infimum resp. supremum of $\{x, y, z\}$. We will use the following observations:

Lemma.

(1) If $x \wedge y = 0$ and $x \vee y = 1$, then $y = \neg x$. (2) $\neg (x + y) = (\neg x \wedge \neg y) \vee (x \wedge y)$. (3) $\neg (x \wedge y) = \neg x \vee \neg y$.

Proof. (1) We calculate $y = y \land 1 = y \land (x \lor \neg x) = (x \land y) \lor (y \land \neg x) = y \land \neg x \le \neg x$. Interchanging the roles of y and $\neg x$, we get $\neg x \le y$. Hence, $y = \neg x$.

For (2) choose $z = (\neg x \land \neg y) \lor (x \land y)$ and w = x + y. For (3) choose $z = \neg x \lor \neg y$ and $w = x \land y$. In both cases $z \land w = 0$ and $z \lor w = 1$ such that we can use (1). \Box

Now it is easy to see that $(R, +, \cdot)$ is a ring:

- The associativity of \cdot and $1 \cdot x = x = x \cdot 1$ show that (R, \cdot) is a monoid.
- The commutativity of \land and \lor yields the commutativity of +. Since $\neg 0 = 1$ by (1), we have $x + 0 = (x \land 1) \lor (\neg x \land 0) = x \lor 0 = x$. By a straightforward calculation using (2) both (x + y) + z and x + (y + z) are equal to

$$(x \wedge \neg y \wedge \neg z) \lor (\neg x \wedge y \wedge \neg z) \lor (\neg x \wedge \neg y \wedge z) \lor (x \wedge y \wedge z),$$

proving the associativity of +. Finally, $x + x = 0 \lor 0 = 0$, i.e. each element of R is its own inverse w.r.t. +. This shows that (R, +) is an abelian group.

• Using (3) for the first identity we get the distributive law

$$\begin{array}{l} xy + xz = ((x \land y) \land (\neg x \lor \neg z)) \lor ((\neg x \lor \neg y) \land (x \land z)) \\ = & (x \land y \land \neg z) \lor (x \land \neg y \land z) \\ \end{array} = x(y+z) + x($$

2. Clearly, $0, 1 \in R'$. Let $x, y, z \in R'$. The calculation

 $(x-y)^4 = x - 4xy + 6xy - 4xy + y = x - 2xy + y = (x-y)^2$

shows that $x + y = (x - y)^2 = x + y - 2xy$ yields an operation +' on R'. It has 0 as neutral element, satisfies x + x = 0, is commutative and also associative because of

$$(x + 'y) + 'z = x + y + z - 2(xy + xz + yz) + 4xyz = x + '(y + 'z).$$

Thus (R', +') is an abelian group. Given that \cdot is commutative, we see that $x \cdot y = x \cdot y$ induces an operation \cdot' on R'. It only remains to check the distributive law:

$$x \cdot '(y + 'z) = x(y - z)^{2} = (xy - xz)^{2} = x \cdot 'y + 'x \cdot 'z$$

3. We have $D_{xy} = D_x \cdot D_y$, since $xy \notin \mathfrak{p} \Leftrightarrow (x \notin \mathfrak{p} \text{ and } y \notin \mathfrak{p})$ for prime ideals \mathfrak{p} .

For $D_{x+y} = D_x + D_y$ we have to verify $x + y \notin \mathfrak{p} \Leftrightarrow (x \notin \mathfrak{p}, y \in \mathfrak{p} \text{ or } y \notin \mathfrak{p}, x \in \mathfrak{p})$ for all prime ideals \mathfrak{p} . The implication \Leftarrow is true, since \mathfrak{p} is an ideal. To check \Rightarrow assume now $x + y \notin \mathfrak{p}$. If $x \in \mathfrak{p}$, then necessarily $y \notin \mathfrak{p}$ because \mathfrak{p} is an ideal, so we are done. If we had $x \notin \mathfrak{p}$ and $y \notin \mathfrak{p}$, we would have $\neg x, \neg y \in \mathfrak{p}$ by Lemma 1.1.4, since \mathfrak{p} is a prime ideal, and thus the contradiction $x + y = \neg x + \neg y \in \mathfrak{p}$.

Clearly, $D_1 = \text{Spec}(R) = 1$ because prime ideals are proper.

This shows that D is a ring homomorphism. It remains to verify its injectivity. So let $x \in R$ with $x \neq 0$. Then $\neg x$ is a zero divisor (because of $\neg x \land x = 0$) and thus contained in some maximal ideal \mathfrak{p} of R. By Lemma 1.1.4 we have $x \notin \mathfrak{p}$, so $D_x \neq 0$.

The final statement readily follows from $\mathcal{P}(X) \cong {}^X\mathbb{F}_2$ (see Remark 1.1.9).

4. Let us write \circ , -, \setminus for the functions that associate with subsets $U \subseteq X$ their interior $\circ U = U^{\circ}$, their closure $-U = \overline{U}$, and their complement $\setminus U = X \setminus U$.

From general topology we have the following properties for all $U, V \subseteq X$:

- (i) \circ and preserve \subseteq and we have $\circ \subseteq$ pointwise.
- (ii) $\circ \circ = \circ$ and --=- and $\setminus -= \circ \setminus$ and $\setminus \circ = \setminus$.
- (iii) $\circ(U \cap V) = \circ U \cap \circ V$ and $-(U \cup V) = -U \cup -V$.
- (iv) $\circ U \cap -V \subseteq -(U \cap V)$.

For the possibly non-standard fact (iv) just observe that for open M with $M \subseteq U$ and closed N with $U \cap V \subseteq N$ the set $\backslash (M \cap \backslash N)$ is closed and contains V.

Lemma. For all $U, V \subseteq X$:

(1)
$$U$$
 regular $\Leftrightarrow U = \neg \neg U$.
(2) $\circ \subseteq \neg \neg$.
(3) $\neg \neg \circ = \neg \circ$.
(4) $\neg \neg = \neg \neg$.
(5) $\circ U \cap \neg \neg V \subseteq \neg \neg (U \cap V)$.
(6) $\neg \neg (U \cap V) \subseteq \neg \neg U \cap \neg \neg V$ with equality if either U or V is open.

Proof. (1) Since $\neg = \backslash - = \circ \backslash$ we have $\neg \neg = \circ \backslash \backslash - = \circ -$.

(2) Applying $\-\$ on the left to $\circ \subseteq -$ gives $\circ = \circ \circ = \circ \\) \circ = \-\) \circ \subseteq \-\-\- = \neg \neg$. (3) Applying \neg on the left and \circ on the right to (2) we get $\neg \circ \supseteq \neg \neg \neg \circ$, whereas applying $\neg \circ$ on the right to (2) gives $\neg \circ = \circ \neg \circ \subseteq \neg \neg \neg \circ$.

(4) Apply \setminus on the right to (3) and use $\neg = \circ \setminus$.

(5) Applying $\setminus - \setminus$ to (iv) for the last step yields

$$\circ U \cap \neg \neg V = \backslash (- \backslash \circ U \cup \neg V) = \backslash -(\backslash \circ U \cup \neg V)$$

= $\backslash - \backslash (\circ U \cap -V) \subseteq \neg \neg (U \cap V)$

(6) The inclusion is clear. So without loss of generality let's assume that U is open. Then $U = \circ U$ and $\neg \neg V = \circ \neg \neg V$ such that using (5) twice and then (4) gives

$$-\nabla U \cap \nabla V \subseteq -\nabla U \cap \nabla V = -\nabla U \cap U \cap V = -\nabla U \cap V = -\nabla U \cap U \cap V = -\nabla U \cap U \cap V = -\nabla U \cap U \cap U =$$

As a consequence of the lemma we see using (1) that, if U and V are regular, then so is $\neg U$ by (3) and $U \lor V$ by (4) and $U \land V$ by (6).

Thus \neg, \land, \lor are indeed well-defined operations on $\mathcal{R}(X)$.

We next verify the defining properties of a complete boolean algebra:

(I) Since the partial order \leq on $\mathcal{R}(X)$ will be characterized by $U \leq V \Leftrightarrow U \wedge V = U$, we must choose $\leq = \subseteq$. With this choice it is then obvious that \leq is a partial order with \emptyset as a least element and X as a greatest element.

(II) Clearly, $U \wedge V$ is the infimum of $\{U, V\}$. To check the existence of suprema pick $\mathcal{Y} \subseteq \mathcal{R}(X)$. As a union of open sets $Y = \bigcup \mathcal{Y}$ is open. Hence, $Y \subseteq \neg \neg Y$ by (2) and by (1) and (4) $\neg \neg Y$ is a regular upper bound of \mathcal{Y} . Actually, $\neg \neg Y$ is the supremum of \mathcal{Y} , since for each regular Z with $Y \subseteq Z$ we have $\neg \neg Y \subseteq \neg \neg Z = Z$ by (1).

(III) Both distributive laws for \wedge and \vee follow with a straightforward computation from (1) and (6) and the distributive laws for \cap and \cup .

(IV) Clearly, $U \wedge \neg U = U \setminus \overline{U} = \emptyset$. If U is open, then $U \cup \neg U = \langle \partial U \rangle$ is a dense set (otherwise there would be an open W with $W \subseteq \partial U = \overline{U} \setminus U$, which is absurd). So in particular for regular U we have $U \vee \neg U = \neg \setminus -(U \cup \neg U) = \neg \setminus X = \neg \emptyset = X$.

This proves that $\mathcal{R}(X)$ is a complete boolean algebra.