
Logic and Set Theory Universität Bielefeld
Solutions 4 SS 2019

1.

(1) ⇒ (2) This was proved in the lecture.

(2) ⇒ (3) Let α @− β @− γ. We must show α v β, equivalently β 6v α by assumption.
If we had β v α, then α @− α. But this is impossible, since α @− γ by transitivity of γ
such that [α] must have an @−-minimal element by well-foundedness of @− on γ.

(3) ⇒ (4) Let us call α and β incomparable if none of α @− β, α = β, β @− α holds.
It is enough to check that X = [α @− γ : α and β are incomparable for some β @− γ]
is empty, since the well-foundedness of @− on γ implies that for α, β @− γ at most one
of α @− β, α = β, β @− α can hold. We will now assume that X is not empty in order
to arrive at a contradiction. By the well-foundedness of @− on γ we can first pick an
@−-minimal δ in X and then an @−-minimal ε in [β @− γ : δ and β are incomparable].
We claim the absurd identity δ = ε holds. For the inclusion v note that each σ @− δ
must be comparable with ε, which means σ @− ε because neither σ = ε nor ε @− σ,
since this would imply ε @− δ by the transitivity of δ, is possible. For the inclusion w
note that each σ @− ε must be comparable with δ, which similarly leads to σ @− δ.

(4) ⇒ (1) By the assumptions it merely remains to verify that @− is transitive on γ.
So let δ, α, β @− γ with δ @− α @− β. We can neither have δ = β nor β @− δ, since this
would imply that [δ, α, β] has no @−-minimal element. So necessarily δ @− β.

2. We use results from 4. here, and vice versa. But we avoid circular reasoning.

(i) These hold by definition.

(ii) For 0 + α = α use 4. (a) and the order isomorphism 0
.
t α _ α, 〈1, γ〉 7→ γ.

To prove 0 · α = 0 assume by induction 0 · ε = 0 for all ε < α. For α = 0 use (i).
For successor ordinals α we can once again use (i) to get 0 ·α = 0 · (α− 1)+0 = 0.
For limit ordinals α we also have 0 · α =

⊔
ε<α 0 · ε = 0.

For 1 · α = α use 4. (b) and the order isomorphism 1 ∗ α _ α, 〈0, γ〉 7→ γ.

(iii) The identity α · 1 = 0 + α = α holds by definition and (ii).

The identity α(1) = 1 · α = α holds by definition and (ii).

For 1(α) = 1 use 4. (c) and (α _ 1) = [α ∗ 1].
(iv) Use 4. (c) and (α _ 0) = 0 if 0 < α.

(v) Use 4. (a,b) together with the fact that the obvious maps (α
.
tβ)

.
tγ _ α

.
t (β

.
tγ)

and (α ∗ β) ∗ γ _ α ∗ (β ∗ γ) (with the obvious orders on the respective domain
and range) are order isomorphisms.

(vi) Use 4. (a,b) together with the fact that the obvious map α∗(β
.
tγ) _ (α∗β)

.
t(α∗γ)

(with the obvious orders on domain and range) is an order isomorphism.

(vii) Use 4. (a,b,c) and the fact that the obvious map ((β
.
tγ) _ α) _ (β _ α)∗(γ _ α)

(with the obvious orders on domain and range) is an order isomorphism.

(viii) Use 4. (b,c) and the fact that the obvious map (γ _ (β _ α)) _ ((β ∗ γ) _ α)
(with the obvious orders on domain and range) is an order isomorphism.

(ix) The successor map s on OM given by ε 7→ ε+1 preserves ≤ and satisfies ε ≤ s(ε).
Therefore we get α+ γ = sγ(α) ≤ sδ(α) ≤ sδ(β) = β + δ.
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The maps aσ on OM given by ε 7→ ε+ σ preserve ≤ and satisfy due to (i) and by
what has already been shown here ε = ε + 0 ≤ aα(ε) ≤ aβ(ε). As a consequence,
we get α · γ = aγα(0) ≤ aδα(0) ≤ aδβ(0) = β · δ.

(x) By (ix) it suffices to show β+γ < β+δ. We have ε < s(ε) such that Its,β is normal,
so in particular it is order-preserving, hence β + γ = sγ(β) < sδ(β) = β + δ.

(xi) By (ix) it suffices to show β ·γ < β · δ. We have ε = ε+0 < aβ(ε) because of 0 < β

and (i,x) such that Itaβ ,0 is normal. Hence, β · γ = aγβ(0) < aδβ(0) = β · δ.

(xii) The mapsmσ on OM given by ε 7→ ε·σ preserve ≤ and because of 1 ≤ α and (iii,ix)
satisfy ε = ε · 1 ≤ mα(ε) ≤ mβ(ε). Hence, α(γ) = mγ

α(1) ≤ mδ
α(1) ≤ mδ

β(1) = β(δ).

(xiii) By (xii) it suffices to show β(γ) < β(δ). We have ε = ε ·1 < mβ(ε) because of 1 < β

and (iii,xi) such that Itmβ ,1 is normal. Hence, β(γ) = mγ
β(1) < mδ

β(1) = β(δ).

(xiv) Use (x).

(xv) Use (xi).

(xvi) Use (xii).

Lemma. β ≤ 2(β) for all β ∈ OM.

Proof. By induction we may assume α ≤ 2(α) for all α < β.

If β = 0 we have β ≤ 1 = 2(β) by (i).

If β is a successor ordinal, we compute β = (β − 1) + 1 ≤ 2(β−1) + 1 ≤ 2(β) where
the first inequality uses (ix) and the last inequality uses the normality of Itm2,1.

If β is a non-zero limit ordinal, then β =
⊔
α<β α ≤

⊔
α<β 2(α) = 2(β). �

For all α, β ∈ NM induction on β readily yields α+ β ∈ NM, then also α · β ∈ NM,
and finally α(β) ∈ NM. If NM forms anM-set ω, we have for all α ∈ NM

ω = 0 + ω ≤ α + ω =
⊔
β<ω (α + β) ≤ ω for all α,

ω = 1 · ω ≤ α · ω =
⊔
β<ω (α · β) ≤ ω for all α > 0,

ω ≤ 2(ω) ≤ α(ω) =
⊔
β<ω α

(β) ≤ ω for all α > 1,

using the lemma and the normality of Its,α, Itaα,0 for α > 0, and Itmα,1 for α > 1.
Consequently, we have for all natural numbers α inM the identities

α + ω = α · ω = α(ω) = ω .

They provide us with the following counterexamples:

(I) 1 + ω = ω < ω + 1

(II) 2 · ω = ω = ω · 1 < ω · 2
(III) (1 + 1) · ω = 2 · ω = ω = ω · 1 < ω · 2 = ω · 1 + ω · 1 = 1 · ω + 1 · ω

(IV) (2 · 2)(ω) = ω = ω · 1 < ω · ω = 2(ω) · 2(ω)

(V) 0 + ω = ω = 1 + ω

(VI) 1 · ω = ω = 2 · ω

(VII) 2(ω) = ω = 3(ω)

(VIII) See (V).

(IX) See (VI).

(X) See (VII).
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Let’s first prove the remark from the end of the exercise sheet:
Lemma. Every non-empty finiteM-subset X of anM-ordinal β has a maximum.

Proof. If not, we could construct with the help of well-ordered recursion a sequence
〈αε〉ε∈NM given by αε = min(X r [αδ : δ < ε]). It would then follow that NM forms
anM-set ω satisfying the impossible ω ≤ |X| < ω. �

3.

(a) The map f = Its,α is normal with image {γ ∈ OM : γ ≥ α}. Take β−α = f−1(β).

(b) The map f = Itaβ ,0 is normal for β > 0. Let γ ∈ OM be such that f(γ) is the
maximum in the image of f that is not greater than α, which exists since α ≥ f(0).
Then β · γ ≤ α < β · (γ + 1), so α = β · γ + δ with δ = α − β · γ. If we had δ ≥ β,
this would give rise to the contradiction

β · (γ + 1)
(i,ix)
≤ β · (γ + 1) + (δ − β)

(v)
= β · γ + (β + (δ − β)) = α .

Now assume β · γ + δ = β · γ′ + δ′ with δ′ < β. By (xiv) it suffices to check γ = γ′.
Assume not, say γ < γ′. Then we get the contradiction

β · γ + δ
(x)
< β · γ + β = β · (γ + 1)

(ix)
≤ β · γ′

(i,ix)
≤ β · γ′ + δ′ .

(c) Let γ be a left divisor of α and α+ β. We show that γ is a left divisor of β, too.
This is true for γ = 0 by (ii). So let’s assume γ 6= 0. Write α = γ · δ and using (b)
β = γ · σ + τ where δ, σ, τ ∈ OM with τ < γ. We need τ = 0. A calculation yields

α + β
(v)
= (γ · δ + γ · σ) + τ

(vi)
= γ · (δ + σ) + τ .

Since γ is a left divisor of α + β, the uniqueness in (b) implies τ = 0.

(d) Let C ⊆ OM be a non-emptyM-subclass of OM \ {0}.
Greatest common left divisor. With (b), (c), the calculation rules in 3., and
recursion, finding the greatest common left divisor gcd(C) of C is standard.

Firstly, we will verify the existence of gcd({α, β}) for all 0 < β ≤ α. The Euclidean
algorithm – which works thanks to well-ordered recursion and (b) – yields sequences
〈Γσ〉σ∈NM and 〈∆σ〉σ∈NM with Γ0 = α and Γ1 = β satisfying for 0 < σ ∈ NM

Γσ−1 = Γσ ·∆σ + Γσ+1 and Γσ+1 < Γσ if Γσ 6= 0,
Γσ+1 = 0 if Γσ = 0.

Clearly, Γ is eventually constant 0, since otherwise it would be strictly decreasing,
in contradiction to the fact that OM is well-ordered. So let σ0 = min{σ : Γσ = 0}.
We claim gcd({Γσ−1,Γσ}) = gcd({Γσ,Γσ+1}) for all σ < σ0 (in particular for σ = 0).
Otherwise let σ be maximal such that gcd({Γσ,Γσ+1}) exists but gcd({Γσ−1,Γσ})
does not. We prove that this is not possible by showing that Γσ−1 and Γσ have the
same common left divisors as Γσ and Γσ+1. Now, clearly Γσ 6= 0 and by (c) and (v)
every common left divisor of Γσ−1 and Γσ is a left divisor of Γσ+1. And conversely,
by (v,vi) every common left divisor of Γσ and Γσ+1 is a left divisor of Γσ−1.

Next, let 〈Xσ〉σ∈NM and 〈Γσ〉σ∈NM be sequences with X0 = Γ0 an arbitrary element
of C and Xσ = Xσ−1 t [ασ] and Γσ = gcd({Γσ−1, ασ}) for all 0 < σ ∈ NM where

ασ =

{
minCσ if Cσ = {δ ∈ C : Γσ−1 is not a left divisor of δ} 6= ∅,
0 otherwise.
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Since Γ is decreasing, it takes eventually some constant value γ, so Cσ is empty for
large enough σ. Using induction it is easy to see Γσ = gcd(@−−1(Xσ)) for all σ ∈ NM.
Then for large enough σ we get γ = Γσ = gcd(C) because of Xσ v C and Cσ = ∅.
Greatest common right divisor. By the remark, which was proved above, it
is enough to check that for every non-zeroM-ordinal α itsM-class of right divisors

C =
{
δ ∈ OM : α = γ · δ for some γ ∈ OM

}
forms a finiteM-set. If this were not the case, we could use well-ordered recursion
to obtain two sequences 〈δτ 〉τ∈NM and 〈γτ 〉τ∈NM given by

δτ = min(C \ {δσ : σ < τ}) , γτ = min{γ ∈ OM : α = γ · δτ} .
For all 0 < τ ∈ NM we would have δτ−1 < δτ and γτ−1 · δτ−1 = α = γτ · δτ such that
according to (xi) γτ−1 > γτ , contradicting the fact that OM is well-ordered.

4.

(a) The rules 〈0, δ〉 7→ δ and 〈1, δ〉 7→ α+ δ yield anM-function h : α
.
t β _ α+ β,

which is well-defined because δ < α+β for all δ < α and α+ δ < α+β for all δ < β
by (i,ix,x). It is surjective because ε = α + (ε − α) for all α ≤ ε < α + β and it is
injective because of (xiv). We endow α

.
t β with the lexicographic order <, i.e.

〈γ, δ〉 < 〈γ′, δ′〉 ⇔ γ < γ′ or (γ = γ′ and δ < δ′) .

Then 〈γ, δ〉 < 〈γ′, δ′〉 ⇔ h(〈γ, δ〉) < h(〈γ′, δ′〉) for 〈γ, δ〉 @− α
.
t β. In case γ = γ′ = 0

this is obvious, in case γ = γ′ = 1 it follows from (ix,x), in case γ = 0, γ′ = 1 from
δ < α⇒ δ < α + δ′ in view of (i,ix), and similarly in case γ = 1, γ′ = 0.

(b) The rule 〈γ, δ〉 7→ α·δ+γ yields anM-function α∗β _ α·β, which is well-defined
because for γ < α and δ < β

α · δ + γ
(x)
< α · δ + α = α · (δ + 1)

(ix)
≤ α · β .

It is bijective since for ε < α · β there are unique γ < α and δ < β with ε = α · δ+ γ
by 3. (b) and (i,ix) and the identity 0 ·β = 0 found in (ii). We endow α ∗β with the
anti-lexicographic order <, i.e.

〈γ, δ〉 < 〈γ′, δ′〉 ⇔ δ < δ′ or (δ = δ′ and γ < γ′) .
Then 〈γ, δ〉 < 〈γ′, δ′〉 ⇔ α · δ + γ < α · δ′ + γ′ for 〈γ, δ〉 @− α ∗ β. In case δ = δ′ this
follows from (ix,x), in case δ < δ′, using γ < α + γ′ for γ < α by (i,ix), from

α · δ + γ
(x)
< α · δ + (α + γ′)

(v)
= α · (δ + 1) + γ′

(ix)
≤ α · δ′ + γ′ ,

and the case δ′ < δ is analogous to the case δ < δ′. Observe that here only the part
of (v) was used whose proof depended solely on 4. (a).

(c) We begin with an auxiliary lemma:
Lemma. Fix α ∈ OM and for all β ∈ OM let Cβ = {f ∈ {β _ α} : supp(f) is finite}
where supp(f) = [γ < β : f(γ) 6= 0].

(1) For every f ∈ Cβ theM-set supp(f) has a maximum mf with the notational
convention mf = −1 in case supp(f) = �� and −1 + 1 = 0.

(2) If β is a successor ordinal, then the following is a bijectiveM-class function:

Cβ Cβ−1 ∗ α

f 〈f |β−1, f(β − 1)〉
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(3) If β is a limit ordinal, then the following is a bijectiveM-class function:

Cβ
{
f ∈

⋃
γ<β Cγ : dom(f) = mf + 1

}
f f |mf+1

(4) Cβ forms anM-set (β _ α).

Proof. (1) Use the remark, which was proved above.

(2) and (3) are easily checked and together with C0 = {0} imply (4) by induction. �

For all β ∈ OM we now endow (β _ α) with theM-relation < given by

f < f ′ ⇔ f 6= f ′ and f(mf,f ′) < f ′(mf,f ′) for mf,f ′ = max
[
γ < β : f(γ) 6= f ′(γ)

]
.

We will prove by induction that there is a bijectiveM-function hβ : (β _ α) _ α(β)

that is order-preserving with order-preserving inverse.

Explicitly, hβ will be given as hβ(f) = α(mf ) · f(mf ) + hmf (f |mf ) if β > 0.

In case β = 0 we have (β _ α) = 1 = α(β) and everything works out.

In case β ∈ OM+1 let hβ be the composition of the chain ofM-bijections

(β _ α) ((β − 1) _ α) ∗ α α(β−1) ∗ α α(β−1) · α = α(β)

where the first map is theM-bijection formed by theM-class function from (2), the
second map is given by the rule 〈f, γ〉 7→ 〈hβ−1(f), γ〉, and the third map is the one
described in (b). It is straightforward to verify that hβ satisfies the explicit formula
stated above. Let’s finally check that as required f < f ′ ⇔ hβ(f) < hβ(f ′) for all
distinct f, f ′ @− (β _ α), which is equivalent to checking

f < f ′ ⇔ 〈hβ−1(f), f(β − 1)〉 < 〈hβ−1(f ′), f ′(β − 1)〉 .
If mf,f ′ < β − 1, this follows by induction from the corresponding property of hβ−1.
Otherwise, it is clear by definition of the orders on (β _ α) and α(β−1) ∗ α.
In case β ∈ OMlim let hβ be the composition of the chain ofM-functions

(β _ α)
[
f @−

⊔
γ<β(γ _ α) : dom(f) = mf + 1

] ⊔
γ<β α

(γ) = α(β)

where the first map is theM-bijection formed by theM-class function from (3) and
the second map is given by f 7→ hdom(f)(f). It is invertible with inverse ε 7→ h−1γε (ε)
where γε = min

[
γ < β : ε < α(γ)

]
. Thus hβ is bijective. Again, it is straightforward

to verify that hβ satisfies the above formula. Moreover, hβ is an order isomorphism
since all hγ with γ < β are and for f, f ′ @− (β _ α) we have mf,f ′ + 1 < β and

f < f ′ ⇔ f |mf,f ′+1 < f ′|mf,f ′+1 .

5


