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1. By the axiom of choiceM =
∏

i∈IMi is non-empty such thatM is well-defined.

(a) For tuples ~x = (x1, . . . , xn) of distinct variable symbols in SV and ~a = (a1, . . . , an)
of elements inM we easily get by structural induction for all S-terms t

(z) tM
~x
~a =

(
t
(Mi)

~x
~ai

)
i∈I

where ~ai = (a1i , . . . , a
n
i ). We also get by structural induction for all S-formulas π

(?) πM
~x
~a =

(
π
(Mi)

~x
~ai

)
i∈I

.

In particular, πM =
(
πMi

)
i∈I . Therefore, to obtain Łoś Theorem it suffices to show

thatM has witnesses since this will implyM/m � π ⇔ πM 6∈ m by Lemma 1.3.9.
To do this, assume π =

∧
x ϕ. Since allMi have witnesses, there exists b ∈M with

πM
~x
~a =

(
ϕ
(Mi)

(~x,x)
(~ai,bi)

)
i∈I

= ϕM
(~x,x)
(~a,b)

which finishes the proof.

We’ll need for (b) the following fact:

Lemma. Every subset Y of a boolean ring R with the finite-join property, i.e. with
y1 ∨ · · · ∨ yn 6= 1 for all y1, . . . , yn ∈ Y , is contained in a maximal ideal of R.

Proof. From Exercise 1.1.5 (xii) and Lemma 1.1.4 it follows that the ideal generated
by Y is {z ∈ R : z ≤ y1 ∨ · · · ∨ yn for some y1, . . . , yn ∈ Y }. The finite-join property
guarantees that it is proper and therefore contained in a maximal ideal. �

(b) The “only if” part is obvious. So let’s assume all finite subsets of T are satisfiable.

Let I be the set of finite subsets of T and considerM =
∏

i∈IMi with unassigned
modelsMi of i ∈ I, which exist by assumption.

Let i∗ ∈ RM = IF2 be the characteristic function of {k ∈ I : i ⊆ k} and let i∗ = ¬i∗.
The subset I∗ = {i∗ : i ∈ I} in RM has the finite-join property, since i∪ j ∈ I is not
in the support of i∗ ∨ j∗ = (i ∪ j)∗ for all i, j ∈ I. By the lemma there is a maximal
ideal m in RM that contains I∗. Then i∗ 6∈ m for all i ∈ I by Lemma 1.1.4.

Given thatMi � i, we then have {π}∗ ≤
(
πMi

)
i∈I for every π ∈ T , so

(
πMi

)
i∈I 6∈ m

since {π}∗ 6∈ m and m is downward closed. ThusM/m � T by (a).

(c) We have the following chain of equivalences
T 6� ϕ ⇔ T ∪ {¬ϕ} satisfiable

⇔ for all finite subsets T ′ of T : T ′ ∪ {¬ϕ} satisfiable
⇔ for all finite subsets T ′ of T : T ′ 6� ϕ

where the middle one due to (b).
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2. Without loss of generality we can assume that X contains no symbol of S. Let S ′
be the vocabulary agreeing with S except that S ′C = SC ∪X and T ′ = T ∪ TX with

TX = {x 6≡ y : x, y ∈ X, x 6= y} .
Every finite subset T ′′ of T ′ has a model: Indeed, letX ′′ be the subset ofX consisting
of the symbols that occur in the sentences in T ′′∩TX . Given an infinite ≡-respecting
modelM of T , we can choose an injective function f : X ′′ →M and extendM to
an S ′-structureM′′ with xM′′

= f(x) for x ∈ X ′′, which will then be a model of T ′′.

Hence, by the Compactness Theorem T ′ admits a model and then by Lemma 1.4.2
even a modelM′ that respects ≡. Because of T ′ ⊇ T it is clear thatM′ is a model
of T and because of T ′ ⊇ TX the rule x 7→ xM

′ yields an embedding X →M′.

3. (a) Let Th(Z) be the set of SRing-sentences π with Z̃ � π and S ′ be a vocabulary
agreeing with SRing except that S ′C \ S

Ring
C = {c} where c is not a symbol of S.

Let d1e = 1 and dne = dn− 1e ⊕ 1 for n > 1. Define T = Th(Z) ∪ Tc with
Tc = {c 6≡ 0} ∪ {ϕn =

∨
z (d1e � · · · � dne � z) ≡ c : n ∈ N+} .

Every finite subset T ′ of T admits a model: Indeed, letm = max{n ∈ N+ : ϕn ∈ T ′}.
Then Z̃ can be extended to an S ′-structure Z̃′ with cZ̃′

= m!, which is a model of T ′.

Due to the Compactness Theorem the S ′-theory T admits model R, which can be
assumed to respect ≡ by Lemma 1.4.2. Since Th(Z) contains SRing-sentences char-
acterizing commutative integral domains, R yields a commutative integral domain
R = R with + = ⊕R, · = �R and R̃ = R � π for all SRing-sentences π with Z̃ � π.

Let x = cR̃. Then x 6= 0 because of R � c 6≡ 0 and for n > 1 there are xn ∈ R \ {0}
with n! · xn = x because of R � ϕn. Hence, canceling in

(n− 1)! · xn−1 = x = n! · xn
gives xn−1 = n · xn such that with In = (xn) we get an increasing chain of ideals

I1 ⊆ I2 ⊆ · · · .
To prove that R is non-noetherian it is enough to check that all these inclusions are
proper. If this were not the case, say In−1 = In, then there would be a y ∈ R with

xn = y · xn−1 = y · n · xn ,
so 1 = y · n in contradiction with

∧
u 1 6≡ (u� dne) ∈ Th(Z) for n > 1.

(b) If there were an SRing-sentence ϕ characterizing noetherianity, then ϕ ∈ Th(Z)
and the non-noetherian ring R in (a) would yield the contradiction R̃ � ϕ.
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4. It’s easy to see that there is an SRing-theory ACF ⊇ CRT such that rings R satisfy
R̃ � ACF iff they are algebraically closed fields. Then the ≡-respecting models of

ACF0 = ACF ∪ {ψn = dne 6≡ 0 : n ∈ N+}
correspond to algebraically closed fields of characteristic 0.

(2) ⇒ (3): By the assumption we obtain ACF0 � ϕ and by Exercise 1 (c) there is a
finite subset T ′ of ACF0 with T ′ � ϕ. But then every algebraically closed field K of
characteristic greater than max{n ∈ N+ : ψn ∈ T ′} satisfies K̃ � T ′, so K̃ � ϕ.

(3) ⇒ (1): LetM =
∏

i∈I K̃i where I and Ki are chosen as indicated in the hint.

The characteristic functions of the finite subsets of I form an ideal in the boolean
ring RM = IF2 by Lemma 1.1.4. Since I is infinite, this ideal is proper and thus
contained in a maximal ideal m of RM.

Define K = (M/m)/≡. Then we have by Lemma 1.4.2 and Exercise 1 (a)

K � π ⇔ M/m � π ⇔
(
πK̃i

)
i∈I 6∈ m

for all SRing-sentences π. In particular, K � ACF∪ {ϕ} because of K̃i � ACF∪ {ϕ}
for all i ∈ I. Consequently, K = K̃ for an algebraically closed field K.

To conclude the proof it suffices to show that K has characteristic 0, i.e. for every
prime p we must showK 6� dpe ≡ 0, which is equivalent to xp =

(
(dpe ≡ 0)K̃i

)
i∈I ∈ m.

But this is true, since xp = 0 ∈ m if p 6∈ I and xp = χp ∈ m if p ∈ I.
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