1.

 $(1) \Rightarrow (2)$ This was proved in the lecture.

(2) \Rightarrow (3) Let $\alpha \in \beta \in \gamma$. We must show $\alpha \sqsubseteq \beta$, equivalently $\beta \not\sqsubseteq \alpha$ by assumption. If we had $\beta \sqsubseteq \alpha$, then $\alpha \in \alpha$. But this is impossible, since $\alpha \in \gamma$ by transitivity of γ such that $[\alpha]$ must have an \in -minimal element by well-foundedness of \in on γ .

(3) \Rightarrow (4) Let us call α and β incomparable if none of $\alpha \in \beta$, $\alpha = \beta$, $\beta \in \alpha$ holds. It is enough to check that $X = [\alpha \in \gamma : \alpha \text{ and } \beta \text{ are incomparable for some } \beta \in \gamma]$ is empty, since the well-foundedness of \in on γ implies that for $\alpha, \beta \in \gamma$ at most one of $\alpha \in \beta, \alpha = \beta, \beta \in \alpha$ can hold. We will now assume that X is not empty in order to arrive at a contradiction. By the well-foundedness of \in on γ we can first pick an \in -minimal δ in X and then an \in -minimal ε in $[\beta \in \gamma : \delta$ and β are incomparable]. We claim the absurd identity $\delta = \varepsilon$ holds. For the inclusion \subseteq note that each $\sigma \in \delta$ must be comparable with ε , which means $\sigma \in \varepsilon$ because neither $\sigma = \varepsilon$ nor $\varepsilon \in \sigma$, since this would imply $\varepsilon \in \delta$ by the transitivity of δ , is possible. For the inclusion \supseteq note that each $\sigma \in \delta$.

(4) \Rightarrow (1) By the assumptions it merely remains to verify that \in is transitive on γ . So let $\delta, \alpha, \beta \in \gamma$ with $\delta \in \alpha \in \beta$. We can neither have $\delta = \beta$ nor $\beta \in \delta$, since this would imply that $[\delta, \alpha, \beta]$ has no \in -minimal element. So necessarily $\delta \in \beta$.

2. We use results from 4. here, and vice versa. But we avoid circular reasoning.

- (i) These hold by definition.
- (ii) For $\underline{0} + \alpha = \alpha$ use 4. (a) and the order isomorphism $\underline{0} \sqcup \alpha \to \alpha$, $\langle \underline{1}, \gamma \rangle \mapsto \gamma$. To prove $\underline{0} \cdot \alpha = \underline{0}$ assume by induction $\underline{0} \cdot \varepsilon = \underline{0}$ for all $\varepsilon < \alpha$. For $\alpha = \underline{0}$ use (i). For successor ordinals α we can once again use (i) to get $\underline{0} \cdot \alpha = \underline{0} \cdot (\alpha - \underline{1}) + \underline{0} = \underline{0}$. For limit ordinals α we also have $\underline{0} \cdot \alpha = \bigsqcup_{\varepsilon < \alpha} \underline{0} \cdot \varepsilon = \underline{0}$.

For $\underline{1} \cdot \alpha = \alpha$ use 4. (b) and the order isomorphism $\underline{1} * \alpha \to \alpha, \langle \underline{0}, \gamma \rangle \mapsto \gamma$.

(iii) The identity $\alpha \cdot \underline{1} = \underline{0} + \alpha = \alpha$ holds by definition and (ii).

The identity $\alpha^{(\underline{1})} = \underline{1} \cdot \alpha = \alpha$ holds by definition and (ii).

For $\underline{1}^{(\alpha)} = \underline{1}$ use 4. (c) and $(\alpha \rightarrow \underline{1}) = [\alpha * \underline{1}]$.

- (iv) Use 4. (c) and $(\alpha \rightarrow \underline{0}) = \underline{0}$ if $\underline{0} < \alpha$.
- (v) Use 4. (a,b) together with the fact that the obvious maps $(\alpha \sqcup \beta) \sqcup \gamma \rightarrow \alpha \sqcup (\beta \sqcup \gamma)$ and $(\alpha * \beta) * \gamma \rightarrow \alpha * (\beta * \gamma)$ (with the obvious orders on the respective domain and range) are order isomorphisms.
- (vi) Use 4. (a,b) together with the fact that the obvious map $\alpha * (\beta \sqcup \gamma) \rightarrow (\alpha * \beta) \sqcup (\alpha * \gamma)$ (with the obvious orders on domain and range) is an order isomorphism.
- (vii) Use 4. (a,b,c) and the fact that the obvious map $((\beta \sqcup \gamma) \rightarrow \alpha) \rightarrow (\beta \rightarrow \alpha) * (\gamma \rightarrow \alpha)$ (with the obvious orders on domain and range) is an order isomorphism.
- (viii) Use 4. (b,c) and the fact that the obvious map $(\gamma \rightarrow (\beta \rightarrow \alpha)) \rightarrow ((\beta * \gamma) \rightarrow \alpha)$ (with the obvious orders on domain and range) is an order isomorphism.
- (ix) The successor map s on $\mathbb{O}^{\mathcal{M}}$ given by $\varepsilon \mapsto \varepsilon + \underline{1}$ preserves \leq and satisfies $\varepsilon \leq s(\varepsilon)$. Therefore we get $\alpha + \gamma = s^{\gamma}(\alpha) \leq s^{\delta}(\beta) = \beta + \delta$.

The maps a_{σ} on $\mathbb{O}^{\mathcal{M}}$ given by $\varepsilon \mapsto \varepsilon + \sigma$ preserve \leq and satisfy due to (i) and by what has already been shown here $\varepsilon = \varepsilon + \underline{0} \leq a_{\alpha}(\varepsilon) \leq a_{\beta}(\varepsilon)$. As a consequence, we get $\alpha \cdot \gamma = a_{\alpha}^{\gamma}(\underline{0}) \leq a_{\alpha}^{\delta}(\underline{0}) \leq a_{\beta}^{\delta}(\underline{0}) = \beta \cdot \delta$.

- (x) By (ix) it suffices to show $\beta + \gamma < \beta + \delta$. We have $\varepsilon < s(\varepsilon)$ such that $\operatorname{It}_{s,\beta}$ is normal, so in particular it is order-preserving, hence $\beta + \gamma = s^{\gamma}(\beta) < s^{\delta}(\beta) = \beta + \delta$.
- (xi) By (ix) it suffices to show $\beta \cdot \gamma < \beta \cdot \delta$. We have $\varepsilon = \varepsilon + \underline{0} < a_{\beta}(\varepsilon)$ because of $\underline{0} < \beta$ and (i,x) such that $\operatorname{It}_{a_{\beta},\underline{0}}$ is normal. Hence, $\beta \cdot \gamma = a_{\beta}^{\gamma}(\underline{0}) < a_{\beta}^{\delta}(\underline{0}) = \beta \cdot \delta$.
- (xii) The maps m_{σ} on $\mathbb{O}^{\mathcal{M}}$ given by $\varepsilon \mapsto \varepsilon \cdot \sigma$ preserve \leq and because of $\underline{1} \leq \alpha$ and (iii,ix) satisfy $\varepsilon = \varepsilon \cdot \underline{1} \leq m_{\alpha}(\varepsilon) \leq m_{\beta}(\varepsilon)$. Hence, $\alpha^{(\gamma)} = m_{\alpha}^{\gamma}(\underline{1}) \leq m_{\alpha}^{\delta}(\underline{1}) \leq m_{\beta}^{\delta}(\underline{1}) = \beta^{(\delta)}$.
- (xiii) By (xii) it suffices to show $\beta^{(\gamma)} < \beta^{(\delta)}$. We have $\varepsilon = \varepsilon \cdot \underline{1} < m_{\beta}(\varepsilon)$ because of $\underline{1} < \beta$ and (iii,xi) such that $\operatorname{It}_{m_{\beta},\underline{1}}$ is normal. Hence, $\beta^{(\gamma)} = m_{\beta}^{\gamma}(\underline{1}) < m_{\beta}^{\delta}(\underline{1}) = \beta^{(\delta)}$.
- (xiv) Use (x).
- (xv) Use (xi).
- (xvi) Use (xii).

Lemma. $\beta \leq \underline{2}^{(\beta)}$ for all $\beta \in \mathbb{O}^{\mathcal{M}}$.

Proof. By induction we may assume $\alpha \leq \underline{2}^{(\alpha)}$ for all $\alpha < \beta$.

If $\beta = \underline{0}$ we have $\beta \leq \underline{1} = \underline{2}^{(\beta)}$ by (i).

If β is a successor ordinal, we compute $\beta = (\beta - \underline{1}) + \underline{1} \leq \underline{2}^{(\beta-\underline{1})} + \underline{1} \leq \underline{2}^{(\beta)}$ where the first inequality uses (ix) and the last inequality uses the normality of $\mathrm{It}_{m_2,1}$.

If β is a non-zero limit ordinal, then $\beta = \bigsqcup_{\alpha < \beta} \alpha \le \bigsqcup_{\alpha < \beta} \underline{2}^{(\alpha)} = \underline{2}^{(\beta)}$. \Box

For all $\alpha, \beta \in \mathbb{N}^{\mathcal{M}}$ induction on β readily yields $\alpha + \beta \in \mathbb{N}^{\mathcal{M}}$, then also $\alpha \cdot \beta \in \mathbb{N}^{\mathcal{M}}$, and finally $\alpha^{(\beta)} \in \mathbb{N}^{\mathcal{M}}$. If $\mathbb{N}^{\mathcal{M}}$ forms an \mathcal{M} -set ω , we have for all $\alpha \in \mathbb{N}^{\mathcal{M}}$

$$\begin{split} \omega &= \underline{0} + \omega \leq \alpha + \omega = \bigsqcup_{\beta < \omega} (\alpha + \beta) \leq \omega \quad \text{for all } \alpha, \\ \omega &= \underline{1} \cdot \omega \leq \alpha \cdot \omega = \bigsqcup_{\beta < \omega} (\alpha \cdot \beta) \leq \omega \quad \text{for all } \alpha > \underline{0}, \\ \omega &\leq \underline{2}^{(\omega)} \leq \alpha^{(\omega)} = \bigsqcup_{\beta < \omega} \alpha^{(\beta)} \leq \omega \quad \text{for all } \alpha > \underline{1}, \end{split}$$

using the lemma and the normality of $\operatorname{It}_{s,\alpha}$, $\operatorname{It}_{a_{\alpha},\underline{0}}$ for $\alpha > \underline{0}$, and $\operatorname{It}_{m_{\alpha},\underline{1}}$ for $\alpha > \underline{1}$. Consequently, we have for all natural numbers α in \mathcal{M} the identities

$$\alpha + \omega = \alpha \cdot \omega = \alpha^{(\omega)} = \omega.$$

They provide us with the following counterexamples:

```
(I) \underline{1} + \omega = \omega < \omega + \underline{1}

(II) \underline{2} \cdot \omega = \omega = \omega \cdot \underline{1} < \omega \cdot \underline{2}

(III) (\underline{1} + \underline{1}) \cdot \omega = \underline{2} \cdot \omega = \omega = \omega \cdot \underline{1} < \omega \cdot \underline{2} = \omega \cdot \underline{1} + \omega \cdot \underline{1} = \underline{1} \cdot \omega + \underline{1} \cdot \omega

(IV) (\underline{2} \cdot \underline{2})^{(\omega)} = \omega = \omega \cdot \underline{1} < \omega \cdot \omega = \underline{2}^{(\omega)} \cdot \underline{2}^{(\omega)}

(V) \underline{0} + \omega = \omega = \underline{1} + \omega

(VI) \underline{1} \cdot \omega = \omega = \underline{2} \cdot \omega

(VII) \underline{2}^{(\omega)} = \omega = \underline{3}^{(\omega)}

(VIII) See (V).

(IX) See (VI).

(X) See (VII).
```

Let's first prove the remark from the end of the exercise sheet:

Lemma. Every non-empty finite \mathcal{M} -subset X of an \mathcal{M} -ordinal β has a maximum.

Proof. If not, we could construct with the help of well-ordered recursion a sequence $\langle \alpha_{\varepsilon} \rangle_{\varepsilon \in \mathbb{N}^{\mathcal{M}}}$ given by $\alpha_{\varepsilon} = \min(X \setminus [\alpha_{\delta} : \delta < \varepsilon])$. It would then follow that $\mathbb{N}^{\mathcal{M}}$ forms an \mathcal{M} -set ω satisfying the impossible $\omega \leq |X| < \omega$.

3.

(a) The map $f = \text{It}_{s,\alpha}$ is normal with image $\{\gamma \in \mathbb{O}^{\mathcal{M}} : \gamma \geq \alpha\}$. Take $\beta - \alpha = f^{-1}(\beta)$.

(b) The map $f = \operatorname{It}_{a_{\beta},\underline{0}}$ is normal for $\beta > \underline{0}$. Let $\gamma \in \mathbb{O}^{\mathcal{M}}$ be such that $f(\gamma)$ is the maximum in the image of f that is not greater than α , which exists since $\alpha \geq f(\underline{0})$. Then $\beta \cdot \gamma \leq \alpha < \beta \cdot (\gamma + \underline{1})$, so $\alpha = \beta \cdot \gamma + \delta$ with $\delta = \alpha - \beta \cdot \gamma$. If we had $\delta \geq \beta$, this would give rise to the contradiction

$$\beta \cdot (\gamma + \underline{1}) \stackrel{(\mathbf{i},\mathbf{ix})}{\leq} \beta \cdot (\gamma + \underline{1}) + (\delta - \beta) \stackrel{(\mathbf{v})}{=} \beta \cdot \gamma + (\beta + (\delta - \beta)) = \alpha.$$

Now assume $\beta \cdot \gamma + \delta = \beta \cdot \gamma' + \delta'$ with $\delta' < \beta$. By (xiv) it suffices to check $\gamma = \gamma'$. Assume not, say $\gamma < \gamma'$. Then we get the contradiction

$$\beta \cdot \gamma + \delta \stackrel{(\mathbf{x})}{<} \beta \cdot \gamma + \beta = \beta \cdot (\gamma + \underline{1}) \stackrel{(\mathbf{i}\mathbf{x})}{\leq} \beta \cdot \gamma' \stackrel{(\mathbf{i},\mathbf{i}\mathbf{x})}{\leq} \beta \cdot \gamma' + \delta'$$

(c) Let γ be a left divisor of α and $\alpha + \beta$. We show that γ is a left divisor of β , too. This is true for $\gamma = \underline{0}$ by (ii). So let's assume $\gamma \neq \underline{0}$. Write $\alpha = \gamma \cdot \delta$ and using (b) $\beta = \gamma \cdot \sigma + \tau$ where $\delta, \sigma, \tau \in \mathbb{O}^{\mathcal{M}}$ with $\tau < \gamma$. We need $\tau = \underline{0}$. A calculation yields

$$\alpha + \beta \stackrel{(\mathbf{v})}{=} (\gamma \cdot \delta + \gamma \cdot \sigma) + \tau \stackrel{(\mathbf{v})}{=} \gamma \cdot (\delta + \sigma) + \tau.$$

Since γ is a left divisor of $\alpha + \beta$, the uniqueness in (b) implies $\tau = \underline{0}$.

(d) Let $C \subseteq \mathbb{O}^{\mathcal{M}}$ be a non-empty \mathcal{M} -subclass of $\mathbb{O}^{\mathcal{M}} \setminus \{\underline{0}\}$.

GREATEST COMMON LEFT DIVISOR. With (b), (c), the calculation rules in 3., and recursion, finding the greatest common left divisor gcd(C) of C is standard.

Firstly, we will verify the existence of $gcd(\{\alpha, \beta\})$ for all $\underline{0} < \beta \leq \alpha$. The Euclidean algorithm – which works thanks to well-ordered recursion and (b) – yields sequences $\langle \Gamma_{\sigma} \rangle_{\sigma \in \mathbb{N}^{\mathcal{M}}}$ and $\langle \Delta_{\sigma} \rangle_{\sigma \in \mathbb{N}^{\mathcal{M}}}$ with $\Gamma_{\underline{0}} = \alpha$ and $\Gamma_{\underline{1}} = \beta$ satisfying for $\underline{0} < \sigma \in \mathbb{N}^{\mathcal{M}}$

$$\Gamma_{\sigma-\underline{1}} = \Gamma_{\sigma} \cdot \Delta_{\sigma} + \Gamma_{\sigma+\underline{1}} \text{ and } \Gamma_{\sigma+\underline{1}} < \Gamma_{\sigma} \quad \text{if } \Gamma_{\sigma} \neq \underline{0},$$

$$\Gamma_{\sigma+\underline{1}} = \underline{0} \quad \text{if } \Gamma_{\sigma} = \underline{0}.$$

Clearly, Γ is eventually constant $\underline{0}$, since otherwise it would be strictly decreasing, in contradiction to the fact that $\mathbb{O}^{\mathcal{M}}$ is well-ordered. So let $\sigma_0 = \min\{\sigma : \Gamma_{\sigma} = \underline{0}\}$. We claim $\gcd(\{\Gamma_{\sigma-1}, \Gamma_{\sigma}\}) = \gcd(\{\Gamma_{\sigma}, \Gamma_{\sigma+1}\})$ for all $\sigma < \sigma_0$ (in particular for $\sigma = \underline{0}$). Otherwise let σ be maximal such that $\gcd(\{\Gamma_{\sigma}, \Gamma_{\sigma+1}\})$ exists but $\gcd(\{\Gamma_{\sigma-1}, \Gamma_{\sigma}\})$ does not. We prove that this is not possible by showing that $\Gamma_{\sigma-1}$ and Γ_{σ} have the same common left divisors as Γ_{σ} and $\Gamma_{\sigma+1}$. Now, clearly $\Gamma_{\sigma} \neq \underline{0}$ and by (c) and (v) every common left divisor of $\Gamma_{\sigma-1}$ and Γ_{σ} is a left divisor of $\Gamma_{\sigma+1}$. And conversely, by (v,vi) every common left divisor of Γ_{σ} and $\Gamma_{\sigma+1}$ is a left divisor of $\Gamma_{\sigma-1}$.

Next, let $\langle X_{\sigma} \rangle_{\sigma \in \mathbb{N}^{\mathcal{M}}}$ and $\langle \Gamma_{\sigma} \rangle_{\sigma \in \mathbb{N}^{\mathcal{M}}}$ be sequences with $X_{\underline{0}} = \Gamma_{\underline{0}}$ an arbitrary element of C and $X_{\sigma} = X_{\sigma-\underline{1}} \sqcup [\alpha_{\sigma}]$ and $\Gamma_{\sigma} = \gcd(\{\Gamma_{\sigma-\underline{1}}, \alpha_{\sigma}\})$ for all $0 < \sigma \in \mathbb{N}^{\mathcal{M}}$ where

$$\alpha_{\sigma} = \begin{cases} \min C_{\sigma} & \text{if } C_{\sigma} = \{\delta \in C : \Gamma_{\sigma-\underline{1}} \text{ is not a left divisor of } \delta\} \neq \emptyset \\ \underline{0} & \text{otherwise.} \end{cases}$$

Since Γ is decreasing, it takes eventually some constant value γ , so C_{σ} is empty for large enough σ . Using induction it is easy to see $\Gamma_{\sigma} = \gcd(\equiv^{-1}(X_{\sigma}))$ for all $\sigma \in \mathbb{N}^{\mathcal{M}}$. Then for large enough σ we get $\gamma = \Gamma_{\sigma} = \gcd(C)$ because of $X_{\sigma} \sqsubseteq C$ and $C_{\sigma} = \emptyset$.

GREATEST COMMON RIGHT DIVISOR. By the remark, which was proved above, it is enough to check that for every non-zero \mathcal{M} -ordinal α its \mathcal{M} -class of right divisors

$$C = \left\{ \delta \in \mathbb{O}^{\mathcal{M}} : \alpha = \gamma \cdot \delta \text{ for some } \gamma \in \mathbb{O}^{\mathcal{M}} \right\}$$

forms a finite \mathcal{M} -set. If this were not the case, we could use well-ordered recursion to obtain two sequences $\langle \delta_{\tau} \rangle_{\tau \in \mathbb{N}^{\mathcal{M}}}$ and $\langle \gamma_{\tau} \rangle_{\tau \in \mathbb{N}^{\mathcal{M}}}$ given by

$$\delta_{\tau} = \min(C \setminus \{\delta_{\sigma} : \sigma < \tau\}), \qquad \gamma_{\tau} = \min\{\gamma \in \mathbb{O}^{\mathcal{M}} : \alpha = \gamma \cdot \delta_{\tau}\},$$

For all $\underline{0} < \tau \in \mathbb{N}^{\mathcal{M}}$ we would have $\delta_{\tau-\underline{1}} < \delta_{\tau}$ and $\gamma_{\tau-\underline{1}} \cdot \delta_{\tau-\underline{1}} = \alpha = \gamma_{\tau} \cdot \delta_{\tau}$ such that according to (xi) $\gamma_{\tau-\underline{1}} > \gamma_{\tau}$, contradicting the fact that $\mathbb{O}^{\mathcal{M}}$ is well-ordered.

4.

(a) The rules $\langle \underline{0}, \delta \rangle \mapsto \delta$ and $\langle \underline{1}, \delta \rangle \mapsto \alpha + \delta$ yield an \mathcal{M} -function $h: \alpha \sqcup \beta \to \alpha + \beta$, which is well-defined because $\delta < \alpha + \beta$ for all $\delta < \alpha$ and $\alpha + \delta < \alpha + \beta$ for all $\delta < \beta$ by (i,ix,x). It is surjective because $\varepsilon = \alpha + (\varepsilon - \alpha)$ for all $\alpha \leq \varepsilon < \alpha + \beta$ and it is injective because of (xiv). We endow $\alpha \sqcup \beta$ with the lexicographic order <, i.e.

$$\langle \gamma, \delta \rangle < \langle \gamma', \delta' \rangle \iff \gamma < \gamma' \text{ or } (\gamma = \gamma' \text{ and } \delta < \delta').$$

Then $\langle \gamma, \delta \rangle < \langle \gamma', \delta' \rangle \Leftrightarrow h(\langle \gamma, \delta \rangle) < h(\langle \gamma', \delta' \rangle)$ for $\langle \gamma, \delta \rangle \equiv \alpha \sqcup \beta$. In case $\gamma = \gamma' = \underline{0}$ this is obvious, in case $\gamma = \gamma' = \underline{1}$ it follows from (ix,x), in case $\gamma = \underline{0}, \gamma' = \underline{1}$ from $\delta < \alpha \Rightarrow \delta < \alpha + \delta'$ in view of (i,ix), and similarly in case $\gamma = \underline{1}, \gamma' = \underline{0}$.

(b) The rule $\langle \gamma, \delta \rangle \mapsto \alpha \cdot \delta + \gamma$ yields an \mathcal{M} -function $\alpha * \beta \to \alpha \cdot \beta$, which is well-defined because for $\gamma < \alpha$ and $\delta < \beta$

$$\alpha \cdot \delta + \gamma \stackrel{(\mathbf{x})}{<} \alpha \cdot \delta + \alpha = \alpha \cdot (\delta + \underline{1}) \stackrel{(\mathbf{ix})}{\leq} \alpha \cdot \beta$$

It is bijective since for $\varepsilon < \alpha \cdot \beta$ there are unique $\gamma < \alpha$ and $\delta < \beta$ with $\varepsilon = \alpha \cdot \delta + \gamma$ by 3. (b) and (i,ix) and the identity $\underline{0} \cdot \beta = \underline{0}$ found in (ii). We endow $\alpha * \beta$ with the anti-lexicographic order <, i.e.

$$\langle \gamma, \delta \rangle < \langle \gamma', \delta' \rangle \iff \delta < \delta' \text{ or } (\delta = \delta' \text{ and } \gamma < \gamma')$$

Then $\langle \gamma, \delta \rangle < \langle \gamma', \delta' \rangle \Leftrightarrow \alpha \cdot \delta + \gamma < \alpha \cdot \delta' + \gamma'$ for $\langle \gamma, \delta \rangle \in \alpha * \beta$. In case $\delta = \delta'$ this follows from (ix,x), in case $\delta < \delta'$, using $\gamma < \alpha + \gamma'$ for $\gamma < \alpha$ by (i,ix), from

$$\alpha \cdot \delta + \gamma \stackrel{(\mathbf{x})}{<} \alpha \cdot \delta + (\alpha + \gamma') \stackrel{(\mathbf{v})}{=} \alpha \cdot (\delta + \underline{1}) + \gamma' \stackrel{(\mathbf{ix})}{\leq} \alpha \cdot \delta' + \gamma',$$

and the case $\delta' < \delta$ is analogous to the case $\delta < \delta'$. Observe that here only the part of (v) was used whose proof depended solely on 4. (a).

(c) We begin with an auxiliary lemma:

Lemma. Fix $\alpha \in \mathbb{O}^{\mathcal{M}}$ and for all $\beta \in \mathbb{O}^{\mathcal{M}}$ let $C_{\beta} = \{f \in \{\beta \rightarrow \alpha\} : \operatorname{supp}(f) \text{ is finite}\}$ where $\operatorname{supp}(f) = [\gamma < \beta : f(\gamma) \neq \underline{0}].$

- (1) For every $f \in C_{\beta}$ the \mathcal{M} -set $\operatorname{supp}(f)$ has a maximum m_f with the notational convention $m_f = -\underline{1}$ in case $\operatorname{supp}(f) = \square$ and $-\underline{1} + \underline{1} = \underline{0}$.
- (2) If β is a successor ordinal, then the following is a bijective \mathcal{M} -class function:

$$C_{\beta} \longrightarrow C_{\beta-\underline{1}} * \alpha$$
$$f \longmapsto \langle f|_{\beta-\underline{1}}, f(\beta-\underline{1}) \rangle$$

(3) If β is a limit ordinal, then the following is a bijective \mathcal{M} -class function:

$$C_{\beta} \longrightarrow \left\{ f \in \bigcup_{\gamma < \beta} C_{\gamma} : \operatorname{dom}(f) = m_f + \underline{1} \right\}$$
$$f \longmapsto f|_{m_f + \underline{1}}$$

(4) C_{β} forms an \mathcal{M} -set ($\beta \rightarrow \alpha$).

Proof. (1) Use the remark, which was proved above.

(2) and (3) are easily checked and together with $C_0 = \{\underline{0}\}$ imply (4) by induction. \Box

For all
$$\beta \in \mathbb{O}^{\mathcal{M}}$$
 we now endow $(\beta \to \alpha)$ with the \mathcal{M} -relation $<$ given by $f < f' \Leftrightarrow f \neq f'$ and $f(m_{f,f'}) < f'(m_{f,f'})$ for $m_{f,f'} = \max\left[\gamma < \beta : f(\gamma) \neq f'(\gamma)\right]$.

We will prove by induction that there is a bijective \mathcal{M} -function $h_{\beta} \colon (\beta \to \alpha) \to \alpha^{(\beta)}$ that is order-preserving with order-preserving inverse.

Explicitly, h_{β} will be given as $h_{\beta}(f) = \alpha^{(m_f)} \cdot f(m_f) + h_{m_f}(f|_{m_f})$ if $\beta > \underline{0}$.

In case $\beta = \underline{0}$ we have $(\beta \rightarrow \alpha) = \underline{1} = \alpha^{(\beta)}$ and everything works out.

In case $\beta \in \mathbb{O}_{+1}^{\mathcal{M}}$ let h_{β} be the composition of the chain of \mathcal{M} -bijections

$$(\beta \twoheadrightarrow \alpha) \longrightarrow ((\beta - \underline{1}) \twoheadrightarrow \alpha) * \alpha \longrightarrow \alpha^{(\beta - \underline{1})} * \alpha \longrightarrow \alpha^{(\beta - \underline{1})} \cdot \alpha = \alpha^{(\beta)}$$

where the first map is the \mathcal{M} -bijection formed by the \mathcal{M} -class function from (2), the second map is given by the rule $\langle f, \gamma \rangle \mapsto \langle h_{\beta-\underline{1}}(f), \gamma \rangle$, and the third map is the one described in (b). It is straightforward to verify that h_{β} satisfies the explicit formula stated above. Let's finally check that as required $f < f' \Leftrightarrow h_{\beta}(f) < h_{\beta}(f')$ for all distinct $f, f' \in (\beta \to \alpha)$, which is equivalent to checking

$$f < f' \Leftrightarrow \langle h_{\beta-\underline{1}}(f), f(\beta-\underline{1}) \rangle < \langle h_{\beta-\underline{1}}(f'), f'(\beta-\underline{1}) \rangle$$

If $m_{f,f'} < \beta - \underline{1}$, this follows by induction from the corresponding property of $h_{\beta-\underline{1}}$. Otherwise, it is clear by definition of the orders on $(\beta \rightarrow \alpha)$ and $\alpha^{(\beta-\underline{1})} * \alpha$.

In case $\beta \in \mathbb{O}_{\lim}^{\mathcal{M}}$ let h_{β} be the composition of the chain of \mathcal{M} -functions

$$(\beta \to \alpha) \longrightarrow \left[f \in \bigsqcup_{\gamma < \beta} (\gamma \to \alpha) : \operatorname{dom}(f) = m_f + \underline{1} \right] \longrightarrow \bigsqcup_{\gamma < \beta} \alpha^{(\gamma)} = \alpha^{(\beta)}$$

where the first map is the \mathcal{M} -bijection formed by the \mathcal{M} -class function from (3) and the second map is given by $f \mapsto h_{\text{dom}(f)}(f)$. It is invertible with inverse $\varepsilon \mapsto h_{\gamma_{\varepsilon}}^{-1}(\varepsilon)$ where $\gamma_{\varepsilon} = \min \left[\gamma < \beta : \varepsilon < \alpha^{(\gamma)} \right]$. Thus h_{β} is bijective. Again, it is straightforward to verify that h_{β} satisfies the above formula. Moreover, h_{β} is an order isomorphism since all h_{γ} with $\gamma < \beta$ are and for $f, f' \in (\beta \to \alpha)$ we have $m_{f,f'} + \underline{1} < \beta$ and

$$f < f' \Leftrightarrow f|_{m_{f,f'}+\underline{1}} < f'|_{m_{f,f'}+\underline{1}}.$$