Logic and Set Theory Universitéat Bielefeld
Solutions 4 SS 2019

1.
(1) = (2) This was proved in the lecture.

(2) = (3) Let a £ 8 £ . We must show a C 3, equivalently 5 Z o by assumption.
If we had 8 C «a, then o £ . But this is impossible, since o € v by transitivity of
such that [o] must have an e-minimal element by well-foundedness of £ on +.

(3) = (4) Let us call @ and /3 incomparable if none of « € 8, « = 8, 5 £ « holds.
It is enough to check that X = [a £ v : @ and 3 are incomparable for some [ £ 7]
is empty, since the well-foundedness of £ on v implies that for a, 5 £ v at most one
of « e B, a =, B E a can hold. We will now assume that X is not empty in order
to arrive at a contradiction. By the well-foundedness of £ on v we can first pick an
E-minimal § in X and then an E-minimal € in [§ £ 7 : § and (3 are incomparable].
We claim the absurd identity 6 = ¢ holds. For the inclusion C note that each o £ ¢
must be comparable with ¢, which means ¢ £ € because neither ¢ = ¢ nor ¢ E o,
since this would imply € £ § by the transitivity of d, is possible. For the inclusion J
note that each o £ € must be comparable with §, which similarly leads to o £ §.

(4) = (1) By the assumptions it merely remains to verify that £ is transitive on +.
So let 0, a, 8 E v with 6 E o £ . We can neither have 6 =  nor § £ 9§, since this
would imply that [§, v, 5] has no E-minimal element. So necessarily 6 £ f.

2. We use results from 4. here, and vice versa. But we avoid circular reasoning.

(i) These hold by definition.
(ii) For 0+ a = « use 4. (a) and the order isomorphism 0Ll o — v, {1,7) + 7.

To prove 0 - o = 0 assume by induction 0-¢ = 0 for all ¢ < a. For o« = 0 use (
For successor ordinals o we can once again use (i) toget 0-a=0-(a—1)+0=
For limit ordinals a we also have 0-ao=1[].__ 0 e =0.

For 1-a = a use 4. (b) and the order isomorphism 1 x o — a, (0,7) — 7.
(iii) The identity a- 1 =0+ a = « holds by definition and (ii).

The identity «¥) =1 -« = « holds by definition and (ii).

For 1(® =1 use 4. (¢) and (o — 1) = [ % 1].
(iv) Use 4. (c) and (¢ = 0) =0if 0 < av.

(v) Use 4. (a,b) together with the fact that the obvious maps (alU8) Uy — alJ(BU7)
and (a* ) %y — a* (8 %) (with the obvious orders on the respective domain
and range) are order isomorphisms.

i).
0.

e<a

(vi) Use 4. (a,b) together with the fact that the obvious map ax(8L7y) — (axB)L(ax7)
(with the obvious orders on domain and range) is an order isomorphism.

(vii) Use 4. (a,b,c) and the fact that the obvious map ((BL7Y) — a) — (8 — a)*(y — «)

(with the obvious orders on domain and range) is an order isomorphism.

(viii) Use 4. (b,c) and the fact that the obvious map (v — ( — «)) — ((B*v) — «)
(with the obvious orders on domain and range) is an order isomorphism.

(ix) The successor map s on QM given by € — ¢ + 1 preserves < and satisfies € < s(¢).
Therefore we get a +v = s7(a) < s%(a) < s%(B) = 5+ 6.



The maps a, on QM given by ¢ — £ + o preserve < and satisfy due to (i) and by
what has already been shown here ¢ = ¢ +0 < an(e) < ag(e). As a consequence,
we get o -y = ay(0) < ad, (0)<a5( )=05"-0.

(x) By (ix) it suffices to show S+~ < B+6. We have € < s(¢) such that Its g is normal,
so in particular it is order-preserving, hence 4+ v = s7(8) < 9 (B8)=p+6.

(xi) By (ix) it suffices to show -y < 3-6. We havee = e+0 < ag( ) because of 0 <
and (i,x) such that Ity ¢ is normal. Hence, 8 -v = aB(O) < aﬁ( )=p3"9.

(xii) The maps m, on @M given by € ~ £-0 preserve < and because of1 < a and (iii,ix)
satisfy € = £ -1 < mg(e) < mg(e). Hence, o) = m3(1) <ml(1) <m ( ) = B0,

(xiil) By (xii) it suffices to show ) < B9, We have e = ¢-1 < mg(e ) because of 1 <
and (iii,xi) such that It;,;; is normal. Hence, B = mﬁ(l) <m ( )= B0,

(xiv) Use (x).
(xv) Use (xi).
(

(xvi) Use (xii).
Lemma. 3 < 2® for all f € OM.

Proof. By induction we may assume o < 2 for all a < .
If =0 we have 8 <1 =20 by (i).

If § is a successor ordinal, we compute f = (8 — 1) +1 < 267Y 11 < 200 where
the first inequality uses (ix) and the last inequality uses the normality of It,,, ;.

If 3 is a non-zero limit ordinal, then 8 = ||, _za <[ ],.,2* =20 O

For all o, 8 € NM induction on 3 readily yields o + 8 € NM, then also o - 3 € NM,
and finally o®) € NM. If NM forms an M-set w, we have for all o« € NM

w=0+w<atw= ||z, (a+f) <w foralla,
w=1lw <aw =, (e p) <w forala>0,
w <20 < g = |_|5<w a'®) < w foralla>1,

using the lemma and the normality of Ity ., It,, o for @ > 0, and It,,, ; for oo > 1.
Consequently, we have for all natural numbers o in M the identities

atw=o0aw=a" =uw.
They provide us with the following counterexamples:

MHl4w=w<w+1

) 2 w=w=w-1<w-2

(I 141) w=2w=w=w-l<w-2=w-l4+w-1=1-w+1l-w
(IV) 2-2)% =w=w-1<w-w=2¢ .2

V) 0+w=w=14w

V)l w=w=2w

(VII) 2@) = = 3@
(VIII) See (V).

(IX) See (VI)

(X) See (VII)



Let’s first prove the remark from the end of the exercise sheet:

Lemma. Every non-empty finite M-subset X of an M-ordinal B has a mazimum.

Proof. 1f not, we could construct with the help of well-ordered recursion a sequence
(o) ecenm given by o = min(X N [as : 6 < €]). It would then follow that NM forms
an M-set w satisfying the impossible w < | X| < w. O

3.
(a) The map f = It is normal with image {y € QM : v > a}. Take 3—a = f~1(3).

(b) The map f = Itq, is normal for § > 0. Let v € O™ be such that f(v) is the
maximum in the image of f that is not greater than o, which exists since a > f(0).
Then -y <a<pf-(y+1),soa=p-v+6withd=a—pF-7. If we had 6 > 3,
this would give rise to the contradiction

50+ S B D+ -8 LByt (B (G- 8) = a
Now assume -7+ = -+ + ¢ with ¢ < 8. By (xiv) it suffices to check v = ~+'.
Assume not, say v < +'. Then we get the contradiction

(i,ix

(%) (ix) , ) , ,
B-y+0 < B-y+B8=0-(v+1) < B+ < B4 +6.

(c) Let v be a left divisor of @ and o+ 3. We show that v is a left divisor of 3, too.
This is true for v = 0 by (ii). So let’s assume vy # 0. Write a = 7 - § and using (b)
B =7-0+7 where §,0,7 € QM with 7 <. We need 7 = 0. A calculation yields

a+ (;) (7.5+7~o’)—|—7' (V:i)’)/'(5+0')+7'-

Since v is a left divisor of o + /3, the uniqueness in (b) implies 7 = 0.

(d) Let C € OM be a non-empty M-subclass of QM \ {0}.

GREATEST COMMON LEFT DIVISOR. With (b), (c), the calculation rules in 3., and
recursion, finding the greatest common left divisor ged(C) of C' is standard.

Firstly, we will verify the existence of ged({«, 5}) for all 0 < f < a. The Euclidean
algorithm — which works thanks to well-ordered recursion and (b) — yields sequences
(Ts)genm and (Ay)genm with Ty = a and T'; = 3 satisfying for 0 < 0 € NM

Tpy =T, Ay+T,p and oy <, if T, #£0,
T =0 if Ty = 0.

Clearly, I' is eventually constant 0, since otherwise it would be strictly decreasing,
in contradiction to the fact that O™ is well-ordered. So let oy = min{c : I', = 0}.
We claim ged({T'5-1, I }) = ged({Ty, T's41}) for all o < oy (in particular for o = 0).
Otherwise let ¢ be maximal such that ged({T'y,['ys1}) exists but ged({T'y-1,T5})
does not. We prove that this is not possible by showing that I',_; and I', have the
same common left divisors as I',; and ;1. Now, clearly I', # 0 and by (c) and (v)
every common left divisor of I',_; and I', is a left divisor of I',;;. And conversely,
by (v,vi) every common left divisor of I', and I',; is a left divisor of I',_;.

Next, let (X,)senm and (I'y),enm be sequences with Xy = Iy an arbitrary element
of C'and X, = X, ; U[a,] and T, = ged({Ty_1, p}) for all 0 < o € NM where

o {min C, ifC,={6€eC:T,_, isnot aleft divisor of 5} # 0,

0 otherwise.



Since I is decreasing, it takes eventually some constant value 7, so C, is empty for
large enough o. Using induction it is easy to see 'y, = ged(E~1(X,)) for all o € NM.
Then for large enough o we get v =T, = ged(C') because of X, T C and C, = ().

GREATEST COMMON RIGHT DIVISOR. By the remark, which was proved above, it
is enough to check that for every non-zero M-ordinal « its M-class of right divisors

C = {5€@M:a:7~5forsomeve@M}
forms a finite M-set. If this were not the case, we could use well-ordered recursion
to obtain two sequences (d;),enm and (y;),enm given by
0 = min(C\ {0, : 0 < T}), v, = min{y e OM:a =~-4,}.
For all 0 < 7 € NM we would have §,_; <, and v,_; - 0,1 = a = 7, - §, such that
according to (xi) v,_1 > 7,, contradicting the fact that Q™ is well-ordered.

4.

(a) The rules (0,8) — & and (1,8) — a + § yield an M-function h: o U3 — a + 3,

which is well-defined because d < a+  forall d < o and a+d < a+p forall § <

by (i,ix,x). It is surjective because ¢ = a + (¢ — a) for all @« < e < o+ f and it is

injective because of (xiv). We endow a LI 8 with the lexicographic order <, i.e.
(7,0) < (7,0") & v <7 or (y=7"and 0 < ).

Then {7,8) < (+,8) & h((.5)) < h((+/, &) for (1,6) = a1 . Tn case v =/ =0
this is obvious, in case 7 =4/ = 1 it follows from (ix,x), in case v = 0, 7' = 1 from
d<a=d§<a+d inview of (i,ix), and similarly in case v =1, 7' = 0.

(b) The rule (7, d) — a-J+7 yields an M-function a* 5 — «- 3, which is well-defined
because for vy < a and § < 3

(x) (ix)
a-0+y < a-d+a=a-(0+1) < a-f.
It is bijective since for € < «- 8 there are unique v < a and § < f with e = a -6+~
by 3. (b) and (i,ix) and the identity 0- 5 = 0 found in (ii). We endow « * (3 with the
anti-lexicographic order <, i.e.
(7,8) < (7,0') & d<d or (6 =0¢ and v <~).

Then (v,0) < (v, e a-d+v<a-8+7 for (7,d) Eax*xf. In case 6 = ¢’ this
follows from (ix,x), in case § < ¢’, using v < a + ' for v < a by (i,ix), from

(%) A (ix)
a-0+y < a0+ (a+7) © a-(0+1)++ < a8+,

and the case ¢’ < § is analogous to the case § < §’. Observe that here only the part
of (v) was used whose proof depended solely on 4. (a).

(c) We begin with an auxiliary lemma:

Lemma. Fiza € OM and for all 3 € OM let Cs = {f € {B — a} : supp(f) is finite}
where supp(f) = [y < B: f(v) # 0].

(1) For every f € Cy the M-set supp(f) has a mazimum my with the notational
convention my = —1 in case supp(f) =4 and -1+ 1= 0.

(2) If B is a successor ordinal, then the following is a bijective M-class function:

Cg ——— Cp1x

fr— (flg-1, fF(B-1))



(8) If B is a limit ordinal, then the following is a bijective M-class function:
Cs — {fe U, <5 Cy : dom(f) = my +1}
fr—— flmps1

(4) Cg forms an M-set (8 — «).

Proof. (1) Use the remark, which was proved above.

(2) and (3) are easily checked and together with Cy = {0} imply (4) by induction. [

For all 3 € O™ we now endow (3 — «) with the M-relation < given by
f<f e [#[ and f(mygp) < f(mgp) for mpp =max [y < B: f(7) # f'(7)].

We will prove by induction that there is a bijective M-function hg: (8 — a) — a®)
that is order-preserving with order-preserving inverse.

Explicitly, hg will be given as hg(f) = o™ - f(my) + o, (flm,) if 8> 0.
In case 8 = 0 we have (3 — a) = 1 = o®) and everything works out.

In case 8 € @ﬁ let hg be the composition of the chain of M-bijections

where the first map is the M-bijection formed by the M-class function from (2), the
second map is given by the rule (f,~) — (hs_1(f),~), and the third map is the one
described in (b). It is straightforward to verify that hg satisfies the explicit formula
stated above. Let’s finally check that as required f < f' < hg(f) < hg(f’) for all
distinet f, f' € (8 — «), which is equivalent to checking

<t e (haa(f), F(B = 1) < (hg-a(f), f((B—1)).

If mysp < B — 1, this follows by induction from the corresponding property of hg_;.
Otherwise, it is clear by definition of the orders on (8 — «) and a1 x .

In case 8 € QM let hg be the composition of the chain of M-functions

lim
(8= a) — [f £ Lloy(r = @) s dom(f) = my +1] — ], ;00 = a®

where the first map is the M-bijection formed by the M-class function from (3) and
the second map is given by f — hqom(s)(f). It is invertible with inverse e — h__ (e)
where . = min [’y <pP:e< a(7)]. Thus hg is bijective. Again, it is straightforward
to verify that hs satisfies the above formula. Moreover, hs is an order isomorphism
since all h, with v < /8 are and for f, f' £ (8 — a) we have m;p +1 <  and

f < f/ <~ f|mf’f/+l < f,|mf,f/+l‘



