1.

$(1) \Rightarrow(2)$ This was proved in the lecture.
(2) \Rightarrow (3) Let $\alpha \in \beta \boxminus \gamma$. We must show $\alpha \sqsubseteq \beta$, equivalently $\beta \nsubseteq \alpha$ by assumption. If we had $\beta \sqsubseteq \alpha$, then $\alpha \in \alpha$. But this is impossible, since $\alpha \in \gamma$ by transitivity of γ such that $[\alpha]$ must have an E-minimal element by well-foundedness of E on γ.
$(3) \Rightarrow(4)$ Let us call α and β incomparable if none of $\alpha \in \beta, \alpha=\beta, \beta \in \alpha$ holds. It is enough to check that $X=[\alpha \in \gamma: \alpha$ and β are incomparable for some $\beta \in \gamma]$ is empty, since the well-foundedness of E on γ implies that for $\alpha, \beta \in \gamma$ at most one of $\alpha \in \beta, \alpha=\beta, \beta \equiv \alpha$ can hold. We will now assume that X is not empty in order to arrive at a contradiction. By the well-foundedness of E on γ we can first pick an E-minimal δ in X and then an E-minimal ε in $[\beta \in \gamma: \delta$ and β are incomparable]. We claim the absurd identity $\delta=\varepsilon$ holds. For the inclusion \sqsubseteq note that each $\sigma \in \delta$ must be comparable with ε, which means $\sigma \in \varepsilon$ because neither $\sigma=\varepsilon$ nor $\varepsilon \in \sigma$, since this would imply $\varepsilon \in \delta$ by the transitivity of δ, is possible. For the inclusion \sqsupseteq note that each $\sigma \in \varepsilon$ must be comparable with δ, which similarly leads to $\sigma \in \delta$.
$(4) \Rightarrow(1)$ By the assumptions it merely remains to verify that E is transitive on γ. So let $\delta, \alpha, \beta \in \gamma$ with $\delta \in \alpha \in \beta$. We can neither have $\delta=\beta$ nor $\beta \in \delta$, since this would imply that $[\delta, \alpha, \beta]$ has no E-minimal element. So necessarily $\delta \in \beta$.
2. We use results from 4. here, and vice versa. But we avoid circular reasoning.
(i) These hold by definition.
(ii) For $\underline{0}+\alpha=\alpha$ use 4. (a) and the order isomorphism $\underline{0} \dot{ப} \alpha \rightarrow \alpha,\langle\underline{1}, \gamma\rangle \mapsto \gamma$.

To prove $\underline{0} \cdot \alpha=\underline{0}$ assume by induction $\underline{0} \cdot \varepsilon=\underline{0}$ for all $\varepsilon<\alpha$. For $\alpha=\underline{0}$ use (i). For successor ordinals α we can once again use (i) to get $\underline{0} \cdot \alpha=\underline{0} \cdot(\alpha-\underline{1})+\underline{0}=\underline{0}$. For limit ordinals α we also have $\underline{0} \cdot \alpha=\bigsqcup_{\varepsilon<\alpha} \cdot \varepsilon=\underline{0}$.
For $\underline{1} \cdot \alpha=\alpha$ use 4. (b) and the order isomorphism $\underline{1} * \alpha \rightarrow \alpha,\langle\underline{0}, \gamma\rangle \mapsto \gamma$.
(iii) The identity $\alpha \cdot \underline{1}=\underline{0}+\alpha=\alpha$ holds by definition and (ii).

The identity $\alpha^{(1)}=\underline{1} \cdot \alpha=\alpha$ holds by definition and (ii).
For $\underline{1}^{(\alpha)}=\underline{1}$ use 4. (c) and $(\alpha \rightarrow \underline{1})=[\alpha * \underline{1}]$.
(iv) Use 4. (c) and $(\alpha \rightarrow \underline{0})=\underline{0}$ if $\underline{0}<\alpha$.
(v) Use 4. (a, b) together with the fact that the obvious maps $(\alpha \dot{ப} \beta) \dot{ப} \gamma \rightarrow \alpha \dot{ப}(\beta \dot{ப} \gamma)$ and $(\alpha * \beta) * \gamma \rightarrow \alpha *(\beta * \gamma)$ (with the obvious orders on the respective domain and range) are order isomorphisms.
(vi) Use 4. (a,b) together with the fact that the obvious map $\alpha *(\beta \dot{\sqcup} \gamma) \rightarrow(\alpha * \beta) \dot{ப}(\alpha * \gamma)$ (with the obvious orders on domain and range) is an order isomorphism.
(vii) Use 4. (a,b,c) and the fact that the obvious map $((\beta \dot{\sqcup} \gamma) \rightarrow \alpha) \rightarrow(\beta \rightarrow \alpha) *(\gamma \rightarrow \alpha)$ (with the obvious orders on domain and range) is an order isomorphism.
(viii) Use 4. (b,c) and the fact that the obvious map $(\gamma \rightarrow(\beta \rightarrow \alpha)) \rightarrow((\beta * \gamma) \rightarrow \alpha)$ (with the obvious orders on domain and range) is an order isomorphism.
(ix) The successor map s on $\mathbb{O}^{\mathcal{M}}$ given by $\varepsilon \mapsto \varepsilon+\underline{1}$ preserves \leq and satisfies $\varepsilon \leq s(\varepsilon)$. Therefore we get $\alpha+\gamma=s^{\gamma}(\alpha) \leq s^{\delta}(\alpha) \leq s^{\delta}(\beta)=\beta+\delta$.

The maps a_{σ} on $\mathbb{D}^{\mathcal{M}}$ given by $\varepsilon \mapsto \varepsilon+\sigma$ preserve \leq and satisfy due to (i) and by what has already been shown here $\varepsilon=\varepsilon+\underline{0} \leq a_{\alpha}(\varepsilon) \leq a_{\beta}(\varepsilon)$. As a consequence, we get $\alpha \cdot \gamma=a_{\alpha}^{\gamma}(\underline{0}) \leq a_{\alpha}^{\delta}(\underline{0}) \leq a_{\beta}^{\delta}(\underline{0})=\beta \cdot \delta$.
(x) By (ix) it suffices to show $\beta+\gamma<\beta+\delta$. We have $\varepsilon<s(\varepsilon)$ such that $\mathrm{It}_{s, \beta}$ is normal, so in particular it is order-preserving, hence $\beta+\gamma=s^{\gamma}(\beta)<s^{\delta}(\beta)=\beta+\delta$.
(xi) By (ix) it suffices to show $\beta \cdot \gamma<\beta \cdot \delta$. We have $\varepsilon=\varepsilon+\underline{0}<a_{\beta}(\varepsilon)$ because of $\underline{0}<\beta$ and (i, x) such that $\mathrm{It}_{a_{\beta}, \underline{0}}$ is normal. Hence, $\beta \cdot \gamma=a_{\beta}^{\gamma}(\underline{0})<a_{\beta}^{\delta}(\underline{0})=\beta \cdot \delta$.
(xii) The maps m_{σ} on $\mathbb{0}^{\mathcal{M}}$ given by $\varepsilon \mapsto \varepsilon \cdot \sigma$ preserve \leq and because of $\underline{1} \leq \alpha$ and (iii,ix) satisfy $\varepsilon=\varepsilon \cdot \underline{1} \leq m_{\alpha}(\varepsilon) \leq m_{\beta}(\varepsilon)$. Hence, $\alpha^{(\gamma)}=m_{\alpha}^{\gamma}(\underline{1}) \leq m_{\alpha}^{\delta}(\underline{1}) \leq m_{\beta}^{\delta}(\underline{1})=\beta^{(\delta)}$.
(xiii) By (xii) it suffices to show $\beta^{(\gamma)}<\beta^{(\delta)}$. We have $\varepsilon=\varepsilon \cdot \underline{1}<m_{\beta}(\varepsilon)$ because of $\underline{1}<\beta$ and (iii,xi) such that $\mathrm{It}_{m_{\beta}, \underline{1}}$ is normal. Hence, $\beta^{(\gamma)}=m_{\beta}^{\gamma}(\underline{1})<m_{\beta}^{\delta}(\underline{1})=\beta^{(\delta)}$.
(xiv) Use (x).
(xv) Use (xi).
(xvi) Use (xii).

Lemma. $\beta \leq \underline{2}^{(\beta)}$ for all $\beta \in \mathbb{O}^{\mathcal{M}}$.
Proof. By induction we may assume $\alpha \leq \underline{2}^{(\alpha)}$ for all $\alpha<\beta$.
If $\beta=\underline{0}$ we have $\beta \leq \underline{1}=\underline{2}^{(\beta)}$ by (i).
If β is a successor ordinal, we compute $\beta=(\beta-\underline{1})+\underline{1} \leq \underline{2}^{(\beta-1)}+\underline{1}^{\leq} \underline{2}^{(\beta)}$ where the first inequality uses (ix) and the last inequality uses the normality of $\mathrm{It}_{m_{\underline{2}, \underline{1}}}$.
If β is a non-zero limit ordinal, then $\beta=\bigsqcup_{\alpha<\beta} \alpha \leq \bigsqcup_{\alpha<\beta} \underline{2}^{(\alpha)}=\underline{2}^{(\beta)}$.
For all $\alpha, \beta \in \mathbb{N}^{\mathcal{M}}$ induction on β readily yields $\alpha+\beta \in \mathbb{N}^{\mathcal{M}}$, then also $\alpha \cdot \beta \in \mathbb{N}^{\mathcal{M}}$, and finally $\alpha^{(\beta)} \in \mathbb{N}^{\mathcal{M}}$. If $\mathbb{N}^{\mathcal{M}}$ forms an \mathcal{M}-set ω, we have for all $\alpha \in \mathbb{N}^{\mathcal{M}}$

$$
\begin{array}{lll}
\omega=\underline{0}+\omega \leq \alpha+\omega=\bigsqcup_{\beta<\omega}(\alpha+\beta) \leq \omega & \text { for all } \alpha \\
\omega=\underline{1} \cdot \omega & \leq \alpha \cdot \omega=\bigsqcup_{\beta<\omega}(\alpha \cdot \beta) \leq \omega & \text { for all } \alpha>\underline{0} \\
\omega \leq \underline{2}^{(\omega)} \leq \alpha^{(\omega)}=\bigsqcup_{\beta<\omega} \alpha^{(\beta)} & \leq \omega & \text { for all } \alpha>\underline{1}
\end{array}
$$

using the lemma and the normality of $\mathrm{It}_{s, \alpha}, \mathrm{It}_{a_{\alpha}, \underline{\underline{0}}}$ for $\alpha>\underline{0}$, and $\mathrm{It}_{m_{\alpha}, \underline{\underline{1}}}$ for $\alpha>\underline{1}$. Consequently, we have for all natural numbers α in \mathcal{M} the identities

$$
\alpha+\omega=\alpha \cdot \omega=\alpha^{(\omega)}=\omega .
$$

They provide us with the following counterexamples:
(I) $\underline{1}+\omega=\omega<\omega+\underline{1}$
(II) $\underline{2} \cdot \omega=\omega=\omega \cdot \underline{1}<\omega \cdot \underline{2}$
(III) $(\underline{1}+\underline{1}) \cdot \omega=\underline{2} \cdot \omega=\omega=\omega \cdot \underline{1}<\omega \cdot \underline{2}=\omega \cdot \underline{1}+\omega \cdot \underline{1}=\underline{1} \cdot \omega+\underline{1} \cdot \omega$
(IV) $(\underline{2} \cdot \underline{2})^{(\omega)}=\omega=\omega \cdot \underline{1}<\omega \cdot \omega=\underline{2}^{(\omega)} \cdot \underline{2}^{(\omega)}$
(V) $\underline{0}+\omega=\omega=\underline{1}+\omega$
(VI) $\underline{1} \cdot \omega=\omega=\underline{2} \cdot \omega$
(VII) $\underline{2}^{(\omega)}=\omega=\underline{3}^{(\omega)}$
(VIII) See (V).
(IX) See (VI).
(X) See (VII).

Let's first prove the remark from the end of the exercise sheet:
Lemma. Every non-empty finite \mathcal{M}-subset X of an \mathcal{M}-ordinal β has a maximum.
Proof. If not, we could construct with the help of well-ordered recursion a sequence $\left\langle\alpha_{\varepsilon}\right\rangle_{\varepsilon \in \mathbb{N} \mathcal{M}}$ given by $\alpha_{\varepsilon}=\min \left(X \backslash\left[\alpha_{\delta}: \delta<\varepsilon\right]\right)$. It would then follow that $\mathbb{N}^{\mathcal{M}}$ forms an \mathcal{M}-set ω satisfying the impossible $\omega \leq|X|<\omega$.
3.
(a) The map $f=\mathrm{It}_{s, \alpha}$ is normal with image $\left\{\gamma \in \mathbb{O}^{\mathcal{M}}: \gamma \geq \alpha\right\}$. Take $\beta-\alpha=f^{-1}(\beta)$.
(b) The map $f=\mathrm{It}_{a_{\beta}, \underline{\underline{0}}}$ is normal for $\beta>\underline{0}$. Let $\gamma \in \mathbb{O}^{\mathcal{M}}$ be such that $f(\gamma)$ is the maximum in the image of f that is not greater than α, which exists since $\alpha \geq f(\underline{0})$. Then $\beta \cdot \gamma \leq \alpha<\beta \cdot(\gamma+\underline{1})$, so $\alpha=\beta \cdot \gamma+\delta$ with $\delta=\alpha-\beta \cdot \gamma$. If we had $\delta \geq \beta$, this would give rise to the contradiction

$$
\beta \cdot(\gamma+\underline{1}) \stackrel{(\mathrm{i}, \mathrm{ix})}{\leq} \beta \cdot(\gamma+\underline{1})+(\delta-\beta) \stackrel{(\mathrm{v})}{=} \beta \cdot \gamma+(\beta+(\delta-\beta))=\alpha .
$$

Now assume $\beta \cdot \gamma+\delta=\beta \cdot \gamma^{\prime}+\delta^{\prime}$ with $\delta^{\prime}<\beta$. By (xiv) it suffices to check $\gamma=\gamma^{\prime}$. Assume not, say $\gamma<\gamma^{\prime}$. Then we get the contradiction

$$
\beta \cdot \gamma+\delta \stackrel{(\mathrm{x})}{<} \beta \cdot \gamma+\beta=\beta \cdot(\gamma+\underline{1}) \stackrel{(\mathrm{ix})}{\leq} \beta \cdot \gamma^{\prime} \stackrel{(\mathrm{i}, \mathrm{ix})}{\leq} \beta \cdot \gamma^{\prime}+\delta^{\prime} .
$$

(c) Let γ be a left divisor of α and $\alpha+\beta$. We show that γ is a left divisor of β, too. This is true for $\gamma=\underline{0}$ by (ii). So let's assume $\gamma \neq \underline{0}$. Write $\alpha=\gamma \cdot \delta$ and using (b) $\beta=\gamma \cdot \sigma+\tau$ where $\bar{\delta}, \sigma, \tau \in \mathbb{O}^{\mathcal{M}}$ with $\tau<\gamma$. We need $\tau=\underline{0}$. A calculation yields

$$
\alpha+\beta \stackrel{(\mathrm{v})}{=}(\gamma \cdot \delta+\gamma \cdot \sigma)+\tau \stackrel{(\mathrm{vi})}{=} \gamma \cdot(\delta+\sigma)+\tau
$$

Since γ is a left divisor of $\alpha+\beta$, the uniqueness in (b) implies $\tau=\underline{0}$.
(d) Let $C \subseteq \mathbb{O}^{\mathcal{M}}$ be a non-empty \mathcal{M}-subclass of $\mathbb{O}^{\mathcal{M}} \backslash\{\underline{0}\}$.

Greatest common left divisor. With (b), (c), the calculation rules in 3., and recursion, finding the greatest common left divisor $\operatorname{gcd}(C)$ of C is standard.

Firstly, we will verify the existence of $\operatorname{gcd}(\{\alpha, \beta\})$ for all $\underline{0}<\beta \leq \alpha$. The Euclidean algorithm - which works thanks to well-ordered recursion and (b) - yields sequences $\left\langle\Gamma_{\sigma}\right\rangle_{\sigma \in \mathbb{N} \mathcal{M}}$ and $\left\langle\Delta_{\sigma}\right\rangle_{\sigma \in \mathbb{N} \mathcal{M}}$ with $\Gamma_{\underline{0}}=\alpha$ and $\Gamma_{\underline{1}}=\beta$ satisfying for $\underline{0}<\sigma \in \mathbb{N}^{\mathcal{M}}$

$$
\begin{array}{cc}
\Gamma_{\sigma-\underline{1}}=\Gamma_{\sigma} \cdot \Delta_{\sigma}+\Gamma_{\sigma+\underline{1}} \text { and } \Gamma_{\sigma+\underline{1}}<\Gamma_{\sigma} & \text { if } \Gamma_{\sigma} \neq \underline{0}, \\
\Gamma_{\sigma+\underline{1}}=\underline{0} & \text { if } \Gamma_{\sigma}=\underline{0} .
\end{array}
$$

Clearly, Γ is eventually constant $\underline{0}$, since otherwise it would be strictly decreasing, in contradiction to the fact that $\mathbb{O}^{\mathcal{M}}$ is well-ordered. So let $\sigma_{0}=\min \left\{\sigma: \Gamma_{\sigma}=\underline{0}\right\}$. We claim $\operatorname{gcd}\left(\left\{\Gamma_{\sigma-1}, \Gamma_{\sigma}\right\}\right)=\operatorname{gcd}\left(\left\{\Gamma_{\sigma}, \Gamma_{\sigma+1}\right\}\right)$ for all $\sigma<\sigma_{0}$ (in particular for $\left.\sigma=\underline{0}\right)$. Otherwise let σ be maximal such that $\operatorname{gcd}\left(\left\{\Gamma_{\sigma}, \Gamma_{\sigma+1}\right\}\right)$ exists but $\operatorname{gcd}\left(\left\{\Gamma_{\sigma-1}, \Gamma_{\sigma}\right\}\right)$ does not. We prove that this is not possible by showing that $\Gamma_{\sigma-1}$ and Γ_{σ} have the same common left divisors as Γ_{σ} and $\Gamma_{\sigma+\underline{1}}$. Now, clearly $\Gamma_{\sigma} \neq \underline{0}$ and by (c) and (v) every common left divisor of $\Gamma_{\sigma-1}$ and Γ_{σ} is a left divisor of $\Gamma_{\sigma+\underline{1}}$. And conversely, by (v, vi) every common left divisor of Γ_{σ} and $\Gamma_{\sigma+1}$ is a left divisor of $\Gamma_{\sigma-1}$.
Next, let $\left\langle X_{\sigma}\right\rangle_{\sigma \in \mathbb{N} \mathcal{M}}$ and $\left\langle\Gamma_{\sigma}\right\rangle_{\sigma \in \mathbb{N} \mathcal{M}}$ be sequences with $X_{\underline{0}}=\Gamma_{\underline{0}}$ an arbitrary element of C and $X_{\sigma}=X_{\sigma-\underline{1}} \sqcup\left[\alpha_{\sigma}\right]$ and $\Gamma_{\sigma}=\operatorname{gcd}\left(\left\{\Gamma_{\sigma-1}, \alpha_{\sigma}\right\}\right)$ for all $0<\sigma \in \mathbb{N}^{\mathcal{M}}$ where

$$
\alpha_{\sigma}= \begin{cases}\min C_{\sigma} & \text { if } C_{\sigma}=\left\{\delta \in C: \Gamma_{\sigma-\underline{1}} \text { is not a left divisor of } \delta\right\} \neq \emptyset \\ \underline{0} & \text { otherwise }\end{cases}
$$

Since Γ is decreasing, it takes eventually some constant value γ, so C_{σ} is empty for large enough σ. Using induction it is easy to see $\Gamma_{\sigma}=\operatorname{gcd}\left(E^{-1}\left(X_{\sigma}\right)\right)$ for all $\sigma \in \mathbb{N}^{\mathcal{M}}$. Then for large enough σ we get $\gamma=\Gamma_{\sigma}=\operatorname{gcd}(C)$ because of $X_{\sigma} \sqsubseteq C$ and $C_{\sigma}=\emptyset$.
Greatest common right divisor. By the remark, which was proved above, it is enough to check that for every non-zero \mathcal{M}-ordinal α its \mathcal{M}-class of right divisors

$$
C=\left\{\delta \in \mathbb{O}^{\mathcal{M}}: \alpha=\gamma \cdot \delta \text { for some } \gamma \in \mathbb{O}^{\mathcal{M}}\right\}
$$

forms a finite \mathcal{M}-set. If this were not the case, we could use well-ordered recursion to obtain two sequences $\left\langle\delta_{\tau}\right\rangle_{\tau \in \mathbb{N} \mathcal{M}}$ and $\left\langle\gamma_{\tau}\right\rangle_{\tau \in \mathbb{N} \mathcal{M}}$ given by

$$
\delta_{\tau}=\min \left(C \backslash\left\{\delta_{\sigma}: \sigma<\tau\right\}\right), \quad \gamma_{\tau}=\min \left\{\gamma \in \mathbb{O}^{\mathcal{M}}: \alpha=\gamma \cdot \delta_{\tau}\right\} .
$$

For all $\underline{0}<\tau \in \mathbb{N}^{\mathcal{M}}$ we would have $\delta_{\tau-\underline{1}}<\delta_{\tau}$ and $\gamma_{\tau-\underline{1}} \cdot \delta_{\tau-1}=\alpha=\gamma_{\tau} \cdot \delta_{\tau}$ such that according to (xi) $\gamma_{\tau-1}>\gamma_{\tau}$, contradicting the fact that $\mathbb{O}^{\bar{M}}$ is well-ordered.
4.
(a) The rules $\langle\underline{0}, \delta\rangle \mapsto \delta$ and $\langle\underline{1}, \delta\rangle \mapsto \alpha+\delta$ yield an \mathcal{M}-function $h: \alpha \dot{ப} \beta \rightarrow \alpha+\beta$, which is well-defined because $\delta<\alpha+\beta$ for all $\delta<\alpha$ and $\alpha+\delta<\alpha+\beta$ for all $\delta<\beta$ by ($\mathrm{i}, \mathrm{ix}, \mathrm{x}$). It is surjective because $\varepsilon=\alpha+(\varepsilon-\alpha)$ for all $\alpha \leq \varepsilon<\alpha+\beta$ and it is injective because of (xiv). We endow $\alpha \dot{\sqcup} \beta$ with the lexicographic order $<$, i.e.

$$
\langle\gamma, \delta\rangle<\left\langle\gamma^{\prime}, \delta^{\prime}\right\rangle \Leftrightarrow \gamma<\gamma^{\prime} \text { or }\left(\gamma=\gamma^{\prime} \text { and } \delta<\delta^{\prime}\right) .
$$

Then $\langle\gamma, \delta\rangle<\left\langle\gamma^{\prime}, \delta^{\prime}\right\rangle \Leftrightarrow h(\langle\gamma, \delta\rangle)<h\left(\left\langle\gamma^{\prime}, \delta^{\prime}\right\rangle\right)$ for $\langle\gamma, \delta\rangle \in \alpha \dot{ப} \beta$. In case $\gamma=\gamma^{\prime}=\underline{0}$ this is obvious, in case $\gamma=\gamma^{\prime}=\underline{1}$ it follows from (ix, x), in case $\gamma=\underline{0}, \gamma^{\prime}=\underline{1}$ from $\delta<\alpha \Rightarrow \delta<\alpha+\delta^{\prime}$ in view of (i,ix), and similarly in case $\gamma=\underline{1}, \gamma^{\prime}=\underline{0}$.
(b) The rule $\langle\gamma, \delta\rangle \mapsto \alpha \cdot \delta+\gamma$ yields an \mathcal{M}-function $\alpha * \beta \rightarrow \alpha \cdot \beta$, which is well-defined because for $\gamma<\alpha$ and $\delta<\beta$

$$
\alpha \cdot \delta+\gamma \stackrel{(\mathrm{x})}{<} \alpha \cdot \delta+\alpha=\alpha \cdot(\delta+\underline{1}) \stackrel{(\mathrm{ix})}{\leq} \alpha \cdot \beta .
$$

It is bijective since for $\varepsilon<\alpha \cdot \beta$ there are unique $\gamma<\alpha$ and $\delta<\beta$ with $\varepsilon=\alpha \cdot \delta+\gamma$ by 3 . (b) and (i,ix) and the identity $\underline{0} \cdot \beta=\underline{0}$ found in (ii). We endow $\alpha * \beta$ with the anti-lexicographic order $<$, i.e.

$$
\langle\gamma, \delta\rangle<\left\langle\gamma^{\prime}, \delta^{\prime}\right\rangle \Leftrightarrow \delta<\delta^{\prime} \text { or }\left(\delta=\delta^{\prime} \text { and } \gamma<\gamma^{\prime}\right) .
$$

Then $\langle\gamma, \delta\rangle<\left\langle\gamma^{\prime}, \delta^{\prime}\right\rangle \Leftrightarrow \alpha \cdot \delta+\gamma<\alpha \cdot \delta^{\prime}+\gamma^{\prime}$ for $\langle\gamma, \delta\rangle \in \alpha * \beta$. In case $\delta=\delta^{\prime}$ this follows from (ix, x), in case $\delta<\delta^{\prime}$, using $\gamma<\alpha+\gamma^{\prime}$ for $\gamma<\alpha$ by (i,ix), from

$$
\alpha \cdot \delta+\gamma \stackrel{(\mathrm{x})}{<} \alpha \cdot \delta+\left(\alpha+\gamma^{\prime}\right) \stackrel{(\mathrm{v})}{=} \alpha \cdot(\delta+\underline{1})+\gamma^{\prime} \stackrel{(\mathrm{ix})}{\leq} \alpha \cdot \delta^{\prime}+\gamma^{\prime},
$$

and the case $\delta^{\prime}<\delta$ is analogous to the case $\delta<\delta^{\prime}$. Observe that here only the part of (v) was used whose proof depended solely on 4. (a).
(c) We begin with an auxiliary lemma:

Lemma. Fix $\alpha \in \mathbb{D}^{\mathcal{M}}$ and for all $\beta \in \mathbb{T}^{\mathcal{M}}$ let $C_{\beta}=\{f \in\{\beta \rightarrow \alpha\}$: $\operatorname{supp}(f)$ is finite $\}$ where $\operatorname{supp}(f)=[\gamma<\beta: f(\gamma) \neq \underline{0}]$.
(1) For every $f \in C_{\beta}$ the \mathcal{M}-set $\operatorname{supp}(f)$ has a maximum m_{f} with the notational convention $m_{f}=-\underline{1}$ in case $\operatorname{supp}(f)=\square$ and $-\underline{1}+\underline{1}=\underline{0}$.
(2) If β is a successor ordinal, then the following is a bijective \mathcal{M}-class function:

$$
\begin{aligned}
C_{\beta} & \longrightarrow C_{\beta-\underline{1}} * \alpha \\
f & \longmapsto\left\langle\left. f\right|_{\beta-\underline{1}}, f(\beta-\underline{1})\right\rangle
\end{aligned}
$$

(3) If β is a limit ordinal, then the following is a bijective \mathcal{M}-class function:

$$
\begin{aligned}
C_{\beta} & \left.\longrightarrow f \in \bigcup_{\gamma<\beta} C_{\gamma}: \operatorname{dom}(f)=m_{f}+\underline{1}\right\} \\
f & \left.\longmapsto f\right|_{m_{f}+\underline{1}}
\end{aligned}
$$

(4) C_{β} forms an \mathcal{M}-set $(\beta \rightarrow \alpha)$.

Proof. (1) Use the remark, which was proved above.
(2) and (3) are easily checked and together with $C_{\underline{0}}=\{\underline{0}\}$ imply (4) by induction.

For all $\beta \in \mathbb{O}^{\mathcal{M}}$ we now endow $(\beta \rightarrow \alpha)$ with the \mathcal{M}-relation $<$ given by $f<f^{\prime} \Leftrightarrow f \neq f^{\prime}$ and $f\left(m_{f, f^{\prime}}\right)<f^{\prime}\left(m_{f, f^{\prime}}\right)$ for $m_{f, f^{\prime}}=\max \left[\gamma<\beta: f(\gamma) \neq f^{\prime}(\gamma)\right]$.

We will prove by induction that there is a bijective \mathcal{M}-function $h_{\beta}:(\beta \rightarrow \alpha) \rightarrow \alpha^{(\beta)}$ that is order-preserving with order-preserving inverse.
Explicitly, h_{β} will be given as $h_{\beta}(f)=\alpha^{\left(m_{f}\right)} \cdot f\left(m_{f}\right)+h_{m_{f}}\left(\left.f\right|_{m_{f}}\right)$ if $\beta>\underline{0}$.
In case $\beta=\underline{0}$ we have $(\beta \rightarrow \alpha)=\underline{1}=\alpha^{(\beta)}$ and everything works out.
In case $\beta \in \mathbb{O}_{+\underline{1}}^{\mathcal{M}}$ let h_{β} be the composition of the chain of \mathcal{M}-bijections

$$
(\beta \rightarrow \alpha) \longrightarrow((\beta-\underline{1}) \longrightarrow \alpha) * \alpha \longrightarrow \alpha^{(\beta-1)} * \alpha \longrightarrow \alpha^{(\beta-\underline{1})} \cdot \alpha=\alpha^{(\beta)}
$$

where the first map is the \mathcal{M}-bijection formed by the \mathcal{M}-class function from (2), the second map is given by the rule $\langle f, \gamma\rangle \mapsto\left\langle h_{\beta-1}(f), \gamma\right\rangle$, and the third map is the one described in (b). It is straightforward to verify that h_{β} satisfies the explicit formula stated above. Let's finally check that as required $f<f^{\prime} \Leftrightarrow h_{\beta}(f)<h_{\beta}\left(f^{\prime}\right)$ for all distinct $f, f^{\prime} \in(\beta \rightarrow \alpha)$, which is equivalent to checking

$$
f<f^{\prime} \Leftrightarrow\left\langle h_{\beta-1}(f), f(\beta-\underline{1})\right\rangle<\left\langle h_{\beta-1}\left(f^{\prime}\right), f^{\prime}(\beta-\underline{1})\right\rangle .
$$

If $m_{f, f^{\prime}}<\beta-\underline{1}$, this follows by induction from the corresponding property of $h_{\beta-\underline{1}}$. Otherwise, it is clear by definition of the orders on $(\beta \rightarrow \alpha)$ and $\alpha^{(\beta-1)} * \alpha$.
In case $\beta \in \mathbb{O}_{\lim }^{\mathcal{M}}$ let h_{β} be the composition of the chain of \mathcal{M}-functions

$$
(\beta \rightarrow \alpha) \longrightarrow\left[f \in \bigsqcup_{\gamma<\beta}(\gamma \rightarrow \alpha): \operatorname{dom}(f)=m_{f}+\underline{1}\right] \longrightarrow \bigsqcup_{\gamma<\beta} \alpha^{(\gamma)}=\alpha^{(\beta)}
$$

where the first map is the \mathcal{M}-bijection formed by the \mathcal{M}-class function from (3) and the second map is given by $f \mapsto h_{\operatorname{dom}(f)}(f)$. It is invertible with inverse $\varepsilon \mapsto h_{\gamma_{\varepsilon}}^{-1}(\varepsilon)$ where $\gamma_{\varepsilon}=\min \left[\gamma<\beta: \varepsilon<\alpha^{(\gamma)}\right]$. Thus h_{β} is bijective. Again, it is straightforward to verify that h_{β} satisfies the above formula. Moreover, h_{β} is an order isomorphism since all h_{γ} with $\gamma<\beta$ are and for $f, f^{\prime} \in(\beta \rightarrow \alpha)$ we have $m_{f, f^{\prime}}+\underline{1}<\beta$ and

$$
f<\left.f^{\prime} \Leftrightarrow f\right|_{m_{f, f^{\prime}+1}}<\left.f^{\prime}\right|_{m_{f, f^{\prime}}+\underline{1}} .
$$

