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1. By the axiom of choice M = [],.; M, is non-empty such that M is well-defined.

iel

(a) For tuples © = (z1, ..., x,) of distinct variable symbols in Sy and @ = (a', ..., a")
of elements in M we easily get by structural induction for all S-terms ¢
(%) ME <t(Mi)gi)

i€l
where a@; = (a;,...,al). We also get by structural induction for all S-formulas 7
(%) ME (Wwi)gi) '
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In particular, 7" = (77/‘/‘1‘)1.e ;- Therefore, to obtain Los Theorem it suffices to show

that M has witnesses since this will imply M/mE 7 < 7 & m by Lemma 1.3.9.
To do this, assume 7 = A ¢. Since all M, have witnesses, there exists b € M with

= () = M
iel
which finishes the proof.
We'll need for (b) the following fact:

Lemma. Every subset Y of a boolean ring R with the finite-join property, i.e. with
V- Vy, £ 1 forall yi,...,y, €Y, is contained in a mazimal ideal of R.

Proof. From Exercise 1.1.5 (xii) and Lemma 1.1.4 it follows that the ideal generated
byYis{z€ R:2<y, V---Vy, for some y,...,y, € Y}. The finite-join property
guarantees that it is proper and therefore contained in a maximal ideal. 0

(b) The “only if” part is obvious. So let’s assume all finite subsets of T are satisfiable.

Let I be the set of finite subsets of T" and consider M =[]
models M; of ¢ € I, which exist by assumption.

Let i* € RM = F, be the characteristic function of {kel:iCk}andleti, =—i*
The subset I, = {i, : i € I} in RM has the finite-join property, since i Uj € I is not
in the support of i, V j, = (iU j), for all 4,j € I. By the lemma there is a maximal
ideal m in RM that contains I,. Then i* € m for all i € I by Lemma 1.1.4.

Given that M, F i, we then have {7}* < (TrMi)iEI for every m € T', so (wMi)iGI Zm
since {m}* ¢ m and m is downward closed. Thus M/m E T by (a).

ser M with unassigned

(c) We have the following chain of equivalences

THe < T U{—p} satisfiable
& for all finite subsets 7" of T: T" U {—¢} satisfiable
& for all finite subsets 7" of T: T' H ¢

where the middle one due to (b).



2. Without loss of generality we can assume that X contains no symbol of S. Let S’
be the vocabulary agreeing with S except that S, = Sc U X and T" = T'UTx with
Ty = {#y:zyeX,a£y).

Every finite subset 7" of 7" has a model: Indeed, let X" be the subset of X consisting
of the symbols that occur in the sentences in T”"NTx. Given an infinite =-respecting

model M of T', we can choose an injective function f: X” — M and extend M to
an S’-structure M” with ™" = f(z) for x € X”, which will then be a model of T".

Hence, by the Compactness Theorem 7" admits a model and then by Lemma 1.4.2
even a model M’ that respects =. Because of 7" D T' it is clear that M’ is a model
of T and because of T" D T the rule z — 2™’ yields an embedding X — M’

3. (a) Let Th(Z) be the set of S™"&-sentences 7 with Z = 7 and S’ be a vocabulary
agreeing with S®"¢ except that Sy, \ Sg™® = {c} where ¢ is not a symbol of S.

Let [1] =1 and [n] =[n —1] & 1 for n > 1. Define T' = Th(Z) U T, with

T. = {c#£0}U{pn =V, ([11O--0[n]O2z)=c:neNi}.
Every finite subset 7" of T" admits a model: Indeed, let m = max{n € N, : p, € T"}.
Then Z can be extended to an S’-structure Z/ with ¢ = m!, which is a model of T".

Due to the Compactness Theorem the S’-theory T" admits model R, which can be
assumed to respect = by Lemma 1.4.2. Since Th(Z) contains S®"&-sentences char-
acterizing commutative integral domains, R yields a commutative integral domain
R =R with + = ®®, - = @R and R = R E 7 for all S®"8_sentences 7 with Z F 7.

Let z = c®. Then z # 0 because of R F ¢ # 0 and for n > 1 there are z,, € R\ {0}
with n! -z, = x because of R F ,,. Hence, canceling in

m—1"2,1 =2 =nlx,
gives x,_1 = n - x, such that with I,, = (x,) we get an increasing chain of ideals
LCLC---.

To prove that R is non-noetherian it is enough to check that all these inclusions are
proper. If this were not the case, say I,,_; = I,,, then there would be a y € R with

Tp = Y Tp-1 = Y -N-Tn,
so 1 =y - n in contradiction with A, 1 # (v ® [n]) € Th(Z) for n > 1.

(b) If there were an S®8_sentence ¢ characterizing noetherianity, then ¢ € Th(Z)
and the non-noetherian ring R in (a) would yield the contradiction R F ¢.



4. It’s easy to see that there is an S Ring_theory ACF D CRT such that rings R satisfy
R E ACF iff they are algebraically closed fields. Then the =-respecting models of

ACFy = ACFU{¢, =[n] #0 : ne N, }
correspond to algebraically closed fields of characteristic 0.

(2) = (3): By the assumption we obtain ACFy F ¢ and by Exercise 1 (c) there is a
finite subset 7" of ACFy with T" I . But then every algebraically closed field K of
characteristic greater than max{n € Ny : ¢,, € T"} satisfies K F 1", so K F ¢.

(3) = (1): Let M =], K; where I and K; are chosen as indicated in the hint.

The characteristic functions of the finite subsets of I form an ideal in the boolean
ring RM = IF, by Lemma 1.1.4. Since I is infinite, this ideal is proper and thus
contained in a maximal ideal m of RM.

Define K = (M /m)/=. Then we have by Lemma 1.4.2 and Exercise 1 (a)

Kem & M/mEn & (nki)ielgm
for all S™"¢-sentences 7. In particular, K F ACF U {¢} because of K; E ACFU {p}
for all + € I. Consequently, K = K for an algebraically closed field K.

To conclude the proof it suffices to show that K has characteristic 0, i.e. for every
prime p we must show K I [p] = 0, which is equivalent to z, = (([p] = O)Ki)iel € m.
But this is true, since v, =0 € mifp ¢ I and z, = x, € mifp € I.



