1. By the axiom of choice $\underline{\mathcal{M}} = \prod_{i \in I} \underline{\mathcal{M}}_i$ is non-empty such that \mathcal{M} is well-defined.

(a) For tuples $\vec{x} = (x_1, \ldots, x_n)$ of distinct variable symbols in S_V and $\vec{a} = (a^1, \ldots, a^n)$ of elements in $\underline{\mathcal{M}}$ we easily get by structural induction for all S-terms t

$$(\mathbf{K}) \qquad \qquad t^{\mathcal{M}_{\vec{a}}^{\vec{x}}} = \left(t^{(\mathcal{M}_i)_{\vec{a}_i}^{\vec{x}}}\right)_{i \in \mathcal{A}}$$

where $\vec{a}_i = (a_i^1, \ldots, a_i^n)$. We also get by structural induction for all S-formulas π

$$(\star) \qquad \qquad \pi^{\mathcal{M}_{\vec{a}}^{\vec{x}}} = \left(\pi^{(\mathcal{M}_i)_{\vec{a}_i}^{\vec{x}}}\right)_{i \in I}.$$

In particular, $\pi^{\mathcal{M}} = (\pi^{\mathcal{M}_i})_{i \in I}$. Therefore, to obtain Łoś Theorem it suffices to show that \mathcal{M} has witnesses since this will imply $\mathcal{M}/\mathfrak{m} \models \pi \Leftrightarrow \pi^{\mathcal{M}} \notin \mathfrak{m}$ by Lemma 1.3.9. To do this, assume $\pi = \bigwedge_x \varphi$. Since all \mathcal{M}_i have witnesses, there exists $b \in \underline{\mathcal{M}}$ with

$$\pi^{\mathcal{M}_{\vec{a}}^{\vec{x}}} = \left(\varphi^{(\mathcal{M}_i)_{(\vec{a}_i,b_i)}^{(\vec{x},x)}}\right)_{i \in I} = \varphi^{\mathcal{M}_{(\vec{a},b)}^{(\vec{x},x)}}$$

which finishes the proof.

We'll need for (b) the following fact:

Lemma. Every subset Y of a boolean ring R with the finite-join property, i.e. with $y_1 \vee \cdots \vee y_n \neq 1$ for all $y_1, \ldots, y_n \in Y$, is contained in a maximal ideal of R.

Proof. From Exercise 1.1.5 (xii) and Lemma 1.1.4 it follows that the ideal generated by Y is $\{z \in R : z \leq y_1 \lor \cdots \lor y_n \text{ for some } y_1, \ldots, y_n \in Y\}$. The finite-join property guarantees that it is proper and therefore contained in a maximal ideal.

(b) The "only if" part is obvious. So let's assume all finite subsets of T are satisfiable.

Let I be the set of finite subsets of T and consider $\mathcal{M} = \prod_{i \in I} \mathcal{M}_i$ with unassigned models \mathcal{M}_i of $i \in I$, which exist by assumption.

Let $i^* \in \mathcal{R}^{\mathcal{M}} = {}^{I}\mathbb{F}_2$ be the characteristic function of $\{k \in I : i \subseteq k\}$ and let $i_* = \neg i^*$. The subset $I_* = \{i_* : i \in I\}$ in $\mathcal{R}^{\mathcal{M}}$ has the finite-join property, since $i \cup j \in I$ is not in the support of $i_* \vee j_* = (i \cup j)_*$ for all $i, j \in I$. By the lemma there is a maximal ideal \mathfrak{m} in $\mathcal{R}^{\mathcal{M}}$ that contains I_* . Then $i^* \notin \mathfrak{m}$ for all $i \in I$ by Lemma 1.1.4.

Given that $\mathcal{M}_i \vDash i$, we then have $\{\pi\}^* \leq (\pi^{\mathcal{M}_i})_{i \in I}$ for every $\pi \in T$, so $(\pi^{\mathcal{M}_i})_{i \in I} \notin \mathfrak{m}$ since $\{\pi\}^* \notin \mathfrak{m}$ and \mathfrak{m} is downward closed. Thus $\mathcal{M}/\mathfrak{m} \vDash T$ by (a).

(c) We have the following chain of equivalences

 $\begin{array}{ll} T \not\models \varphi \Leftrightarrow & T \cup \{\neg\varphi\} \text{ satisfiable} \\ \Leftrightarrow \text{ for all finite subsets } T' \text{ of } T \colon T' \cup \{\neg\varphi\} \text{ satisfiable} \\ \Leftrightarrow \text{ for all finite subsets } T' \text{ of } T \colon T' \not\models \varphi \end{array}$

where the middle one due to (b).

2. Without loss of generality we can assume that X contains no symbol of S. Let S' be the vocabulary agreeing with S except that $S'_C = S_C \cup X$ and $T' = T \cup T_X$ with

$$T_X = \{x \neq y : x, y \in X, x \neq y\}.$$

Every finite subset T'' of T' has a model: Indeed, let X'' be the subset of X consisting of the symbols that occur in the sentences in $T'' \cap T_X$. Given an infinite \equiv -respecting model \mathcal{M} of T, we can choose an injective function $f: X'' \to \underline{\mathcal{M}}$ and extend \mathcal{M} to an S'-structure \mathcal{M}'' with $x^{\mathcal{M}''} = f(x)$ for $x \in X''$, which will then be a model of T''.

Hence, by the Compactness Theorem T' admits a model and then by Lemma 1.4.2 even a model \mathcal{M}' that respects \equiv . Because of $T' \supseteq T$ it is clear that \mathcal{M}' is a model of T and because of $T' \supseteq T_X$ the rule $x \mapsto x^{\mathcal{M}'}$ yields an embedding $X \to \mathcal{M}'$.

3. (a) Let $\operatorname{Th}(\mathbb{Z})$ be the set of S^{Ring} -sentences π with $\tilde{\mathbb{Z}} \vDash \pi$ and S' be a vocabulary agreeing with S^{Ring} except that $S'_C \setminus S^{\operatorname{Ring}}_C = \{c\}$ where c is not a symbol of S.

Let
$$\lceil 1 \rceil = 1$$
 and $\lceil n \rceil = \lceil n-1 \rceil \oplus 1$ for $n > 1$. Define $T = \text{Th}(\mathbb{Z}) \cup T_c$ with
 $T_c = \{c \neq 0\} \cup \{\varphi_n = \bigvee_z (\lceil 1 \rceil \odot \cdots \odot \lceil n \rceil \odot z) \equiv c : n \in \mathbb{N}_+\}.$

Every finite subset T' of T admits a model: Indeed, let $m = \max\{n \in \mathbb{N}_+ : \varphi_n \in T'\}$. Then \mathbb{Z} can be extended to an S'-structure \mathbb{Z}' with $c^{\mathbb{Z}'} = m!$, which is a model of T'.

Due to the Compactness Theorem the S'-theory T admits model \mathcal{R} , which can be assumed to respect \equiv by Lemma 1.4.2. Since $\operatorname{Th}(\mathbb{Z})$ contains S^{Ring} -sentences characterizing commutative integral domains, \mathcal{R} yields a commutative integral domain $R = \underline{\mathcal{R}}$ with $+ = \oplus^{\mathcal{R}}$, $\cdot = \odot^{\mathcal{R}}$ and $\tilde{R} = \mathcal{R} \vDash \pi$ for all S^{Ring} -sentences π with $\mathbb{Z} \vDash \pi$. Let $x = c^{\tilde{R}}$. Then $x \neq 0$ because of $\mathcal{R} \vDash c \not\equiv 0$ and for n > 1 there are $x_n \in R \setminus \{0\}$ with $n! \cdot x_n = x$ because of $\mathcal{R} \vDash \varphi_n$. Hence, canceling in

$$(n-1)! \cdot x_{n-1} = x = n! \cdot x_n$$

gives $x_{n-1} = n \cdot x_n$ such that with $I_n = (x_n)$ we get an increasing chain of ideals $I_1 \subseteq I_2 \subseteq \cdots$.

To prove that R is non-noetherian it is enough to check that all these inclusions are proper. If this were not the case, say $I_{n-1} = I_n$, then there would be a $y \in R$ with

$$x_n = y \cdot x_{n-1} = y \cdot n \cdot x_n \,,$$

so $1 = y \cdot n$ in contradiction with $\bigwedge_u \mathbf{1} \not\equiv (u \odot \lceil n \rceil) \in \operatorname{Th}(\mathbb{Z})$ for n > 1.

(b) If there were an S^{Ring} -sentence φ characterizing noetherianity, then $\varphi \in \text{Th}(\mathbb{Z})$ and the non-noetherian ring R in (a) would yield the contradiction $\tilde{R} \models \varphi$. **4.** It's easy to see that there is an S^{Ring} -theory ACF \supseteq CRT such that rings R satisfy $\tilde{R} \models$ ACF iff they are algebraically closed fields. Then the \equiv -respecting models of

$$ACF_0 = ACF \cup \{\psi_n = \lceil n \rceil \not\equiv 0 : n \in \mathbb{N}_+\}$$

correspond to algebraically closed fields of characteristic 0.

(2) \Rightarrow (3): By the assumption we obtain ACF₀ $\models \varphi$ and by Exercise 1 (c) there is a finite subset T' of ACF₀ with $T' \models \varphi$. But then every algebraically closed field K of characteristic greater than max{ $n \in \mathbb{N}_+ : \psi_n \in T'$ } satisfies $\tilde{K} \models T'$, so $\tilde{K} \models \varphi$.

(3) \Rightarrow (1): Let $\mathcal{M} = \prod_{i \in I} \tilde{K}_i$ where I and K_i are chosen as indicated in the hint.

The characteristic functions of the finite subsets of I form an ideal in the boolean ring $R^{\mathcal{M}} = {}^{I}\mathbb{F}_{2}$ by Lemma 1.1.4. Since I is infinite, this ideal is proper and thus contained in a maximal ideal \mathfrak{m} of $R^{\mathcal{M}}$.

Define $\mathcal{K} = (\mathcal{M}/\mathfrak{m})/_{\equiv}$. Then we have by Lemma 1.4.2 and Exercise 1 (a)

$$\mathcal{K}\vDash\pi \Leftrightarrow \mathcal{M}/\mathfrak{m}\vDash\pi \Leftrightarrow \left(\pi^{\tilde{K}_{i}}\right)_{i\in I}\notin\mathfrak{m}$$

for all S^{Ring} -sentences π . In particular, $\mathcal{K} \models \text{ACF} \cup \{\varphi\}$ because of $\tilde{K}_i \models \text{ACF} \cup \{\varphi\}$ for all $i \in I$. Consequently, $\mathcal{K} = \tilde{K}$ for an algebraically closed field K.

To conclude the proof it suffices to show that K has characteristic 0, i.e. for every prime p we must show $\mathcal{K} \not\models \lceil p \rceil \equiv 0$, which is equivalent to $x_p = \left((\lceil p \rceil \equiv 0)^{\tilde{K}_i}\right)_{i \in I} \in \mathfrak{m}$. But this is true, since $x_p = 0 \in \mathfrak{m}$ if $p \notin I$ and $x_p = \chi_p \in \mathfrak{m}$ if $p \in I$.